56 research outputs found

    Fully leakage-resilient signatures revisited: Graceful degradation, noisy leakage, and construction in the bounded-retrieval model

    Get PDF
    We construct new leakage-resilient signature schemes. Our schemes remain unforgeable against an adversary leaking arbitrary (yet bounded) information on the entire state of the signer (sometimes known as fully leakage resilience), including the random coin tosses of the signing algorithm. The main feature of our constructions is that they offer a graceful degradation of security in situations where standard existential unforgeability is impossible

    Short Group Signatures via Structure-Preserving Signatures: Standard Model Security from Simple Assumptions

    Get PDF
    International audienceGroup signatures are a central cryptographic primitive which allows users to sign messages while hiding their identity within a crowd of group members. In the standard model (without the random oracle idealization), the most efficient constructions rely on the Groth-Sahai proof systems (Euro-crypt'08). The structure-preserving signatures of Abe et al. (Asiacrypt'12) make it possible to design group signatures based on well-established, constant-size number theoretic assumptions (a.k.a. " simple assumptions ") like the Symmetric eXternal Diffie-Hellman or Decision Linear assumptions. While much more efficient than group signatures built on general assumptions, these constructions incur a significant overhead w.r.t. constructions secure in the idealized random oracle model. Indeed, the best known solution based on simple assumptions requires 2.8 kB per signature for currently recommended parameters. Reducing this size and presenting techniques for shorter signatures are thus natural questions. In this paper, our first contribution is to significantly reduce this overhead. Namely, we obtain the first fully anonymous group signatures based on simple assumptions with signatures shorter than 2 kB at the 128-bit security level. In dynamic (resp. static) groups, our signature length drops to 1.8 kB (resp. 1 kB). This improvement is enabled by two technical tools. As a result of independent interest, we first construct a new structure-preserving signature based on simple assumptions which shortens the best previous scheme by 25%. Our second tool is a new method for attaining anonymity in the strongest sense using a new CCA2-secure encryption scheme which is simultaneously a Groth-Sahai commitment

    Born and Raised Distributively: Fully Distributed Non-Interactive Adaptively-Secure Threshold Signatures with Short Shares

    Get PDF
    International audienceThreshold cryptography is a fundamental distributed computational paradigm for enhancing the availability and the security of cryptographic public-key schemes. It does it by dividing private keys into nn shares handed out to distinct servers. In threshold signature schemes, a set of at least t+1≀nt+1 \leq n servers is needed to produce a valid digital signature. Availability is assured by the fact that any subset of t+1t+1 servers can produce a signature when authorized. At the same time, the scheme should remain robust (in the fault tolerance sense) and unforgeable (cryptographically) against up to tt corrupted servers; {\it i.e.}, it adds quorum control to traditional cryptographic services and introduces redundancy. Originally, most practical threshold signatures have a number of demerits: They have been analyzed in a static corruption model (where the set of corrupted servers is fixed at the very beginning of the attack), they require interaction, they assume a trusted dealer in the key generation phase (so that the system is not fully distributed), or they suffer from certain overheads in terms of storage (large share sizes). In this paper, we construct practical {\it fully distributed} (the private key is born distributed), non-interactive schemes -- where the servers can compute their partial signatures without communication with other servers -- with adaptive security ({\it i.e.}, the adversary corrupts servers dynamically based on its full view of the history of the system). Our schemes are very efficient in terms of computation, communication, and scalable storage (with private key shares of size O(1)O(1), where certain solutions incur O(n)O(n) storage costs at each server). Unlike other adaptively secure schemes, our schemes are erasure-free (reliable erasure is a hard to assure and hard to administer property in actual systems). To the best of our knowledge, such a fully distributed highly constrained scheme has been an open problem in the area. In particular, and of special interest, is the fact that Pedersen's traditional distributed key generation (DKG) protocol can be safely employed in the initial key generation phase when the system is born -- although it is well-known not to ensure uniformly distributed public keys. An advantage of this is that this protocol only takes one round optimistically (in the absence of faulty player)

    Universally Composable Verifiable Random Oracles

    Get PDF
    Random Oracles werden hĂ€ufig in der Kryptographie eingesetzt um sehr effiziente Instanziierungen mĂ€chtiger kryptographischer Primitive zu konstruieren. Jedoch ist diese Praxis im Allgemeinen nicht zulĂ€ssig wie verschiedene Nicht-Instanziierungs-Ergebnisse fĂŒr Random Oracles mittels lokal berechenbarer Familien von Funktionen durch Halevi et al. (JACM ’04) zeigt. Die Random Oracle Modell kann sicher eingesetzt werden, indem Random Oracles nicht mit einer lokal berechenbaren Hashfunktion, sondern stattdessen mit einem interaktiven Protokoll instanziiert werden. In der realen Welt könnte solch ein interaktives Protokoll beispielsweise aus einem vertrauenswĂŒrdigen Server, welcher ĂŒber das Internet erreichbar ist, bestehen. Dieser Server wĂŒrde sodann eine der bekannten Techniken wie lazy sampling oder das Auswerten einer Pseudo-ZufĂ€lligen Funktion verwenden, um die FunktionalitĂ€t eines Random Oracle bereitzustellen. Ein klarer Nachteil dieses Ansatzes ist die große Menge an Interaktion, die bei jeder Berechnung, die eine Auswertung des Random Oracle beinhaltet, nötig ist. Wir wollen diese Interaktion auf ein Minimum reduzieren. Um obiges Unmöglichkeitsresultat zu umgehen, muss die Auswertung des Random Oracle auf einer frischen Eingabe Interaktion der auswertenden Partei mit einer anderen Partei beinhalten. Dies ist jedoch nicht der einzige Verwendungszweck von Random Oracles, der hĂ€ufig in kryptographischen Protokollen auftritt. Bei einem weiteren solchen Zweck wertet zunĂ€chst eine Partei A das Orakel auf einer Eingabe aus und erhĂ€lt einen Hashwert. Im Anschluss sendet A Eingabe und Ausgabe (im Kontext eines Protokolls) an eine zweite Partei B und möchte B davon ĂŒberzeugen, dass das Random Oracle korrekt ausgewertet wurde. Eine einfache Möglichkeit dies zu prĂŒfen besteht darin, dass B selbst eine Auswertung des Random Oracle auf der erhaltenen Eingabe tĂ€tigt und die beiden Ausgaben vergleicht. In unserem Kontext benötigt dies jedoch erneut Interaktion. Der Wunsch diesen zweiten Verwendungszweck nicht-interaktiv zu machen fĂŒhrt uns zum Begriff eines Verifiable Random Oracle (VRO) als Erweiterung eines Random Oracle. Abstrakt besteht ein VRO aus zwei Orakeln. Das erste Orakel verhĂ€lt sich wie ein Random Oracle dessen Ausgabe um einen Korrektheitsbeweis erweitert wurde. Mit Hilfe dieses Beweises kann das zweite Orakel dazu verwendet werden öffentlich die korrekte Auswertung des Random Oracle zu verifizieren. Obwohl diese Orakel-basierte Formulierung nicht notwendigerweise nicht-interaktive Verifikation besitzt, so erlaubt jedoch die EinfĂŒhrung expliziter Korrektheitsbeweise dies. In dieser Masterarbeit formalisieren wir zunĂ€chst den Begriff eines VRO im Universal Composability Framework von Canetti (FOCS ’01). Danach wenden wir VROs auf zwei kryptographische Anwendungen an, die in ihrer ursprĂŒnglichen Formulierung das Random Oracle Modell verwenden, und zeigen, das deren Sicherheitseigenschaften erhalten bleiben. Um zu zeigen, dass unsere Definition realisierbar ist, konstruieren wir mehrere Protokolle, die die ideale VRO FunktionalitĂ€t realisieren. Diese reichen von Protokollen fĂŒr eine einzelne vertrauenswĂŒrdige Partei bis hin zu verteilten Protokollen, die eine gewisse Menge an böswilliger Korruption erlauben. Wir vergleichen weiterhin VROs mit Ă€hnlichen existierenden Primitiven

    Indistinguishability Obfuscation of Null Quantum Circuits and Applications

    Get PDF
    We study the notion of indistinguishability obfuscation for null quantum circuits (quantum null-iO). We present a construction assuming: - The quantum hardness of learning with errors (LWE). - Post-quantum indistinguishability obfuscation for classical circuits. - A notion of "dual-mode" classical verification of quantum computation (CVQC). We give evidence that our notion of dual-mode CVQC exists by proposing a scheme that is secure assuming LWE in the quantum random oracle model (QROM). Then we show how quantum null-iO enables a series of new cryptographic primitives that, prior to our work, were unknown to exist even making heuristic assumptions. Among others, we obtain the first witness encryption scheme for QMA, the first publicly verifiable non-interactive zero-knowledge (NIZK) scheme for QMA, and the first attribute-based encryption (ABE) scheme for BQP

    Compactly Hiding Linear Spans: Tightly Secure Constant-Size Simulation-Sound QA-NIZK Proofs and Applications

    Get PDF
    International audienceQuasi-adaptive non-interactive zero-knowledge (QA-NIZK) proofs is a powerful paradigm, suggested recently by Jutla and Roy (Asiacrypt '13), which is motivated by the Groth-Sahai seminal techniques for efficient non-interactive zero-knowledge (NIZK) proofs. In this paradigm, the common reference string may depend on specific language parameters, a fact that allows much shorter proofs in important cases. It even makes certain standard model applications competitive with the Fiat-Shamir heuristic in the Random Oracle idealization (such QA-NIZK proofs were recently optimized to constant size by Jutla and Roy (Crypto '14) and Libert et al. (Eurocrypt '14) for the important case of proving that a vector of group elements belongs to a linear subspace). While, e.g., the QA-NIZK arguments of Libert et al. provide unbounded simulation-soundness and constant proof length, their simulation-soundness is only loosely related to the underlying assumption (with a gap proportional to the number of adversarial queries) and it is unknown how to alleviate this limitation without sacrificing efficiency. Here, we deal with the basic question of whether and to what extent we can simultaneously optimize the proof size and the tightness of security reductions, allowing for important applications with tight security (which are typically to date quite lengthy) to be of shorter size. In this paper, we resolve this question by describing a novel simulation-sound QA-NIZK argument showing that a vector v ∈ G n belongs to a subspace of rank t < n using a constant number of group elements. Unlike previous constant-size QA-NIZK proofs of such statements, the unbounded simulation-soundness of our system is nearly tightly related (i.e., the reduction only loses a factor proportional to the security parameter) to the standard Decision Linear assumption. To show simulation-soundness in the constrained context of tight reductions, we employ a number of techniques, and explicitly point at a technique – which may be of independent interest – of hiding the linear span of a structure-preserving homomorphic signature (which is part of an OR proof). As an application, we design a public-key cryptosystem with almost tight CCA2-security in the multi-challenge, multiuser setting with improved length (asymptotically optimal for long messages). We also adapt our scheme to provide CCA security in the key-dependent message scenario (KDM-CCA2) with ciphertext length reduced by 75% when compared to the best known tightly secure KDM-CCA2 system so far

    Efficient Fully-Leakage Resilient One-More Signature Schemes

    Get PDF
    In a recent paper Faonio, Nielsen and Venturi (ICALP 2015) gave new constructions of leakage-resilient signature schemes. The signature schemes proposed remain unforgeable against an adversary leaking arbitrary information on the entire state of the signer, including the random coins of the signing algorithm. The main feature of their signature schemes is that they offer a graceful degradation of security in situations where standard existential unforgeability is impossible. The notion, put forward by Nielsen, Venturi, and Zottarel (PKC 2014), defines a slack parameter Îł\gamma which, roughly speaking, describes how gracefully the security degrades. Unfortunately, the standard-model signature scheme of Faonio,Nielsen and Venturi has a slack parameter that depends on the number of signatures queried by the adversary. In this paper we show two new constructions in the standard model where the above limitation is avoided. Specifically, the first scheme achieves slack parameter O(1/λ)O(1/\lambda) where λ\lambda is the security parameter and it is based on standard number theoretic assumptions, the second scheme achieves optimal slack parameter (i.e. Îł=1\gamma = 1) and it is based on knowledge of the exponent assumptions. Our constructions are efficient and have leakage rate 1−o(1)1 - o(1), most notably our second construction has signature size of only 8 group elements which makes it the leakage-resilient signature scheme with the shortest signature size known to the best of our knowledge

    On a New, Efficient Framework for Falsifiable Non-interactive Zero-Knowledge Arguments

    Get PDF
    Et kunnskapslĂžst bevis er en protokoll mellom en bevisfĂžrer og en attestant. BevisfĂžreren har som mĂ„l Ă„ overbevise attestanten om at visse utsagn er korrekte, som besittelse av kortnummeret til et gyldig kredittkort, uten Ă„ avslĂžre noen private opplysninger, som for eksempel kortnummeret selv. I mange anvendelser er det Ăžnskelig Ă„ bruke IIK-bevis (Ikke-interaktive kunnskapslĂžse bevis), der bevisfĂžreren produserer kun en enkelt melding som kan bekreftes av mange attestanter. En ulempe er at sikre IIK-bevis for ikke-trivielle sprĂ„k kun kan eksistere ved tilstedevĂŠrelsen av en pĂ„litelig tredjepart som beregner en felles referansestreng som blir gjort tilgjengelig for bĂ„de bevisfĂžreren og attestanten. NĂ„r ingen slik part eksisterer liter man av og til pĂ„ ikke-interaktiv vitne-uskillbarhet, en svakere form for personvern. Studiet av effektive og sikre IIK-bevis er en kritisk del av kryptografi som har blomstret opp i det siste grunnet anvendelser i blokkjeder. I den fĂžrste artikkelen konstruerer vi et nytt IIK-bevis for sprĂ„kene som bestĂ„r av alle felles nullpunkter for en endelig mengde polynomer over en endelig kropp. Vi demonstrerer nytteverdien av beviset ved flerfoldige eksempler pĂ„ anvendelser. SĂŠrlig verdt Ă„ merke seg er at det er mulig Ă„ gĂ„ nesten automatisk fra en beskrivelse av et sprĂ„k pĂ„ et hĂžyt nivĂ„ til definisjonen av IIK-beviset, som minsker behovet for dedikert kryptografisk ekspertise. I den andre artikkelen konstruerer vi et IIV-bevis ved Ă„ bruke en ny kompilator. Vi utforsker begrepet Kunnskapslydighet (et sterkere sikkerhetsbegrep enn lydighet) for noen konstruksjoner av IIK-bevis. I den tredje artikkelen utvider vi arbeidet fra den fĂžrste artikkelen ved Ă„ konstruere et nytt IIK-bevis for mengde-medlemskap som lar oss bevise at et element ligger, eller ikke ligger, i den gitte mengden. Flere nye konstruksjoner har bedre effektivitet sammenlignet med allerede kjente konstruksjoner.A zero-knowledge proof is a protocol between a prover, and a verifier. The prover aims to convince the verifier of the truth of some statement, such as possessing credentials for a valid credit card, without revealing any private information, such as the credentials themselves. In many applications, it is desirable to use NIZKs (Non-Interactive Zero Knowledge) proofs, where the prover sends outputs only a single message that can be verified by many verifiers. As a drawback, secure NIZKs for non-trivial languages can only exist in the presence of a trusted third party that computes a common reference string and makes it available to both the prover and verifier. When no such party exists, one sometimes relies on non interactive witness indistinguishability (NIWI), a weaker notion of privacy. The study of efficient and secure NIZKs is a crucial part of cryptography that has been thriving recently due to blockchain applications. In the first paper, we construct a new NIZK for the language of common zeros of a finite set of polynomials over a finite field. We demonstrate its usefulness by giving a large number of example applications. Notably, it is possible to go from a high-level language description to the definition of the NIZK almost automatically, lessening the need for dedicated cryptographic expertise. In the second paper, we construct a NIWI using a new compiler. We explore the notion of Knowledge Soundness (a security notion stronger than soundness) of some NIZK constructions. In the third paper, we extended the first paper’s work by constructing a new set (non-)membership NIZK that allows us to prove that an element belongs or does not belong to the given set. Many new constructions have better efficiency compared to already-known constructions.Doktorgradsavhandlin

    Designated Verifier/Prover and Preprocessing NIZKs from Diffie-Hellman Assumptions

    Get PDF
    In a non-interactive zero-knowledge (NIZK) proof, a prover can non-interactively convince a verifier of a statement without revealing any additional information. Thus far, numerous constructions of NIZKs have been provided in the common reference string (CRS) model (CRS-NIZK) from various assumptions, however, it still remains a long standing open problem to construct them from tools such as pairing-free groups or lattices. Recently, Kim and Wu (CRYPTO\u2718) made great progress regarding this problem and constructed the first lattice-based NIZK in a relaxed model called NIZKs in the preprocessing model (PP-NIZKs). In this model, there is a trusted statement-independent preprocessing phase where secret information are generated for the prover and verifier. Depending on whether those secret information can be made public, PP-NIZK captures CRS-NIZK, designated-verifier NIZK (DV-NIZK), and designated-prover NIZK (DP-NIZK) as special cases. It was left as an open problem by Kim and Wu whether we can construct such NIZKs from weak paring-free group assumptions such as DDH. As a further matter, all constructions of NIZKs from Diffie-Hellman (DH) type assumptions (regardless of whether it is over a paring-free or paring group) require the proof size to have a multiplicative-overhead ∣C∣⋅poly(Îș)|C| \cdot \mathsf{poly}(\kappa), where ∣C∣|C| is the size of the circuit that computes the NP\mathbf{NP} relation. In this work, we make progress of constructing (DV, DP, PP)-NIZKs with varying flavors from DH-type assumptions. Our results are summarized as follows: 1. DV-NIZKs for NP\mathbf{NP} from the CDH assumption over pairing-free groups. This is the first construction of such NIZKs on pairing-free groups and resolves the open problem posed by Kim and Wu (CRYPTO\u2718). 2. DP-NIZKs for NP\mathbf{NP} with short proof size from a DH-type assumption over pairing groups. Here, the proof size has an additive-overhead ∣C∣+poly(Îș)|C|+\mathsf{poly}(\kappa) rather then an multiplicative-overhead ∣C∣⋅poly(Îș)|C| \cdot \mathsf{poly}(\kappa). This is the first construction of such NIZKs (including CRS-NIZKs) that does not rely on the LWE assumption, fully-homomorphic encryption, indistinguishability obfuscation, or non-falsifiable assumptions. 3. PP-NIZK for NP\mathbf{NP} with short proof size from the DDH assumption over pairing-free groups. This is the first PP-NIZK that achieves a short proof size from a weak and static DH-type assumption such as DDH. Similarly to the above DP-NIZK, the proof size is ∣C∣+poly(Îș)|C|+\mathsf{poly}(\kappa). This too serves as a solution to the open problem posed by Kim and Wu (CRYPTO\u2718). Along the way, we construct two new homomorphic authentication (HomAuth) schemes which may be of independent interest

    Steganography-Free Zero-Knowledge

    Get PDF
    We revisit the well-studied problem of preventing steganographic communication in multi-party communications. While this is known to be a provably impossible task, we propose a new model that allows circumventing this impossibility. In our model, the parties first publish a single message during an honest non-interactive pre-processing phase and then later interact in an execution phase. We show that in this model, it is indeed possible to prevent any steganographic communication in zero-knowledge protocols. Our solutions rely on standard cryptographic assumptions
    • 

    corecore