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Abstract

In a non-interactive zero-knowledge (NIZK) proof, a prover can non-interactively convince a verifier of a statement
without revealing any additional information. Thus far, numerous constructions of NIZKs have been provided in
the common reference string (CRS) model (CRS-NIZK) from various assumptions, however, it still remains a long
standing open problem to construct them from tools such as pairing-free groups or lattices. Recently, Kim and Wu
(CRYPTO’18) made great progress regarding this problem and constructed the first lattice-based NIZK in a relaxed
model called NIZKs in the preprocessing model (PP-NIZKs). In this model, there is a trusted statement-independent
preprocessing phase where secret information are generated for the prover and verifier. Depending on whether those
secret information can be made public, PP-NIZK captures CRS-NIZK, designated-verifier NIZK (DV-NIZK), and
designated-prover NIZK (DP-NIZK) as special cases. It was left as an open problem by Kim and Wu whether we can
construct such NIZKs from weak paring-free group assumptions such as DDH. As a further matter, all constructions of
NIZKs from Diffie-Hellman (DH) type assumptions (regardless of whether it is over a paring-free or paring group)
require the proof size to have a multiplicative-overhead |C| · poly(κ), where |C| is the size of the circuit that computes
the NP relation.

In this work, we make progress of constructing (DV, DP, PP)-NIZKs with varying flavors from DH-type assumptions.
Our results are summarized as follows:

• DV-NIZKs for NP from the CDH assumption over pairing-free groups. This is the first construction of such
NIZKs on pairing-free groups and resolves the open problem posed by Kim and Wu (CRYPTO’18).

• DP-NIZKs for NP with short proof size from a DH-type assumption over pairing groups. Here, the proof
size has an additive-overhead |C| + poly(κ) rather than an multiplicative-overhead |C| · poly(κ). This is
the first construction of such NIZKs (including CRS-NIZKs) that does not rely on the LWE assumption,
fully-homomorphic encryption, indistinguishability obfuscation, or non-falsifiable assumptions.

• PP-NIZK for NP with short proof size from the DDH assumption over pairing-free groups. This is the first
PP-NIZK that achieves a short proof size from a weak and static DH-type assumption such as DDH. Similarly to
the above DP-NIZK, the proof size is |C|+ poly(κ). This too serves as a solution to the open problem posed by
Kim and Wu (CRYPTO’18).

Along the way, we construct two new homomorphic authentication (HomAuth) schemes which may be of independent
interest.

∗A preliminary version of this work appeared in the proceedings of the 38th Annual International Conference on the Theory and Applications of
Cryptographic Techniques [KNYY19a]. This is the revised full version of it.
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1 Introduction
1.1 Background
Zero-knowledge (ZK) proof system [GMR89] is an interactive protocol where a prover convinces the validity of
a statement to a verifier without providing any additional knowledge. A non-interactive zero-knowledge (NIZK)
proof (or argument1) [BFM88] is a ZK proof (or argument) where a prover can generate a proof to the validity of
a statement without interacting with a verifier. Due to the absence of interaction, NIZKs have found tremendous
number of applications in cryptography including (but not limited to) chosen-ciphertext secure public key encryption
[NY90, DDN00, Sah99], group/ring signatures [Cv91, BMW03, RST01], anonymous credentials [Cha85, Dam90],
and multi-party computations (MPC) [GMW87]. Furthermore, aside from its practical interests, due to its theoretically
appealing nature, studying the types of assumptions which imply NIZKs has also been an active research area for NIZKs
[FLS99, GOS12, BPW16, RSS19]. Below, we briefly review the current state of affairs concerning NIZKs.
NIZKs in the CRS model. It is well known that NIZKs for non-trivial languages do not exist in the plain model where
there is no trusted setup [GO94]. Therefore NIZKs for all of NP are constructed either in the common reference string
(CRS) model [FLS99] or the random oracle model [FS87, PS00]. In the former type of NIZK, the prover and the
verifier have access to a CRS generated by a trusted third party (hereafter referred to as CRS-NIZK). Thus far, known
constructions of CRS-NIZK for NP are based on (doubly-enhanced) trapdoor permutation [FLS99, BY96, Gol04],
pairing [GOS12, GS12], or indistinguishability obfuscation [SW14, BP15, BPW16]. Constructing CRS-NIZKs based
on other assumptions such as pairing-free groups and lattices remains to be a long standing open problem.
NIZKs in the designated verifier/prover model. As an alternative line of research, NIZKs in a relaxed model have
been considered: designated verifier NIZKs (DV-NIZKs) and designated prover NIZKs (DP-NIZKs). Both notions of
NIZKs retain most of the useful security properties of NIZKs with some relaxation. In DV-NIZKs, anybody can generate
a proof, but the proof can only be verified by a designated party in possession of a verification key. On the other hand, in
DP-NIZKs only a designated party in possession of a proving key can generate a proof, but the proof can be verified by
anybody. Although the two types of NIZKs are relaxation of CRS-NIZKs, they showed to be no easier to construct.
There have been a long line of work concerning DV-NIZKs [PsV06, DFN06, VV09, CG15, Lip17, CC18, CDI+18],
however, many of these schemes do not satisfy soundness against multiple theorems, which in brief means that soundness
does not hold against a cheating prover given unbounded access to a verification oracle (See Section 1.4 for more details).
Moreover, DV-NIZKs satisfying soundness against multiple theorems [CC18, CDI+18] are built on tools which are
already known to imply CRS-NIZKs. Similarly to DV-NIZKs, it was not until recently that Kim and Wu [KW18a] in a
breakthrough result showed how to construct DP-NIZKs supporting NP languages from lattices; this is the first NIZKs
for all of NP in any model that is based on lattice assumptions. They showed a generic construction of DP-NIZKs from
homomorphic signatures (HomSig) and instantiated it with the lattice-based HomSig of [GVW15b]. However, despite
these recent developments, basing the construction of DV-NIZKs or DP-NIZKs for all of NP on pairing-free groups
still remains unsolved, and Kim and Wu [KW18a] have stated it as an open problem to construct such NIZKs from the
decisional Diffie-Hellman (DDH) assumption.
First Contribution. One of our main contributions is solving this open problem and constructing the first DV-NIZKs
from the computational Diffie-Hellman (CDH) assumption over pairing-free groups. As our scheme is DV-NIZKs and
not DP-NIZKs, our techniques depart from [KW18a] and follows more closely to the classical techniques of [FLS99].
More details will be provided in Section 1.2.
NIZKs with short proof size. An equally important topic for NIZKs is constructing NIZKs with short proof size.
Our construction above solves the open problem of constructing DV or DP-NIZKs from pairing-free groups, however,
the size of proof is rather large. Namely, it is of size poly(κ, |C|), where κ is the security parameter and |C| is the
size of circuit computing the NP relation R. In particular, the proof size incurs at least a multiplicative-overhead of
O(|C|κ). As far as we know, the only (CRS, DV, DP)-NIZKs for NP in the standard model with a short proof size, i.e.,
a proof with additive-overhead O(|C|) + poly(κ) rather than O(|C|) · poly(κ), either requires a knowledge assumption
[Gro10], (fully-)homomorphic encryption (FHE) [GGI+15], indistinguishability obfuscation (iO) [SW14], or HomSig

1NIZK arguments are a relaxed notion of NIZK proofs where soundness only holds against computationally bounded adversaries. Throughout the
introduction, we simply refer to them as NIZKs.
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with additional compactness properties [KW18a].2 Notably, we do not know how to construct (CRS, DV, DP)-NIZKs
with short proof size from standard assumptions from pairing-free groups. In fact, this is the case even if we were to
consider pairing groups [CHK07, GOS12, Abu13] as none of the aforementioned heavy machineries are implied from
such groups. In other words, it is not known whether DH-type assumptions can be used to construct DV or DP-NIZKs
with short proof size.
Second Contribution. Our second contribution is constructing a DP-NIZK with short proof size from a DH-type
assumption over pairing groups by proposing a compact HomSig scheme from a new non-static DH-type assumption
(proven to hold in the generic group model) and following the general conversion from HomSig to DP-NIZK by Kim
and Wu [KW18a]. More details will be provided in Section 1.2.

Our second scheme achieves the first DP-NIZK with short proof size from any DH-type assumptions, however,
one caveat is that the assumption is non-static and rather strong, and furthermore requires pairing groups. Therefore,
desirably we would like to construct any type of NIZKs with short proof size from weaker and static assumptions such
as the DDH assumption while only requiring pairing-free groups. To this end, we consider a further relaxation of
NIZKs in the preprocessing model (hereafter referred to as PP-NIZK). In this model, there is a trusted preprocessing
setup that generates a verification and proving key, where only those with the proving (resp. verification) key can
generate (resp. verify) proofs. Analogously to the history of DV and DP-NIZKs, even with this added relaxation,
PP-NIZKs turned out to be a rather difficult primitive to construct. There have been several works concerning PP-NIZKs
[DMP90, KMO90, LS91, Dam93, CD04, IKOS09], however, all of them were only bounded-theorem in the sense that
either the soundness or zero-knowledge property hold in a bounded manner (See Section 1.4 for more details). The
problem of constructing unbounded-theorem PP-NIZKs, which meets the standard criteria of NIZK, was only recently
resolved in the aforementioned paper [KW18a], where Kim and Wu showed a generic construction of PP-NIZKs
using homomorphic MACs (HomMAC). In particular, depending on whether the signature can be verified publicly
(HomSig) or not (HomMAC), their generic construction leads to a DP-NIZK or a PP-NIZK, respectively. In fact, it was
observed in [KW18a] that using the compact HomMAC proposed by Catalano and Fiore [CF18] based on the non-static
`-computational DH inversion (`-CDHI) assumption [BB08, CHL05], we can construct PP-NIZKs from a non-static
DH-type assumption over pairing-free groups. However, they left it as an open problem to construct HomMAC that
suffices for PP-NIZKs (with short proof size) from a weaker static assumption such as DDH.
Final Contribution. Our final contribution is constructing a PP-NIZK with short proof size from the DDH assumption
over pairing-free groups. We first construct a non-compact HomMAC from the DDH assumption and exploit extra
structures in our HomMAC to achieve short proof size when converting it into a PP-NIZK. More details will be provided
in Section 1.2.
Motivation for studying different types of NIZKs. Although (DV, DP, PP)-NIZKs may be more restricted compared
to CRS-NIZKs, they can be useful nonetheless. For example, applications of CRS-NIZKs including group signatures
[Cv91, BMW03], anonymous credentials [Cha85, Dam90], electronic cash [CFN90], anonymous authentication
[TFS04] may lead to a designated verifier or prover variant by using DV or DP-NIZKs. In some natural scenarios
where we do not require public verifiability or require everybody to be able to construct proofs, these alternatives
may suffice. Furthermore, as stated in [KW18a], PP-NIZKs can be used instead of CRS-NIZKs to boost semi-honest
security to malicious security [GMW87]. Finally, we believe studying different types of NIZKs and understanding
which assumptions imply them will provide us with new insights on realizing the long standing open problem of
constructing CRS-NIZKs from pairing-free groups or lattices.

1.2 Our Results in Detail
As briefly mentioned above, we give new constructions of DV-NIZK, DP-NIZK, and PP-NIZK with different flavors
from DH-type assumptions. Our first and third schemes are instantiated on a pairing-free group, and the second scheme
requires a pairing group.

1. We construct DV-NIZKs for NP from the CDH assumption over pairing-free groups that resists the verifier
rejection attack. This is the first construction of such (DV, DP)-NIZK on pairing-free groups and resolves the
open problem posed by Kim and Wu [KW18a].

2 In fact, as we show in Table 1, all of these approaches lead to a much more succinct proof size of |w|+ poly(κ), where w is the witness.
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2. We construct DP-NIZKs for NP with short proof size from a newly defined non-static (n,m)-computational
DH exponent and ratio (CDHER) assumption (proven in the generic group model) over pairing groups.3 This
is the first NIZK in the standard model to achieve a short proof size without assuming the LWE assumption,
fully-homomorphic encryption, indistinguishability obfuscation, or non-falsifiable assumptions. The proof size
has an additive-overhead |C|+ poly(κ) rather than a multiplicative-overhead |C| · poly(κ) where |C| is the size of
the circuit that computes the NP relation (See Table 1). Moreover, if we make a slight relaxation in the assumption
that the NP relation is expressed by a “leveled circuit” [BGI16], then the proof size can be made as short as
|w| + |C|/ log κ + poly(κ) where |w| denotes the witness size. This is the first NIZK (including PP-NIZKs)
that achieves sublinear proof size in |C|. We note that by applying the same technique to the `-CDHI-based
construction of PP-NIZK stated in Kim and Wu [KW18a], we can make their proof size sublinear as well, as long
as the NP relation can be expressed by a leveled circuit.

3. We construct PP-NIZKs for NP with short proof size from the DDH assumption over pairing-free groups that
are multi-theorem.4 This is the first PP-NIZK that achieves a short proof size from a weak and static DH-type
assumption such as DDH. (In fact, this construction also serves as a solution to the open problem posed by Kim
and Wu [KW18a].) Similarly to the above DP-NIZK, the proof size is |C|+ poly(κ). Moreover, going through
the same technique with additional observations, in case the NP relation can be expressed by a leveled circuit, we
are able to make the proof size sublinear |w|+ |C|/ log κ+ poly(κ).

Perhaps of an independent interest, along the way to achieve our second result, we propose an HomSig scheme
that simultaneously achieves compactness, context-hiding, and online-offline efficiency under the (n,m)-CDHER
assumption. This is the first construction of such HomSig schemes on pairing groups.

The comparison table among existing and our NIZK is given in Table 1. We note that we omit schemes that do
not support all of NP, do not resist the verifier rejection attack, or do not achieve unbounded-theorem soundness or
zero-knowledge from the table.

Table 1: Comparison of NIZKs for NP.
Reference Soundness ZK Proof size Model Assumption Misc

[FLS99] stat. comp. poly(κ, |C|) CRS trapdoor permutation†

[Gro10] stat. comp. |C| · ktpm · polylog(κ) + poly(κ) CRS trapdoor permutation†
[Gro10] stat. comp. |C| · polylog(κ) + poly(κ) CRS Naccache-Stern PKE
[GOS12] perf. comp. O(|C|κ) CRS DLIN/SD
[GOS12] comp. perf. O(|C|κ) CRS DLIN/SD
[CHK07, DN07, Abu13] stat. comp. poly(κ, |C|) CRS CDH
[Gro10] comp. perf. O(κ) CRS q-PKE and q-CPDH knowledge assumption
[GGI+15] stat. comp. |w|+ poly(κ) CRS FHE and CRS-NIZK
[SW14] comp. perf. O(κ) CRS iO and OWF
[KW18a] stat.∗ comp. |w|+ poly(κ, d) DP LWE
[CF18]+[KW18a] comp. comp. |C|+ poly(κ) PP `-CDHI‡ pairing-free
Section 3 stat. comp. poly(κ, |C|) DV CDH pairing-free
Section 4 comp. comp. |C|+ poly(κ) DP (n,m)-CDHER+CDH‡
Section 4+Appendix C.4∗∗ comp. comp. |w|+ |C|/ log(κ) + poly(κ) DP (n,m)-CDHER+CDH‡
Section 5 stat. comp. |C|+ poly(κ) PP DDH‡ pairing-free
Section 5+Appendix C.4∗∗ stat. comp. |w|+ |C|/ log(κ) + poly(κ) PP DDH‡ pairing-free
[CF18]+Appendix C.4∗∗ comp. comp. |w|+ |C|/ log(κ) + poly(κ) PP `-CDHI‡ pairing-free

In column “Soundness” (resp. “ZK”), perf., stat., and comp. means perfect, statistical, and computational soundness (resp. zero-knowledge), respectively. In column
“Proof size”, κ is the security parameter, |w| is the witness-size, |C| and d are the size and depth of circuit computing the NP relation, and ktpm is the length of the
domain of the trapdoor permutation. In column “Assumption", DLIN stands for the decisional linear assumption, SD stands fo the subgroup decision assumption,
q-PKE stands for the q-power knowledge of exponent assumption, and q-CPDH stands fo the q-computational power Diffie-Hellman assumption.
∗ Though their primary construction only has computational soundness, they sketched a variant that achieves statistical soundness in the latest version [KW18b,

Remark 4.10]
∗∗ Applicable only when C is a leveled circuit.
† If the domain of the permutation is not {0, 1}n, we further assume they are doubly enhanced [Gol04].
‡ These assumptions should hold in a subgroup of Z∗p for a prime p.

3Strictly spearking, we additionally need the CDH assumption in a subgroup of Z∗p for a prime p. See Section 4.3 for details.
4We need to assume the DDH assumption to hold in a subgroup of Z∗p for a prime p. See Section 5.3 for details.
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1.3 Technical Overview
We rely on mainly two approaches to achieve our results. The first approach is an extension of the construction of
CRS-NIZKs from trapdoor permutations by Feige, Lapidot, and Shamir [FLS99] (we call it the FLS construction) to
the DV setting. The second approach is constructing (DP, PP)-NIZKs using the Kim-Wu conversion [KW18a] from
homomorphic authenticators (HomAuth), where HomAuth are shorthand for HomSig and HomMAC. Specifically, we
provide new instantiations of context-hiding HomAuth schemes. Our first result is obtained by the first approach, and
the second and third results are obtained by the second approach. In the following, we explain these approaches.

Part 1: DV-NIZK from CDH via FLS paradigm. Our DV-NIZK is based on the Feige-Lapidot-Shamir (FLS)
paradigm [FLS99], which enables to construct CRS-NIZKs based on trapdoor permutations (TDP). However, we can
not directly use the FLS paradigm since we currently do not know how to achieve TDPs from the CDH assumption. In
this study, we present a variant of the FLS construction in the DV setting that can be instantiated by the CDH assumption
over paring-free groups.

Our starting point is the CRS-NIZK based on the CDH assumption over pairing groups [CHK07, DN07, Abu13].
The idea is to use a function fι defined as follows instead of a TDP for the FLS construction: fι(X,Z) := X if
(g,X, Y, Z) is a DH tuple and otherwise ⊥, where ι := (g, Y = gτ ). Though fι is not a TDP, it is a trapdoor function
(TDF) with a structure that is sufficient for implementing the FLS construction. Below, we take a closer look at the
construction.

NIZK in the Hidden Bits Model. Before explaining the construction, we recall the notion of NIZK proof systems in
the hidden bits model (hereafter referred to as HBM-NIZK) [FLS99]. In [FLS99], HBM-NIZKs is used as a building
block for the final CRS-NIZK. In HBM-NIZK, a prover is provided with a randomly generated string ρ $← {0, 1}`
(referred to as a hidden random string) independently from the statement x and witness w for the NP language L. Then
it generates a proof πhbm along with an index set I indicating the positions in the hidden random string. A verifier given
a sub-string ρ|I of the hidden random string ρ on positions corresponding to the index set I along with the statement x
and a proof πhbm, either accepts or rejects. Soundness requires that no adversary can generate a valid proof πhbm with
an index set I if x /∈ L, and the zero-knowledge property requires that a proof provides no additional knowledge to the
verifier beyond that x ∈ L if all bits of ρ on positions corresponding to [`] \ I are hidden to the verifier. Feige et al.
proved that HBM-NIZKs for all of NP exist unconditionally.

CRS-NIZK from CDH with pairings We now describe the CRS-NIZK based on the CDH assumption over pairing
groups [CHK07, DN07, Abu13]. We give a direct (high-level) description without using the abstraction by TDFs for
clarity.

Setup(1κ) : Output a CRS crs consisting of a group description (G, p, g) and randomgroup elements (X1, ..., X`)
$← G`

where ` is the length of the hidden random string of the underlying HBM-NIZK.

Prove(crs, x, w): The prover samples τ $← Zp, computes Zi := Xτ
i and lets ρi be the hardcore bit of Zi for all

i ∈ [`]. Then it uses ρ := ρ1‖ · · · ‖ρ` as a hidden random string to generate a proof πhbm along with an index
set I ⊂ [`] by the proving algorithm of the underlying HBM-NIZK on (x,w). It outputs a proof π = (πhbm, I ,
{Zi}i∈I , Y := gτ ).

Verify(crs, x, π) Given a statement x and a proof π = (πhbm, I, {Zi}i∈I , Y := gτ ), the verification algorithm verifies
(g,Xi, Y, Zi) is a DH-tuple for all i ∈ I by using pairing, and rejects if it is not the case. Then it computes the
hardcore bit ρi of Zi for all i ∈ I , and verifies πhbm by the verification algorithm of the underlying HBM-NIZK.

Roughly speaking, soundness and zero-knowledge follow from those of the underlying HBM-NIZK since a hidden
random string ρ is somehow “committed” in (X1, ..., X`) once τ is fixed, and only the sub-string of them corresponding
to I is revealed to the verifier.5 Clearly, the above construction relies on pairing to check if (g,Xi, Y, Zi) is a DH-tuple

5Though a cheating prover can arbitrarily choose τ ∈ Zp, we can negligibly bound its success probability by the union bound if the success
probability of a cheating prover of the underlying HBM-NIZK is bounded by p−1 · negl(κ).
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during verification. We note that this check is essential since without it, a cheating prover can arbitrarily choose Zi for
i ∈ I to control ρ|I to any value, in which case soundness of HBM-NIZK ensures nothing.

Getting rid of pairing. Now, we explain how to get rid of the use of pairing from the above construction in the
DV setting. Our main idea is to use the twin-DH technique [CKS09]. Intuitively, the twin-DH technique enables a
designated entity to verify whether a tuple (g,X, Y, Z) ∈ G4 is a DH-tuple without knowing the discrete logarithm
of X or Y and without using pairings, where (g,X) is public, and (Y,Z) may be chosen arbitrarily. More precisely,
suppose that an extra element X̂ := gβ/Xα is published in addition to (g,X) where α, β $← Zp. Then for Y = gτ , we
may consider (Z = Xτ , Ẑ = X̂τ ) to be a “proof” that (g,X, Y, Z) is a DH-tuple. Namely, a designated verifier who
holds α and β can verify the validity of the “proof” by checking if ZαẐ = Y β holds. The main implication of the
twin-DH technique is that the above verification is essentially equivalent to checking if Z = Xτ and Ẑ = X̂τ hold
conditioned on the fact that (Y,Z, Ẑ) is chosen by a “prover” who does not know (α.β).

With this technique in hand, we describe how to modify the above construction to achieve DV-NIZK without pairing:
We add extra elements X̂i := gβi/Xαi where αi, βi

$← Zp for i ∈ [`] in the CRS, give {αi, βi}i∈[`] as the verification
key to the designated verifier, and add extra elements Ẑi := X̂τ

i for i ∈ I in the proof. Then the verifier can verify
that (g,Xi, Y, Zi) is a DH-tuple by checking if ZαiẐ = Y βi holds without using pairing. This enables us to achieve
DV-NIZK without pairing.

On adaptive zero-knowledge. Though our main idea is as presented above, the above described construction only
achieves non-adaptive zero-knowledge which requires an adversary to choose the statement x independently of the CRS.
To achieve adaptive zero-knowledge, we need to add some extra structures using the technique of non-committing
encryption [CFGN96, DN07]. See Section 3 for technical details. We note that the original FLS NIZK proof system is
also adaptive zero-knowledge, but it uses specific properties of the underlying HBM-NIZK. Though a similar analysis
may also yield alternative construction of DV-NIZKs with adaptive zero-knowledge from the CDH assumption without
pairing, we choose the above approach where we do not assume any structure on the underlying HBM-NIZK for a
conceptually simpler and modular construction.

Part 2: PP-NIZK via context-hiding HomAuth. Kim andWu [KW18a] showed a conversion from any context-hiding
HomAuth scheme to PP-NIZKs. In particular, they noted that context-hiding HomAuth scheme for NC1 suffices to
instantiate their conversion. In this part, we propose new constructions of context-hiding HomAuth schemes for NC1,
and plug them into their conversion. First, we recall the definition of HomAuth. Roughly speaking, a HomAuth scheme
is a digital signature or MAC scheme with a homomorphic property. Namely, given a vector of signatures σ for a vector
of messages x, anyone can publicly evaluate the signature on a circuit C to generate an evaluated signature σ for a
message C(x). We say that a HomAuth scheme is a HomSig scheme if verification can be done publicly, and is a
HomMAC scheme otherwise. As a security requirement of HomAuth scheme, we require that an adversary given x
cannot generate a pair of an evaluated signature σ∗ and a circuit C∗ such that σ∗ is a valid signature for a message
z 6= C∗(x) even if the adversary is given access to a verification oracle. In addition, we say that a HomAuth scheme is
context-hiding if σ for a message z generated by evaluating a circuit C on a vector of signatures σ for x does not reveal
information of x beyond that C(x) = z.

In this paper, we propose two new constructions of HomAuth schemes for NC1. The first one is a HomSig scheme
based on a new assumption that we call (n,m)- CDHER assumption on a pairing-group. A nice feature of this HomSig
scheme is that the size of an evaluated signature is compact (i.e., does not depend on the message vector length or
the circuit to evaluate), and has online-offline efficiency. The second one is a HomMAC scheme based on the DDH
assumption on a pairing-free group. The function class the second scheme supports is arithmetic circuits over Zp of
polynomial degree, which is larger than NC1, and we take advantage of this extra freedom to improve the proof size.
We explain these constructions below.
HomSig from CDHER. Here, we informally explain how an attribute-based encryption (ABE) scheme with some
special properties can be converted into a HomSig scheme. Our HomSig scheme from the CDHER assumption can be
seen as an instantiation of this conversion.
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To explain the idea, we first recall the notion of (key-policy) ABE. In an ABE scheme, one can encrypt a message M
with respect to some string x ∈ {0, 1}` using some public parameter pp. Furthermore, a secret key is associated with
some policy C : {0, 1}` → {0, 1} and the decryption is possible if and only if C(x) = 1. As for security, we require
the selective one-way security. In a selective one-way security game, an adversary has to declare its target x? at the
beginning of the game before seeing the public parameter pp. An adversary can further query secret keys for C such
that C(x?) = 0 unbounded polynomially many times throughout the game, and we require that an adversary given an
encryption of a random message M? under the string x? cannot recover M?.

We first observe that the security proofs for most selectively secure schemes such as those proposed in [SW05,
GPSW06a, Wat11, GVW15a, BGG+14] can be abstracted in the following manner:6 At the beginning of the game, the
reduction algorithm is given a problem instance Ψ of some hard problem (e.g., the bilinear Diffie-Hellman problem).
Then, it first runs the adversary to obtain the target x?. Given Ψ and x?, the reduction algorithm generates pp along
with some simulation trapdoor tdx? . The reduction algorithm can perfectly simulate the game using tdx? . Namely,
given tdx? , it can generate correctly distributed secret key skC for any C such that C(x?) = 0. Furthermore, given
tdx? , it can embed the problem instance Ψ into the challenge ciphertext so that it can extract the answer of the hard
problem whenever the adversary succeeds in extracting M?.

Our basic idea for constructing HomSig is to use the above reduction algorithm in the real world. To sign on a
message x, we generate tdx and set σ := tdx. To evaluate the signature σ on a circuit C such that C(x) = 0, we run the
reduction algorithm of the ABE scheme on input tdx to generate skC and set σ := skC . Here, evaluation of signatures
can be done publicly since tdx is the only secret state required to run the reduction algorithm. A subtle problem with
this approach is that we cannot evaluate the signature on a circuit C such that C(x) = 1 since the reduction algorithm
does not work for such C. This problem can be easily fixed by defining the scheme so that when evaluating a signature
on such C, we generate sk¬C instead of skC , where ¬C is a circuit that is obtained by flipping the output bit of C
by applying the NOT gate. Now, for the signature σ = skC to be publicly verifiable, we require it to be possible to
efficiently check whether σ is a correctly generated secret key of the ABE given (C, σ). However, this is not such a
strong restriction since it is satisfied by many selectively secure ABE schemes such as the ones listed above.

We recall that given tdx, the reduction algorithm can perfectly simulate the selective security game for ABE where x
is the target chosen by the adversary. This in particular implies that skC simulated by tdx follows the same distribution
as skC generated in the real system which does not use information of x. Then, the context-hiding property of the
scheme follows from this fact. Namely, the distribution of σ = skC only depends on C and pp, not on x. In other words,
σ does not leak any information of x, which meets the requirements of the context-hiding security. Furthermore, the
unforgeability of the scheme follows from the one-wayness of the ABE: If the adversary can forge a signature σ = skC?

for C? such that C?(x) = 1, then skC? can be used to decrypt the challenge ciphertext, which contradicts the security
of the ABE. We note that the circuit class of the allowed homomorphic evaluation for the resulting HomSig scheme is
roughly the same as the circuit class supported by the original ABE scheme.

In order to obtain the aforementioned HomSig scheme for NC1 with compact signatures, we need a key-policy ABE
scheme with constant-size secret keys. Unfortunately, the only construction of ABE scheme [AHY15] which meets the
efficiency (i.e., compactness) property we require does not conform to our template that uses the simulation trapdoor
tdx. Therefore, we construct a new ABE scheme with the required property which conforms to our template based
on the CDHER assumption. The structure of our ABE scheme is inspired by the ciphertext-policy ABE scheme with
constant-size ciphertexts (not secret keys) due to Agrawal and Chase [AC16]. To turn their scheme into an ABE scheme
with constant-size secret keys, at a high level, we swap the ciphertexts and secret keys of their construction. Since the
security of the resulting scheme is not guaranteed by that of the original one, we directly prove its security by adding
considerable modification to the previous proof techniques [RW13, AC17].
HomMAC from DDH. Here, we explain the construction of HomMAC under the DDH assumption. Our idea is to
add the context-hiding property to the non-context-hiding HomMAC proposed by Catalano and Fiore [CF18] by using
functional encryption for inner products (IPFE). First, we recall their non-context-hiding HomMAC, which supports all
arithmetic circuits of polynomially bounded degree.7 The signing/verification key of their construction are r ∈ Z`p

6 Actually, these previous works prove the standard indistinguishability security notion rather than one-wayness. However, one-wayness is
sufficient for our application.

7Though the original construction by Catalano and Fiore [CF18] is based on PRF, we present an information theoretically secure variant of it in a
simplified setting where the arity of an arithmetic circuit is bounded.
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and s ∈ Z∗p where ` is the arity of arithmetic circuits it supports, and the evaluation key is a prime p. A signature
σ ∈ Z`p for a message x ∈ Z`p is set to be σ := (r − x)s−1 mod p.8 Given an arithmetic circuit f of degree D,
a message x, and a signature σ, the evaluation algorithm computes the coefficients (c1, ..., cD) ∈ ZDp that satisfy
f(r) = f(x) +

∑D
j=1 cjs

j , and sets σ := (c1, ..., cD) as an evaluated signature. We remark that this can be done by
using x, σ, and p without knowing (r1, ..., rn) or s since the signatures satisfy sσ + x = r mod p. To verify the
evaluated signature, the verifier simply checks if the above equation holds by using r and s included in the verification
key. Though the construction is very simple, the scheme satisfies unforgeability even against unbounded-time adversaries.
Unfortunately, this construction cannot yet be used for the purpose of PP-NIZKs, since in general it is not context-hiding.

Here, we observe that in the above construction, what a verifier has to know for the verification is only
∑D
j=1 cjs

j ,
and not the entire (c1, ..., cD). Moreover,

∑D
j=1 cjs

j does not convey any information on x beyond f(x) because the
term is determined solely by r and f(x). Therefore if there exists a way to only transfer

∑D
j=1 cjs

j to the verifier, then
context-hiding is guaranteed. We remark that a trivial idea of publishing s does not work because it completely breaks
the unforgeability. In particular, we want to find a way to let a verifier only know

∑D
j=1 cjs

j without providing s to the
evaluator. To solve this problem we rely on IPFE. In an IPFE scheme, both a ciphertext and a secret key are associated
with a vector. If we decrypt a ciphertext of a vector x by a secret key associated with y, then the decryption result is
〈x,y〉, which is an inner product of x and y. We convert the above non-context-hiding HomMAC to a context-hiding
one by using IPFE as follows: In the setup, we additionally generate a public parameter pp and a master secret key msk
of IPFE. Then a verifier is provided with a secret key sk(s,...,sD) for a vector (s, ..., sD), and an evaluator is provided
with pp. The evaluator sets the evaluated signature to be an encryption ct of (c1, ..., cD) instead of (c1, , , ., cD) itself.
Now, a verifier only learns

∑D
j=1 cjs

j due to the security of IPFE, and thus context-hiding is achieved.
Given the above overview, it may seem that any IPFE scheme suffices for the construction. Moreover, since only one

secret key is needed in the construction, it seems that one-key IPFE suffices. Since there are constructions of one-key
secure FE even for all circuits based on any PKE scheme [SS10, GVW12], one may think that we can implement the
above construction based on any PKE scheme. However, this is in fact not the case because these FE schemes are
malleable. Namely, the standard security notion of FE does not prevent a malicious encryptor from generating an invalid
ciphertext. Put differently, the decryption result may be controlled. In the context of the above construction, the fact that
an evaluator generates a ciphertext ct by the secret key sk(s,...,sD) that is decrypted to T does not necessarily mean
that it knows (c1, ...., cD) such that

∑D
j=1 cjs

j = T . Therefore, although the construction seems to work, we cannot
prove unforgeability of the above scheme. To solve this problem, we introduce a notion which we call extractability for
IPFE. Extractability requires that for any (possibly malformed) ciphertext ct that is decrypted to T with a secret key sk
associated with a vector y, we can extract x such that 〈x,y〉 = T from ct. It is clear that the above problem is resolved
if we have an extractable IPFE.

Here, we observe that the IPFE scheme based on the DDH assumption proposed by Agrawal, Libert, and Stehlé
[ALS16] satisfies extractability. A subtle problem of their construction is that a decryptor must compute a discrete
logarithm for computing a decryption result, and thus the size of the decryption result must be limited to being relatively
small. Fortunately, this does not matter in our application since the verification is done by simply checking if a decryption
result of IPFE satisfies a certain linear equation which can be performed on the exponent. Concretely, we only need
a variant of IPFE that enables a decryptor to learn inner-product on the exponent. Putting all the ideas together, we
obtain a context-hiding HomMAC for arithmetic circuits of polynomial degree (which includes NC1) based on the
DDH assumption, which further combined with [KW18a] leads to PP-NIZK proofs based on the DDH assumption.
Moreover, we can make the proof size of the PP-NIZK short by incorporating the idea by Katsumata [Kat17]. Namely,
the proof size of the resulting PP-NIZK is |C|+ poly(κ) where |C| is the size of a circuit that computes a relation to
prove. See Appendix C.3 for details.

PP-NIZKwith sublinear proof size. Direct adaptations of the Kim-Wu conversion to compact context-hiding HomAuth
for NC1 yield PP-NIZK with proof sizes |C|+ poly(κ). Here, we explain that this can be further reduced to sublinear
size |w|+ |C|/ log κ+ poly(κ) by making a slight relaxation that a circuit C computing the NP relation is expressed as
a leveled circuit [BGI16]; a circuit whose gates are partitioned intoD+ 1 levels and all incoming wires to a gate of level
i+ 1 come from gates of level i for each i ∈ [D]. To explain this, we first briefly review the Kim-Wu conversion. In their

8Though the scheme is not publicly verifiable, we call σ a “signature” for compatibility to HomSig.
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construction, a prover is provided with a secret keyK of a symmetric key encryption (SKE) scheme as its proving key,
and to prove that (x,w) satisfies C(x,w) = 1 for a circuit C, it encrypts w by usingK to generate a ciphertext ct, and
generates an evaluated signature σ on message “1” under the function fct,x defined by fct,x(K ′) := C(x,Dec(K ′, ct))
where Dec is the decryption algorithm of the SKE scheme. A proof consists of ct and σ. A verifier simply verifies that
the evaluated signature σ is a valid signature on message “1” under the function fct,x. To implement this construction
based on HomAuth for NC1, we have to express a circuit that computes the NP relation in NC1. This is in general
possible by “expanding” the witness to values corresponding to all wires of C(x, ·). However, since the size of the
expanded witness is as large as the circuit size |C|, the proof size of the resulting PP-NIZK is linear in |C|. Now, we
observe that we actually need not expand the witness to all wires, and we can choose a portion of them based on a
similar idea used in [BGI16]. Namely, for a leveled circuit C of depth D, we divide [D] into log κ intervals of length
D/ log κ, and choose “special levels” i in each interval so that the number of gates of level i is the smallest among those
in the interval. Then we set an expanded witness to be the original witness appended by values corresponding to all
wires of special levels of C(x, ·). We observe that the consistency of the expanded witness generated in this way still
can be verified in NC1 since successive special levels are at most 2 log κ apart from each other. Moreover, the size of
the expanded witness is at most |w|+ |C|/ log κ since the number of gates of special levels is at most |C|/ log κ by
the choice of special levels. Thus, by applying the Kim-Wu conversion with the above expanded witness, we obtain
PP-NIZK with proof size |w|+ |C|/ log κ+ poly(κ).

1.4 Other Related Works
CRS-NIZK from Lattices. Peikert and Shiehian [PS19] constructed the first CRS-NIZKs for NP under standard
lattice assumptions following the line of researches [KRR17, CCRR18, HL18, CCH+19] to instantiate the Fiat-Shamir
transform [FS87] in the standard model.
More discussions on existing (DV, DP, PP)-NIZK. Unlike CRS-NIZKs where proving statements and verifying proofs
can be done publicly, in (DV, DP, PP)-NIZKs since we have the notion of secret states, it is not uncommon to have a
bound on the number of statements (i.e., theorems) one can prove without compromising soundness or zero-knowledge.
In DV-NIZKs, a common issue have been the bound on the number of time the prover can query the verification oracle.
Namely, a prover can break the soundness of a DV-NIZK if the verifier uses the same verification key to verify multiple
statements. Due to this fact, such DV-NIZKs that require a bound on the number of time a prover can query the
verification oracle are called bounded-theorem. If the verifier can keep using the same key for multiple statements, then
it is called multi-theorem. Almost all previous DV-NIZKs for all of NP [PsV06, DFN06, VV09, CG15, Lip17] suffered
from this issue of being bounded-theorem. There are more recent works that avoid the above issue based on a certain
type of additively homomorphic encryption [CC18] or a primitive called oblivious linear-function evaluation [CDI+18].
However, instantiating either of these primitives require an assumption that is already known to imply a CRS-NIZK. DP
and PP-NIZKs share similar problems, where in this case, zero-knowledge does not hold if the prover uses the same
proving key multiple statements. Other than the recent schemes by Kim and Wu [KW18a] and Boyle et al [BCGI18],
all previous DP or PP-NIZKs [DMP90, KMO90, LS91, Dam93, CD04, IKOS09] are known to be bounded-theorem.
Though it is known that we can convert any bounded theorem NIZK to unbounded theorem NIZK in the CRS setting
[FLS99], the conversion heavily relies on the fact that proofs can be generated publicly, and does not seem to work in
the PP model. We refer to [KW18a] for more discussions.
Homomorphic authenticators. The notion of homomorphic authenticators (MACs or signatures) originates to
Desmedt [Des93] and was first formalized by Johnson et al. [JMSW02]. In the beginning, HomAuth was considered
extensively in the context of network coding where the homomorphism were focused on linear functions, yielding a
long line of interesting works such as [AB09, BFKW09, GKKR10, BF11a, AL11, BF11b, CFW12, Fre12, CMP14,
CFN15]. HomAuth for linear functions has also been considered for proofs of retrievability for outsourced storage
[ABC+07, SW13]. Boneh and Freeman [BF11a] were the first to consider homomorphism beyond linear functions,
showing the first scheme for polynomial function based on lattices. Since then numerous improvements on HomAuth
have been made [CFW12, GW13, GVW15b, CF18]. Gorbunov et al. [GVW15b] constructed a HomSig that supports
arbitrary circuits with bounded-depth from lattices and Catalano et al. [CF18] constructed a HomMAC that supports
arbitrary arithmetic circuits with bounded-degree from PRFs or DH-type assumptions.

Recently, Tsabary [Tsa17] showed a generic conversion of an attribute-based signature (ABS) to HomSig. Using their
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construction, we may obtain a HomSig with compact signatures starting from an ABS with short signatures. However,
the two ABS schemes with short signatures are not a complete fit for the conversion: The scheme by Attrapadung et
al. [AHY15] is only selectively-secure and the above conversion is not applicable. The scheme by [NP15] is constructed
on composite-order groups, which is not desirable from the view points of security and efficiency.

Finally, we also mention that our idea of viewing some types of ABE as HomSig seems to be applicable for other
ABE schemes such as [GPSW06a]. This leads to a context-hiding HomSig scheme from the CDH assumption and thus
DP-NIZK from the same assumption via the transformation due to Kim and Wu [KW18a]. In addition, we observe
that if we start from the ABE for circuits from lattices due to Boneh et al. [BGG+14], we recover the existing HomSig
scheme by Gorbunov, Vaikuntanathan, and Wichs [GVW15b]. While this is not a new result, the observation provides
new insights into the connection between them.
Concurrent Works. There are two concurrent and independent works [CH19, QRW19] that contain similar results
to our first result, namely, multi-theorem DV-NIZK from CDH assumption in pairing-free groups. We summarize
differences of these results below.

• Couteau and Hofheinz [CH19] additionally give a construction of (CRS,DV)-NIZK assuming the LWE assumption
and a (CRS,DV)-non-interactive witness indistinguishable proof system for bounded distance decoding.

• Quach, Rothblum, and Wichs [QRW19] additionally consider a stronger variant of DV-NIZK called malicious
DV-NIZK, and construct it based on a stronger assumption called the one-more CDH assumption in pairing-free
groups.

• Constructions of (DP,PP)-NIZKs with short proof size are unique to this paper.

Subsequent works. We mention a follow-up work that has relied on our work for new application and extended our
work.

• CRS-NIZK for NP with short proof size: Katsumata et al.[KNYY19b] construct CRS-NIZK for NP with
short proof size from the (n,m)-CDHER assumption over pairing groups. They introduce a new tool called
homomorphic equivocal commitment (HEC) and extend our DP-NIZK construction to the CRS-NIZK setting by
using HEC instead of HomSig. They instantiate an HEC with the (n,m)-CDHER assumption.

• DV-NIZK for NP with short proof size: Katsumata et al.[KNYY19b] also construct DV-NIZK for NP with
short proof size from the CDH assumption over pairing-free groups. More specifically, they present a generic
construction of DV-NIZK for NP with short proof size from any DV-NIZK for NP, SKE whose decryption circuit
is in NC1, and PKE. The construction idea is based on our PP-NIZK for NP using IPFE. By using our DV-NIZK
for NP from the CDH assumption, they obtain DV-NIZK for NP with short proof size from the CDH assumption.

2 Preliminaries
Notations. For a distribution or random variable X , we write x $← X to denote the operation of sampling a random
x according to X . For a set S, we write s $← S to denote the operation of sampling a random s from the uniform
distribution over S.

2.1 Basic Notions
Here, we review some basic statistical notions.

Definition 2.1 (Statistical Distance). Let X (b) = {X(b)
κ }κ∈N for b ∈ {0, 1} be two ensembles of random variables

indexed by κ ∈ N. The statistical distance betweenX (0) andX (1) over a countable set S is defined as ∆(X (0),X (1)) :=
1
2
∑
α∈S |Pr[X(0)

κ = α]− Pr[X(1)
κ = α]|. We say that X (0) and X (1) are statistically indistinguishable (denoted by

X (0) stat
≈ X (1)) if ∆(X (0),X (1)) ≤ negl(κ).
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Definition 2.2 (Min-entropy). Let X be a random variable. The min-entropy of X is defined as follows.

H∞(X) := min
x∈S
{− log Pr[X = x]} = − log (max

x∈S
Pr[X = x]).

Lemma 2.3 (Leftover Hash Lemma). Let X be a random variable over X and H∞(X) ≥ k. Fix ε > 0. Let
H : X → {0, 1}m be a universal hash family of size 2u with output length m = k − 2 log(1/ε). We define
Ext(X,h) := h(X) where h ∈ H. Then, Ext is a strong (k, ε/2) extractor with seed length u and output lengthm. That
is, for any random variableX onX independent ofh $← HwithH∞(X) ≥ k, it holds that∆((h(X), h), (Um, h)) ≤ ε/2
where Um is the uniform distribution over {0, 1}m.

Definition 2.4 (Pseudorandom Generators). Let n = n(κ) andm = m(κ) be positive integer valued functions such
that m > n. A function PRG : {0, 1}n → {0, 1}m is called a pseudorandom function if PRG is polynomial time
computable and for every efficient algorithm A we have the following:∣∣∣Pr

[
x

$← {0, 1}n : 1← A(1κ,PRG(x))
]
− Pr

[
y

$← {0, 1}m : 1← A(1κ, y)
]∣∣∣ ≤ negl(κ).

We also introduce two basic hardness assumptions that will be respectively used in Section 3 and Section 5. Let GGen
be a PPT algorithm that on input 1κ returns a description G = (G, p, g) where G is a cyclic group of prime order p and
g is the generator of G. Then the computational Diffie-Hellman assumption is defined as follows.

Definition 2.5 (Computational Diffie-Hellman Assumption).We say that the computational Diffie-Hellman (CDH)
assumption holds relative to GGen if for all PPT adversaries A,

Pr
[
G = (G, p, g) $← GGen(1κ), α, β $← Zp : gαβ ← A(1κ,G, gα, gβ)

]
≤ negl(κ).

The decisional variant of the CDH assumption is defined as follows.

Definition 2.6 (Decisional Diffie-Hellman Assumption). We say that the decisional Diffie-Hellman (DDH) assumption
holds relative to GGen if for all PPT adversaries A,∣∣∣Pr

[
α, β

$← Zp : 1← A(1κ,G, gα, gβ , gαβ)
]
− Pr

[
α, β, γ

$← Zp : 1← A(1κ,G, gα, gβ , gγ)
]∣∣∣ ≤ negl(κ),

where G = (G, p, g) $← GGen(1κ).

2.2 Preprocessing NIZKs
Let R ⊆ {0, 1}∗ × {0, 1}∗ be a polynomial time recognizable binary relation. For (x,w) ∈ R, we call x as the
statement and w as the witness. Let L be the corresponding NP language L = {x | ∃w s.t. (x,w) ∈ R}. We also write
R(x,w) ∈ {0, 1} as the output of the polynomial time decision algorithmR on input (x,w), where 0 is for reject and 1
is for accept. Below, we define (adaptive multi-theorem) preprocessing NIZKs for NP languages. Some discussions on
our presentation of NIZKs are provided below.

Definition 2.7 (NIZK Proofs). A non-interactive zero-knowledge (NIZK) proof in the preprocessing model ΠPPNIZK for
the relationR is defined by the following three polynomial time algorithms:

Setup(1κ)→ (crs, kP, kV): The setup algorithm takes as input the security parameter 1κ and outputs a common
reference string crs, a proving key kP, and a verification key kV. This algorithm is executed as the “preprocessing"
step.

Prove(crs, kP, x, w)→ π: The prover’s algorithm takes as input a common reference string crs, a proving key kP, a
statement x, and a witness w and outputs a proof π.

Verify(crs, kV, x, π)→ > or ⊥: The verifier’s algorithm takes as input a common reference string, a verification key
kV, a statement x, and a proof π and outputs > to indicate acceptance of the proof and ⊥ otherwise.
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Moreover, an (adaptive multi-theorem) NIZK proof in the preprocessing model ΠPPNIZK is required to satisfy the
following properties, where the probabilities are taken over the random choice of the algorithms:
Completeness. For all pairs (x,w) ∈ R, if we run (crs, kP, kV)← Setup(1κ), then we have

Pr[π ← Prove(crs, kP, x, w) : Verify(crs, kV, x, π) = >] = 1.

Soundness. For all (possibly inefficient) adversaries A, if we run (crs, kP, kV)← Setup(1κ), then we have

Pr[(x, π)← AVerify(crs,kV,·,·)(1κ, crs, kP) : x 6∈ L ∧ Verify(crs, kV, x, π) = >] = negl(κ).

Here, in case soundness only holds for computationally bounded adversaries A, we say it is a NIZK argument.
(Non-Programmable CRS) Zero-Knowledge. For all PPT adversaries A, there exists a PPT simulator S = (S1,S2)
such that if we run (crs, kP, kV)← Setup(1κ) and τV ← S1(1κ, crs, kV), then we have∣∣∣Pr[AO0(crs,kP,·,·)(1κ, crs, kV) = 1]− Pr[AO1(crs,kV,τV,·,·)(1κ, crs, kV) = 1]

∣∣∣ = negl(κ),

where O0(crs, kP, x, w) outputs Prove(crs, kP, x, w) if (x,w) ∈ R and ⊥ otherwise, and O1(crs, kV, τV, x, w) outputs
S2(crs, kV, τV, x) if (x,w) ∈ R and ⊥ otherwise.
Remark 2.8 (Programmable Zero-Knowledge). As also discussed in [KW18b], we can define a slightly weaker variant
of zero-knowledge where the simulator is provided the freedom of programming the common reference string crs and
verification key kV.
(Programmable CRS) Zero-Knowledge For all PPT adversaries A, there exists a PPT simulator S = (S1,S2) such
that if we run (crs, kP, kV)← Setup(1κ) and (crs, k̄V, τ̄V)← S1(1κ), then we have∣∣∣Pr[AO0(crs,kP,·,·)(1κ, crs, kV) = 1]− Pr[AO1(c̄rs,k̄V,τ̄V,·,·)(1κ, crs, k̄V) = 1]

∣∣∣ = negl(κ),

where O0(crs, kP, x, w) outputs Prove(crs, kP, x, w) if (x,w) ∈ R and ⊥ otherwise, and O1(crs, k̄V, τ̄V, x, w) outputs
S2(crs, k̄V, τ̄V, x) if (x,w) ∈ R and ⊥ otherwise.

This definition captures the zero-knowledge property used in standard NIZKs in the common reference string
(CRS) model. In the CRS model, the Setup algorithm outputs a CRS σ used by both the prover and verifier, and the
zero-knowledge simulator is allowed to program the CRS σ. Specifically, the proving key and verification key are both
set as the CRS σ.
Remark 2.9 (Different types of NIZKs). The definition is general enough to capture many of the existing types of NIZKs.
In case kP = kV = ⊥, the above definition captures the standard NIZKs in the common reference string (CRS) model,
which we refer to as CRS-NIZKs hereafter. Specifically anybody can construct a proof using the public CRS and those
proofs are publicly verifiable [FLS99]. On the other hand, in case kP = ⊥ but kV is required to be kept secret, the above
definition captures designated verifier NIZKs (DV-NIZKs) [PsV06, DFN06]. Moreover, in case kV = ⊥ but kP is
required to be kept secret, the above definition captures designated prover NIZKs (DP-NIZKs) [KW18a]. Finally, in
case both kP and kV must be kept secret, it is simply called preprocessing NIZKs (PP-NIZKs) [CD04].
Remark 2.10 (Adaptive and Non-Adaptive NIZK). One often considers weaker security called non-adaptive soundness
and zero-knowledge. In non-adaptive soundness, an adversary has to declare the statement x on which he forges a proof
before seeing a common reference string. In non-adaptive zero-knowledge, an adversary has to declare a pair of a
statement x and its witness w to query the proving oracle before seeing a common reference string. All the NIZKs we
construct in this paper satisfy adaptive soundness and zero-knowledge.
NIZKs for Bounded Languages. Throughout this paper, we mainly consider the weaker variant of PP-NIZKs which
we call PP-NIZKs for bounded languages as was done by Kim and Wu [KW18a]. PP-NIZKs for bounded languages
enable one to generate a proof for (x,w) ∈ R ∩ ({0, 1}n(κ) × {0, 1}m(κ)) for a priori bounded polynomials n(·) and
m(·). For clarity, we say PP-NIZKs for unbounded languages to express PP-NIZKs that do not have the above limitation.
As discussed in Appendix C.5, we can generically convert any PP-NIZKs for bounded languages to PP-NIZKs for
unbounded languages at the cost of making the proof size larger. However, we note that since the conversion makes the
proof size larger, the distinction between PP-NIZKs for bounded and unbounded languages are meaningful if we start to
consider proof sizes.
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2.3 (Simplified) Homomorphic Authenticators
We provide the definition of a simplified homomorphic authentication (HomAuth) scheme with the minimal property
required for the NIZK construction. Unlike standard HomAuth schemes, in our definition succinctness or efficient
verification will not be a requisite; the essential property we require is context-hiding. Some discussions on the reason
behind the choice of our definition are provided below. The more standard definition of HomAuth schemes is provided
in Appendix D.

Syntax. Let {Xκ}κ∈N be a family of message spaces. Let {Cκ}κ∈N be a family of circuits, where Cκ is a set of
polynomial sized circuits with domain X `(κ)

κ and range Xκ whose depth is bounded by d(κ). In the following, we
occasionally drop the subscripts when the meaning is clear. In case X = {0, 1}, we set C to be simply a family of
boolean circuits.

Below, we define a single-shot homomorphic authenticator scheme, where the signing algorithm is defined to
run against all the messages x ∈ X ` at once. Furthermore, the verification algorithm for fresh (i.e., non-evaluated)
signatures will be verified all at once as well. Let {ΣFreshκ}κ∈N and {ΣEvaledκ}κ∈N be families of signature spaces,
where each of them corresponds to the output space of fresh signatures and evaluated signatures, respectively.

Definition 2.11 (Homomorphic Authenticators). A homomorphic authenticator (HomAuth) schemeΠHA with message
space X for the circuit class C is defined by the following five algorithms:

HA.KeyGen(1κ, 1`)→ (vk, ek, sk): The key generation algorithm takes as input the security parameter 1κ and the
message length 1` and outputs a verification key vk, an evaluation key ek, and a signing key sk.

HA.Sign(sk,x = (x1, · · · , x`))→ σ: The signing algorithm takes as input a signing key sk and messages x ∈ X `,
and outputs a signature σ ∈ ΣFresh.

HA.Eval(ek, C,x,σ)→ σ: The signature-evaluation algorithm takes as input an evaluation key ek, a circuit C :
X ` → X in C, messages x ∈ X `, and a signature σ ∈ ΣFresh and outputs an evaluated signature σ ∈ ΣEvaled.

HA.VerifyFresh(vk,x,σ)→ > or ⊥: The fresh verification algorithm takes as input a verification key vk, messages
x ∈ X `, and a signature σ ∈ ΣFresh, and outputs > if the signature is valid and outputs ⊥ otherwise.

HA.VerifyEvaled(vk, C, z, σ)→ > or ⊥: The evaluated verification algorithm takes as input the verification key vk, a
circuit C ∈ C, a message z ∈ X , and a signature σ ∈ ΣEvaled, and outputs > if the signature is valid and outputs
⊥ otherwise.

Publicly Verifiable Authenticators: If the scheme supports public verifiability, i.e., the verification key vk can be made
public, then we call the above scheme a homomorphic signature (HomSig) scheme. In this case, we may include
the evaluation key ek in the verification key vk, without loss of generality, and replace ek with vk in the above
syntax.

Designated Verifier Authenticators: If the scheme only supports private verification, i.e., the verification key vk must
be kept secret, then we call the above scheme a homomorphic MAC (HomMAC) scheme.

Remark 2.12 (Efficient Verification). Our syntax dismisses two algorithms that are typically present in standard HomAuth
formalization. The two dismissed algorithms are meaningful for two types of efficient verification: online-offline
efficiency and amortized efficiency.
Online-Offline Efficiency. In standard HomAuth definitions, there is an extra algorithm called the verification key (or
public key) evaluation algorithm which takes as input the verification key vk (or a public key pk) and a circuit C, and
outputs an evaluated verification key vkC (or evaluated public key pkC). The verifier can then use vkC to verify a
message-signature pair (z, σC) were σC is a signature evaluated on the circuit C. In case the verification time of the
message-signature pair (z, σC) is poly(λ) (resp. poly(λ, log |C|)), i.e., the verification time is strictly less then the
computation time of C, we say the HomAuth scheme has online-offline (resp. weak online-offline) efficiency; the verifier
can prepare the evaluated verification key vkC in the offline phase without knowledge of the yet to be known message
z and use the preprocessed vkC during the online phase. Although this property is not essential when constructing
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NIZKs, it is nonetheless an appealing notion for an HomAuth scheme to have. In Appendix D we provide a more formal
definition of the this notion and show that one of our HomAuth construction satisfies them in the multi-data setting.
Amortized Efficiency Over Datasets Signed by Different Signing Keys. In addition, our syntax does not include the
so-called parameter generation algorithm, which is used to output a public key pk (also termed as the public parameters
param in some literatures) that is an independent component from the verification, evaluation, and signing keys
(vk, ek, sk). In standard HomAuth context, several keys (vk, ek, sk) may be associated with a single public key pk.
Combined with the above public key evaluation algorithm, this has the effect of amortized verification of a computation
C over datasets signed by different users. In particular, if pkC is created once in the offline phase, it can be used to
verify any message-signature pair (z, σC) created by any signing key sk in an efficient manner. As above, we omit this
notion since it is not required for constructing NIZKs. We note that none of our HomAuth constructions are proven to
have amortized efficiency.

Remark 2.13 (Fresh and Evaluated Signature Spaces). In many of the previous leveled HomAuth schemes, the structure
of the output of ΣFresh and ΣEvaled were the same. Therefore, there was no need to explicitly define two different
verification algorithms HA.VerifyFresh and HA.VerifyEvaled. However, since our HomAuth schemes output a fresh
and evaluated signatures with different structures, it will be convenient to define the two verification algorithms.

Remark 2.14 (Single-Shot Signing and Verification Algorithm). We restrict the signing algorithm HA.Sign and the fresh
verification algorithm HA.VerifyFresh to sign the messages and verify all the fresh signatures in one-shot, respectively.
We note that our HomAuth construction in Section 5 satisfies the standard notion where the signing and fresh verification
algorithms are run for independent messages and signatures.

Correctness. There are two types of correctness which a HomAuth scheme must satisfy: signing correctness and
evaluation correctness. Formally, they are defined as follows:

Definition 2.15 (Correctness).We say a homomorphic authentication scheme ΠHA is correct, if for all κ ∈ N,
` ∈ poly(κ), messages x = (x1, · · · , x`) ∈ X `, and (vk, ek, sk) ∈ HA.KeyGen(1κ, 1`) the following two conditions
hold:
(1) Signing Correctness: For all σ ∈ HA.Sign(sk,x) in ΣFresh, we have

Pr[HA.VerifyFresh(vk,x,σ) = >] = 1.

(2) Evaluation Correctness: For all circuits C ∈ C, signatures σ such that HA.VerifyFresh(vk,x,σ) = >, and
σ ∈ HA.Eval(ek, C,x,σ) in ΣEvaled, we have

Pr[HA.VerifyEvaled(vk, C, C(x), σ) = >] = 1.

(Single-Shot) Unforgeability. We now define single-shot unforgeability for a HomAuth scheme, where the adversary
must declare the challenge messages all at once. Below we assume that checking membership of C,ΣFresh,ΣEvaled can
be done efficiently. The security notion is defined formally by the following game between a challenger and an adversary
A.

Setup: At the beginning of the game, the adversary A is given 1κ as input and sends 1` to the challenger. Then the
challenger generates a signing-verification key pair (vk, ek, sk)← HA.KeyGen(1κ, 1`) and gives ek toA. In case
it is an HomSig scheme, i.e., the signatures are publicly verifiable, then the challenger also provides vk to A.

Signing Query: The adversary A submits a set of messages x ∈ X ` to be signed. The challenger responds by creating
a signature σ ← HA.Sign(sk,x) and sends σ ∈ ΣFresh to A. Here, A can query a set of messages only once.

Verification Query: The adversary A may adaptively query a message-signature(-circuit) pair. When the query is of
type (x,σ) ∈ X ` × ΣFresh, the challenger returns the output of HA.VerifyFresh(vk,x,σ). When the query is
of type (z, σ, C) ∈ X × ΣEvaled × C, the challenger returns the output of HA.VerifyEvaled(vk, C, z, σ). For any
other types of queries, the challenger returns ⊥.9

9 Note that if we consider an HomSig scheme, this item can be dismissed since the verification step can be executed by the adversary himself.
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Forgery: Then the adversary A outputs a circuit C?, a message z? ∈ X , and a signature σ? as the forgery. We say that
A wins the game if:

1. C? ∈ C and σ? ∈ ΣEvaled;
2. C?(x) 6= z?; and
3. HA.VerifyEvaled(vk, C, z?, σ?) = >.

The advantage of an adversary winning the above game is defined by Pr[A wins], where the probability is taken over
the randomness used by the challenger and the adversary.

Definition 2.16 ((Single-Shot) Unforgeability). A homomorphic authenticator scheme ΠHA is said to satisfy (single-
shot) statistical unforgeability if for any (possibly inefficient) adversary A the advantage Pr[A wins] of the above game
is negligible. In case it only holds for adversaries that are computationally bounded, we say it satisfies computational
unforgeability.

We say ΠHS satisfies a weaker notion of selective (single-shot) unforgeability in case no adversary A that commits to
the challenge messages x before seeing the evaluation key ek (and also the verification key vk in the case of HomSig
schemes) can win the above game with more than negligible probability.

Remark 2.17 (Stronger Unforgeability). Instead of the single-shot security notion where the adversary must query all
the messages in one shot, one can consider a stronger security notion where the adversary can adaptively query the
messages [Fre12, GW13, CFN18]. However, we keep the security notion simple in our work, since we only require the
single-shot notion for our generic construction of NIZK arguments.

Context-Hiding. We now define context-hiding for a HomAuth scheme. This security notion roughly states that an
evaluated signature σC does not leak any information of the initial messages x other than the value C(x). We first
provide the computational variant of context-hiding. The notion is defined formally by the following game between an
adversary A and a challenger running a simulator HA.Sim.

Setup: At the beginning of the game, the adversary A is given 1κ as input and sends 1` to the challenger. Then the
challenger generates a signing-verification key pair (vk, ek, sk)← HA.KeyGen(1κ, 1`) and gives (vk, ek, sk) to
A.

Signing Query: The adversary A submits a circuit C ∈ C, messages x ∈ X ` and signatures σ ∈ ΣFresh. The
challenger returns⊥ if HA.VerifyFresh(vk,x,σ) = ⊥. Otherwise it generates σ(0) ← HA.Eval(ek, C,x,σ) and
σ(1) ← HA.Sim(vk, ek, sk, C, C(x)), picks coin $← {0, 1}, and returns σ(coin) to A.

Guess: A outputs coin′ as its guess for coin. We say that A wins the game if coin′ = coin.

The advantage of an adversary wining the above game w.r.t a simulator HA.Sim is defined by |Pr[A wins]− 1/2|.

Definition 2.18 (Computational Context-Hiding). A homomorphic authenticator scheme ΠHA is computationally
context-hiding if there exists a PPT simulator HA.Sim such that for any computationally bounded adversary A the
advantage |Pr[A wins]− 1/2| of the above game is negligible.

We also provide a simulation-based notion of security following the work of [GVW15b], which captures a stronger
statistical notion of context-hiding.

Definition 2.19 (Statistical Context-Hiding). A homomorphic authenticator scheme ΠHA is statistically context-hiding
if for all κ ∈ N, ` ∈ poly(κ), there exists a PPT simulator HA.Sim such that, for any (vk, ek, sk) ∈ HA.KeyGen(1κ, 1`),
C ∈ C, any pair (x, z) ∈ {(x, z) ∈ X ` ×X | C(x) = z}, and σ ∈ HA.Sign(sk,x), we have

{σ ← HA.Eval(ek, C,x,σ)} stat
≈ {σ ← HA.Sim(vk, ek, sk, C, z)},

where the probability is only over the randomness used by the algorithms HA.Eval and HA.Sim.
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It is easy to see that statistical context-hiding implies computational context-hiding.

Remark 2.20 (Other Properties for Homomorphic Authenticators). Other properties for HomAuth schemes including
compactness and composability have been considered in previous works [GW13, CFGN14, GVW15b, CF18]. Although,
compactness is usually regarded as one of the standard property of HomAuth schemes, for our particular application of
constructing NIZKs, neither compactness nor composability are necessarily. Nonetheless, it may be more appealing to
use a compact HomAuth scheme since it allows us to construct PP-NIZKs with a succinct proof size. We note that our
HomAuth scheme in Section 4 will satisfy compactness.

Kim and Wu proved that context-hiding HomAuth schemes can be used to construct PP-NIZKs. (See Appendix C
for details.

Theorem 2.21 ([KW18a, Theorem 4.4]). If there exists a secret key encryption scheme whose decryption algorithm
is computable in NC1 and an HomAuth scheme for NC1 with computational (resp. statistical) unforgeability and
computational context-hiding, then there exists PP-NIZK with computational (resp. statistical) soundness and
non-programmable CRS zero-knowledge. Moreover, if the underlying HomAuth scheme is publicly verifiable (i.e.,
HomSig scheme), then we can make the resulting PP-NIZK publicly verifiable (i.e., DP-NIZK) by weakening the
zero-knowledgeness to programmable CRS zero-knowledge.

3 DV-NIZK from CDH via FLS Transform
In this section, we construct a DV-NIZK from the CDH assumption over pairing-free groups based on the FLS
construction [FLS99] for CRS-NIZKs from TDPs. More formally, we prove the following theorem.

Theorem 3.1. If the CDH assumption holds on a pairing-free group, then there exists an (adaptive multi-theorem)
DV-NIZK proof system for all NP languages.

If we only require non-adaptive zero-knowledge where an adversary has to declare statements on which he sees
proofs before seeing a common reference string and verification key, then the simple construction described in the
introduction works. (More detailed description of the non-adaptive scheme can be found in Appendix A.) On the other
hand, for proving adaptive zero-knowledge, we need more efforts. Namely, we construct a DV-NIZK with adaptive
zero-knowledge in the following steps:

1. We first construct a variant of DV-NIZK proof system (which we call the base proof system) with a special syntax
satisfying a relaxed notion of soundness and adaptive single-theorem zero-knowledge. We construct it from a
NIZK proof system in the hidden-bits model based on the CDH assumption over pairing-free groups. This is
done by applying the FLS construction [FLS99] along with the twin-DH technique. A relaxed notion of adaptive
zero-knowledge is achieved by using a technique often used in non-committing encryption.

2. We then construct an adaptive designated-verifier non-interactive witness indistinguishable (DV-NIWI) proof for
all NP languages by running many copies of the base proof system in parallel.

3. Finally, we transform our adaptive DV-NIWI proofs into adaptive multi-theorem DV-NIZK proofs by using
pseudorandom generators via the transformation of Feige, Lapidot, and Shamir [FLS99] (i.e., the technique of
FLS is applicable to the DV-NIZK setting).

3.1 Preliminaries
We introduce the Goldreich-Levin hardcore function GL(a; r). This is defined by GL(a; r) := 〈a, r〉 :=

⊕u
j=1(aj · rj)

where a, r ∈ {0, 1}u and σj denotes the j-th bit of a string σ. In fact, we use groups in our construction and the input to
GL is an element in G. Thus, we interpret a group element gri ∈ G as a u-bit-string.

Theorem 3.2 (Goldreich-Levin Theorem (adapted) [GL89]). Assuming that the CDH assumption holds, it holds that∣∣∣Pr[ExptGL-cdh
A (κ, 0) = 1]− Pr[ExptGL-cdh

A (κ, 1) = 1]
]
≤ negl(κ),
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where the experiment ExptGL-cdh
A (κ, coin) is defined as follows.

ExptGL-cdh
A (κ, coin)

Samples (G, p, g) $← GGen(1κ), R $← {0, 1}u, and x, y $← Zp.
If coin = 1, then ρ $← {0, 1}, else if coin = 0, then ρ := GL(gxy;R).
Output coin′ ← A(1κ,G, p, g, gx, gy, R, ρ)

Next, we introduce a theorem called twin-DH trapdoor test which enables one to check if a tuple (g,X, Y, Z) is a
DH-tuple without knowing the discrete logarithm of X or Y by using a special trapdoor.

Theorem 3.3 (Twin-DH Trapdoor Test [CKS09]). For any (G, p, g)← GGen(κ) and function F , it holds that

Pr

(ZαẐ ?= Y β) 6= ((Z ?= Y x) ∧ (Ẑ ?= Y x̂))

∣∣∣∣∣∣∣
X

$← G,
α, β

$← Zp, X̂ := gβ/Xα,

(Y,Z, Ẑ) ← F ((G, p, g), X, X̂)

 ≤ 1/p,

where X = gx and X̂ = gx̂.

We introduce the notion of witness indistinguishability.

Definition 3.4 (Adaptive WI (in the DV model)).We say that a proof system Π satisfies adaptive witness indistin-
guishability if for all PPT adversaries A that makes arbitrary number of queries (resp. at most 1 query), if we run
(crs, kV)← Setup(1κ), then we have∣∣∣Pr[AO0(crs,·,·,·)(1κ, crs, kV) = 1]− Pr[AO1(crs,·,·,·)(1κ, crs, kV) = 1]

∣∣∣ = negl(κ),

where Ob(crs, x, w0, w1) outputs Prove(crs, x, wb) if (x,w0) ∈ R ∧ (x,w1) ∈ R and ⊥ otherwise.

Definition 3.5 (Adaptive NIWI). We say that a proof system Π is adaptive designated-verifier non-interactive witness
indistinguishable proof system if Π satisfies completeness, soundness in Definition 2.7 (in the designated-verifier model),
and adaptive witness indistinguishability in Definition 3.4.

We then formally define a NIZK proof in the hidden-bits model, which will be used as a building block in our
construction.

Definition 3.6. A NIZK proof in the hidden-bits model (HBM) for L is defined by the following two polynomial time
algorithms:

Prove(1κ, x, w, ρ)→ (π, I): The prover’s algorithm takes as input the security parameter 1κ, a statement x, a witness
w, and a hidden random string ρ ∈ {0, 1}`hrs(κ), and outputs a proof π and a set of indices I ⊆ [`hrs(κ)] where
`hrs(·) is a polynomial of κ.

Verify(1κ, x, π, I, ρ|I)→ > or ⊥: The verifier’s algorithm takes as input the security parameter, a statement x, a proof
π, an index set I , a substring ρ|I := {ρi}i∈I , where ρi is the i-th bit of ρ, and outputs > to indicate acceptance
of the proof and ⊥ otherwise.

Completeness. For all x ∈ L and w such that (x,w) ∈ R, we have

Pr[ρ $← {0, 1}`hrs(κ), (π, I)← Prove(1κ, x, w, ρ) : Verify(1κ, x, π, I, ρ|I) = >] = 1.

Soundness. For all (possibly inefficient) adversaries A, we have

εHBM := Pr[ρ $← {0, 1}`hrs(κ), (x, π, I)← A(1κ, ρ) : x 6∈ L ∧ Verify(1κ, x, π, I, ρ|I) = >] = negl(κ).

We call εHBM soundness error.
Zero-Knowledge. There exists a PPT simulator S such that for all PPT adversaries A = (A1,A2), we have∣∣∣Pr[(x,w)← A1(1κ), ρ $← {0, 1}`hrs(κ), (π, I)← Prove(1κ, x, w, ρ) : A2(x, π, I, ρ|I) = 1]

−Pr[(x,w)← A1(1κ), (π, I, ρ|I)← S(1κ, x) : A2(x, π, I, ρ|I) = 1]
∣∣ = negl(κ).
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Theorem 3.7 (NIZK for all NP languages in the HBM [FLS99]). Unconditionally, there exists NIZK proof systems
for all NP languages in the HBM with soundness error εHBM ≤ 2−cnκ where c > 1 is a constant, n is polynomially
related to the size of the circuit computing the NP language, κ is the security parameter, and `hrs = poly(κ, n).

3.2 Constructing DV-NIWI
The goal of this subsection is proving the following theorem.

Theorem 3.8. Assume that the CDH assumption over paring-free group holds, then there exists an adaptive DV-NIWI
for all NP languages.

Here, we sketch our high-level construction. First, we present our so-called base proof system bP, and then convert
it into an adaptive DV-NIWI proof system. Here, the base proof system bP is not a standard DV-NIWI proof system
since it has a slightly different syntax. Namely, the proving and verification algorithms of the base proof system take
an auxiliary string s as input in addition to (crs, x, w) and (crs, kV, x, π), respectively. We show that the base proof
system satisfies two properties called relaxed soundness, which means that an adversary cannot forge a proof if s is
fixed, and relaxed zero-knowledge, which means that a proof can be simulated without a witness if s is randomly chosen.
Observe that if we were to convert the prover to sample s on its own and include it in the proof, then the syntax fits
that of DV-NIWI. However, such a simple conversion of our base proof system bP into a DV-NIWI will not work as
the acquired DV-NIWI will not have soundness. Namely, the relaxed soundness of bP does not prevent a cheating
prover from forging a proof if he is allowed to choose s himself. To resolve this problem, we use a similar idea used by
Dwork and Naor [DN07]. Our construction of an adaptive DV-NIWI proof system consists of running many copies
of the base proof system using a single common auxiliary input s for all copies. Then, when the number of copies is
sufficiently large, soundness of the scheme can be proven from the union bound on all possible s. Moreover, since the
relaxed zero-knowledge implies witness indistinguishability, and witness indistinguishability is preserved under parallel
repetitions, we can prove the witness indistinguishability of our DV-NIWI.

Base proof system. First, we introduce the syntax and security properties of the base proof system bP. Note that bP
is merely an intermediate system introduced for a modular exposition and not a standard NIZK proof system.

Definition 3.9 (Syntax of base proof system). A base proof system bP consists of the following three polynomial time
algorithms.

bP.Setup(1κ)→ (crs, kV): The setup algorithm takes as input the security parameter 1κ and outputs a common
reference string crs, and a verification key kV.

bP.Prove(crs, x, w, s)→ π: The prover’s algorithm takes as input a common reference string crs, a statement x, a
witness w, and a fixed string s ∈ {0, 1}`hrs(κ), and outputs a proof π.

bP.Verify(crs, kV, x, π, s)→ > or ⊥: The verifier’s algorithm takes as input a common reference string crs, a verifica-
tion key kV, a statement x, a proof π, and a fixed string s ∈ {0, 1}`hrs(κ), and outputs > to indicate acceptance of
the proof and ⊥ otherwise.

Definition 3.10 (Security of base proof system). A base proof system is required to satisfy the following three properties.

Correctness: For all pairs (x,w) ∈ R and s ∈ {0, 1}`hrs(κ), if we run (crs, kV) $← bP.Setup(1κ), then we have

Pr[π $← bP.Prove(crs, x, w, s) : bP.Verify(crs, kV, x, π, s) = >] = 1

Relaxed ε-soundness: For any fixed s ∈ {0, 1}`hrs , it holds that all (possibly inefficient) adversaries A,

Pr[Exptr-snd
A (1κ, s) = >] < ε,

where ε is the soundness error of bP, and the experiment Exptr-snd
A (1κ) is defined as follows.
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Exptr-snd
A (1κ, s)

(crs, kV)← bP.Setup(1κ),
(x∗, π∗)← AbP.Verify(crs,kV,·,·,s)(1κ, crs, s),
If x∗ /∈ L ∧ bP.Verify(crs, kV, x

∗, π∗, s) = >, then outputs 1,
Otherwise, outputs 0.

This is basically the same as the standard soundness except that A must use a fixed s.

Relaxed zero-knowledge: There exists a PPT simulation algorithm bP.S = (bP.S1, bP.S2) that satisfies the following.
For all (stateful) PPT adversaries A, we have∣∣∣Pr[Exptr-real

A (1κ) = 1]− Pr[Exptr-sim
A,S (1κ) = 1]

∣∣∣ = negl(κ),

where experiments Exptr-real
A and Exptr-sim

A,S are defined as follows.
Exptr-real

A
(crs, kV)← bP.Setup(1κ),
(x,w)← A(1κ, crs, kV),
s

$← {0, 1}`hrs ,
If (x,w) ∈ R, π ← bP.Prove(crs, x, w, s),
otherwise π := ⊥,
b′ ← A(π, s)
outputs b′

Exptr-sim
A,S

(crs, kV, τV)← bP.S1(1κ),
(x,w)← A(1κ, crs, kV),

If (x,w) ∈ R, (π, s)← bP.S2(crs, kV, τV, x),
otherwise π := ⊥,
b′ ← A(π, s)
outputs b′

We present a base proof system bP := (bP.Setup, bP.Prove, bP.Verify) based on a NIZK proof system in the HBM
(HBM.Prove,HBM.Verify) (with hidden-random-string-length `hrs(κ)) and the CDH assumption. Note that we use the
GGen(1κ) algorithm to generate (G, p, g) where 22κ ≤ p throughout Section 3. Hereafter, we simply write `hrs instead
of `hrs(κ) for ease of notation.

bP.Setup(1κ): This algorithm generates the following parameters.

1. Samples (G, p, g) $← GGen(1κ).

2. Samples (αi,b, βi,b)
$← Z2

p for all i ∈ [`hrs] and b ∈ {0, 1} and a common reference string crs :=
{Xi,b}i∈[`hrs],b∈{0,1}

$← G2`hrs uniformly at random.

3. Sets ĉrs := {X̂i,b}i∈[`hrs],b∈{0,1} := {X−αi,b

i,b · gβi,b}i∈[`hrs],b∈{0,1}.

4. Samples Ri
$← {0, 1}u for all i ∈ [`hrs] and sets R := {Ri}i∈[`hrs].

5. Outputs a common reference string crs := (G, p, g)‖crs‖ĉrs‖R and a verification keykV := {(αi,b, βi,b)}i∈[`hrs],b∈{0,1}.

We can interpret crs as ({Xi,b, X̂i,b, Ri}i∈[`hrs],b∈{0,1}) ∈ G4`hrs × {0, 1}`hrsu, where u is the length of the binary
representation of a group element.

bP.Prove(crs, x, w, s): This algorithm does the following.

1. Parses crs = (G, p, g)‖crs‖ĉrs‖R where crs = {Xi,b}i∈[`hrs],b∈{0,1}, ĉrs = {X̂i,b}i∈[`hrs],b∈{0,1}, R =
{Ri}i∈[`hrs], and s ∈ {0, 1}`hrs .

2. Samples τ $← Zp.

3. Sets Zi := (Xi,si
)τ and Ẑi := (X̂i,si

)τ and ρi = GL(Zi;Ri) for i ∈ [`hrs].
4. Generates (πhbm, I)← HBM.Prove(1κ, x, w, ρ) where ρ := ρ1‖ · · · ‖ρ`hrs .

5. Outputs a proof π := (πhbm, I, {(Zi, Ẑi)}i∈I , gτ ).

19



bP.Verify(crs, kV, x, π, s): This algorithm parses π = (πhbm, I, {(Zi, Ẑ,i)}i∈I , T ), kV := {(αi,b, βi,b)}i∈[`hrs],b∈{0,1},
crs = (G, p, g)‖crs‖ĉrs‖R where crs = {Xi,b}i∈[`hrs],b∈{0,1}, ĉrs = {X̂i,b}i∈[`hrs],b∈{0,1}, R = {Ri}i∈[`hrs], and
s ∈ {0, 1}`hrs . This algorithm does the following.

• For all i ∈ I ,
1. Verifies that TestTDH((αi,si

, βi,si
), Xi,si

, X̂i,si
, T, Zi, Ẑi) = >, where TestTDH is defined in Figure 1.

If this equation does not hold, then the verification algorithm immediately outputs ⊥.
2. Computes ρi = GL(Zi;Ri).

• If the proof passes all the tests above, then this algorithm outputs HBM.Verify(1κ, x, πhbm, I, ρ|I).

The trapdoor test TestTDH((α, β), X, X̂, Y, Z, Ẑ)

1. Verifies that Zα · Ẑ = Y β . If it holds, then outputs >, else ⊥.

Figure 1: The algorithm TestTDH((α, β), X, X̂, Y, Z, Ẑ) verifies that Z = Y x and Ẑ = Y x̂, that is (g, Y,X,Z) and
(g, Y, X̂, Ẑ) where X = gx and X̂ = gx̂ are DDH-tuples without (x, x̂).

Unlike the idea outlined in the introduction, the CRS in bP consists of a doubled-line of random elements
(Xi,0, X̂i,0) and (Xi,1, X̂i,1) for each i ∈ [`hrs]. These doubled-line of random elements are crucial for achieving
adaptive zero-knowledge. If we only had a singled-line of random elements as the CRS in the introduction, then we
would have the following issue: The only way for the ZK-simulator of bP SbP to use the ZK-simulator Shbm of the
NIZK in the HBM, is to feed Shbm the statement x output by the adversary. Now, for the simulated proof π, index set I ,
and hidden bits ρ|I output by Shbm to be useful, we must have ρi = GL(Xτ

i ;Ri) for all i ∈ I where τ is some element
simulated by SbP. However, due to soundness, if the CRS was only a single-line of random elements (Xi, X̂i), then
there exists no τ with overwhelming probability such that the above condition holds. Therefore, SbP must choose τ and
program the singled-line of random elements (Xi, X̂i) in the CRS conditioned on ρi = GL(Xτ

i ;Ri) for all i ∈ I in
order to appropriately use Shbm. However, since ρi is only output as the result of feeding Shbm with the statement x, SbP
can only set the CRS after it is given the statement x from the adversary. To overcome this problem, we use the technique
of non-committing encryption. Namely, we let CRS be a doubled-line of random elements (Xi,0, X̂i,0) and (Xi,1, X̂i,1).
In the real-scheme the fixed string s ∈ {0, 1}`hrs dictates which `hrs-random elements (Xi,si , X̂i,si)i∈[`hrs] a prover must
use. Then during the adaptive ZK proof, SbP will prepare the CRS so that {GL(Xτ

i,0;Ri),GL(Xτ
i,1;Ri)} = {0, 1}

without seeing the statement x. Then after the adversary outputs the statement x, it runs Shbm, and samples a string s so
that ρi = GL(Xτ

i,si
;Ri) for all i ∈ I .

Before we prove the security of bP, we introduce several lemmas that are useful for proving the security of bP.

Lemma 3.11. The distribution of (GL(X;R), R) is statistically indistinguishable from uniform. That is, it holds that

Real(κ) stat
≈ Ideal(κ),

where the experiments Real and Ideal are defined as follows.

Real(κ)
(G, p, g) $← GGen(1κ)
R

$← {0, 1}u,
X

$← G,
b := GL(X;R),
Output (b, R)

Ideal(κ)
(G, p, g) $← GGen(1κ)
R

$← {0, 1}u,

b
$← {0, 1},

Output (b, R)

Proof. First, GL(X;R) is a universal hash since it is the inner-product function. Therefore, we can apply the leftover
hash lemma, and obtain ∆((GL(X;R), R), (b, R)) ≤ 2−κ−1/2 since we set m = 1 and 22κ ≤ p and it holds that
H∞(X) ≥ 2κ.
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In the proofs in this section, we frequently use the sampling algorithm in the following lemma.

Lemma 3.12. There exists a PPT algorithm that takes as inputs uniformly random ρ
$← {0, 1}, R $← {0, 1}u, and

T
$← G, and outputs random χ

$← Zp such that GL(Tχ;R) = ρ with probability 1− negl(κ). Furthermore, sampling
ρ and χ in such a way they have the same joint distribution as first sampling χ $← Zp and then setting ρ = GL(Tχ;R)
for all but a negligible fraction of fixed R and T .

Proof. By Lemma 3.11, for all but negligible fraction of R ∈ {0, 1}u, when we sample χ $← Zp, GL(Tχ;R) is
statistically indistinguishable from a uniformly random bit. Therefore, we can sample randomχ such thatGL(Tχ;R) = ρ
except with negligible probability.

Lemma 3.13.We define the following experiments Exptswitch
A (1κ, b) between a challenger and an adversary A as

follows.

1. The challenger generates (G, p, g) $← GGen(1κ), chooses x $← Zp and Ri
$← {0, 1}u for all i ∈ [`], and sends

(1κ, (G, p, g), gx, R1‖ · · · ‖R`) to A.

2. A chooses ρ∗ ∈ {0, 1}` and sends ρ∗ to the challenger.

3. If b = 0, the challenger chooses yi
$← Zp uniformly at random for i ∈ [`] (ignoring ρ∗), and sends (gy1 , . . . , gy`)

to A. Otherwise, the challenger chooses yi
$← Zp such that GL(gxyi ;Ri) = ρ∗i , and sends (gy1 , . . . , gy`) to A.

4. A outputs a guess b′ ∈ {0, 1}. The experiment outputs b′.

If the CDH assumption holds, then for any PPT A, it holds that∣∣∣Pr[Exptswitch
A (1κ, 0) = 1]− Pr[Exptswitch

A (1κ, 1) = 1]
∣∣∣ ≤ negl(κ).

Proof of Lemma 3.13. We will prove that the lemma holds for ` = 1 if the CDH assumption holds. This immediately
implies Lemma 3.13 due to the standard hybrid argument.

We consider hybrid games Hyb1, Hyb2,Hyb3 as follows.

Hyb1

(G, p, g) $← GGen(1κ)
x

$← Zp, y
$← Zp, R

$← {0, 1}u,
ρ

$← {0, 1},
ρ∗ ← A(1κ, (G, p, g), gx, R),

if ρ∗ = ρ, b′ ← A(gy)
else aborts,
outputs b′

Hyb2

(G, p, g) $← GGen(1κ)
x

$← Zp, y
$← Zp, R

$← {0, 1}u,
ρ← GL(gxy;R),
ρ∗ ← A(1κ, (G, p, g), gx, R),
y′

$← Zp s.t. GL(gxy
′
;R) = ρ∗,

if ρ∗ = ρ, b′ ← A(gy
′
)

else aborts,
outputs b′

Hyb3

(G, p, g) $← GGen(1κ)
x

$← Zp,R
$← {0, 1}u

ρ
$← {0, 1},

ρ∗ ← A(1κ, (G, p, g), gx, R),
y′

$← Zp s.t. GL(gxy
′
;R) = ρ∗,

if ρ∗ = ρ, b′ ← A(gy
′
)

else aborts,
outputs b′

It is easy to seePr[Exptswitch
A (1κ, 0) = 1] = 2 Pr[Hyb1(1κ) = 1] andPr[Exptswitch

A (1κ, 1) = 1] = 2 Pr[Hyb3(1κ) =
1] since Exptswitch

A (1κ, 0) (resp. Exptswitch
A (1κ, 1)) is the same as Hyb1 (resp. Hyb3) as long as ρ∗ = ρ. Moreover,

ρ∗ = ρ happens with probability 1/2 since ρ is uniformly and independently chosen.
We show Hyb1

c
≈ Hyb2 and Hyb2

c
≈ Hyb3 if the CDH assumption holds. We construct an adversary B of the

hardcore problem of the CDH problem.

Hyb1
c
≈ Hyb2: B is given (1κ,G, p, g, gx, gy, R, ρ) from the challenger of the Goldreich-Levin hardcore game
in Theorem 3.2. To use a distinguisher D of the two games, B sends (1κ, (G, p, g), gx, R) to D and receives ρ∗
from D. If ρ = ρ∗, then B sends gy to D. B receives b′ from D. If ρ 6= ρ∗ B aborts.
In the case ρ = GL(gxy;R), then B simulates Hyb2 since if ρ = ρ∗, then the joint distribution of y and
ρ∗ = GL(gxy;R) is the same as that of y′ and ρ∗ where y′ is uniformly chosen fromZp subject toGL(gxy′ ;R) = ρ∗

as in Hyb2. In the case ρ $← {0, 1}, then B perfectly simulates Hyb1. This completes the proof of Hyb1
c
≈ Hyb2.
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Hyb2
c
≈ Hyb3: B is given (1κ,G, p, g, gx, gy, R, ρ) from the challenger of the Goldreich-Levin hardcore game
in Theorem 3.2. To use a distinguisher D of the two games, B sends (1κ, (G, p, g), gx, R) to D and receives ρ∗

from D. If ρ = ρ∗, then B chooses y′ $← Zp such that GL(gxy′ ;R) = ρ∗ and sends gy′ to D. B can find such a
y′ by the sampling algorithm in Lemma 3.12. B receives b′ from D. If ρ 6= ρ∗, B aborts.

In the case ρ = GL(gxy;R), then B perfectly simulates Hyb2. In the case ρ $← {0, 1}, then B perfectly simulates
Hyb3. This completes the proof of Hyb2

c
≈ Hyb3.

This completes the proof of Lemma 3.13.

We also prepare a corollary, which immediately follows from Lemma 3.13.

Corollary 3.14.We define the following experiments Exptleft-right
A (1κ, b) between a challenger and an adversary A as

follows.

1. The challenger generates (G, p, g) $← GGen(1κ), chooses x $← Zp and R $← {0, 1}u, yd
$← Zp such that

GL(gxyd ;R) = d⊕ b for d ∈ {0, 1}, and sends (1κ, (G, p, g), gx, gy0 , gy1) to A.

2. A outputs a guess b′ ∈ {0, 1}. The experiment outputs b′.

If the CDH assumption holds, then for any PPT A, it holds that∣∣∣Pr[Exptleft-right
A (1κ, 0) = 1]− Pr[Exptleft-right

A (1κ, 1) = 1]
∣∣∣ ≤ negl(κ).

Security of bP. Now, we prove the security of the base proof system.

Lemma 3.15 (Correctness). Our base proof system bP satisfies the correctness in Definition 3.10.

Proof of Lemma 3.15. If π = (πhbm, I, {(Zi, Ẑi)}i∈I , gτ ) is an honestly generated proof, then we have Zi = Xτ
i,si

and
Ẑi = X̂τ

i,si
for i ∈ I . Therefore, an honestly generated proof passes the twin-DH trapdoor test TestTDH and a verifier

obtains the valid hidden bits ρ via GL(Zi;Ri). Thus, we can use the correctness of HBM and the correctness of bP
follows.

Lemma 3.16 (Relaxed Soundness). If the soundness error of HBM is εHBM and the number of verification queries is
at most qv , then bP satisfies the relaxed (p · εHBM + (qv + 1)/p)-soundness defined in Definition 3.10.

Proof of Lemma 3.16. We define a sequence of hybrid games. In the following games, s ∈ {0, 1}`hrs is fixed.

Game0: This game is the original experiment defined in Lemma 3.16. Specifically, the game is described as follows.

1. The experiment generates (crs, kV)← bP.Setup(1κ) as follows.

• Samples (G, p, g) $← GGen(1κ) and Ri
$← {0, 1}u for all i ∈ [`hrs] and sets R := R1‖ · · · ‖R`hrs .

• Samples crs := {Xi,b}i∈[`hrs],b∈{0,1}
$← G2`hrs .

• Samples (αi,b, βi,b)
$← Z2

p for all i ∈ [`hrs], b ∈ {0, 1} and sets ĉrs := {X̂i,b := X
−αi,b

i,b ·
gβi,b}i∈[`hrs],b∈{0,1}.

• Sets crs := (G, p, g)‖crs‖ĉrs‖R and a verification key kV := {(αi,b, βi,b)}i∈[`hrs],b∈{0,1}.
2. A is given (1κ, crs, s).
3. The experiment plays the role of the verification oracle when A sends (x′, π′) as a verification query or the

final output as follows.
• Parses π′ = (π′hbm, I

′, {(Z ′i, Ẑ ′i)}i∈I′ , T ′).
• For all i ∈ I ′

(a) Verifies that TestTDH((αi,si
, βi,si

), T ′, Z ′i, Ẑ ′i) = 1. If this equation does not hold, then the
verification oracle immediately returns ⊥.
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(b) Computes ρ′i := GL(Z ′i;Ri).
• If the proof passes all the tests above, then this algorithm outputs HBM.Verify(1κ, x, π′hbm, I

′, ρ′|I′).
4. A outputs (x∗, π∗). If x∗ /∈ L and π∗ passes the verification, then the game outputs 1.

Game1: This game is the same as Game0 except that it changes how to generate crs and verify proofs as follows.

1. The experiment generates (crs, kV) as follows.

• Samples (G, p, g) $← GGen(1κ) and Ri
$← {0, 1}u for all i ∈ [`hrs] and sets R := R1‖ · · · ‖R`hrs .

• Samples χi,b
$← Zp and sets crs := {Xi,b := gχi,b}i∈[`hrs],b∈{0,1}.

• Samples χ̂i,b
$← Zp and sets ĉrs := {X̂i,b := gχ̂i,b}i∈[`hrs],b∈{0,1}.

• Sets crs := (G, p, g)‖crs‖ĉrs‖R.
2. A is given (1κ, crs, s).
3. When A sends (x′, π′) as a verification query or the final output, the experiment does the following.

• Parses π′ = (π′hbm, I
′, {(Z ′i, Ẑ ′i)}i∈I′ , T ′).

• For all i ∈ I ′

(a) Verifies that Z ′i = (T ′)χi,si and Ẑ ′i = (T ′)χ̂i,si for all i ∈ [`hrs]. If this equation does not hold,
then the verification oracle immediately returns ⊥.

(b) Computes ρ′i := GL(Z ′i;Ri).
• If the proof passes all the tests above, then this algorithm outputs HBM.Verify(1κ, x, π′hbm, I

′, ρ′|I′).
4. A outputs (x∗, π∗). If x∗ /∈ L and π∗ passes the modified verification procedure defined above, then the

game outputs 1.

Game2: This game is the same as Game1 except that the game guesses τ ∈ Zp at the CRS generation phase
and aborts when the guess is wrong. That is, the game first randomly guesses τ $← Zp. When A outputs
(x∗, π∗ = (π∗hbm, I

∗, {(Z∗i , Ẑ∗i )}i∈I′ , T ∗) as its final output, if T ∗ 6= gτ , then this game aborts. Otherwise it
works similarly to Game1.

Game3: This game is the same as Game2 except that it changes how to generate crs as follows.

1. Samples (G, p, g) $← GGen(1κ).

2. Guesses τ $← Zp.

3. Chooses ρi
$← {0, 1} for i ∈ [`hrs].

4. Chooses χi,si
and Ri such that GL((gτ )χi,si ;Ri) = ρi and sets Xi,si

:= gχi,si for i ∈ [`hrs] and R := R1‖ · · · ‖R`hrs .

5. Chooses χi,1−si

$← Zp and sets Xi,1−si
:= gχi,1−si for all i ∈ [`hrs].

6. Sets crs := {Xi,b}i∈[`hrs],b∈{0,1}.

7. Samples χ̂i,b
$← Zp and sets ĉrs := {X̂i,b := gχ̂i,b}i∈[`hrs],b∈{0,1}.

8. Sets crs := (G, p, g)‖crs‖ĉrs‖R.

We will prove indistinguishability of hybrid games below.

Claim 3.17. It holds that Pr[Game0 = 1]− Pr[Game1 = 1] ≤ (qv + 1)/p.

Proof. It can be seen that the distribution of {Xi,b, X̂i,b}i∈[`hrs],b∈{0,1} in Game1 is the same as that in Game0. We can
apply Theorem 3.3 and the claim follows since A sends at most qv queries to the verification oracle and the experiment
uses the verification oracle once more for deciding if A succeeds in forging a proof.
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Claim 3.18. It holds that Pr[Game2 = 1] = 1
p Pr[Game1 = 1].

Proof. The difference between the two games is that the game guesses τ ∈ Zp and aborts if the guess is incorrect in
Game2. Since the probability that the guess is correct is 1/p, the claim follows.

Claim 3.19. It holds that Pr[Game2 = 1] = Pr[Game3 = 1].

Proof. In Game2, ρi is computed by GL(gτχi,si ;Ri) using the CRS and τ . On the other hand, in Game3, we sample
ρi

$← {0, 1}. After that, we choose random χi,si
and Ri such that ρi = GL((gτ )χi,si ;Ri). (We can assume that any

group element in G is not encoded into the all zero string.) These two distributions are identically distributed since
ρi = GL(gτχi,si ;Ri) is uniformly random over {0, 1} when χi,si

$← Zp and Ri
$← {0, 1}u are uniformly and randomly

chosen.

Claim 3.20. If the soundness error of HBM is εHBM, then it holds that Pr[Game3 = 1] ≤ εHBM.

Proof. We show that if A can generate a pair of statement and proof (x∗, π∗) that passes the verification in Game3,
then we can construct a cheating prover B of (HBM.Prove,HBM.Verify). To use A, B proceeds as follows.

CRS simulation: First, B is given (1κ, ρ). B simulates crs as follows.

• Samples (G, p, g) $← GGen(1κ).

• Guesses τ $← Zp.
• Chooses χi,si

and Ri such that GL((gτ )χi,si ;Ri) = ρi and sets Xi,si
:= gχi,si for i ∈ [`hrs] and

R := R1‖ · · · ‖R`hrs .

• Chooses χi,1−si

$← Zp and sets Xi,1−si
:= gχi,1−si for all i ∈ [`hrs].

• Sets crs := {Xi,b}i∈[`hrs],b∈{0,1}.

• Samples χ̂i,b
$← Zp and sets ĉrs := {X̂i,b := gχ̂i,b}i∈[`hrs],b∈{0,1}.

• Sets crs := (G, p, g)‖crs‖ĉrs‖R and gives crs and s to A.

Verification oracle simulation: When A sends (x′, π′) as a verification query or the final output, the experiment does
the following.

• Parses π′ = (π′hbm, I
′, {(Z ′i, Ẑ ′i)}i∈I′ , T ′).

• For all i ∈ I ′

(a) Verifies that Z ′i = (T ′)χi,si and Ẑ ′i = (T ′)χ̂i,si for all i ∈ [`hrs]. If this equation does not hold, then it
immediately returns ⊥.

(b) Computes ρ′i := GL(Z ′i;Ri).
• If the proof passes all the tests above, then this algorithm outputs HBM.Verify(1κ, x, π′hbm, I

′, ρ′|I′).

Forgery: When A outputs (x∗, π∗ = (π∗hbm, I
∗, {(Z∗i , Ẑ∗i )}i∈I , T ∗), if T ∗ 6= gτ , B aborts. Otherwise B outputs

(π∗hbm, I
∗, ρ|I∗).

The simulations of (crs, kV) and the verification oracle are perfect. If Game3 outputs 1, we have x∗ /∈ L,
T ∗ = gτ and (x∗, π∗) passes the verification oracle in Game3, which implies we have Z∗i = (T ∗)χi,si and
HBM.Verify(1κ, x, π∗hbm, I

∗, ρ∗|I∗) = 1 where ρ∗i := GL(Z∗i ;Ri). On the other hand, we can see that we have
GL((gτ )χi,si ;Ri) = ρi by the way of the CRS simulation. Since we have T ∗ = gτ , we have Z∗i = (gτ )χi,si and thus
ρ∗i = ρi. Hence we have HBM.Verify(1κ, x, π∗hbm, I

∗, ρ|I∗) = >, which means that B succeeds in forging a proof of
HBM.

By Claims 3.17 to 3.20, we complete the proof of Lemma 3.16.

24



Lemma 3.21 (Relaxed ZK). If the CDH assumption holds with respect to GGen, then bP satisfies the relaxed ZK
defined in Definition 3.10.

Proof of Lemma 3.21. We fisrt describe the simulator bP.S = (bP.S1, bP.S2).

1. bP.S1(1κ) generates (crs, kV, τV) as follows.

• Samples (G, p, g) $← GGen(1κ).

• Chooses (αi,b, βi,b)
$← Z2

p andRi
$← {0, 1}u for all i ∈ [`hrs], b ∈ {0, 1}, and setskV := {(αi,b, βi,b)}i∈[`hrs],b∈{0,1}.

• Chooses τ $← Zp, and s̃
$← {0, 1}`hrs .

• Chooses χi,b
$← Zp such that GL((gχi,b)τ ;Ri) = b ⊕ s̃i for b ∈ {0, 1}. We can find such χi,b by the

sampling algorithm in Lemma 3.12.
• Sets crs := {Xi,b}i∈[`hrs],b∈{0,1} := {gχi,b}i∈[`hrs],b∈{0,1}, ĉrs := {X−αi,b

i,b · gβi,b}i∈[`hrs],b∈{0,1}, and
R := R1‖ · · · ‖R`hrs .

• Sets crs = (G, p, g)‖crs‖ĉrs‖R and τV := (s̃, τ).
• Outputs (crs, kV, τV).

2. bP.S2(crs, kV, τV, x) simulates a proof π and s as follows.

• Generates (πhbm, I, ρ|I)← HBM.S(1κ, x).

• Sets si := ρi ⊕ s̃i for all i ∈ I , samples si
$← {0, 1} for all i ∈ [`hrs] \ I , and sets s := s1‖ · · · ‖s`hrs .

• Sets Zi := (Xi,si
)τ and Ẑi := (X̂i,si

)τ for i ∈ I .

• Outputs a proof π := (πhbm, I, {(Zi, Ẑi)}i∈I , gτ ) and s.

For proving that proofs simulated by the above simulator is computationally indistinguishable from real ones, we
define a sequence of hybrid games. In the following, we assume that the adversary A only queries (x,w) such that
(x,w) ∈ R to the proving oracle where R is the corresponding relation of L. This can be assumed without loss of
generality since A can check if this holds by himself, and if (x,w) /∈ R, then the proving oracle just returns ⊥.

Game0: This game is the real experiment defined in Lemma 3.21. Specifically, the game is described as follows.

1. The experiment generates (crs, kV) as follows.

• Samples (G, p, g) $← GGen(1κ), (αi,b, βi,b)
$← Z2

p, and Ri
$← {0, 1}u for all i ∈ [`hrs], b ∈ {0, 1}.

• Samples crs := {Xi,b}i∈[`hrs],b∈{0,1}
$← G2`hrs .

• Sets ĉrs := {X−αi,b

i,b · gβi,b}i∈[`hrs],b∈{0,1} and R := R1‖ · · · ‖R`hrs .
• Sets crs := (G, p, g)‖crs‖ĉrs‖R and a verification key kV := {(αi,b, βi,b)}i∈[`hrs],b∈{0,1}.

2. A is given (1κ, crs, kV) and outputs (x,w).

3. Samples s $← {0, 1}`hrs .

4. The experiment generates a proof π = (πhbm, I, {(Zi, Ẑi)}i∈I , gτ ) as follows.

• Samples τ $← Zp.
• Computes ρi := GL((Xi,si)τ ;Ri) and sets ρ := ρ1‖ · · · ‖ρ`hrs .
• Generates (πhbm, I)← HBM.Prove(1κ, x, w, ρ).
• Sets Zi := (Xi,si

)τ and Ẑi := (X̂i,si
)τ for i ∈ I .

• Sets a proof π := (πhbm, I, {(Zi, Ẑi)}i∈I , gτ ).
5. (π, s) is given to A, and A outputs b′.
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Game1: This game is the same as Game0 except that ρi,b and Xi,b are generated in the “reversed” order. Specifically,
the game is described as follows.

1. The experiment generates (crs, kV) as follows.

• Samples (G, p, g) $← GGen(1κ), (αi,b, βi,b)
$← Z2

p, and Ri
$← {0, 1}u for all i ∈ [`hrs], b ∈ {0, 1}.

• Samples τ $← Zp.

• Chooses ρi,b
$← {0, 1} for all i ∈ [`hrs] and b ∈ {0, 1}.

• Chooses χi,b
$← Zp such that GL((gχi,b)τ ;Ri) = ρi,b for all i ∈ [`hrs]. (We can find such χi,b by the

sampling algorithm in Lemma 3.12.)
• Sets Xi,b := gχi,b for all i ∈ [`hrs], b ∈ {0, 1}.

• Sets crs := {Xi,b}i∈[`hrs],b∈{0,1}, ĉrs := {X−αi,b

i,b · gβi,b}i∈[`hrs],b∈{0,1} and R := R1‖ · · · ‖R`hrs .
• Sets crs := (G, p, g)‖crs‖ĉrs‖R and a verification key kV := {(αi,b, βi,b)}i∈[`hrs],b∈{0,1}.

2. A is given (1κ, crs, kV) and outputs (x,w).

3. Samples s $← {0, 1}`hrs .

4. The experiment generates a proof π = (πhbm, I, {(Zi, Ẑi)}i∈I , gτ ) as follows.
• Sets ρi := ρi,si

and ρ := ρ1‖ · · · ‖ρ`hrs .
• Generates (πhbm, I)← HBM.Prove(1κ, x, w, ρ).
• Sets Zi := (Xi,si

)τ and Ẑi := (X̂i,si
)τ for i ∈ I .

• Sets a proof π := (πhbm, I, {(Zi, Ẑi)}i∈I , gτ ).
5. (π, s) is given to A, and A outputs b′.

Game2: This game is the same as Game1 except that ρi,0 and ρi,1 are chosen so that they always differ each other.
Specifically, the game is described as follows.

1. The experiment generates (crs, kV) as follows.

• Samples (G, p, g) $← GGen(1κ), (αi,b, βi,b)
$← Z2

p, and Ri
$← {0, 1}u for all i ∈ [`hrs], b ∈ {0, 1}.

• Samples τ $← Zp.
• Samples s $← {0, 1}`hrs .

• Chooses ρi,si

$← {0, 1} and sets ρi,1−si
:= 1− ρi,si

for all i ∈ [`hrs].

• Chooses χi,b
$← Zp such that GL((gχi,b)τ ;Ri) = ρi,b for all i ∈ [`hrs]. (We can find such χi,b by the

sampling algorithm in Lemma 3.12.)
• Sets Xi,b := gχi,b for all i ∈ [`hrs], b ∈ {0, 1}.
• Sets crs := {Xi,b}i∈[`hrs],b∈{0,1}, ĉrs := {X−αi,b

i,b · gβi,b}i∈[`hrs],b∈{0,1} and R := R1‖ · · · ‖R`hrs .
• Sets crs := (G, p, g)‖crs‖ĉrs‖R and a verification key kV := {(αi,b, βi,b)}i∈[`hrs],b∈{0,1}.

2. A is given (1κ, crs, kV) and outputs (x,w).

3. The experiment generates a proof π = (πhbm, I, {(Zi, Ẑi)}i∈I , gτ ) as follows.
• Sets ρi := ρi,si

and ρ := ρ1‖ · · · ‖ρ`hrs .
• Generates (πhbm, I)← HBM.Prove(1κ, x, w, ρ).
• Sets Zi := (Xi,si

)τ and Ẑi := (X̂i,si
)τ for i ∈ I .

• Sets a proof π := (πhbm, I, {(Zi, Ẑi)}i∈I , gτ ).
4. (π, s) is given to A, and A outputs b′.
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Game3: This game is the same as Game2 except that generations of ρ and s are delayed until A outputs (x,w).
Specifically, the game is described as follows.

1. The experiment generates (crs, kV) as follows.

• Samples (G, p, g) $← GGen(1κ), (αi,b, βi,b)
$← Z2

p, and Ri
$← {0, 1}u for all i ∈ [`hrs], b ∈ {0, 1}.

• Samples τ $← Zp.
• Samples s̃ $← {0, 1}`hrs .

• Chooses χi,b
$← Zp such that GL((gχi,b)τ ;Ri) = b⊕ s̃i for all i ∈ [`hrs]. (We can find such χi,b by the

sampling algorithm in Lemma 3.12.)
• Sets Xi,b := gχi,b for all i ∈ [`hrs], b ∈ {0, 1}.
• Sets crs := {Xi,b}i∈[`hrs],b∈{0,1}, ĉrs := {X−αi,b

i,b · gβi,b}i∈[`hrs],b∈{0,1} and R := R1‖ · · · ‖R`hrs .
• Sets crs := (G, p, g)‖crs‖ĉrs‖R and a verification key kV := {(αi,b, βi,b)}i∈[`hrs],b∈{0,1}.

2. A is given (1κ, crs, kV) and outputs (x,w).

3. The experiment generates a proof π = (πhbm, I, {(Zi, Ẑi)}i∈I , gτ ) as follows.

• Samples ρ $← {0, 1}`hrs .
• Generates (πhbm, I)← HBM.Prove(1κ, x, w, ρ).
• Sets s := ρ⊕ s̃.
• Sets Zi := (Xi,si

)τ and Ẑi := (X̂i,si
)τ for i ∈ I .

• Sets a proof π := (πhbm, I, {(Zi, Ẑi)}i∈I , gτ ).
4. (π, s) is given to A, and A outputs b′.

Game4: This game is the same as Game3 except that si is chosen independently of ρ or s̃ for i /∈ I . Specifically, the
game is described as follows.

1. The experiment generates (crs, kV) as follows.

• Samples (G, p, g) $← GGen(1κ), (αi,b, βi,b)
$← Z2

p, and Ri
$← {0, 1}u for all i ∈ [`hrs], b ∈ {0, 1}.

• Samples τ $← Zp.
• Samples s̃ $← {0, 1}`hrs .
• Chooses χi,b

$← Zp such that GL((gχi,b)τ ;Ri) = b⊕ s̃i for all i ∈ [`hrs]. (We can find such χi,b by
the sampling algorithm in Lemma 3.12.)

• Sets Xi,b := gχi,b for all i ∈ [`hrs], b ∈ {0, 1}.
• Sets crs := {Xi,b}i∈[`hrs],b∈{0,1}, ĉrs := {X−αi,b

i,b · gβi,b}i∈[`hrs],b∈{0,1} and R := R1‖ · · · ‖R`hrs .
• Sets crs := (G, p, g)‖crs‖ĉrs‖R and a verification key kV := {(αi,b, βi,b)}i∈[`hrs],b∈{0,1}.

2. A is given (1κ, crs, kV) and outputs (x,w).

3. The experiment generates a proof π = (πhbm, I, {(Zi, Ẑi)}i∈I , gτ ) as follows.

• Samples ρ $← {0, 1}`hrs .
• Generates (πhbm, I)← HBM.Prove(1κ, x, w, ρ).
• Sets si := ρi ⊕ s̃i for all i ∈ I , samples si

$← {0, 1} for all i ∈ [`hrs] \ I , and sets s := s1‖ · · · ‖s`hrs .

• Sets Zi := (Xi,si
)τ and Ẑi := (X̂i,si

)τ for i ∈ I .
• Sets a proof π := (πhbm, I, {(Zi, Ẑi)}i∈I , gτ ).

4. (π, s) is given to A, and A outputs b′.
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Game5: This game is the same as Game4 except that it changes how to generate an NIZK proof in the HBM as follows.
Specifically, the game is described as follows.

1. The experiment generates (crs, kV) as follows.
• Samples (G, p, g) $← GGen(1κ), (αi,b, βi,b)

$← Z2
p, and Ri

$← {0, 1}u for all i ∈ [`hrs], b ∈ {0, 1}.
• Samples τ $← Zp.
• Samples s̃ $← {0, 1}`hrs .
• Chooses χi,b

$← Zp such that GL((gχi,b)τ ;Ri) = b⊕ s̃i for all i ∈ [`hrs]. (We can find such χi,b by
the sampling algorithm in Lemma 3.12.)

• Sets Xi,b := gχi,b for all i ∈ [`hrs], b ∈ {0, 1}.
• Sets crs := {Xi,b}i∈[`hrs],b∈{0,1}, ĉrs := {X−αi,b

i,b · gβi,b}i∈[`hrs],b∈{0,1} and R := R1‖ · · · ‖R`hrs .
• Sets crs := (G, p, g)‖crs‖ĉrs‖R and a verification key kV := {(αi,b, βi,b)}i∈[`hrs],b∈{0,1}.

2. A is given (1κ, crs, kV) and outputs (x,w).
3. The experiment generates a proof π = (πhbm, I, {(Zi, Ẑi)}i∈I , gτ ) as follows.

• Generates (πhbm, I, ρ|I)← HBM.S(1κ, x).

• Sets si := ρi ⊕ s̃i for all i ∈ I , samples si
$← {0, 1} for all i ∈ [`hrs] \ I , and sets s := s1‖ · · · ‖s`hrs .

• Sets Zi := (Xi,si)τ and Ẑi := (X̂i,si)τ for i ∈ I .
• Sets a proof π := (πhbm, I, {(Zi, Ẑi)}i∈I , gτ ).

4. (π, s) is given to A, and A outputs b′.

By the definition, Game5 is completely the same as the experiment simulated by bP.S. We will prove the following
claims.

Claim 3.22. It holds that Game0
stat
≈ Game1.

Proof. The difference between two games is how to sample Xi,s. In Game0, Xi,s is uniformly and randomly chosen.
In Game1, the experiment samples ρi

$← {0, 1} and after that Xi,b is set to gχi,b such that GL((gχi,b)τ ;Ri) = ρi. The
indistinguishability between these two games directly follows from Lemma 3.12.

Claim 3.23. If the CDH assumption holds with respect to GGen, then it holds that Game1
c
≈ Game2.

Proof. If the CDH assumption holds, then we can use Lemma 3.13. Therefore, we show that if A distinguishes Game1
and Game2, then we can construct an adversary B for the experiment defined in Lemma 3.13.
B is given (1κ, (G, p, g), gx, R1‖ · · · ‖R`hrs) and it sets gτ := gx. Next, B chooses (αi,b, βi,b)

$← Z2
p for all

i ∈ [`hrs], b ∈ {0, 1} and s
$← {0, 1}`hrs , and does the following. For i ∈ [`hrs],

1. Chooses ρi,si

$← {0, 1} and sets ρi,1−si
:= 1− ρi,si

.

2. Chooses χi,si

$← Zp such that GL((gτ )χi,si ;Ri) = ρi,si . We can find such χi,si by the algorithm in Lemma 3.12.

Then, B sends (ρ1,1−s1 , . . . , ρ`hrs,1−s`hrs
) to the challenger and receives (gy1 , . . . , gy`hrs ). Then, B sets Xi,1−si

:= gyi ,
X̂i,1−si

:= gβi,1−si · (gyi)−αi,1−si , Xi,si
:= gχi,si , and X̂i,si

:= gβi,si · g−αi,si
χi,si for all i ∈ [`hrs]. B

sets crs := {Xi,b}i∈[`hrs],b∈{0,1}, ĉrs := {X̂i,b}i∈[`hrs],b∈{0,1}, R := R1‖ · · · ‖R`hrs , and crs := crs‖ĉrs‖R, and
gives (1κ, crs, kV) to A, and A outputs (x,w). Then B sets ρi := ρi,si and ρ := ρ1‖ · · · ‖ρ`hrs , generates
(πhbm, I) ← HBM.Prove(1κ, x, w, ρ), sets Zi := (gτ )ri,si and Ẑi := (gτ )βi,si

−αi,χi,si for i ∈ I . Then B sets
π := (πhbm, I, {(Zi, Ẑi)}i∈I , gτ ) and gives (π, s) to A. B outputs as A outputs.

If gyi comes from the experiment Exptswitch
B (1κ, 0), then the simulation above is statistically indistinguishable from

Game1 by Lemma 3.12 since yi
$← Zp. If gyi comes from the experiment Exptswitch

B (1κ, 1), then the simulation above
perfectly simulates Game2 since yi

$← Zp are subject to GL(gxyi ;Ri) = ρi,1−si
. Therefore, B can break the CDH

assumption by using A that distinguishes these two hybrid games. This completes the proof of the claim.
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Claim 3.24. It unconditionally holds that Game2
stat
≈ Game3.

Proof. Suppose that we set ρi,b := b⊕ s̃i for all i ∈ [`hrs], b ∈ {0, 1} by using s̃
$← {0, 1}`hrs . This does not change the

distribution of {ρi,b}i∈[`hrs],b∈{0,1} since they are uniformly distributed subject to ρi,0 6= ρi,1. Then χi,b is sampled
subject to GL((gχi,b)τ ;Ri) = b⊕ s̃i. Moreover, if we set ρi := ρi,si

for each i ∈ [`hrs], we have ρi = si ⊕ s̃i, which
means s = s̃⊕ ρ. Since s is uniformly chosen in Game2, the joint distribution of s and ρ does not change if we first
picks ρ $← {0, 1}`hrs and then we set s := s̃⊕ ρ. Now, the game is identical to Game3. This completes the proof of the
claim.

Claim 3.25. If the CDH assumption holds with respect to GGen, then it holds that Game3
c
≈ Game4.

Proof. For k ∈ {0, ..., `hrs}, we consider hybrids Hybk, which is identical to Game3 except that for all i ∈ [k] \ I , si is
uniformly chosen from {0, 1} instead of setting si := ρi ⊕ s̃i. It is clear that Hyb0 is identical to Game3 and Hyb`hrs

is
identical to Game4, Therefore we only have to prove Hybk−1

c
≈ Hybk for all k ∈ [`hrs]. To prove this, we introduce an

additional hybrid Hyb′k for k ∈ [`hrs] which is identical to Hybk except that if k /∈ I , sk is set to be 1⊕ (ρi ⊕ s̃i).
We note that if k ∈ I , then Hybk−1, Hybk, and Hyb′k are completely identical. On the other hand, if k /∈ I ,

then Hybk is identical to Hybk−1 with probability 1/2, and identical to Hyb′k with probability 1/2 depending on the
randomness for choosing sk. Therefore it suffices to prove Hybk−1

c
≈ Hyb′k for all k ∈ [`hrs].

To prove this, suppose that A distinguishes Hybk−1 and Hyb′k. Without loss of generality, we can assume that I
output byA satisfies k /∈ I since otherwise Hybk−1 and Hyb′k are completely identical. Then we construct an adversary
B that distinguishes the experiments defined in Corollary 3.14.

1. B is given (1κ, (G, p, g), gx, gy0 , gy1 , R) and generates (crs, kV) as follows.

• Chooses (αi,b, βi,b)
$← Z2

p for all i ∈ [`hrs], b ∈ {0, 1}, Ri
$← {0, 1}u for all i ∈ [`hrs] \ {k}, and sets

Rk := R.
• Sets gτ := gx.
• Samples s̃ $← {0, 1}`hrs .

• For all i ∈ [`hrs] \ {k}, b ∈ {0, 1}, chooses χi,b
$← Zp such that GL((gτ )χi,b ;Ri) = b⊕ s̃i by the sampling

algorithm in Lemma 3.12 and sets (Xi,b, X̂i,b) := (gχi,b , gβi,b−αi,bχi,b).

• Sets Xk,b := g
y

b⊕s̃k and X̂k,b := X
−αk,b

k,b · gβk,b for b ∈ {0, 1}.

• Sets crs := {Xi,b}i∈[`hrs],b∈{0,1}, ĉrs := {X−αi,b

i,b · gβi,b}i∈[`hrs],b∈{0,1} and R := R1‖ · · · ‖R`hrs .

• Sets crs := (G, p, g)‖crs‖ĉrs‖R and a verification key kV := {(αi,b, βi,b)}i∈[`hrs],b∈{0,1}.

2. Gives (1κ, crs, kV) to A, and A outputs (x,w).

3. D generates a proof π and s as follows.

• Samples ρ $← {0, 1}`hrs .
• Generates (πhbm, I)← HBM.Prove(1κ, x, w, ρ).
• Sets si := ρi ⊕ s̃i for all i ∈ {k, ..., `hrs} ∪ I , samples si

$← {0, 1} for i ∈ [k − 1] \ I .
• Sets Zi := (gτ )χi,si , Ẑi := (gτ )βi,si

−αi,si
χi,si for i ∈ I . (Note that we assume k /∈ I and thus B knows

χi,b for all i ∈ I , b ∈ {0, 1}.)
• Sets π := (πhbm, I, {(Zi, Ẑi)}i∈I , gτ ).

4. Finally, B gives (π, s) to A, and outputs A’s output as its own output.

If the input of B comes from Exptleft-right
A (1κ, 0) (i.e., yb is chosen such that GL(gxyb ;R) = b for b ∈ {0, 1}), then B

perfectly simulates Hybk−1, and that comes from Exptleft-right
A (1κ, 1) (i.e., yb is chosen such that GL(gxyb ;R) = 1− b

for b ∈ {0, 1}), then B perfectly simulates Hyb′k. Therefore if A distinguishes Hybk−1 and Hyb′k, then B distinguishes
these two cases, which contradicts Corollary 3.14.
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Claim 3.26. If (HBM.Prove,HBM.Verify) is a NIZK proof system in the HBM, then Game4
stat
≈ Game5.

Proof. We construct a distinguisher D of HBM by using a distinguisher A of Game4 and Game5. D is given 1κ, then
does the following.

1. D generates (crs, kV) as follows.

• Samples (G, p, g) $← GGen(1κ), (αi,b, βi,b)
$← Z2

p, and Ri
$← {0, 1}u for all i ∈ [`hrs], b ∈ {0, 1}.

• Samples τ $← Zp.

• Samples s̃ $← {0, 1}`hrs .

• Chooses χi,b
$← Zp such that GL((gχi,b)τ ;Ri) = b ⊕ s̃i for all i ∈ [`hrs]. (We can find such χi,b by the

sampling algorithm in Lemma 3.12.)
• Sets Xi,b := gχi,b for all i ∈ [`hrs], b ∈ {0, 1}.

• Sets crs := {Xi,b}i∈[`hrs],b∈{0,1}, ĉrs := {X−αi,b

i,b · gβi,b}i∈[`hrs],b∈{0,1} and R := R1‖ · · · ‖R`hrs .

• Sets crs := (G, p, g)‖crs‖ĉrs‖R and a verification key kV := {(αi,b, βi,b)}i∈[`hrs],b∈{0,1}.

2. Gives (1κ, crs, kV) to A, and A outputs (x,w).

3. Sends (x,w) to the challenger to receive (πhbm, I, ρ|I).

4. D generates a proof π and s as follows.

• Sets si := ρi ⊕ s̃i for all i ∈ I , samples si
$← {0, 1} for all i ∈ [`hrs] \ I , and sets s := s1‖ · · · ‖s`hrs .

• Sets Zi := (Xi,si)τ and Ẑi := (X̂i,si)τ for i ∈ I .
• Sets a proof π := (πhbm, I, {(Zi, Ẑi)}i∈I , gτ ).

5. Gives (π, s) to A, and A outputs b′.

6. D outputs b′.

It is clear that D perfectly simulates Game4 if (πhbm, I, ρ|I) comes from HBM.Prove(1κ, x, w, ρ), and D perfectly
simulates Game5 if (πhbm, I, ρ|I) comes from HBM.S(1κ, x). This completes the proof.

By Claims 3.22 to 3.26, we complete the proof of Lemma 3.21

Construction of DV-NIWI. Here, we present our adaptive DV-NIWI proof system Π := (Setup,Prove,Verify) based
on the base proof system bP := (bP.Setup, bP.Prove, bP.Verify) that has relaxed ε-soundness for some ε < 1. We
note that we proved that the base proof system satisfies relaxed (p · εHBM + (qv + 1)/p)-soundness in Lemma 3.16, and
we can make (p · εHBM + (qv + 1)/p) < 1 by choosing a parameter for HBM so that p · εHBM is negligible. (This is
possible by Theorem 3.7). We set an integer `′ so that we have 2`hrs · ε`′ ≤ 2−κ. Then Π is described as follows.

Setup(1κ): This algorithm samples (crsj , k(j)
V ) ← bP.Setup(1κ) for j ∈ [`′]. It sets crs := crs1‖ · · · ‖crs`′ and

kV := k
(1)
V ‖ · · · ‖k

(`′)
V , and outputs (crs, kV).

Prove(crs, x, w)→ π: This algorithm does the following:

1. chooses s $← {0, 1}`hrs ,
2. generates πj ← bP.Prove(crsj , x, w, s) for all j ∈ [`′],
3. outputs a proof π := (π1, . . . , π`′ , s).

Verify(crs, kV, x, π)→ > or ⊥: This algorithm parses π = (π1, . . . , π`′ , s). For all j ∈ [`′], it verifies that > =
bP.Verify(crsj , k(j)

V , x, πj , s). If the proof passes all the tests, then this algorithm outputs >, otherwise ⊥.
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Lemma 3.27 (Correctness). Π satisfies completeness.

Proof of Lemma 3.27. It is easy to see the completeness holds by Lemma 3.15 since the proof consists of the parallel
repetition of the base proof system.

Lemma 3.28 (Soundness). Π satisfies soundness.

Proof of Lemma 3.28. For each fixed s, the probability that an adversary can forge a proof is ε`′ . Since the possible
choice for s is 2`hrs , the probability that an adversary can forge a proof is 2`hrs · ε`′ ≤ 2−κ.

Lemma3.29 (WI). If theCDHassumption holdswith respect toGGen, thenΠ satisfies adaptivewitness-indistinguishability.

Proof of Lemma 3.29. First, we remark that witness indistinguishability can be reduced to single-theorem witness
indistinguishability where an adversary makes only one query by a standard hybrid argument. Therefore in the following,
we assume that an adversary makes a query only once.

We define a sequence of hybrid games. Let Hybj be a hybrid game where adversaries have oracle access to a hybrid
oracle O(j)(crs, ·, ·, ·) defined below.

O(j)(crs, x, w0, w1): Chooses s $← {0, 1}`hrs , generates π(1)
i ← bP.Prove(crsi, x, w1, s) for i ≤ j and π(0)

i ←
bP.Prove(crsi, x, w0, s) for i > j and returns π := (π(1)

1 , . . . , π
(1)
j , π

(0)
j+1, . . . , π

(0)
`′ ).

We can easily see that Hyb0 and Hyb`′ be the transcripts in the adaptive WI experiments where A has access to O0

and O1, respectively. That is, our goal is proving Hyb0
c
≈ Hyb`′ .

To prove it, wewill proveHybj−1
c
≈ Hybj for j = 1, . . . , `′, which immediately impliesHyb0

c
≈ Hyb`′ and completes

the proof. We define auxiliary hybrid games H̃ybj , where the challenger generates (crsi, k(i)
V ) ← bP.Setup(1κ) for

i ∈ [`′] \ {j + 1} and (crsj , k(j+1)
V , τ

(j+1)
V )← bP.S1(1κ) and sets crs := crs1‖ · · · ‖crs`′ and kV := k

(1)
V ‖ · · · ‖k

(`′)
V at

the beginning of the game, and an adversary is given (crs, kV) and has oracle access to Õ(j) defined below.

Õ(j)(x,w0, w1): Generates (πj+1, s) ← bP.S2(τ (j+1)
V , x), πi ← bP.Prove(crsi, x, w1, s) for i < j + 1, and πi ←

bP.Prove(crsi, x, w0, s) for i > j + 1. Returns π := (π(1)
1 , . . . , π

(1)
j , πj+1, π

(0)
j+2, . . . , π

(0)
`′ ).

We will prove Hybj−1
c
≈ H̃ybj−1 and H̃ybj−1

c
≈ Hybj in Lemmata 3.30 and 3.31. This completes the proof

of Lemma 3.29.

Lemma 3.30. If bP satisfies the relaxed ZK defined in Definition 3.10, then Hybj−1
c
≈ H̃ybj−1.

Proof of Lemma 3.30. We construct a distinguisher B for the relaxed zero-knowledge described in Definition 3.10 of
the base proof system bP by using a distinguisher D of Hybj−1 and H̃ybj−1.

First, B is given (1κ, crs∗, k∗V) from the experiment of relaxed zero-knowledge in Definition 3.10. To use D, B
generates (crsi, k(i)

V )← bP.Setup(1κ) for i ∈ [`′] \ {j}. B then sets crs := crs1‖ · · · ‖crsj−1‖crs∗‖crsj+1‖ · · · ‖crs`′
and kV := k

(1)
V ‖ · · · ‖k

(j−1)
V ‖k∗V‖k

(j+1)
V ‖ · · · ‖k(`′)

V . B sends (crs, kV) to D and receives (x,w0, w1).
Next, B simulates a proof as follows. B sends (x,w0) to the challenger of the experiment of relaxed zero-knowledge

in Definition 3.10, and receives (π∗, s) of bP. Then, B does the following.

1. For i < j, B generates π(1)
i ← bP.Prove(crsi, x, w1, s).

2. For i > j, B generates π(0)
i ← bP.Prove(crsi, x, w0, s).

3. For i = j, B sets πj := π∗.

B sends π := (π(1)
1 , . . . , π

(1)
j−1, π

∗, π
(0)
j+1, . . . , π

(0)
`′ , s) to D. This completes the simulation for D.

If (crs∗, k∗V) and (π∗, s) are outputs of bP.Setup(1κ) and bP.Prove(crs, x, w0, s), then B perfectly simulates
Hybj−1. If (crs∗, k∗V) and (π∗, s) are outputs of bP.S1(1κ) and bP.S2(crs, kV, τV, x), then B perfectly simulates
H̃ybj−1. Therefore, if D distinguishes these two hybrid games, then B can break the zero-knowledge in Lemma 3.21.
This complete the proof of Lemma 3.30.
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Lemma 3.31. If bP satisfies the relaxed ZK defined in Definition 3.10, then H̃ybj−1
c
≈ Hybj .

Proof of Lemma 3.31. We can prove this similarly to Lemma 3.31.

From Lemmata 3.15, 3.16, 3.21 and 3.27 to 3.29, we obtain Theorem 3.8 presented at the beginning of this
sub-section.

3.3 Transformation from DV-NIWI into Multi-Theorem DV-NIZK
In this section, we show how to convert adaptive DV-NIWI into adaptive multi-theorem DV-NIZKs for NP. This will
complete the proof of Theorem 3.1.

The goal of this subsection is proving the following theorem.

Theorem 3.32. If there exists an adaptive DV-NIWI proof systems and pseudorandom generators, then there exists an
adaptive multi-theorem DV-NIZK proof system.

The transformation is essentially the same as that of Feige et al. [FLS99] (from NIWI to multi-theorem NIZK).
However, we consider the designated-verifier setting. Thus, we formally prove Theorem 3.32 for confirmation.

We present our adaptive multi-theorem DV-NIZK proof system Πzk := (Setup,Prove,Verify) for L based on
adaptive DV-NIWI proof system Πwi := (WI.Setup,WI.Prove,WI.Verify) for all NP languages. Let PRG(·) :
{0, 1}n → {0, 1}2n be a pseudorandom generator as in Definition 2.4.

Setup(1κ): This algorithm samples (wi.crs,wi.kV)←WI.Setup(1κ) and σ $← {0, 1}2n. It sets crs := (wi.crs, σ) and
kV := wi.kV, and outputs (crs, kV).

Prove(crs, x, w)→ π: This algorithm does the following.

1. Defines L∨ := L ∨ {∃seed such that PRG(seed) = σ}. That is, (x, σ) is an instance of language L∨. Note
that R∨ := {((x, σ), w) | either (x,w) ∈ RL or PRG(w) = σ} is a NP-relation.

2. Generates wi.π ←WI.Prove(wi.crs, (x, σ), w). This is possible since Πwi is an NIWI proof system for all
NP-languages.

3. Outputs a proof π := wi.π.

Verify(crs, kV, x, π)→ > or ⊥: This algorithm parses crs = (wi.crs, σ), kV = wi.kV, and π = wi.π, and verifies that
> = WI.Verify(wi.crs,wi.kV, (x, σ),wi.π) for L∨. If it does not hold, then outputs ⊥.

Lemma 3.33. Πzk satisfies completeness.

Proof of Lemma 3.33. If x ∈ L, then the prover has a witness w such that (x,w) ∈ RL. Therefore, the completeness
follows from the completeness of Πwi.

Lemma 3.34. Πzk satisfies soundness.

Proof of Lemma 3.34. By simple counting argument, σ $← {0, 1}2n is not in the range of PRG except probability
2−n since the seed length is n. Therefore, except negligible probability, there is no witness for language Lg :=
{∃seed such that PRG(seed) = σ}. That is, except negligible probability, (x,w) /∈ L∨ since x /∈ L. By the soundness
of Πwi, the soundness of Πzk follows.

Lemma 3.35. Πzk satisfies adaptive multi-theorem (programmable CRS) zero-knowledge.

Proof of Lemma 3.35. We construct a simulator zk.S = (zk.S1, zk.S2) as follows.

1. zk.S1(1κ) generates (crs, kV, τV) as follows.

• Runs (wi.crs,wi.kV)←WI.Setup(1κ)

• Samples seed $← {0, 1}n, computes σ := PRG(seed)
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• Sets crs := (wi.crs, σ), kV := wi.kV, and τV := seed.

2. zk.S1 sends (crs, kV) to A.

3. When A sends a query (xi, wi) ∈ RL to the oracle, zk.S2(crs, kV, τV, xi) simulates a proof πi as follows.

• Runs wi.πseed ← WI.Prove(wi.crs, (xi, σ), seed). That is, zk.S2 uses seed as a witness for L∨. This is a
valid witness since PRG(seed) = σ by the definition of zk.S1 above.

• Sets πi := wi.πseed.

In the following, we prove that the simulated proofs are indistinguishable from real ones. Suppose that A distinguishes
simulated and real proofs. Then we construct a distinguisher B that breaks the witness indistinguishability of Πwi as
follows.

First, B is given (1κ,wi.crs,wi.kV) from the experiment in Definition 3.4. It samples seed $← {0, 1}n, sets
σ := PRG(seed), crs := (wi.crs, σ) and kV := wi.kV, and runs A on input (crs, kV). When A queries (xi, wi) ∈ RL
to its oracle, B queries ((xi, σ), wi, seed) to its own oracle to get wi.πi and returns wi.πi to A as a response by the
oracle. Finally, B outputs whatever A outputs.

This completes the description of B. First, we remark that wi.πi 6= ⊥ in each query since we have ((xi, σ), wi) ∈ L∨
and ((xi, σ), seed) ∈ L∨. Then it is easy to see that B perfectly simulates the experiment where A gets real proofs if
the coin chosen in the witness indistinguishability experiment B is involved is equal to 0, and B perfectly simulates the
experiment where A gets simulated proofs otherwise. Therefore if A distinguishes real and simulated proofs, then B
breaks the witness indistinguishability of Πwi. This completes the proof of Lemma 3.35.

By Lemmata 3.33 to 3.35, we obtain Theorem 3.32. Finally, by Theorems 3.8 and 3.32, we obtain Theorem 3.1
presented at the beginning of Section 3.

4 Constructing HomSig from ABE-Simulation Paradigm
In this section, we construct a context-hiding HomSig for NC1 from a new non-static (q-type) assumption on pairing
groups that we call the CDHER assumption. Specifically, we first construct a new ABE scheme from the same
assumption and then apply the (semi-generic) conversion sketched in Section 1.2. We directly give a construction of
HomSig instead of constructing it via the new ABE. Using the transformation by Kim and Wu [KW18a] (which is
described in Appendix C.2), we obtain a DP-NIZK from the same assumption. The resulting DP-NIZK has a compact
proof size, i.e., |C|+ poly(κ), where |C| denotes the size of the circuit that computes the relation being proved.

4.1 Preparation: Bilinear Maps and Monotone Span Programs
Before providing the concrete construction, we first prepare the hardness assumption and tools that will be used
throughout this section.

Let BGGen be a PPT algorithm that on input 1κ returns a description G = (G,GT , p, g, e(·, ·)) of symmetric pairing
groups where G and GT are cyclic groups of prime order p, g is the generator of G, and e : G × G → GT is an
efficiently computable (non-degenerate) bilinear map.

Definition 4.1 ((n,m)-Computational Diffie-Hellman Exponent and Ratio Assumption). Let BGGen be a group
generator and n := n(κ) = poly(κ), m := m(κ) = poly(κ). We say that the (n,m)-decisional Diffie-Hellman
exponent and ratio (CDHER) assumption holds with respect to BGGen, if for all PPT adversaries A, we have

Pr
[
A(G,Ψ)→ e(g, g)sa

m+1
]

= negl(κ)
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where G = (G,GT , p, g, e(·, ·))
$← BGGen(1λ), s, a, b1, . . . , bn, c1, . . . cn

$← Z∗p, and

Φ :=



{
ga

j
}
j∈[m]

, {gci}i∈[n] ,
{
ga

j/bi

}
i∈[n],j∈[2m]
j 6=m+1

,
{
ga

m+1ci′/bici

}
i,i′∈[n],i6=i′

,

{gaci}i∈[n] ,
{
ga

j/bici

}
i∈[n],j∈[2m+1]

,
{
ga

jci′/bi

}
i,i′∈[n],j∈[m]

,

gs,
{
gsbi

}
i∈[n] ,

{
gsa

m+1bi/bi′ci′
}
i,i′∈[n],i6=i′

,
{
gsa

jbi/bi′
}
i,i′∈[n],j∈[m]

i 6=i′

 .

As a sanity check, we show the following lemma, which asserts that the assumption holds on the generic group
model introduced by Shoup [Sho97].

Lemma 4.2. The (n,m)-CDHER assumption holds on the generic group model for any n,m = poly(κ).

Proof. We can prove somewhat stronger claim. Namely, the decision version of the (n,m)-CDHER assumption, where
the adversary should distinguish e(g, g)sam+1 from a random group element in GT , holds on the generic group model.
The decision version of the above assumption can be seen as an instance of GT -monomial assumption introduced by
Rouselakis and Waters [RW13]. Thus, by [RW12, Corollary D.4], it suffices to show that pairing result of any two
elements from Φ is not (symbolically) equivalent to e(g, g)sam+1 . We first observe that the only elements in Φ that
contain “s" in the exponent are gs, gsbi , gsam+1bi/bi′ci′ , and gsajbi/bi′ , where i 6= i′ for the latter two terms. To obtain
e(g, g)sam+1 as a pairing result, one of the input to the pairing operation should be one of these terms. Therefore, the
other input should be either gam+1 , gam+1/bi , gbi′ci′/bi , or gam+1−jbi′/bi , where i 6= i′ for the latter two terms. However,
these terms are not given in the problem instance Φ.

We define a slightly simplified version of (monotone) span programs below.

Definition 4.3 (Monotone Span Program). A (monotone) span program for universe [n] is a matrix M, where M is
an n×m matrix over Zp. Given y = (y1, . . . , yn) ∈ {0, 1}n, we say that

y satisfies M iff 1 ∈ span 〈MI〉 .

Here 1 = (1, 0, . . . , 0) ∈ Z1×m
p is a row vector; MI denotes the matrix obtained by removing the j-th row of M for j

such that j 6∈ I for I := {i ∈ [n] | yi = 0}10; and span refers to Zp-linear span of row vectors.

That is, y satisfies M iff there exist coefficients {wi ∈ Zp}i∈I such that∑
i∈I

wiMi = 1,

where Mi denotes the i-th row vector of M. Observe that the coefficients {wi ∈ Zp}i∈I can be computed in time
polynomial in the size of M via Gaussian elimination.

Note that we adopt a slightly non-standard definition of the monotone span program, in that we do not allow the
program to read the same input bit multiple times. This is for the sake of the brevity and this limitation can be removed
by blowing up the matrices as well as inputs by a polynomial factor.

The following lemma is taken from [GPSW06b].

Lemma 4.4 ([GPSW06b, Proposition 1]). If a vector y ∈ {0, 1}n does not satisfy a (monotone) span program
M ∈ Zn×mp , then there exists an efficiently computable vector d = (d1, . . . , dm) ∈ Zmp such that MId> = 0 and
d1 = −1, where I := {i ∈ [n] | yi = 0}.

It is well known that NC1 circuits can be represented as a polynomial-sized Boolean formulae. Furthermore, any
polynomial-sized Boolean formulae can be converted into an equivalent monotone span program (See e.g., Appendix G
of [LW11]). Combining them, we have the following lemma, which allows us to use (monotone) span programs as NC1

circuits instead.
10We note that our definition of I here is somewhat non-standard. Usually, we define I as I := {i ∈ [n] | yi = 1}. This change is introduced

because it slightly simplifies our presentation and is not essential.
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Lemma 4.5. Let d = d(κ), ` = `(κ), and s = s(κ) be integers. There exist integer parameters n = n(d, `, s) and
m = m(d, `, s) and deterministic algorithms EncInp and EncCir with the following properties.

- EncInp(x)→ y ∈ {0, 1}n, where x ∈ {0, 1}`.

- EncCir(C)→M ∈ {−1, 0, 1}n×m, where C : {0, 1}` → {0, 1} is a circuit with depth and size bounded by d
and s, respectively.

We have that y satisfies the span program M over Zp if and only ifC(x) = 0 for any prime modulus p > 3. Furthermore,
the running time of EncInp and EncCir is poly(`, s, 2d). In particular, if C is a polynomial-sized circuit with logarithmic
depth (i.e., if the circuit is in NC1), EncInp and EncCir run in polynomial time. In particular, we have n = poly(κ) and
m = poly(κ) in this case.

4.2 Compact Construction from the CDHER Assumption
In this section, we give a HomSig scheme for NC1 circuits from CDHRE assumption on bilinear groups. The HomSig
scheme achieves very short (evaluated) signatures, which consist of only constant number of group elements. Combining
the construction with Theorem 2.21, We can obtain DP-NIZK scheme with short proofs. In particular, when the
proven relation is described by a leveled circuit, the proof size can be smaller than the circuit size (See Appendix C.4).
Furthermore, the scheme can be extended to the multi-data setting and provide the online-offline efficiency. We refer
to Appendix D for the details.
Description of the Function Class. Let d(κ) = O(log κ), ` = poly(κ), and s = poly(κ). The circuit class dealt with
by our FHS scheme is denoted as CNC1 = {CNC1

κ,d,`,s}κ∈N, where CNC
1

κ,d,`,s is a set of circuits whose input lengths are `, and
depths and sizes are bounded by d and s, respectively. We also define a circuit class C̃NC1 = {C̃NC1

κ,d,`,s}κ∈N associated
with CNC1 as

C̃NC
1

κ,d,`,s = {C̃z(·) = (C(·) ?= z) | ∀z ∈ {0, 1},∀C ∈ CNC
1

κ,d,`,s}.

More specifically, C̃NC1

κ,d,`,s is a set of circuits with input length ` such that a circuit C̃z ∈ C̃NC
1

κ,d,`,s on input x ∈ {0, 1}`

outputs 1 if and only if circuit C ∈ CNC1

κ,d,`,s outputs z on input x. Since (x ?= y) can be expressed by a constant-size
circuit, every circuit in C̃NC1

κ,d,`,s have input length `, and the depths and sizes are bounded by d+O(1) and s+O(1),
respectively. Then, by Lemma 4.5, there exist n(κ) = poly(κ) and m(κ) = poly(κ) such that EncInp(x) ∈ {0, 1}n
for any x ∈ {0, 1}` and EncCir(C) ∈ {−1, 0, 1}n×m for any C ∈ C̃NC1

κ,d,`,s. Furthermore, all of these values can be
computed in time poly(κ). In the following, since we fix κ, d, `, and s in the construction, we drop the subscript and
denote CNC1

κ,d,`,s, C̃NC
1

κ,d,`,s as CNC
1
, C̃NC1 for notational convenience.

Construction. In the following each signature spaces ΣFresh and ΣEvaled are set as Zp and G3 × {0, 1}, respectively.

HS.KeyGen(1κ, 1`): On input the security parameter 1κ and the message length 1`, sample the group description
G = (G,GT , p, g, e(·, ·))← BGGen(1κ). Then sample a, u← Zp and bi, ci ← Z∗p for i ∈ [n] and output

vk =


{
ga

j
}
j∈[m]

, {gci}i∈[n] ,
{
ga

j/bi

}
i∈[n],j∈[2m]
j 6=m+1

,
{
ga

m+1ci′/bici

}
i,i′∈[n],i6=i′

,

gu, {gaci}i∈[n] ,
{
ga

j/bici

}
i∈[n],j∈[2m+1]

,
{
ga

jci′/bi

}
i,i′∈[n],j∈[m]

 (1)

and

sk =
(
a, u, {bi, ci}i∈[n]

)
.

For notational simplicity, we assume the group description G is implicitly included both in vk and sk.
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HS.Sign(sk,x = (x1, · · · , x`)): On input x ∈ {0, 1}`, run EncInp(x) = y ∈ {0, 1}n, and compute ũ ∈ Zp as

ũ = u−
∑
i∈[n]

yi ·
(
am+1/bici

)
,

where yi ∈ {0, 1} is the i-th bit of y. Finally, output σ = ũ ∈ ΣFresh.

HS.Eval(vk, C,x,σ): If x 6∈ {0, 1}`, C 6∈ CNC1 or σ = ũ 6∈ ΣFresh, abort. Otherwise, compute z = C(x) ∈ {0, 1}
and construct the circuit C̃z ∈ C̃NC

1 defined above. Here, we have C̃z(x) = 1 by construction. Then, run
EncInp(x) = y ∈ {0, 1}n and EncCir(C̃z) = M ∈ Zn×mp . By Lemma 4.5, y does not satisfy the span program
M since C̃z(x) = 1. Then find a vector d = (d1, . . . , dm) ∈ Zmp such that d1 = −1 and 〈Mi,d〉 = 0 for all
i ∈ [n] satisfying yi = 0, where Mi is the i-th row of M. Note that such a vector exists and can be found
efficiently due to Lemma 4.4. Then pick r̃ $← Zp and compute

K1 = gr̃ ·
∏
j∈[m]

(
ga

m+1−j
)dj

·
∏
i∈[n]

(gci)−〈Mi,d〉 and (2)

K2 = (ga)r̃ ·
∏

j∈[2,m]

(ga
m+2−j

)dj ·
∏
i∈[n]

(gaci)−〈Mi,d〉 . (3)

Note that the above terms can be efficiently computed as linear combinations of the group elements in the
verification key vk. Then compute

L1 := K ũ
1 ·

∏
i∈[n]

(
ga

m+1/bici

)yi

·
∏

i∈[n],j∈[m]

(
ga

j/bi

)Mi,j

r̃

,

L2 :=
∏

i∈[n],j∈[m]

(
ga

2m+2−j/bici

)djyi

·
∏

i,i′∈[n],j∈[m]

(
ga

jci′/bi

)−〈Mi′ ,d〉Mi,j

,

L3 :=
∏

i,i′∈[n]
i 6=i′

(
ga

m+1ci′/bici

)−〈Mi′ ,d〉yi

·
∏

i∈[n],j,j′∈[m],
j 6=j′

(
ga

m+1−j′+j/bi

)Mi,jdj′

, and

K3 := L1 · L2 · L3 (4)

Note that all of them can be efficiently computed as linear combinations of the group elements in the verification
key vk. Finally, output σ = (K1,K2,K3, z) ∈ ΣEvaled.

HS.VerifyFresh(vk,x,σ): Output ⊥ if x 6∈ {0, 1}` or σ = ũ 6∈ ΣFresh. Otherwise, first run EncInp(x) = y ∈ {0, 1}n.
Then, check the following condition:

gu
?= gũ ·

∏
i∈[n]

(
ga

m+1/bici

)yi

,

where yi ∈ {0, 1} is the i-th bit of y. If it holds output >, otherwise output ⊥.

HS.VerifyEvaled(vk, C, z, σ): Parse σ = (K1,K2,K3, z
′) and output ⊥ if any of the following holds: z 6∈ {0, 1},

z 6= z′, σ 6∈ ΣEvaled, and C 6∈ CNC
1 . Otherwise, construct the circuit C̃z ∈ C̃NC

1 as defined above. Then, run
EncCir(C̃z) = M ∈ Zn×mp and check the following conditions:

e

K1, g
u ·

∏
i∈[n],j∈[m]

(
ga

j/bi

)Mi,j

 ?= e(K3, g), e(g,K2) · e(ga,K1)−1 ?= e
(
ga, ga

m
)
,

whereMi,j is the (i, j)-th entry of the matrix M. If the above equations hold, output >. Otherwise output ⊥.
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Context-Hiding. We first prove the context-hiding of the scheme and then prove the correctness of the scheme, since
this makes the proofs slightly simpler.

Theorem 4.6. Our construction is perfectly context-hiding.

Proof. To show the context-hiding property, we first construct the homomorphic signature simulator HS.Sim as follows:

HS.Sim(vk, sk, C, z) : On input a circuit C ∈ CNC1 and a message z ∈ {0, 1}, it first constructs the circuit C̃z ∈ C̃NC
1

associated to circuit C. Then, it computes EncCir(C̃z) = M ∈ Zn×mp . It then picks r $← Zp and computes

K1 := gr, K2 := ga
m+1
· (ga)r, K3 :=

gu · ∏
i∈[n],j∈[m]

(
ga

j/bi

)Mi,j

r

(5)

and outputs σ = (K1,K2,K3, z).

We now proceed to show that this simulator HS.Sim satisfies the required conditions. First, let x ∈ {0, 1}` be an
arbitrary input such that C̃z(x) = 1, and let yi ∈ {0, 1} be the i-th bit of y = EncInp(x). Furthermore, let d ∈ Zmp as
defined in HS.Eval. Then, let us rewrite r and u in Eq. (5) as

r = r̃ +
∑
j∈[m]

dja
m+1−j −

∑
i∈[n]

〈Mi,d〉ci and u = ũ+
∑
i∈[n]

yi ·
(
am+1/bici

)
,

where Mi is the i-th row of M. In the following, we show thatK1,K2, andK3 are distributed exactly as in Eq. (2), (3),
and (4) where the probability is taken over the randomness of r. Here, recall that all other elements including u, hence
ũ, are fixed by the definition of context-hiding. First of all, it is easy to check that the aboveK1 is distributed identically
to Eq. (2), since r is distributed uniformly at random if and only if so is r̃. Now, sinceK2 andK3 are uniquely defined
onceK1 is fixed, it remains to check that the values ofK2 andK3 conform to Eq. (3) and (4) for fixed r. This can be
checked easily forK2 since we have

loggK2 = am+1 + ar

= am+1 + a

r̃ +
∑
j∈[m]

dja
m+1−j −

∑
i∈[n]

〈Mi,d〉ci


= r̃a+

∑
j∈[2,m]

dja
m+2−j −

∑
i∈[n]

〈Mi,d〉aci,

where the last equation follows from d1 = −1. Note that the term am+1 cancels out here.
We need some more work forK3. We have

loggK3

= r

u+
∑

i∈[n],j∈[m]

Mi,ja
j/bi



=

r̃ +
∑
j∈[m]

dja
m+1−j −

∑
i∈[n]

〈Mi,d〉ci︸ ︷︷ ︸
:=Φ1

 ·
ũ+

∑
i∈[n]

yia
m+1/bici +

∑
i∈[n],j∈[m]

Mi,ja
j/bi︸ ︷︷ ︸

:=Φ2


= ũ(r̃ + Φ1) + r̃Φ2 + Φ1Φ2

= ũr + r̃Φ2︸ ︷︷ ︸
:=Φ3

+Φ1Φ2
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We can observe that gΦ3 = L1. We next expand Φ1Φ2 and show that gΦ1Φ2 = L2L3, which concludes the proof.
Before doing so, we define

Φ1,1 :=
∑
j∈[m]

dja
m+1−j , Φ1,2 := −

∑
i∈[n]

〈Mi,d〉ci,

Φ2,1 :=
∑
i∈[n]

yia
m+1/bici, Φ2,2 :=

∑
i∈[n],j∈[m]

Mi,ja
j/bi.

It is readily seen that Φi = Φi,1 + Φi,2 for i = 1, 2 and thus Φ1Φ2 = Φ1,1Φ2,1 + Φ1,1Φ2,2 + Φ1,2Φ2,1 + Φ1,2Φ2,2.
We have

Φ1,1Φ2,1 + Φ1,2Φ2,2 =
∑

i∈[n],j∈[m]

djyi
(
a2m+2−j/bici

)
−

∑
i,i′∈[n],j∈[m]

〈Mi′ ,d〉Mi,j

(
ajci′/bi

)
,

Φ1,2Φ2,1 =

− ∑
i′∈[n]

〈Mi′ ,d〉ci′

∑
i∈[n]

yia
m+1/bici


= −

∑
i,i′∈[n]
i 6=i′

〈Mi′ ,d〉yi
(
am+1ci′/bici

)
−
∑
i∈[n]

〈Mi,d〉yi
(
am+1/bi

)

and

Φ1,1Φ2,2 =

 ∑
j′∈[m]

dj′a
m+1−j′

 ·
 ∑
i∈[n],j∈[m]

Mi,ja
j/bi


=

∑
i∈[n],j,j′∈[m],

j 6=j′

Mi,jdj′
(
am+1−j′+j/bi

)
+

∑
i∈[n],j∈[m]

Mi,jdj
(
am+1/bi

)

=
∑

i∈[n],j,j′∈[m],
j 6=j′

Mi,jdj′
(
am+1−j′+j/bi

)
+
∑
i∈[n]

〈Mi,d〉
(
am+1/bi

)

=
∑

i∈[n],j,j′∈[m],
j 6=j′

Mi,jdj′
(
am+1−j′+j/bi

)
+
∑
i∈[n]

〈Mi,d〉yi
(
am+1/bi

)
,

where in the last equation we used yi ∈ {0, 1} and 〈Mi,d〉 = 0 if yi = 0. These imply that

Φ1,2Φ2,1 + Φ1,1Φ2,2 = −
∑

i,i′∈[n]
i6=i′

〈Mi′ ,d〉yi
(
am+1ci′/bici

)
+

∑
i∈[n],j,j′∈[m],

j 6=j′

Mi,jdj′
(
am+1−j′+j/bi

)
,

where the terms of the formam+1/bi all cancel out here. We can see that gΦ1,1Φ2,1+Φ1,2Φ2,2 = L2 and gΦ1,2Φ2,1+Φ1,1Φ2,2 =
L3, which imply gΦ1Φ2 = L2L3. This concludes the proof of the theorem.

Correctness. Here, we show that the scheme satisfies signing correctness and evaluation correctness defined in
Definition 2.15. The signing correctness is easy to check. The evaluation correctness is also easy to check given the fact
thatK1,K2, andK3 generated by HS.Eval are distributed as Eq. (5), which is shown in the proof of Theorem 4.6.

Unforgeability. We finally prove unforgeability of our HomSig scheme. Formally, we prove the following theorem.

Theorem 4.7. Our construction satisfies (single-shot) selective-unforgeability assuming the hardness of the (n,m)-
CDHER problem.
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Proof. To prove the theorem, it suffices to show that for any PPT adversary A against the selective-unforgeability
of our homomorphic signature scheme ΠHS with advantage ε, we can construct a PPT algorithm B that solves the
(n,m)-CDHER problem with the same probability. Then, assuming the hardness of the (n,m)-CDHER problem, we
conclude our proof. We give the description of B in the following.

Setup: The reduction algorithm B is given the problem instance Ψ of the (n,m)-CDHER problem. Then, B runs A
on input 1κ and is given 1` and the messages x ∈ {0, 1}` from A. The reduction algorithm B runs y← EncInp(x),
samples ũ← Zp and computes gu as

gu := gũ ·
∏
i∈[n]

(
ga

m+1/bici

)yi

.

It then sets the verification key vk as Eq. (1) using the terms in the problem instance where gu is set as above. Finally, it
gives vk to A. It is easy to see that the distribution of vk is the same as that of the real game. Note that the signing key
sk is implicitly set as (a, u = ũ+

∑
i∈[n] yi · am+1/bici, {bi, ci}i∈[n]).

Signing Query: The reduction algorithm B simply returns ũ as the signature σ ∈ ΣFresh. Since the signature is unique
once (vk, sk,x) are fixed, the signature is distributed as in the real game.

Forgery: At some point, A outputs (C?, z?, σ?) as the forgery. B aborts and outputs ⊥ if A did not win the game.
Otherwise, B parses the signature as σ? = (K?

1 ,K
?
2 ,K

?
3 , z

?), constructs the circuit C̃?z? ∈ C̃NC
1 , and computes

M? ← EncCir(C̃?z?). Since the signature passes the verification, there exists r? ∈ Zp and (K?
1 ,K

?
2 ,K

?
3 ) that satisfies

K?
1 := gr

?

, K?
2 := ga

m+1
· (ga)r

?

, K?
3 :=

gu · ∏
i∈[n],j∈[m]

(
ga

j/bi

)M?
i,j

r?

, (6)

whereM?
i,j is the (i, j)-th entry of M?.

We then extract the answer for the CDHER problem from the forgery. Let us define I := {i ∈ [n] : yi = 0}. We
first observe that we can compute (gu)sbi for i ∈ I because we have

(gu)sbi =

gũ · ∏
i′∈[n]

(
ga

m+1/bi′ci′
)yi′

sbi

=
(
gsbi

)ũ · ∏
i′∈[n]\{i}

(
gsa

m+1bi/bi′ci′
)yi′

,

where the second equality above follows from yi = 0. We then define

s?i :=
∑
j∈[m]

M?
i,jsa

j−1

for j ∈ [m]. We then define Gi for i ∈ [n] as follows:

Gi := (ga)−s
?
i ·

gu · ∏
i′∈[n],j∈[m]

(
ga

j/bi′
)M?

i′,j

sbi

=
∏
j∈[m]

(
gsa

j
)−M?

i,j

· (gu)sbi ·
∏

i′∈[n],j∈[m]

(
gsa

jbi/bi′
)M?

i′,j

= (gu)sbi ·
∏

i′∈[n]\{i},j∈[m]

(
gsa

jbi/bi′
)M?

i′,j
,

where the terms {gsaj} all cancel out in the third equality. We can observe that Gi for i ∈ I can be efficiently computed
as a linear combination of the terms in the problem instance of the CDHER. We therefore can compute

e(K?
1 , Gi) · e(K?

3 , g
sbi)−1 = e(g, g)−r

?as?
i

39



for i ∈ I . Next, since A outputs a valid forgery, we must have C?(x) 6= z?. Specifically, we have C̃?z?(x) = 0. By
Lemma 4.5, this implies that y satisfies the span program M?. Hence, by Definition 4.3, there exists an efficiently
computable coefficients {w?i }i∈I such that

∑
i∈I w

?
i M?

i = 1. We observe that

∑
i∈I

w?i s
?
i =

∑
i∈I

w?i

∑
j∈[m]

M?
i,jsa

j−1

 =
(∑
i∈I

w?i M?
i

)
· (s, sa, . . . , sam−1)> = s

holds for such {w?i }i∈I . B then computes

e(K?
2 , g

s) ·
∏
i∈I

(
e(g, g)−r

?as?
i

)w?
i

= e(g, g)sa
m+1
· e(g, g)sar

?

· e(g, g)−r
?a
∑

i∈I
w?

i s
?
i = e(g, g)sa

m+1
,

where gs is taken from the problem instance. Finally, B outputs e(g, g)sam+1 as the answer to the (n,m)-CDHER
problem.

Remark 4.8. We can extend the scheme to the multi-data setting that satisfies online-offline verification efficiency. This
is based on the observation that it is possible to prove a slightly stronger security notion than selective unforgeability
where the adversary can choose x after seeing vk except for gu. In more details, we consider a security notion where the
setup phase of the selective unforgeability game is changed as follows:

Setup: At the beginning of the game, the adversary A is given 1κ as input and sends 1` to the challenger. Then the
challenger generates a signing-verification key pair (vk, sk) ← HA.KeyGen(1κ, 1`) and gives vk\{gu} to A.
Here, vk\{gu} denotes all group elements in vk except for gu. Then, A submits x to the challenger. Then, the
challenger gives gu to A.

We call this stronger security notion partially adaptive unforgeability. We can see that the above security proof works in
the partially adaptive unforgeability setting without any change because only gu in vk is dependent on the value of x in
the simulation. This observation will be useful when we extend our scheme to the multi-data setting with online-offline
efficiency. See Appendix D for the details.

4.3 Compact DP-NIZK
Using the transformation by Kim and Wu [KW18a] (which is described in Appendix C.2) with our HomSig from the
CDHER assumption, we obtain a DP-NIZK with a compact proof size from the same assumption. Here, we need to
assume the CDH assumption in a subgroup of Z∗p for a prime p so that we have an NC1 decryptable SKE scheme with
additive ciphertext overhead, which is needed as a building block of the transformation. (See Appendix C.2 for details.)

Theorem 4.9. If the CDHER assumption holds on a pairing group and the CDH assumption holds on a subgroup of Z∗p
for a prime p, then there exists DP-NIZK for all NP languages with proof size |C|+ poly(κ), where |C| denotes the size
of the circuit that computes the relation being proved.

Remark 4.10. Though the CDHER assumption implies the CDH assumption in a pairing group, it is not clear if we can
construct an SKE scheme with required properties in a pairing group. In more detail, for constructing such an SKE
scheme, we need to assume the CDH assumption in a group in which a multiple product can be computed in NC1. (See
the last paragraph of Appendix C.2 for details.) While that is known to be possible in a subgroup of Z∗p [BCH86], we
are unaware of a similar result for a pairing group. Thus, we assume the CDH assumption in a subgroup of Z∗p as an
additional assumption.

As far as we know, this is the first DP-NIZK scheme with short proofs without assuming the LWE assumption,
fully-homomorphic encryption, indistinguishability obfuscation, or non-falsifiable assumptions. Furthermore, if the
proven NP relation can be expressed as a leveled circuit, we can reduce the proof size to |w|+ |C|/ log κ+ poly(κ),
where |w| is the length of the witness of the proven relation and a leveled circuit refers to a circuit whose gates can be
divided into layers and only gates from the consecutive layers are connected by wires. See Appendix C.4 for the details.
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5 HomMAC from Inner Product Functional Encryption
In this section, we give a construction of HomMAC based on a variant of functional encryption for inner-products
(IPFE) which we call a functional encryption for inner-product on exponent (expIPFE). Namely, we show that an
expIPFE scheme that satisfies a property called extractability suffices for constructing statistically unforgeable and
computationally context-hiding HomMAC.We also show that such an expIPFE scheme exists under the DDH assumption.
As a result, we obtain a statistically unforgeable and computationally context-hiding HomMAC based on the DDH
assumption, which yields statistically sound and computationally (non-programmable CRS) zero-knowledge PP-NIZK
based on the DDH assumption (over pairing-free groups).

5.1 Functional Encryption for Inner-Product on Exponent
Here, we define functional encryption for inner-product on exponent (expIPFE). In expIPFE, a ciphertext and a secret
key are associated with a vector x ∈ Z`p and y ∈ Z`p respectively, and if we decrypt the ciphertext with the secret key,
then the decryption results in g〈x,y〉. The formal definition of expIPFEscheme ΠIPFE is given as follows.

Setup(1κ, 1`)→ (msk, pp): The setup algorithm takes as inputs the security parameter 1κ and the dimension 1`, and
outputs a public parameter pp and a master secret key msk. The public parameter pp specifies an underlying
group G of order p and its generator g.

KeyGen(msk,y)→ sk: The key generation algorithm takes as inputs a master secret key msk and a vector y =
(y1, ..., y`) ∈ Z`p, and outputs a secret key sk. Without loss of generality, we assume that sk always contains y.

Enc(pp,x)→ ct: The encryption algorithm takes as inputs a public parameter pp and a vector x = (x1, ..., x`) ∈ Z`p ,
and outputs a ciphertext ct.

Dec(pp, sk, ct)→ d: The decryption algorithm takes as inputs a public parameter pp, a secret key sk, and a ciphertext
ct, and outputs a group element d ∈ G.

Correctness. For all κ, n ∈ N, (pp,msk) ∈ Setup(1κ, 1`), vectors x ∈ Z`p and y ∈ Z`p, secret keys sk ∈
KeyGen(msk,y), and ciphertexts ct ∈ Enc(pp,x), we have

Dec(pp, ct, sk) = g〈x,y〉.

Security. For an adversary A, we consider the following experiment between a challenger and an adversary A.

1. A is given 1κ and outputs 1`.

2. The challenger generates (pp,msk) $← Setup(1κ, 1`). Let G and g be a group of order p and its generator
specified by pp, respectively.

3. A is given pp. It is allowed to make arbitrary number of key generation queries. When it makes a key query y, the
challenger generates sk $← KeyGen(msk,y) and returns sk to A. At some point, A output vectors x(0) and x(1).

4. The challenger randomly picks coin $← {0, 1}, generates ct $← Enc(pp,x(coin)).

5. A is given ct, and allowed to make arbitrary number of key generation queries again. Finally, A outputs coin′.
We say that A wins if coin′ = coin.

We say that A is adaptively admissible if for all key queries y made by A1 or A2 and vectors x(0) and x(1) output by
A1, we have 〈x(0),y〉 = 〈x(1),y〉. We say that ΠIPFE is adaptively secure if for all adaptively admissible adversariesA,
the probability |Pr[A wins]− 1/2| is negligible. We say that ΠIPFE is adaptively one-key secure if for all adaptively
admissible adversaries A that makes at most one key query, the probability |Pr[A wins]− 1/2| is negligible.
Extractability.We define an additional property called the extractability. Roughly speaking, extractability requires that
any (possibly maliciously generated) ciphertext corresponds to a unique message that is consistent to the decryption
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result by an honestly generated secret key. More formally, the definition is stated as follows. We say that ΠIPFE is
extractable if there exists possibly unbounded time extractor Ext such that for all κ, ` ∈ N, (pp,msk) ∈ Setup(1κ),
vectors y ∈ Z`p, secret keys sk ∈ KeyGen(msk,y), and ciphertexts ct, if Dec(ct, sk) 6= ⊥, then Ext(msk, ct) outputs
some vector x ∈ Z`p such that Dec(ct, sk) = g〈x,y〉 with probability 1.

Remark 5.1. Extractability can be seen as a weaker form of verifiability for FE proposed by Badrinarayanan et al.
[BGJS16], which requires that we can publicly verify that a ciphertext is honestly generated. However, their construction
of verifiable FE requires non-interactive witness indistinguishable proofs (NIWI), and not meaningful for our purpose to
construct PP-NIZK.

The following theorem addresses the existence of expIPFE with extractability.

Theorem 5.2. There exists an adaptively secure extractable expIPFE under the DDH assumption.

The proof will appear in Appendix B, where we show that the IPFE proposed by Agrawal et al. [ALS16] satisfies the
required properties.

5.2 HomMAC from expIPFE
We give a construction of context-hiding HomMAC based on an expIPFE scheme. Before describing the scheme, we
prepare a simple lemma.

Lemma5.3. There exists a deterministic polynomial-time algorithmCoefficient that satisfies the following: for any p ∈ N,
arithmetic circuit f over Zp of degreeD, x = (x1, ..., x`) ∈ Z`p and σ = (σ1, ..., σ`) ∈ Z`p, Coefficient(1D, p, f,x,σ)
outputs (c1, ..., cD) such that

f(σ1Z + x1, ..., σ`Z + x`) = f(x1, ..., x`) +
D∑
j=1

cjZ
j mod p. (7)

where Z is an indeterminate.

Proof. First, we can see that the constant term of f(σ1Z + x1, ..., σ`Z + x`) is f(x1, ..., x`) by substituting Z = 0.
The other coefficients (c1, ..., cD) can be computed by simply expanding f(σ1Z + x1, ..., σ`Z + x`). This can be done
in a polynomial time in D.

Let ΠIPFE = (IPFE.Setup, IPFE.KeyGen, IPFE.Enc, IPFE.Dec) be an expIPFE scheme. We construct a HomMAC
ΠHA = (HA.KeyGen,HA.Sign,HA.Eval,HA.VerifyFresh,HA.VerifyEvaled) for arithmetic circuits of degree at most
D = poly(κ) over a message space X = Zp as follows.11

HA.KeyGen(1κ, 1`): This algorithm runs (ppIPFE,mskIPFE) $← IPFE.Setup(1κ, 1D). Let (G, g, p) be a group, its
generator, and its order specified by ppIPFE. It picks (r1, ..., r`) ∈ Z`p and s $← Z∗p and generates skIPFE

$←
IPFE.KeyGen(mskIPFE, (s, ..., sD)). It outputs a verification key vk := (ppIPFE, skIPFE, s, (r1, ..., r`)), an
evaluation key ek := ppIPFE and a signing key sk = vk.

HA.Sign(sk,x = (x1, ..., x`)): This algorithm parses (ppIPFE, skIPFE, s, (r1, ..., r`)) ← sk, computes σi := (ri −
xi)s−1 mod p for i ∈ [`] and outputs σ = (σ1, ..., σ`).

HA.Eval(ek, f,x,σ): This algorithm parses ppIPFE ← ek, (x1, ..., x`) ← x and (σ1, ..., σ`) ← σ. It computes
(c1, ..., cD)← Coefficient(1D, p, f,x,σ) and ct $← IPFE.Enc(ppIPFE, (c1, ..., cD)), and outputs σ := ct.

HA.VerifyFresh(vk,x,σ): This algorithmparses (ppIPFE, skIPFE, s, (r1, ..., r`))← vk, (x1, ..., x`)← x, and (σ1, ..., σ`)←
σ. It outputs > if σi = (ri − xi)s−1 mod p for all i ∈ [`] and ⊥ otherwise.

11Strictly speaking, this does not match the definition of HomAuth schemes given in Section 2.3 since the circuit class and message space depend
on p, which is specified by the public parameter. We note that this difference does not affect for the application to PP-NIZK.
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HA.VerifyEvaled(vk, f, z, σ): This algorithm parses (ppIPFE, skIPFE, s, (r1, ..., r`)) ← vk, and ct ← σ. It computes
T

$← IPFE.Dec(ct, skIPFE). Then it outputs > if gf(r1,...,r`)−z = T and ⊥ otherwise.

Correctness. For any σ = (σ1, ..., σ`) generated by HA.Sign(sk,x = (x1, ..., x`)) we have ri = σis + xi
for i ∈ [`]. Then by Lemma 5.3 we have f(r1, ..., r`) = f(x1, .., x`) +

∑D
j=1 cjs

j mod p for (c1, ..., cD) ←
Coefficient(1D, p, f,x,σ). Since σ generated by HA.Eval(ek, f,x,σ) is an encryption of (c1, ..., cD) of ΠIPFE, by

the correctness of ΠIPFE, we have T = IPFE.Dec(σ, skIPFE) = g〈(c1,....,cD),(s,s2,...,sD)〉 = g

∑D

j=1
cjs

j

where skIPFE
$←

IPFE.KeyGen(mskIPFE, (s, s2, ..., sD)) as in the key generation algorithm. Since f(r1, ..., r`) = f(x1, .., x`) +∑D
j=1 cjs

j mod p, we have gf(r1,...,r`)−f(x1,..,x`) = T . Thus HA.VerifyEvaled(vk, f, f(x1, ..., x`), σ) returns >.

Security. The following theorems address the security of above scheme.

Theorem 5.4. Our construction satisfies statistical (single-shot) adaptive-unforgeability assuming that ΠIPFE is
extractable.

Theorem 5.5. Our construction is computationally context-hiding assuming that ΠIPFE is adaptively one-key secure.

Proof of Theorem 5.4

Proof. The proof is similar to the security proof of the HomMAC based on PRFs proposed by Catalano and Fiore
[CF18] except that we use an extractor of ΠIPFE. Suppose that there exists an adversary A that breaks the unforgeability
of ΠHA. First, we remark that we can assume that A does not make a verification query for fresh signatures without loss
of generality. This is because if A can generate a fresh signature that is not given by the challenger and accepted by
HA.VerifyFresh, it can also forge an evaluated signature just by evaluating the fresh signature by a projection function.
Therefore we can simulate HA.VerifyFresh by simply returning ⊥ for all queries except for the signature given by the
challenger. Thus we only consider an adversary A that only makes a verification query for evaluated signatures. Then
we consider the following sequence of games between A and a challenger.

Game0: This game is the original experiment that defines the unforgeability. Specifically, the game is described as
follows.

1. A is given 1κ and outputs 1`.

2. The challenger generates (ppIPFE,mskIPFE) $← IPFE.Setup(1κ, 1D), picks (r1, ..., r`)
$← Z`p and s

$← Z∗p
, generates skIPFE

$← IPFE.KeyGen(mskIPFE, (s, ..., sD)), and sets vk := (ppIPFE, skIPFE, s, (r1, ..., r`)),
ek := ppIPFE and sk := vk.

3. A is given ek and outputs x = (x1, ..., x`).
4. The challenger computes σi := (ri − xi)s−1 mod p for i ∈ [`].
5. A is given σ = (σ1, .., σ`), and allowed to make arbitrary number of verification queries for evaluated

signatures. When A queries (f, z, ct), the challenger returns HA.VerifyEvaled(vk, f, z, ct). That is, it
computes T := IPFE.Dec(ct, skIPFE), and returns > iff gf(r1,...,r`)−z = T holds.

6. Finally,A outputs (f∗, z∗, ct∗). We say thatAwins if z∗ 6= f∗(x1, ..., x`) andHA.VerifyEvaled(vk, f∗, z∗, ct∗) =
>.

Game1: This game is the same as the previous game except that the verification oracle HA.VerifyEvaled(vk, ·, ·, ·) is
modified to the following alternative oracle denoted by HA.VerifyEvaled1. The oracle HA.VerifyEvaled1, given a
query (f, z, ct), first computes (c1, ..., cD) := Ext(mskIPFE, ct) and returns > iff f(r1, ..., r`) = z +

∑D
j=1 cis

i

mod p where Ext is the extractor for ΠIPFE. We note that the winning condition of A is also modified to use
HA.VerifyEvaled1 instead of HA.VerifyEvaled(vk, ·, ·, ·).
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Game2: This game is the same as the previous game except that the oracle HA.VerifyEvaled1 is replaced with
HA.VerifyEvaled2 described in the following. The oracle HA.VerifyEvaled2, given a query (f, z, ct), first
computes (c1, ..., cD) := Ext(mskIPFE, ct). It also computes (ĉ1, ..., ĉD) ← Coefficient(1D, p, f,x,σ). For
notational convenience, we let c0 := z and ĉ0 := f(x1, ..., x`). It returns > iff either of the following holds:

1. (c0, ..., cD) = (ĉ0, ..., ĉD).
2. (c0, ..., cD) 6= (ĉ0, ..., ĉD) and Z :=

∑D
j=0(cj − ĉj)sj mod p = 0.

We note that the winning condition of A is also modified to use HA.VerifyEvaled2 instead of HA.VerifyEvaled1.
Furthermore, observe that HA.VerifyEvaled2 can be simulated without using (r1, ..., r`).

Game3: This game is the same as the previous game except that σ1, ..., σ` are uniformly chosen from Zp instead
of setting as σi := (ri − xi)s−1 mod p for i ∈ [`]. We note that this game still uses HA.VerifyEvaled2 as a
verification oracle. We also note that (r1, ..., r`) is not used at all in this game.

Game4: This game is the same as the previous game except that the oracle HA.VerifyEvaled2 is replaced with
an alternative oracle HA.VerifyEvaled4 described below. The oracle HA.VerifyEvaled4 works similarly to
HA.VerifyEvaled2 described in Game2 except that we only use the first condition to reply > described in
Game2. More precisely, The oracle HA.VerifyEvaled4, given a query (f, z, ct), first computes (c1, ..., cD) :=
Ext(mskIPFE, ct). It also computes (ĉ1, ..., ĉD)← Coefficient(1D, p, f,x,σ). For notational convenience, we
let c0 := z and ĉ0 := f(x1, ..., x`). It returns > iff (c0, ..., cD) = (ĉ0, ..., ĉD).

This completes the description of games. We denote the event that A wins in Gamek by Tk for k = 0, ..., 4. We prove
the following lemmas.

Lemma 5.6. Pr[T0] = Pr[T1].

Proof. By extractability, we have g〈(c1,...,cD),(s,....,sD)〉 = T . Therefore checking the conditions gf(r1,...,r`)−z = T and
f(r1, ..., r`) = z +

∑D
j=1 cis

i mod p are equivalent.

Lemma 5.7. Pr[T1] = Pr[T2].

Proof. By correctness ofΠHA, we have f(r1, ..., r`) =
∑D
j=0 ĉis

i mod p. (Recall that we defined ĉ0 := f(x1, ..., x`).)
Therefore checking the conditions f(r1, ..., r`) =

∑D
j=0 cis

i mod p (where c0 := z) and Z :=
∑D
j=0(cj − ĉj)sj

mod p = 0 are equivalent. Especially, when we have (c0, ..., cD) = (ĉ0, ..., ĉD), this is always satisfied.

Lemma 5.8. Pr[T2] = Pr[T3].

Proof. Since we set σi = (ri − xi)s−1 mod p in Game2, and ri is generated randomly from Zp, the distribution of
σi is uniform on Zp. Moreover, in Game2, ri is only used for generating σi, and not used by HA.VerifyEvaled2 at all.
Thus σi is independent from s, and can be replaced with uniformly random value.

Lemma 5.9. |Pr[T3]− Pr[T4]| ≤ (Q+1)D
p−1 where Q denotes the number of verification queries.

Proof. Here, we regard the final output (f∗, x∗, ct∗) of A as the (Q + 1)-th query for notational convenience. We
consider hybrids Hk for k = 0, 1, ..., Q+ 1, which is the same as Game3 except that HA.VerifyEvaled4 is used until
A’s k-th query and HA.VerifyEvaled2 is used for the rest of the queries. Let T′k be the event that A wins in Hk. It is
clear that H0 is Game3 and HQ+1 is Game4. Thus what we have to prove is that we have |Pr[T′k]− Pr[T′k+1]| ≤ D

p−1
for k = 0, ..., Q. Let Badk be the event that A’s k-th query causes the difference between Game3 and Game4, i.e.,
(c0, ..., cD) 6= (ĉ0, ..., ĉD) and Z =

∑D
j=0(cj − ĉj)sj mod p = 0. Since Hk and Hk+1 are completely the same games

as long as Badk+1 does not occur, we have |Pr[T′k] − Pr[T′k+1]| ≤ Pr[Badk+1]. If (c0, ..., cD) 6= (ĉ0, ..., ĉD), then∑D
j=0(cj − ĉj)sj is a non-zero polynomial in s of degree at most D, and have at most D roots. Moreover, in Hk and

Hk+1, no information of s is used before A makes its k + 1-th query since s is not used for generating σi due to the
modification made in Game3, and HA.VerifyEvaled4 does not use s at all. This means that s is uniformly distributed on
Z∗p from the view of A. Therefore regardless of A’s k-th query, the probability that

∑D
j=0(cj − ĉj)sj = 0 is at most

D
p−1 .
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Lemma 5.10. Pr[T4] = 0.

Proof. Since HA.VerifyEvaled4 returns ⊥ if z 6= f(x1, ..., x`), it is impossible to win this game.

Combining the above lemmas, we have Pr[T0] ≤ (Q+1)D
p−1 and thus ΠHA is statistically unforgeable.

Proof of Theorem 5.5

Proof. First, we describe the simulator HA.Sim.

HA.Sim(vk, ek, sk, f, z): On input vk, ek, sk, f , x, the simulator parses (ppIPFE, skIPFE, s, (r1, ..., r`))← vk. Then it
sets a vector (ĉ1, ..., ĉ`) := ((f(r1, ..., r`)−z)s−1 mod p, 0, ..., 0). It computes ct $← IPFE.Enc(ppIPFE, (ĉ1, ..., ĉ`))
and outputs ct.

Suppose that there exists an adversary A that breaks context-hiding of ΠHA w.r.t. the simulator HA.Sim. We
construct an adversary B that breaks the adaptive security of ΠIPFE with dimensionD based onA. The description of B
is as follows.
B is given 1κ and queries the vector dimension 1D. Then given a public parameter ppIPFE, it gives 1κ toA to obtain

message length 1`, picks (r1, ..., r`)
$← Z`p and s

$← Zp, and queries (s, s2, ...., sD) to the key generation oracle to obtain
skIPFE. Then it sets vk := (ppIPFE, skIPFE, s, (r1, ..., r`)), ek := ppIPFE and sk := vk. Then it gives (vk, ek, sk) toA, and
Amakes a signing query (f,x,σ). It returns⊥ ifHA.VerifyFresh(vk,x,σ) = ⊥. Otherwise, it computes (c1, ..., cD)←
Coefficient(1D, p, f,x,σ). It also computes (ĉ1, ..., ĉD) := ((f(r1, ..., r`)−f(x1, ..., x`))s−1 mod p, 0, ..., 0). Then
it queries (c1, ..., cD) and (ĉ1, ..., ĉD) as its challenge messages. Given a challenge ciphertext ct, it gives ct to A as an
evaluated signature. Finally, B outputs as A outputs.

The above completes the description ofB. First, we can see thatB is admissible because 〈(ĉ1, ..., ĉn), (s, s2, ..., sD)〉 =
f(r1, ..., r`) − f(x1, ..., x`) = 〈(c1, ..., cn), (s, s2, ..., sD)〉 where the first equality follows from (ĉ1, ..., ĉn) =
((f(r1, ..., r`) − f(x1, ..., x`))s−1 mod p, 0, ..., 0) and the second equality follows from the correctness of ΠHA.
It is easy to see that ct is generated by HA.Eval(ekIPFE,x,σ) or HA.Sim(vk, ek, sk, f, f(x1, ..., x`)) depending on
the coin chosen by the challenger of the adaptive security game of ΠIPFE B is involved. Therefore if A breaks the
context-hiding of ΠHA w.r.t. HA.Sim, then B breaks the adaptive security of ΠIPFE.

By combining the above theorems with Theorem 5.2, we have the following corollary.

Corollary 5.11. If the DDHassumption holds, then there exists a HomMAC for polynomially bounded degree polynomials
over Zp with statistical unforgeability and computational context-hiding.

Remark 5.12. (Garbled-circuit-based FE do not suffice.) The proof of context-hiding only use one-key security of the
underlying expIPFE. Then one may think that we can use one-key functional encryption schemes based on garbled
circuits [SS10, GVW12] to construct context-hiding HomMAC. However, this is not the case since they do not have
extractability, and thus we cannot prove unforgeability. Indeed, it is easy to break the unforgeability if we instantiate the
above HomMAC based on those functional encryption schemes.

5.3 Compact PP-NIZK
Using the transformation by Kim and Wu [KW18a] (which is described in Appendix C.2) to our HomMAC from the
DDH, we obtain PP-NIZK from the same assumption. Here, we need to assume the CDH assumption in a subgroup of
Z∗p for a prime p so that we have an NC1 decryptable SKE scheme with additive ciphertext overhead, which is needed as
a building block of the transformation. (See Appendix C.2 for details.) Since our HomMAC is not compact, a simple
adaptation of their transformation yields PP-NIZK with proof size O(|C|κ) + poly(κ). However, by taking advantage
of the fact our scheme can deal with arithmetic circuits over Zp of polynomial degree, which is larger than NC1, and
incorporating the technique by Katsumata [Kat17], we can reduce the proof size to |C|+ poly(κ). See Appendix C.3
for details. Then we obtain the following theorem.

Theorem 5.13. If the DDH assumption holds in a subgroup of Z∗p for a prime p, then there exists PP-NIZK for all NP
languages with proof size |C|+ poly(κ), where |C| denotes the size of circuit that computes the relation being proved.
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Remark 5.14. Actually, we only need to assume the DDH assumption in any pairing-free group and the CDH assumption
in a subgroup of Z∗p since our HomMAC can be instantiated in any pairing-free group. We just assume the DDH
assumption in a subgroup of Z∗p for simplicity.

Similarly to the case in Section 4, if the proven NP relation can be expressed as a leveled circuit, we can further
reduce the proof size to |w|+ |C|/ log κ+ poly(κ). See Appendix C.4 for the details.

Acknowledgement
We would like to thank Geoffroy Couteau for helpful comments on related works and anonymous reviewers of Eurocrypt
2019 for their valuable comments. The first author was partially supported by JST CREST Grant Number JPMJCR1302
and JSPS KAKENHI Grant Number 17J05603. The third author was supported by JST CREST Grant No. JPMJCR1688
and JSPS KAKENHI Grant Number 16K16068.

References
[AB09] Shweta Agrawal and Dan Boneh. Homomorphic MACs: MAC-based integrity for network coding. In

Michel Abdalla, David Pointcheval, Pierre-Alain Fouque, and Damien Vergnaud, editors, ACNS 09,
volume 5536 of LNCS, pages 292–305. Springer, Heidelberg, June 2009. (Cited on page 9.)

[ABC+07] Giuseppe Ateniese, Randal C. Burns, Reza Curtmola, Joseph Herring, Lea Kissner, Zachary N. J. Peterson,
and Dawn Song. Provable data possession at untrusted stores. In Peng Ning, Sabrina De Capitani di
Vimercati, and Paul F. Syverson, editors, ACM CCS 2007, pages 598–609. ACM Press, October 2007.
(Cited on page 9.)

[Abu13] Hamza Abusalah. Generic instantiations of the hidden bits model for non-interactive zero-knowledge
proofs for NP, 2013. Master’s thesis, RWTH-Aachen University. (Cited on page 3, 4, 5.)

[AC16] Shashank Agrawal and Melissa Chase. A study of pair encodings: Predicate encryption in prime order
groups. In Eyal Kushilevitz and Tal Malkin, editors, TCC 2016-A, Part II, volume 9563 of LNCS, pages
259–288. Springer, Heidelberg, January 2016. (Cited on page 7.)

[AC17] Shashank Agrawal and Melissa Chase. Simplifying design and analysis of complex predicate encryption
schemes. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part I, volume
10210 of LNCS, pages 627–656. Springer, Heidelberg, April / May 2017. (Cited on page 7.)

[AHY15] Nuttapong Attrapadung, Goichiro Hanaoka, and Shota Yamada. Conversions among several classes of
predicate encryption and applications to ABE with various compactness tradeoffs. In Tetsu Iwata and
Jung Hee Cheon, editors, ASIACRYPT 2015, Part I, volume 9452 of LNCS, pages 575–601. Springer,
Heidelberg, November / December 2015. (Cited on page 7, 10.)

[AL11] Nuttapong Attrapadung and Benoît Libert. Homomorphic network coding signatures in the standard
model. In Dario Catalano, Nelly Fazio, Rosario Gennaro, and Antonio Nicolosi, editors, PKC 2011,
volume 6571 of LNCS, pages 17–34. Springer, Heidelberg, March 2011. (Cited on page 9.)

[ALS16] Shweta Agrawal, Benoît Libert, and Damien Stehlé. Fully secure functional encryption for inner products,
from standard assumptions. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part III,
volume 9816 of LNCS, pages 333–362. Springer, Heidelberg, August 2016. (Cited on page 8, 42, 61.)

[BB08] Dan Boneh and Xavier Boyen. Short signatures without random oracles and the SDH assumption in
bilinear groups. Journal of Cryptology, 21(2):149–177, April 2008. (Cited on page 3.)

[BCGI18] Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval Ishai. Compressing vector OLE. In David Lie,
Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors, ACM CCS 2018, pages 896–912.
ACM Press, October 2018. (Cited on page 9.)

46



[BCH86] Paul W Beame, Stephen A Cook, and H James Hoover. Log depth circuits for division and related
problems. SIAM Journal on Computing, 15(4):994–1003, 1986. (Cited on page 40, 65.)

[BF11a] Dan Boneh and DavidMandell Freeman. Homomorphic signatures for polynomial functions. In Kenneth G.
Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 149–168. Springer, Heidelberg, May
2011. (Cited on page 9.)

[BF11b] Dan Boneh and David Mandell Freeman. Linearly homomorphic signatures over binary fields and new
tools for lattice-based signatures. In Dario Catalano, Nelly Fazio, Rosario Gennaro, and Antonio Nicolosi,
editors, PKC 2011, volume 6571 of LNCS, pages 1–16. Springer, Heidelberg, March 2011. (Cited on
page 9.)

[BFKW09] Dan Boneh, David Freeman, Jonathan Katz, and Brent Waters. Signing a linear subspace: Signature
schemes for network coding. In Stanislaw Jarecki and Gene Tsudik, editors, PKC 2009, volume 5443 of
LNCS, pages 68–87. Springer, Heidelberg, March 2009. (Cited on page 9.)

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its applications
(extended abstract). In 20th ACM STOC, pages 103–112. ACM Press, May 1988. (Cited on page 2.)

[BFR13] Michael Backes, Dario Fiore, and Raphael M. Reischuk. Verifiable delegation of computation on
outsourced data. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS 2013,
pages 863–874. ACM Press, November 2013. (Cited on page 68.)

[BGG+14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko, Gil Segev, Vinod
Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-homomorphic encryption, arithmetic circuit
ABE and compact garbled circuits. In Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014,
volume 8441 of LNCS, pages 533–556. Springer, Heidelberg, May 2014. (Cited on page 7, 10.)

[BGI16] Elette Boyle, Niv Gilboa, and Yuval Ishai. Breaking the circuit size barrier for secure computation under
DDH. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part I, volume 9814 of LNCS,
pages 509–539. Springer, Heidelberg, August 2016. (Cited on page 4, 8, 9, 66.)

[BGJS16] Saikrishna Badrinarayanan, Vipul Goyal, Aayush Jain, and Amit Sahai. Verifiable functional encryption.
In Jung Hee Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part II, volume 10032 of LNCS,
pages 557–587. Springer, Heidelberg, December 2016. (Cited on page 42.)

[BMW03] Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. Foundations of group signatures: Formal
definitions, simplified requirements, and a construction based on general assumptions. In Eli Biham,
editor, EUROCRYPT 2003, volume 2656 of LNCS, pages 614–629. Springer, Heidelberg, May 2003.
(Cited on page 2, 3.)

[BP15] Nir Bitansky and Omer Paneth. ZAPs and non-interactive witness indistinguishability from indistinguisha-
bility obfuscation. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015, Part II, volume 9015
of LNCS, pages 401–427. Springer, Heidelberg, March 2015. (Cited on page 2.)

[BPW16] Nir Bitansky, Omer Paneth, andDanielWichs. Perfect structure on the edge of chaos - trapdoor permutations
from indistinguishability obfuscation. In Eyal Kushilevitz and Tal Malkin, editors, TCC 2016-A, Part I,
volume 9562 of LNCS, pages 474–502. Springer, Heidelberg, January 2016. (Cited on page 2.)

[BY96] Mihir Bellare and Moti Yung. Certifying permutations: Noninteractive zero-knowledge based on any
trapdoor permutation. Journal of Cryptology, 9(3):149–166, June 1996. (Cited on page 2.)

[CC18] Pyrros Chaidos and Geoffroy Couteau. Efficient designated-verifier non-interactive zero-knowledge proofs
of knowledge. In Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part III, volume
10822 of LNCS, pages 193–221. Springer, Heidelberg, April / May 2018. (Cited on page 2, 9.)

47



[CCH+19] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum, Ron D. Rothblum, and
Daniel Wichs. Fiat-Shamir: from practice to theory. In Moses Charikar and Edith Cohen, editors, 51st
ACM STOC, pages 1082–1090. ACM Press, June 2019. (Cited on page 9.)

[CCRR18] Ran Canetti, Yilei Chen, Leonid Reyzin, and Ron D. Rothblum. Fiat-Shamir and correlation intractability
from strong KDM-secure encryption. In Jesper Buus Nielsen and Vincent Rijmen, editors, EURO-
CRYPT 2018, Part I, volume 10820 of LNCS, pages 91–122. Springer, Heidelberg, April / May 2018.
(Cited on page 9.)

[CD04] RonaldCramer and IvanDamgård. Secret-key zero-knowlegde and non-interactive verifiable exponentiation.
In Moni Naor, editor, TCC 2004, volume 2951 of LNCS, pages 223–237. Springer, Heidelberg, February
2004. (Cited on page 3, 9, 12.)

[CDI+18] Melissa Chase, Yevgeniy Dodis, Yuval Ishai, Daniel Kraschewski, Tianren Liu, Rafail Ostrovsky, and
Vinod Vaikuntanathan. Reusable non-interactive secure computation. Cryptology ePrint Archive, Report
2018/940, 2018. https://eprint.iacr.org/2018/940. (Cited on page 2, 9.)

[CF18] Dario Catalano and Dario Fiore. Practical homomorphic message authenticators for arithmetic circuits.
Journal of Cryptology, 31(1):23–59, January 2018. (Cited on page 3, 4, 7, 9, 16, 43, 67.)

[CFGN96] Ran Canetti, Uriel Feige, Oded Goldreich, and Moni Naor. Adaptively secure multi-party computation. In
28th ACM STOC, pages 639–648. ACM Press, May 1996. (Cited on page 6.)

[CFGN14] Dario Catalano, Dario Fiore, Rosario Gennaro, and Luca Nizzardo. Generalizing homomorphic MACs
for arithmetic circuits. In Hugo Krawczyk, editor, PKC 2014, volume 8383 of LNCS, pages 538–555.
Springer, Heidelberg, March 2014. (Cited on page 16.)

[CFN90] David Chaum, Amos Fiat, and Moni Naor. Untraceable electronic cash. In Shafi Goldwasser, editor,
CRYPTO’88, volume 403 of LNCS, pages 319–327. Springer, Heidelberg, August 1990. (Cited on page 3.)

[CFN15] Dario Catalano, Dario Fiore, and Luca Nizzardo. Programmable hash functions go private: Constructions
and applications to (homomorphic) signatures with shorter public keys. In Rosario Gennaro and Matthew
J. B. Robshaw, editors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages 254–274. Springer, Heidelberg,
August 2015. (Cited on page 9.)

[CFN18] Dario Catalano, Dario Fiore, and Luca Nizzardo. On the security notions for homomorphic signatures.
In Bart Preneel and Frederik Vercauteren, editors, ACNS 18, volume 10892 of LNCS, pages 183–201.
Springer, Heidelberg, July 2018. (Cited on page 15.)

[CFW12] Dario Catalano, Dario Fiore, and Bogdan Warinschi. Efficient network coding signatures in the standard
model. In Marc Fischlin, Johannes Buchmann, and Mark Manulis, editors, PKC 2012, volume 7293 of
LNCS, pages 680–696. Springer, Heidelberg, May 2012. (Cited on page 9.)

[CG15] Pyrros Chaidos and Jens Groth. Making sigma-protocols non-interactive without random oracles.
In Jonathan Katz, editor, PKC 2015, volume 9020 of LNCS, pages 650–670. Springer, Heidelberg,
March / April 2015. (Cited on page 2, 9.)

[CH19] Geoffroy Couteau and Dennis Hofheinz. Designated-verifier pseudorandom generators, and their
applications. In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part II, volume 11477 of
LNCS, pages 562–592. Springer, Heidelberg, May 2019. (Cited on page 10.)

[Cha85] David Chaum. Security without identification: Transaction systems to make big brother obsolete. Commun.
ACM, 28(10):1030–1044, 1985. (Cited on page 2, 3.)

[CHK07] Ran Canetti, Shai Halevi, and Jonathan Katz. A forward-secure public-key encryption scheme. Journal of
Cryptology, 20(3):265–294, July 2007. (Cited on page 3, 4, 5.)

48

https://eprint.iacr.org/2018/940


[CHL05] Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. Compact e-cash. In Ronald Cramer, editor,
EUROCRYPT 2005, volume 3494 of LNCS, pages 302–321. Springer, Heidelberg, May 2005. (Cited on
page 3.)

[CKS09] David Cash, Eike Kiltz, and Victor Shoup. The twin Diffie-Hellman problem and applications. Journal of
Cryptology, 22(4):470–504, October 2009. (Cited on page 6, 17.)

[CMP14] Dario Catalano, Antonio Marcedone, and Orazio Puglisi. Authenticating computation on groups: New
homomorphic primitives and applications. In Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014,
Part II, volume 8874 of LNCS, pages 193–212. Springer, Heidelberg, December 2014. (Cited on page 9.)

[Cv91] David Chaum and Eugène van Heyst. Group signatures. In Donald W. Davies, editor, EUROCRYPT’91,
volume 547 of LNCS, pages 257–265. Springer, Heidelberg, April 1991. (Cited on page 2, 3.)

[Dam90] Ivan Damgård. On the randomness of Legendre and Jacobi sequences. In Shafi Goldwasser, editor,
CRYPTO’88, volume 403 of LNCS, pages 163–172. Springer, Heidelberg, August 1990. (Cited on page 2,
3.)

[Dam93] Ivan Damgård. Non-interactive circuit based proofs and non-interactive perfect zero-knowledge with
proprocessing. In Rainer A. Rueppel, editor, EUROCRYPT’92, volume 658 of LNCS, pages 341–355.
Springer, Heidelberg, May 1993. (Cited on page 3, 9.)

[DDN00] Danny Dolev, Cynthia Dwork, and Moni Naor. Nonmalleable cryptography. SIAM J. Comput., 30(2):391–
437, 2000. (Cited on page 2.)

[Des93] Yvo Desmedt. Computer security by redefining what a computer is. In NSPW, pages 160–166. ACM,
1993. (Cited on page 9.)

[DFN06] Ivan Damgård, Nelly Fazio, and Antonio Nicolosi. Non-interactive zero-knowledge from homomorphic
encryption. In Shai Halevi and Tal Rabin, editors, TCC 2006, volume 3876 of LNCS, pages 41–59.
Springer, Heidelberg, March 2006. (Cited on page 2, 9, 12.)

[DMP90] Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. Non-interactive zero-knowledge with preprocess-
ing. In Shafi Goldwasser, editor, CRYPTO’88, volume 403 of LNCS, pages 269–282. Springer, Heidelberg,
August 1990. (Cited on page 3, 9.)

[DN07] Cynthia Dwork and Moni Naor. Zaps and their applications. SIAM J. Comput., 36(6):1513–1543, 2007.
(Cited on page 4, 5, 6, 18.)

[FLS99] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple noninteractive zero knowledge proofs under general
assumptions. SIAM J. Comput., 29(1):1–28, 1999. (Cited on page 2, 4, 5, 9, 12, 16, 18, 32.)

[Fre12] David Mandell Freeman. Improved security for linearly homomorphic signatures: A generic framework.
In Marc Fischlin, Johannes Buchmann, and Mark Manulis, editors, PKC 2012, volume 7293 of LNCS,
pages 697–714. Springer, Heidelberg, May 2012. (Cited on page 9, 15.)

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and signature
problems. In Andrew M. Odlyzko, editor, CRYPTO’86, volume 263 of LNCS, pages 186–194. Springer,
Heidelberg, August 1987. (Cited on page 2, 9.)

[GGH+16] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters. Candidate
indistinguishability obfuscation and functional encryption for all circuits. SIAM J. Comput., 45(3):882–929,
2016. (Cited on page 64.)

[GGI+15] Craig Gentry, Jens Groth, Yuval Ishai, Chris Peikert, Amit Sahai, and Adam D. Smith. Using fully
homomorphic hybrid encryption to minimize non-interative zero-knowledge proofs. Journal of Cryptology,
28(4):820–843, October 2015. (Cited on page 2, 4.)

49



[GKKR10] Rosario Gennaro, Jonathan Katz, Hugo Krawczyk, and Tal Rabin. Secure network coding over the integers.
In Phong Q. Nguyen and David Pointcheval, editors, PKC 2010, volume 6056 of LNCS, pages 142–160.
Springer, Heidelberg, May 2010. (Cited on page 9.)

[GL89] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way functions. In 21st ACM
STOC, pages 25–32. ACM Press, May 1989. (Cited on page 16.)

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive proof
systems. SIAM J. Comput., 18(1):186–208, 1989. (Cited on page 2.)

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A completeness
theorem for protocols with honest majority. In Alfred Aho, editor, 19th ACM STOC, pages 218–229. ACM
Press, May 1987. (Cited on page 2, 3.)

[GO94] Oded Goldreich and Yair Oren. Definitions and properties of zero-knowledge proof systems. Journal of
Cryptology, 7(1):1–32, December 1994. (Cited on page 2.)

[Gol04] Oded Goldreich. Foundations of cryptography: Volume 2, basic applications. 2004. (Cited on page 2, 4.)

[GOS12] Jens Groth, Rafail Ostrovsky, and Amit Sahai. New techniques for noninteractive zero-knowledge. J.
ACM, 59(3):11:1–11:35, 2012. (Cited on page 2, 3, 4.)

[GPSW06a] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for fine-grained
access control of encrypted data. In Ari Juels, Rebecca N. Wright, and Sabrina De Capitani di Vimercati,
editors, ACM CCS 2006, pages 89–98. ACM Press, October / November 2006. Available as Cryptology
ePrint Archive Report 2006/309. (Cited on page 7, 10.)

[GPSW06b] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for fine-
grained access control of encrypted data. IACR Cryptology ePrint Archive, 2006:309, 2006. Version
20061007:061901. (Cited on page 34.)

[Gro10] Jens Groth. Short pairing-based non-interactive zero-knowledge arguments. In Masayuki Abe, editor,
ASIACRYPT 2010, volume 6477 of LNCS, pages 321–340. Springer, Heidelberg, December 2010. (Cited
on page 2, 4.)

[GS12] Jens Groth and Amit Sahai. Efficient noninteractive proof systems for bilinear groups. SIAM J. Comput.,
41(5):1193–1232, 2012. (Cited on page 2.)

[GVW12] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption with bounded
collusions via multi-party computation. In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012,
volume 7417 of LNCS, pages 162–179. Springer, Heidelberg, August 2012. (Cited on page 8, 45.)

[GVW15a] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based encryption for circuits. J.
ACM, 62(6):45:1–45:33, 2015. (Cited on page 7.)

[GVW15b] Sergey Gorbunov, Vinod Vaikuntanathan, and Daniel Wichs. Leveled fully homomorphic signatures from
standard lattices. In Rocco A. Servedio and Ronitt Rubinfeld, editors, 47th ACM STOC, pages 469–477.
ACM Press, June 2015. (Cited on page 2, 9, 10, 15, 16, 67, 68.)

[GW13] Rosario Gennaro and Daniel Wichs. Fully homomorphic message authenticators. In Kazue Sako and
Palash Sarkar, editors, ASIACRYPT 2013, Part II, volume 8270 of LNCS, pages 301–320. Springer,
Heidelberg, December 2013. (Cited on page 9, 15, 16.)

[HL18] Justin Holmgren and Alex Lombardi. Cryptographic hashing from strong one-way functions (or: One-way
product functions and their applications). In Mikkel Thorup, editor, 59th FOCS, pages 850–858. IEEE
Computer Society Press, October 2018. (Cited on page 9.)

50



[IKOS09] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge proofs from secure
multiparty computation. SIAM J. Comput., 39(3):1121–1152, 2009. (Cited on page 3, 9.)

[JMSW02] Robert Johnson, David Molnar, Dawn Xiaodong Song, and David Wagner. Homomorphic signature
schemes. In Bart Preneel, editor, CT-RSA 2002, volume 2271 of LNCS, pages 244–262. Springer,
Heidelberg, February 2002. (Cited on page 9.)

[Kat17] Shuichi Katsumata. On the untapped potential of encoding predicates by arithmetic circuits and their
applications. In Tsuyoshi Takagi and Thomas Peyrin, editors, ASIACRYPT 2017, Part III, volume 10626
of LNCS, pages 95–125. Springer, Heidelberg, December 2017. (Cited on page 8, 45, 65.)

[KMO90] Joe Kilian, Silvio Micali, and Rafail Ostrovsky. Minimum resource zero-knowledge proofs (extended
abstract). In Gilles Brassard, editor, CRYPTO’89, volume 435 of LNCS, pages 545–546. Springer,
Heidelberg, August 1990. (Cited on page 3, 9.)

[KNYY19a] Shuichi Katsumata, Ryo Nishimaki, Shota Yamada, and Takashi Yamakawa. Designated verifier/prover
and preprocessing NIZKs from Diffie-Hellman assumptions. In Yuval Ishai and Vincent Rijmen, editors,
EUROCRYPT 2019, Part II, volume 11477 of LNCS, pages 622–651. Springer, Heidelberg, May 2019.
(Cited on page 1.)

[KNYY19b] Shuichi Katsumata, Ryo Nishimaki, Shota Yamada, and Takashi Yamakawa. Exploring constructions
of compact NIZKs from various assumptions. In Alexandra Boldyreva and Daniele Micciancio, editors,
CRYPTO 2019, Part III, volume 11694 of LNCS, pages 639–669. Springer, Heidelberg, August 2019.
(Cited on page 10.)

[KRR17] Yael Tauman Kalai, Guy N. Rothblum, and Ron D. Rothblum. From obfuscation to the security of
Fiat-Shamir for proofs. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part II, volume
10402 of LNCS, pages 224–251. Springer, Heidelberg, August 2017. (Cited on page 9.)

[KW18a] Sam Kim and David J. Wu. Multi-theorem preprocessing NIZKs from lattices. In Hovav Shacham and
Alexandra Boldyreva, editors, CRYPTO 2018, Part II, volume 10992 of LNCS, pages 733–765. Springer,
Heidelberg, August 2018. (Cited on page 2, 3, 4, 5, 6, 8, 9, 10, 12, 16, 33, 40, 45, 61, 64, 67.)

[KW18b] Sam Kim and David J Wu. Multi-theorem preprocessing nizks from lattices. Cryptology ePrint Archive,
Report 2018/272, 2018. https://eprint.iacr.org/2018/272.pdf, Version 20180606:204702.
Preliminary version appeared in CRYPTO 2018. (Cited on page 4, 12.)

[Lip17] Helger Lipmaa. Optimally sound sigma protocols under DCRA. In Aggelos Kiayias, editor, FC 2017,
volume 10322 of LNCS, pages 182–203. Springer, Heidelberg, April 2017. (Cited on page 2, 9.)

[LS91] Dror Lapidot and Adi Shamir. Publicly verifiable non-interactive zero-knowledge proofs. In Alfred J.
Menezes and Scott A. Vanstone, editors, CRYPTO’90, volume 537 of LNCS, pages 353–365. Springer,
Heidelberg, August 1991. (Cited on page 3, 9.)

[LW11] Allison B. Lewko and Brent Waters. Decentralizing attribute-based encryption. In Kenneth G. Paterson,
editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 568–588. Springer, Heidelberg, May 2011.
(Cited on page 34.)

[NP15] Mridul Nandi and Tapas Pandit. On the power of pair encodings: Frameworks for predicate cryptographic
primitives. Cryptology ePrint Archive, Report 2015/955, 2015. http://eprint.iacr.org/2015/955.
(Cited on page 10.)

[NPR99] Moni Naor, Benny Pinkas, and Omer Reingold. Distributed pseudo-random functions and KDCs. In
Jacques Stern, editor, EUROCRYPT’99, volume 1592 of LNCS, pages 327–346. Springer, Heidelberg,
May 1999. (Cited on page 65.)

51

https://eprint.iacr.org/2018/272.pdf
http://eprint.iacr.org/2015/955


[NR04] Moni Naor and Omer Reingold. Number-theoretic constructions of efficient pseudo-random functions. J.
ACM, 51(2):231–262, 2004. (Cited on page 65.)

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against chosen ciphertext attacks.
In 22nd ACM STOC, pages 427–437. ACM Press, May 1990. (Cited on page 2.)

[PS00] David Pointcheval and Jacques Stern. Security arguments for digital signatures and blind signatures.
Journal of Cryptology, 13(3):361–396, June 2000. (Cited on page 2.)

[PS19] Chris Peikert and Sina Shiehian. Noninteractive zero knowledge for NP from (plain) learning with errors.
In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part I, volume 11692 of LNCS,
pages 89–114. Springer, Heidelberg, August 2019. (Cited on page 9.)

[PsV06] Rafael Pass, abhi shelat, and Vinod Vaikuntanathan. Construction of a non-malleable encryption scheme
from any semantically secure one. In Cynthia Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages
271–289. Springer, Heidelberg, August 2006. (Cited on page 2, 9, 12.)

[QRW19] Willy Quach, Ron D. Rothblum, and Daniel Wichs. Reusable designated-verifier NIZKs for all NP from
CDH. In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part II, volume 11477 of LNCS,
pages 593–621. Springer, Heidelberg, May 2019. (Cited on page 10.)

[RSS19] Ron D. Rothblum, Adam Sealfon, and Katerina Sotiraki. Towards non-interactive zero-knowledge for NP
from LWE. In Dongdai Lin and Kazue Sako, editors, PKC 2019, Part II, volume 11443 of LNCS, pages
472–503. Springer, Heidelberg, April 2019. (Cited on page 2.)

[RST01] Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to leak a secret. In Colin Boyd, editor,
ASIACRYPT 2001, volume 2248 of LNCS, pages 552–565. Springer, Heidelberg, December 2001. (Cited
on page 2.)

[RW12] Yannis Rouselakis and Brent Waters. New constructions and proof methods for large universe attribute-
based encryption. IACR Cryptology ePrint Archive, 2012:583, 2012. Version 20140828:060226. (Cited
on page 34.)

[RW13] Yannis Rouselakis and Brent Waters. Practical constructions and new proof methods for large universe
attribute-based encryption. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS
2013, pages 463–474. ACM Press, November 2013. (Cited on page 7, 34.)

[Sah99] Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security. In
40th FOCS, pages 543–553. IEEE Computer Society Press, October 1999. (Cited on page 2.)

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems. In Walter Fumy, editor,
EUROCRYPT’97, volume 1233 of LNCS, pages 256–266. Springer, Heidelberg, May 1997. (Cited on
page 34.)

[SS10] Amit Sahai and Hakan Seyalioglu. Worry-free encryption: functional encryption with public keys. In
Ehab Al-Shaer, Angelos D. Keromytis, and Vitaly Shmatikov, editors, ACM CCS 2010, pages 463–472.
ACM Press, October 2010. (Cited on page 8, 45.)

[SW05] Amit Sahai and Brent R. Waters. Fuzzy identity-based encryption. In Ronald Cramer, editor, EU-
ROCRYPT 2005, volume 3494 of LNCS, pages 457–473. Springer, Heidelberg, May 2005. (Cited on
page 7.)

[SW13] Hovav Shacham and BrentWaters. Compact proofs of retrievability. Journal of Cryptology, 26(3):442–483,
July 2013. (Cited on page 9.)

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable encryption, and more.
In David B. Shmoys, editor, 46th ACM STOC, pages 475–484. ACM Press, May / June 2014. (Cited on
page 2, 4.)

52



[TFS04] Isamu Teranishi, Jun Furukawa, and Kazue Sako. k-Times anonymous authentication (extended abstract).
In Pil Joong Lee, editor, ASIACRYPT 2004, volume 3329 of LNCS, pages 308–322. Springer, Heidelberg,
December 2004. (Cited on page 3.)

[Tsa17] Rotem Tsabary. An equivalence between attribute-based signatures and homomorphic signatures, and
new constructions for both. In Yael Kalai and Leonid Reyzin, editors, TCC 2017, Part II, volume 10678 of
LNCS, pages 489–518. Springer, Heidelberg, November 2017. (Cited on page 9.)

[VV09] Carmine Ventre and Ivan Visconti. Co-sound zero-knowledge with public keys. In Bart Preneel, editor,
AFRICACRYPT 09, volume 5580 of LNCS, pages 287–304. Springer, Heidelberg, June 2009. (Cited on
page 2, 9.)

[Wat05] Brent R. Waters. Efficient identity-based encryption without random oracles. In Ronald Cramer, editor,
EUROCRYPT 2005, volume 3494 of LNCS, pages 114–127. Springer, Heidelberg, May 2005. (Cited on
page 72.)

[Wat11] Brent Waters. Ciphertext-policy attribute-based encryption: An expressive, efficient, and provably secure
realization. In Dario Catalano, Nelly Fazio, Rosario Gennaro, and Antonio Nicolosi, editors, PKC 2011,
volume 6571 of LNCS, pages 53–70. Springer, Heidelberg, March 2011. (Cited on page 7.)

A SimplerVariant ofDV-NIZKfromCDHwithNon-AdaptiveZero-Knowledge
Here, we present a simpler variant of DV-NIZK from the CDH assumption given in Section 3 that only achieves
non-adaptive zero-knowledge where an adversary has to declare statements on which he sees proofs before seeing
a common reference string and verification key. Since we can generically convert any DV-NIZK proof system with
non-adaptive single-theorem zero-knowledge to one with non-adaptive multi-theorem zero-knowledge by a standard
techbnique similarly to the adaptive case given in Section 3.3, we focus on constructing a DV-NIZK with non-adaptive
single-theorem zero-knowledge here.
Definition of Non-Adaptive Single-Theorem Zero-Knowledge. For clarity, we formally define non-adaptive single-
theorem zero-knowledge.

Definition A.1.We say that a DV-NIZK proof system ΠDVNIZK = (Setup,Prove,Verify) satisfies the non-adaptive
single-theorem zero-knowledge if there exists a PPT simulator S that satisfies the following. For all (stateful) PPT
adversaries A, we have ∣∣∣Pr[Exptzk-real

A (1κ) = 1]− Pr[Exptzk-sim
A,S (1κ) = 1]

∣∣∣ = negl(κ),

where experiments Exptzk-real
A and Exptzk-sim

A,S are defined as follows.
Exptzk-real

A
(x,w)← A(1κ),
If (x,w) ∈ R,

(crs, kV)← Setup(1κ),
π ← Prove(crs, x, w),

Else (crs, kV, π) := (⊥,⊥,⊥),
b′ ← A(crs, kV, π)
outputs b′

Exptzk-sim
A,S

(x,w)← A(1κ),
If (x,w) ∈ R,

(crs, kV, π)← S(1κ, x),

Else (crs, kV, π) := (⊥,⊥,⊥),
b′ ← A(crs, kV, π)
outputs b′

Construction. Here, we give a construction of a DV-NIZK with non-adaptive single-theorem zero-knowledge. As in
Section 3, GGen(1κ) is an algorithm that generates a group description (G, p, g) where 22κ ≤ p, and u denotes the length
of the binary representation of an element of G. Let (HBM.Prove,HBM.Verify) be a NIZK proof system in the HBM
with hidden-random-string-length `hrs(κ) and soundness error εHBM ≤ 2−κ · p−1. We note that this is possible since we
can make the soundness error arbitrarily small by increasing `hrs(κ) by Theorem 3.7. Hereafter, we simply write `hrs
instead of `hrs(κ) for ease of notation. The description of our DV-NIZK proof system ΠDVNIZK := (Setup,Prove,Verify)
is as follows.
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Setup(1κ): This algorithm generates the following parameters.

1. Samples (G, p, g) $← GGen(1κ).

2. Samples (αi, βi)
$← Z2

p for all i ∈ [`hrs] and a common reference string crs := {Xi}i∈[`hrs]
$← G`hrs

uniformly at random.
3. Sets ĉrs := {X̂i}i∈[`hrs] := {X−αi

i · gβi}i∈[`hrs].

4. Samples Ri
$← {0, 1}u for all i ∈ [`hrs] and sets R := {Ri}i∈[`hrs].

5. Outputs a common reference string crs := (G, p, g)‖crs‖ĉrs‖R and a verification key kV := {(αi, βi)}i∈[`hrs].

We can interpret crs as ({Xi, X̂i, Ri}i∈[`hrs]) ∈ G2`hrs × {0, 1}`hrsu.

Prove(crs, x, w): This algorithm does the following.

1. Parses crs = (G, p, g)‖crs‖ĉrs‖R where crs = {Xi}i∈[`hrs], ĉrs = {X̂i}i∈[`hrs], and R = {Ri}i∈[`hrs].

2. Samples τ $← Zp.

3. Sets Zi := Xτ
i and Ẑi := X̂τ

i and ρi = GL(Zi;Ri) for i ∈ [`hrs].
4. Generates (πhbm, I)← HBM.Prove(1κ, x, w, ρ) where ρ := ρ1‖ · · · ‖ρ`hrs .

5. Outputs a proof π := (πhbm, I, {(Zi, Ẑi)}i∈I , gτ ).

Verify(crs, kV, x, π): This algorithmparsesπ = (πhbm, I, {(Zi, Ẑ,i)}i∈I , T ), kV := {(αi, βi)}i∈[`hrs], crs = (G, p, g)‖crs‖ĉrs‖R
where crs = {Xi}i∈[`hrs], ĉrs = {X̂i}i∈[`hrs], R = {Ri}i∈[`hrs], and s ∈ {0, 1}`hrs . This algorithm does the follow-
ing.

• For all i ∈ I ,
1. Verifies that TestTDH((αi, βi), Xi, X̂i, T, Zi, Ẑi) = >, where TestTDH is defined in Figure 2 (we

present it again for convenience though it is the same as Figure 1). If this equation does not hold, then
the verification algorithm immediately outputs ⊥.

2. Computes ρi = GL(Zi;Ri).
• If the proof passes all the tests above, then this algorithm outputs HBM.Verify(1κ, x, πhbm, I, ρ|I).

The trapdoor test TestTDH((α, β), X, X̂, Y, Z, Ẑ)

1. Verifies that Zα · Ẑ = Y β . If it holds, then outputs >, else ⊥.

Figure 2: The algorithm TestTDH((α, β), X, X̂, Y, Z, Ẑ) verifies that Z = Y x and Ẑ = Y x̂, that is (g, Y,X,Z) and
(g, Y, X̂, Ẑ) where X = gx and X̂ = gx̂ are DDH-tuples without (x, x̂).

Security of ΠDVNIZK. Now, we prove the security of the base proof system.

Lemma A.2 (Correctness). Our base proof system ΠDVNIZK satisfies the correctness.

Proof of Lemma A.2. If π = (πhbm, I, {(Zi, Ẑi)}i∈I , gτ ) is an honestly generated proof, then we have Zi = Xτ
i and

Ẑi = X̂τ
i for i ∈ I . Therefore, an honestly generated proof passes the twin-DH trapdoor test TestTDH and a verifier

obtains the valid hidden bits ρ via GL(Zi;Ri). Thus, we can use the correctness of HBM and the correctness of ΠDVNIZK
follows.

Lemma A.3 (Soundness). If the soundness error of HBM is at most 2−κ · p−1 and the number of verification queries
is at most qv , then ΠDVNIZK then ΠDVNIZK satisfies the soundness.

54



Proof of Lemma A.3. We define a sequence of hybrid games.

Game0: This game is the original experiment of the soundness. Specifically, the game is described as follows.

1. The experiment generates (crs, kV)← Setup(1κ) as follows.

• Samples (G, p, g) $← GGen(1κ) and Ri
$← {0, 1}u for all i ∈ [`hrs] and sets R := R1‖ · · · ‖R`hrs .

• Samples crs := {Xi}i∈[`hrs]
$← G`hrs .

• Samples (αi, βi)
$← Z2

p for all i ∈ [`hrs] and sets ĉrs := {X̂i := X−αi
i · gβi}i∈[`hrs].

• Sets crs := (G, p, g)‖crs‖ĉrs‖R and a verification key kV := {(αi, βi)}i∈[`hrs].
2. A is given (1κ, crs).
3. The experiment plays the role of the verification oracle when A sends (x′, π′) as a verification query or the

final output as follows.
• Parses π′ = (π′hbm, I

′, {(Z ′i, Ẑ ′i)}i∈I′ , T ′).
• For all i ∈ I ′

(a) Verifies that TestTDH((αi, βi), T ′, Z ′i, Ẑ ′i) = 1. If this equation does not hold, then the verification
oracle immediately returns ⊥.

(b) Computes ρ′i := GL(Z ′i;Ri).
• If the proof passes all the tests above, then this algorithm outputs HBM.Verify(1κ, x, π′hbm, I

′, ρ′|I′).
4. A outputs (x∗, π∗). If x∗ /∈ L and π∗ passes the verification, then the game outputs 1.

Game1: This game is the same as Game0 except that it changes how to generate crs and verify proofs as follows.

1. The experiment generates (crs, kV) as follows.

• Samples (G, p, g) $← GGen(1κ) and Ri
$← {0, 1}u for all i ∈ [`hrs] and sets R := R1‖ · · · ‖R`hrs .

• Samples χi
$← Zp and sets crs := {Xi := gχi}i∈[`hrs].

• Samples χ̂i
$← Zp and sets ĉrs := {X̂i := gχ̂i}i∈[`hrs].

• Sets crs := (G, p, g)‖crs‖ĉrs‖R.
2. A is given (1κ, crs, s).
3. When A sends (x′, π′) as a verification query or the final output, the experiment does the following.

• Parses π′ = (π′hbm, I
′, {(Z ′i, Ẑ ′i)}i∈I′ , T ′).

• For all i ∈ I ′

(a) Verifies that Z ′i = (T ′)χi and Ẑ ′i = (T ′)χ̂i for all i ∈ [`hrs]. If this equation does not hold, then
the verification oracle immediately returns ⊥.

(b) Computes ρ′i := GL(Z ′i;Ri).
• If the proof passes all the tests above, then this algorithm outputs HBM.Verify(1κ, x, π′hbm, I

′, ρ′|I′).
4. A outputs (x∗, π∗). If x∗ /∈ L and π∗ passes the modified verification procedure defined above, then the

game outputs 1.

Game2: This game is the same as Game1 except that the game guesses τ ∈ Zp at the CRS generation phase
and aborts when the guess is wrong. That is, the game first randomly guesses τ $← Zp. When A outputs
(x∗, π∗ = (π∗hbm, I

∗, {(Z∗i , Ẑ∗i )}i∈I′ , T ∗) as its final output, if T ∗ 6= gτ , then this game aborts. Otherwise it
works similarly to Game1.

Game3: This game is the same as Game2 except that it changes how to generate crs as follows.

1. Samples (G, p, g) $← GGen(1κ).
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2. Guesses τ $← Zp.

3. Chooses ρi
$← {0, 1} for i ∈ [`hrs].

4. Chooses χi and Ri such that GL((gτ )χi ;Ri) = ρi and sets Xi := gχi for i ∈ [`hrs] and R := R1‖ · · · ‖R`hrs .

5. Sets crs := {Xi}i∈[`hrs].

6. Samples χ̂i
$← Zp and sets ĉrs := {X̂i := gχ̂i}i∈[`hrs].

7. Sets crs := (G, p, g)‖crs‖ĉrs‖R.

We will prove indistinguishability of hybrid games below. We will prove indistinguishability of hybrid games below.

Claim A.4. It holds that Pr[Game0 = 1]− Pr[Game1 = 1] ≤ (qv + 1)/p where qv is the number of A’s verification
queries.

Proof. It can be seen that the distribution of {Xi, X̂i}i∈[`hrs],b∈{0,1} in Game1 is the same as that in Game0. We can
apply Theorem 3.3 and the claim follows since A sends at most qv queries to the verification oracle and the experiment
uses the verification oracle once more for deciding if A succeeds in forging a proof.

Claim A.5. It holds that Pr[Game2 = 1] = 1
p Pr[Game1 = 1].

Proof. The difference between the two games is that the game guesses τ ∈ Zp and aborts if the guess is incorrect in
Game2. Since the probability that the guess is correct is 1/p, the claim follows.

Claim A.6. It holds that Pr[Game2 = 1] = Pr[Game3 = 1].

Proof. In Game2, ρi is computed by GL(gτχi ;Ri) using the CRS and τ . On the other hand, in Game3, we sample
ρi

$← {0, 1}. After that, we choose random χi and Ri such that ρi = GL((gτ )χi ;Ri). (We can assume that any
group element in G is not encoded into the all zero string.) These two distributions are identically distributed since
ρi = GL(gτχi ;Ri) is uniformly random over {0, 1} when χi

$← Zp and Ri
$← {0, 1}u are uniformly and randomly

chosen.

Claim A.7. If the soundness error of HBM is εHBM, then it holds that Pr[Game3 = 1] ≤ εHBM.

Proof. We show that if A can generate a pair of statement and proof (x∗, π∗) that passes the verification in Game3,
then we can construct a cheating prover B of (HBM.Prove,HBM.Verify). To use A, B proceeds as follows.

CRS simulation: First, B is given (1κ, ρ). B simulates crs as follows.

• Samples (G, p, g) $← GGen(1κ).

• Guesses τ $← Zp.
• Chooses χi andRi such that GL((gτ )χi ;Ri) = ρi and setsXi := gχi for i ∈ [`hrs] andR := R1‖ · · · ‖R`hrs .
• Sets crs := {Xi}i∈[`hrs].

• Samples χ̂i
$← Zp and sets ĉrs := {X̂i := gχ̂i}i∈[`hrs].

• Sets crs := (G, p, g)‖crs‖ĉrs‖R and gives crs and s to A.

Verification oracle simulation: When A sends (x′, π′) as a verification query or the final output, the experiment does
the following.

• Parses π′ = (π′hbm, I
′, {(Z ′i, Ẑ ′i)}i∈I′ , T ′).

• For all i ∈ I ′

(a) Verifies that Z ′i = (T ′)χi and Ẑ ′i = (T ′)χ̂i for all i ∈ [`hrs]. If this equation does not hold, then it
immediately returns ⊥.
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(b) Computes ρ′i := GL(Z ′i;Ri).
• If the proof passes all the tests above, then this algorithm outputs HBM.Verify(1κ, x, π′hbm, I

′, ρ′|I′).

Forgery: When A outputs (x∗, π∗ = (π∗hbm, I
∗, {(Z∗i , Ẑ∗i )}i∈I , T ∗), if T ∗ 6= gτ , B aborts. Otherwise B outputs

(π∗hbm, I
∗, ρ|I∗).

The simulations of (crs, kV) and the verification oracle are perfect. If Game3 outputs 1, we have x∗ /∈ L,
T ∗ = gτ and (x∗, π∗) passes the verification oracle in Game3, which implies we have Z∗i = (T ∗)χi and
HBM.Verify(1κ, x, π∗hbm, I

∗, ρ∗|I∗) = 1 where ρ∗i := GL(Z∗i ;Ri). On the other hand, we can see that we have
GL((gτ )χi ;Ri) = ρi by the way of the CRS simulation. Since we have T ∗ = gτ , we have Z∗i = (gτ )χi and thus
ρ∗i = ρi. Hence we have HBM.Verify(1κ, x, π∗hbm, I

∗, ρ|I∗) = >, which means that B succeeds in forging a proof of
HBM.

By combining the above claims, we have Pr[Game0 = 1] ≤ (qv + 1)/p+ p · εHBM. Since we have qv = poly(κ)
and we assume εHBM ≤ 2−κ · p−1, we have Pr[Game0 = 1] = negl(κ) and thus Lemma A.3 is proven.

Lemma A.8 (Non-Adaptive Single-Theorem Zero-Knowledge). If the CDH assumption holds with respect to GGen,
then ΠDVNIZK satisfies the non-adaptive single-theorem zero-knowledge.

Proof of Lemma A.8. First, we describe the simulator ΠDVNIZK.S.

ΠDVNIZK.S(1κ, x) generates (crs, kV, π) as follows.

• Samples (G, p, g) $← GGen(1κ).

• Chooses (αi, βi)
$← Z2

p and Ri
$← {0, 1}u for all i ∈ [`hrs], and sets kV := {(αi, βi)}i∈[`hrs].

• Chooses τ $← Zp.
• Generates (πhbm, I, ρ|I)← HBM.S(1κ, x).

• Chooses χi
$← Zp such that GL((gχi)τ ;Ri) = ρi for i ∈ I . We can find such χi by the sampling algorithm

in Lemma 3.12.
• Sets Xi := gχi for i ∈ I .

• Chooses Xi
$← G for i ∈ [`hrs] \ I .

• Sets crs := {Xi}i∈[`hrs], ĉrs := {X−αi
i · gβi}i∈[`hrs], and R := R1‖ · · · ‖R`hrs .

• Sets crs = (G, p, g)‖crs‖ĉrs‖R.
• Sets Zi := Xτ

i and Ẑi := X̂τ
i for i ∈ I .

• Sets a proof π := (πhbm, I, {(Zi, Ẑi)}i∈I , gτ ).
• Outputs (crs, kV, π).

For proving that a proof simulated by the above simulator is computationally indistinguishable from a real one,
we define a sequence of hybrid games. In the following, we assume that (x,w) output by the adversary A satisfies
(x,w) ∈ R whereR is the corresponding relation of L. This can be assumed without loss of generality since A can
check if this holds by himself, and if (x,w) /∈ R, then the experiment just returns ⊥ to A.

Game0: In this game, an adversary A is given an honestly generated proof. Specifically, the game is described as
follows.

1. A is given 1κ and outputs (x,w).
2. The experiment generates (crs, kV) as follows.

• Samples (G, p, g) $← GGen(1κ), (αi, βi)
$← Z2

p, and Ri
$← {0, 1}u for all i ∈ [`hrs].
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• Samples crs := {Xi}i∈[`hrs]
$← G`hrs .

• Sets ĉrs := {X−αi
i · gβi}i∈[`hrs] and R := R1‖ · · · ‖R`hrs .

• Sets crs := (G, p, g)‖crs‖ĉrs‖R and a verification key kV := {(αi, βi)}i∈[`hrs].

3. The experiment generates a proof π = (πhbm, I, {(Zi, Ẑi)}i∈I , gτ ) as follows.

• Samples τ $← Zp.
• Computes ρi := GL(Xτ

i ;Ri) and sets ρ := ρ1‖ · · · ‖ρ`hrs .
• Generates (πhbm, I)← HBM.Prove(1κ, x, w, ρ).
• Sets Zi := Xτ

i and Ẑi := X̂τ
i for i ∈ I .

• Sets a proof π := (πhbm, I, {(Zi, Ẑi)}i∈I , gτ ).
4. (crs, kV, π) is given to A, and A outputs b′.

Game1: This game is the same as Game0 except that ρi and Xi are generated in the “reversed” order. Specifically, the
game is described as follows.

1. A is given 1κ and outputs (x,w).
2. The experiment generates (crs, kV) as follows.

• Samples (G, p, g) $← GGen(1κ), (αi, βi)
$← Z2

p, and Ri
$← {0, 1}u for all i ∈ [`hrs].

• Samples τ $← Zp.

• Chooses ρi
$← {0, 1} for all i ∈ [`hrs].

• Chooses χi
$← Zp such that GL((gχi)τ ;Ri) = ρi for all i ∈ [`hrs]. (We can find such χi by the sam-

pling algorithm in Lemma 3.12.)
• Sets Xi := gχi for all i ∈ [`hrs].
• Sets ĉrs := {X−αi

i · gβi}i∈[`hrs] and R := R1‖ · · · ‖R`hrs .
• Sets crs := (G, p, g)‖crs‖ĉrs‖R and a verification key kV := {(αi, βi)}i∈[`hrs].

3. The experiment generates a proof π = (πhbm, I, {(Zi, Ẑi)}i∈I , gτ ) as follows.
• Sets ρ := ρ1‖ · · · ‖ρ`hrs .
• Generates (πhbm, I)← HBM.Prove(1κ, x, w, ρ).
• Sets Zi := Xτ

i and Ẑi := X̂τ
i for i ∈ I .

• Sets a proof π := (πhbm, I, {(Zi, Ẑi)}i∈I , gτ ).
4. (crs, kV, π) is given to A, and A outputs b′.

Game2: This game is the same as Game1 except that (πhbm, I) is generated before generating crs, and Xi is generated
in a different way. Specifically, the game is described as follows.

1. A is given 1κ and outputs (x,w).
2. The experiment generates (crs, kV) as follows.

• Samples (G, p, g) $← GGen(1κ), (αi, βi)
$← Z2

p, and Ri
$← {0, 1}u for all i ∈ [`hrs].

• Samples τ $← Zp.
• Chooses ρi

$← {0, 1} for all i ∈ [`hrs].
• Sets ρ := ρ1‖ · · · ‖ρ`hrs .
• Generates (πhbm, I)← HBM.Prove(1κ, x, w, ρ).

• Chooses χi
$← Zp such that GL((gχi)τ ;Ri) = ρi for all i ∈ I . (We can find such χi by the sampling

algorithm in Lemma 3.12.)
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• Sets Xi := gχi for all i ∈ I .

• Chooses Xi
$← G for all i ∈ [`hrs] \ I .

• Sets ĉrs := {X−αi
i · gβi}i∈[`hrs] and R := R1‖ · · · ‖R`hrs .

• Sets crs := (G, p, g)‖crs‖ĉrs‖R and a verification key kV := {(αi, βi)}i∈[`hrs].

3. The experiment generates a proof π = (πhbm, I, {(Zi, Ẑi)}i∈I , gτ ) as follows.

• Sets Zi := Xτ
i and Ẑi := X̂τ

i for i ∈ I .
• Sets a proof π := (πhbm, I, {(Zi, Ẑi)}i∈I , gτ ).

4. (crs, kV, π) is given to A, and A outputs b′.

Game3: This game is the same as Game2 except that (πhbm, I, ρ|I) is generated by the simulator of the NIZK in the
HBM. We note that ρi for i /∈ I is no longer generated in this game.

1. A is given 1κ and outputs (x,w).
2. The experiment generates (crs, kV) as follows.

• Samples (G, p, g) $← GGen(1κ), (αi, βi)
$← Z2

p, and Ri
$← {0, 1}u for all i ∈ [`hrs].

• Samples τ $← Zp.
• Generates (πhbm, I, ρ|I)← HBM.S(1κ, x).

• Chooses χi
$← Zp such that GL((gχi)τ ;Ri) = ρi for all i ∈ I . (We can find such χi by the sampling

algorithm in Lemma 3.12.) We note that ρi is the corresponding bit of ρ|I .
• Sets Xi := gχi for all i ∈ I .
• Chooses Xi

$← G for all i ∈ [`hrs] \ I .
• Sets ĉrs := {X−αi

i · gβi}i∈[`hrs] and R := R1‖ · · · ‖R`hrs .
• Sets crs := (G, p, g)‖crs‖ĉrs‖R and a verification key kV := {(αi, βi)}i∈[`hrs].

3. The experiment generates a proof π = (πhbm, I, {(Zi, Ẑi)}i∈I , gτ ) as follows.

• Sets Zi := Xτ
i and Ẑi := X̂τ

i for i ∈ I .
• Sets a proof π := (πhbm, I, {(Zi, Ẑi)}i∈I , gτ ).

4. (crs, kV, π) is given to A, and A outputs b′.

By the definition, Game3 is completely the same as the experiment simulated by ΠDVNIZK.S . We will prove the following
claims.

Claim A.9. It holds that Game0
stat
≈ Game1.

Proof. The difference between two games is how to sample Xi and Ri. In Game0, Xi is uniformly and randomly
chosen. In Game1, the experiment samples ρi

$← {0, 1} and after that Xi is set to gχi such that GL((gχi)τ ;Ri) = ρi.
The indistinguishability between these two games directly follows from Lemma 3.12.

Claim A.10. If the CDH assumption holds with respect to GGen, then it holds that Game1
c
≈ Game2.

Proof. The difference between Game1 and Game2 is that Xi are generated differently for i ∈ [`hrs] \ I . Namely, in
Game1, for each i ∈ [`hrs] \ I ,Xi is set to be gχi where χi is uniformly chosen from Zp such that GL((gχi)τ ;Ri) = ρi.
On the other hand, in Game2, Xi is just independently and uniformly chosen from G. Then it is immediate to prove the
indistinguishability between these two games by using Lemma 3.13. Namely, we show that if A distinguishes Game1
and Game2, then we can construct an adversary B for the experiment defined in Lemma 3.13.

1. B is given (1κ, (G, p, g), gx, R1‖ · · · ‖R`) where ` := `hrs − |I|, and runs A(1κ) to obtain (x,w).
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2. B generates (crs, kV) as follows.

• Sets gτ := gx.

• Chooses ρi
$← {0, 1} for all i ∈ [`hrs].

• Sets ρ := ρ1‖ · · · ‖ρ`hrs .
• Generates (πhbm, I)← HBM.Prove(1κ, x, w, ρ).

• Chooses χi
$← Zp such that GL((gχi)τ ;Ri) = ρi for all i ∈ I . (We can find such χi by the sampling

algorithm in Lemma 3.12.)
• Sets Xi := gχi for all i ∈ I .
• Sends (ρi1 , ..., ρi`) to the challenger where ij is the j-th element of [`hrs] \ I in the lexicographical order,
and receives (gyi1 , ..., gyi` ).

• Sets Xij := gyij for all j ∈ [`]. We note that Xi is defined for all i ∈ [`hrs] at this point.

• Sets ĉrs := {X−αi
i · gβi}i∈[`hrs] and R := R1‖ · · · ‖R`hrs .

• Sets crs := (G, p, g)‖crs‖ĉrs‖R and a verification key kV := {(αi, βi)}i∈[`hrs].

3. B generates a proof π = (πhbm, I, {(Zi, Ẑi)}i∈I , gτ ) as follows.

• Sets Zi := (gτ )χi and Ẑi := (gτ )−αiχi+βi for i ∈ I .

• Sets a proof π := (πhbm, I, {(Zi, Ẑi)}i∈I , gτ ).

4. Finally, B gives (crs, kV, π) to A, and outputs the same as A outputs.

If (gyi1 , ..., gyi` ) comes from the experiment Exptswitch
B (1κ, 0), then B perfectly simulates Game2 for A since they

are just uniform and independent group elements. On the other hand, if they come from the experiment Exptswitch
B (1κ, 1),

then the simulation B perfectly simulates Game1 for A since yij
$← Zp is chosen subject to GL(gxyij ;Rij ) = ρij for

j ∈ [`]. Therefore, B can break the CDH assumption by using A that distinguishes these two hybrid games. This
completes the proof of the claim.

Claim A.11. If (HBM.Prove,HBM.Verify) is a NIZK proof system in the HBM, then Game2
stat
≈ Game3.

Proof. We construct a distinguisher D of HBM by using a distinguisher A of Game2 and Game3. D is given 1κ, then
does the following.

1. D runs A(1κ) to obtain (x,w), and queries (x,w) to the challenger to receive (πhbm, I, ρ|I).

2. D generates (crs, kV) as follows.

• Samples (G, p, g) $← GGen(1κ), (αi, βi)
$← Z2

p, and Ri
$← {0, 1}u for all i ∈ [`hrs].

• Samples τ $← Zp.

• Chooses χi
$← Zp such that GL((gχi)τ ;Ri) = ρi for all i ∈ I . (We can find such χi by the sampling

algorithm in Lemma 3.12.) We note that ρi is the corresponding bit of ρ|I .
• Sets Xi := gχi for all i ∈ I .

• Chooses Xi
$← G for all i ∈ [`hrs] \ I .

• Sets ĉrs := {X−αi
i · gβi}i∈[`hrs] and R := R1‖ · · · ‖R`hrs .

• Sets crs := (G, p, g)‖crs‖ĉrs‖R and a verification key kV := {(αi, βi)}i∈[`hrs].

3. D generates a proof π as follows.
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• Sets Zi := Xτ
i and Ẑi := X̂τ

i for i ∈ I .
• Sets a proof π := (πhbm, I, {(Zi, Ẑi)}i∈I , gτ ).

4. Gives (crs, kV, π) to A, and A outputs b′.

5. D outputs b′.

It is clear that D perfectly simulates Game2 if ρ is randomly chosen and then (πhbm, I) is generated by
HBM.Prove(1κ, x, w, ρ), and D perfectly simulates Game3 if (πhbm, I, ρ|I) is generated by HBM.S(1κ, x). This
completes the proof.

By the above claims, we complete the proof of Lemma A.8

B Omitted Contents of HomMAC from IPFE
We give the proof of Theorem 5.2 in this section.

Proof. Agrawal et al. [ALS16] constructed an adaptively secure IPFE scheme based on the DDH assumption. It is easy
to see that their construction can be seen as an expIPFE scheme that satisfies extractability. For completeness, we
describe the scheme below.
Instantiation. Let GGen be a group generator that generates a description of a group G along with its order p and its
generator g. The expIPFE scheme ΠALS = (SetupALS,KeyGenALS,EncALS,DecALS) is described as follows.

SetupALS(1κ, 1`): It generates G = (G, p, g) $← GGen(1κ), samples h $← G and si, ti
$← Zp for i ∈ [`], computes

hi := gsi · hti for i ∈ [`], and outputs a public parameter pp := (G, h, {hi}i∈[`]) and a master secret key
msk := (pp, {(si, ti)}i∈[`]). We denote vectors (s1, ..., s`) and (t1, ..., t`) by s and t respectively.

KeyGenALS(msk,y = (y1, ..., y`)): It outputs sky := (y, sy, ty) := (y, 〈s,y〉, 〈t,y〉).

Enc(pp,x = (x1, ..., x`)): It samples r $← Zp and computes C := gr,D := hr, Ei := gxi · hri for i ∈ [`], and outputs
a ciphertext ctx := (C,D, {Ei}i∈[`]).

Dec(pp, ctx, sky) : If ctx /∈ G`+2, it outputs⊥. Otherwise it parses (C,D, {Ei}i∈[`])← ctx and (y = (y1, ..., y`), sy, ty)←
sky, and outputs d = (

∏n
i=1E

yi

i )/(Csy ·Dty).

The above scheme is exactly the same as the one proposed by Agrawal et al. [ALS16] except that the decryption
algorithm does not compute the discrete logarithm. Therefore correctness and adaptive security of the scheme can
be reduced to those of Agrawal et al.’s scheme. Here, we prove that the above scheme is extractable. We describe an
unbounded-time extractor Ext below.

Ext(msk, ct): If ct /∈ G`+2, it aborts. Otherwise, it parses (pp = (G, g, h, {hi}i∈[`]), {(si, ti)}i∈[`]) ← msk and
(C,D, {Ei}i∈[`])← ct. It computes xi := Dlogg(Ei/(Csi ·Dti)) for i ∈ [`] where Dlogg denotes the discrete
logarithm with a base g. Then it outputs x := (x1, ..., x`).

We prove that the above extractor works correctly. Let sky be an honestly generated secret key associated with
a vector y. Then it is of the form as (y, 〈s,y〉, 〈t,y〉). For any ciphertext ct = (C,D, {Ei}i∈[n]), we have
Dec(pp, ct, sky) = (

∏n
i=1E

yi

i )/(C〈s,y〉 · D〈t,y〉) =
∏n
i=1(Ei/(Csi · Dti))yi =

∏n
i=1(gxi)yi = g〈x,y〉 where

x = (x1, ..., x`) := Ext(msk, ct). This concludes the proof of the theorem.

C PP-NIZK from Homomorphic Authenticators
In this section, we describe a construction of PP-NIZK for boundedNP languages based on any context-hiding HomAuth
given by Kim and Wu [KW18a]. Since our definitions of HomAuth are slightly different from the ones in [KW18a], we
describe the construction and its security proof for completeness. We first prepare the standard definition of symmetric
key encryption.
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C.1 Preparation: Symmetric Key Encryption
Let {Mκ}κ∈N be the family of the message space. In the following, we occasionally drop the subscript and simply
writeM when the meaning is clear. An symmetric key encryption (SKE) scheme ΠSKE is defined by the following
three algorithms:

SKE.KeyGen(1κ)→ KSKE: The key generation algorithm takes as input the security parameter 1κ and outputs a secret
key KSKE.

SKE.Enc(KSKE,M)→ ct: The encryption algorithm takes as input a secret key KSKE and a message M ∈ M and
outputs a ciphertext ct.

SKE.Dec(KSKE, ct)→ M or ⊥: The decryption algorithm takes as input a secret key KSKE and a ciphertext ct and
outputs a message M ∈M or a special symbol ⊥ indicating decryption failure.

Correctness. We require correctness: that is, for all κ ∈ N, M ∈ M, and KSKE ∈ SKE.KeyGen(1κ), we have
SKE.Dec(KSKE,SKE.Enc(KSKE,M)) = M.

CPA-Security. We say that an SKE scheme satisfies CPA-security if for all κ ∈ N, the following holds: For all PPT
adversaries A, if we run KSKE ← SKE.KeyGen(1κ), then we have∣∣∣Pr[AO0(KSKE,·,·)(1κ) = 1]− Pr[AO1(KSKE,·,·)(1κ) = 1]

∣∣∣ = negl(κ),

where Ob(KSKE,M0,M1) outputs SKE.Enc(KSKE,Mb) for b ∈ {0, 1}.
In our construction of preprocessing NIZKs in the following section, we require a symmetric key encryption scheme

whose ciphertext overhead (i.e., |ct| − |m|) is poly(κ) and whose decryption algorithm is implemented in NC1. We use
a construction based on the CDH assumption. (See the last paragraph of Appendix C.2 for details.)

C.2 Kim-Wu Construction
Before describing the construction, we prepare some building blocks and notations.

• LetL be anNP language defined by a relationR ⊆ {0, 1}∗×{0, 1}∗. Letn(κ) andm(κ) be any fixed polynomials.
Let C be a circuit that computes the relationR on {0, 1}n × {0, 1}m, i.e., for (x,w) ∈ {0, 1}n × {0, 1}m, we
have C(x,w) = 1 if and only if (x,w) ∈ R

• Let SKE = (SKE.KeyGen,SKE.Enc,SKE.Dec) be a symmetric key encryption scheme with ciphertext space
CT and key space {0, 1}`.

• For x ∈ {0, 1}n and ct ∈ CT , we define the function fx,ct(KSKE) := C(x, SKE.Dec(KSKE, ct)).

• Let HA = (HA.KeyGen,HA.Sign,HA.Eval,HA.VerifyFresh,HA.VerifyEvaled) be a HomAuth scheme ΠHA that
supports a function class that contains {fx,ct}x∈{0,1}n,ct∈CT .

The PP-NIZK ΠPPNIZK = (Setup,Prove,Verify) for L is described as follows.

Setup(1κ): This algorithm generates KSKE
$← SKE.KeyGen(1κ), (vk, ek, sk) $← HA.KeyGen(1κ, 1`), and σ

$←
HA.Sign(sk,KSKE). It outputs a common reference string crs = ek a prover key kP := (KSKE,σ) and a verifier
key kV := (vk, sk).12

Prove(crs, kP, x, w): This algorithm aborts ifR(x,w) = 0. Otherwise it parses ek← crs, (KSKE,σ)← kP, computes
ct := SKE.Enc(KSKE, w), generates σ $← HA.Eval(ek, fx,ct,KSKE,σ), and outputs a proof π := (ct, σ).

12In the real protocol, sk is not used at all. This is included in kV as an artifact for proving non-programmable CRS zero-knowledge, instead of
programmable CRS zero-knowledge.
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Verify(crs, kV, x, π): This algorithmparses ek← crs, (vk, sk)← kV and (ct, σ)← π, and outputsVerify(vk, fx,ct, 1, σ).

Correctness. Let crs := ek, kP := (KSKE,σ) and kV := (vk, sk) be generated by Setup(1κ), and π = (ct, σ) be a proof
generated by Prove(kP, x, w) for (x,w) ∈ L. Then we have fx,ct(KSKE) = C(x,SKE.Dec(KSKE, ct)) = C(x,w) = 1.
Therefore Verify(kV, x, π) outputs > by the correctness of ΠHA.
Security. The security of ΠPPNIZK is stated as follows.

Theorem C.1. If ΠHA satisfies selective (resp. statistical) unforgeability and computational context-hiding, and
SKE is CPA-secure, then ΠPPNIZK satisfies computational (resp. statistical) soundness and non-programmable CRS
zero-knowledge.

Proof. Below, we prove soundness and non-programmable CRS zero-knowledge.
Soundness. We first prove soundness. This part relies on the (selective) single-shot unforgeability of ΠHA. Suppose
that there exists an adversary A that breaks the soundness of ΠPPNIZK. Then we construct an adversary B that breaks
the unforgeability of ΠHA.
B first chooses KSKE

$← SKE.KeyGen(1κ) and queries KSKE as its signing query. Then, it is given an evaluation key
ek and a signature σ. It sets crs := ek and kP := (KSKE,σ), and gives (crs, kP) to A. When A makes a verification
query (x, π), B parses (ct, σ)← π, queries (fx,ct, 1, σ) to its own verification oracle, and relays the response from the
oracle to A. Finally, when A outputs a forgery (x∗, π∗ = (ct∗, σ∗)), B outputs (fx∗,ct∗ , 1, σ∗) as its forgery.

It is clear that B perfectly simulates the experiment that defines soundness toA. Moreover, ifA succeeds in breaking
the soundness of ΠPPNIZK, then B also succeeds in breaking the unforgeability of ΠHA since if x∗ /∈ L, C(x∗, ·) never
outputs 1 on any witness, and specifically fx∗,ct∗ never outputs 1 on any input. It is easy to see that the reduction also
works in the setting where both A and B are unbounded-time adversaries.
(Non-Programmable CRS) Zero-knowledge. Next, we prove that ΠPPNIZK satisfies non-programmable CRS zero-
knowledge. This part relies on the context-hiding of ΠHA. Let HA.Sim be a simulator for context-hiding of ΠHA. We
describe a simulator S = (S1,S2) for zero-knowledge of ΠPPNIZK as follows.

S1(1κ, crs = ek, kV = (vk, sk)): It generates KSKE
$← SKE.KeyGen(1κ) and returns τV := KSKE.

S2(crs = ek, kV = (vk, sk), τV = KSKE, x): It generates ct $← SKE.Enc(KSKE, 0m), runsσ $← HA.Sim(vk, ek, sk, fx,ct, 1),
and outputs π := (ct, σ).

We prove that proofs generated by S is computationally indistinguishable from honestly generated proofs. To prove this,
we consider the following sequence of games between a PPT adversary A and a challenger.

Game0: In this game, proofs are generated honestly. Namely,

1. The challenger generates KSKE
$← SKE.KeyGen(1κ), (sk, ek, vk) $← HA.KeyGen(1κ, 1`), and σ

$←
HA.Sign(sk,KSKE), and sets crs = ek, kP := (KSKE,σ) and kV := (vk, sk).

2. A is given (1κ, crs, kV), and allowed to query O(crs, kP, ·, ·), which works as follows. When A queries
(x,w), if (x,w) /∈ R, then the oracle returns⊥. Otherwise, it computes ct $← SKE.Enc(KSKE, w), generates
σ

$← HA.Eval(ek, fx,ct,KSKE,σ), and returns π := (ct, σ).
3. Finally, A returns a bit β.

Game1: This game is the same as the previous game except that σ is generated as HA.Sim(vk, ek, sk, fx,ct, 1) in each
oracle query. We note that σ is not needed to be generated since it is not used at all in this game.

Game2: This game is the same as the previous game except that ct is generated as SKE.Enc(KSKE, 0m).

Let Ti be the event that A returns 1 in Gamei for i = 0, 1, 2. It is easy to see that proofs are generated by HA.Sim in
Game2. Thus we have to prove that |Pr[T0]− Pr[T2]| is negligible. We prove this by the following lemmas.

Lemma C.2. If ΠHA is computationally context-hiding w.r.t. the simulator HA.Sim, then |Pr[T0]−Pr[T1]| = negl(κ).
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Proof. We consider hybrids Hj for j ∈ {0, 1, ..., Q} where Q denotes the number of A’s queries. In the hybrid Hj ,
the proof oracle for A works as in Game1 for the first j queries, and as in Game0 for the rest of queries. It is easy to
see that H0 is exactly the same as Game0, and HQ is exactly the same as Game1. Let T′j be the event that A outputs 1
in Hj for j ∈ {0, 1, ..., Q}. Since we have |Pr[T0] − Pr[T1]| ≤

∑Q
j=1 |Pr[T′j−1] − Pr[T′j ]|, we only have to prove

that |Pr[T′j−1] − Pr[T′j ]| = negl(κ) for all j ∈ [Q]. Suppose that |Pr[T′j−1] − Pr[T′j ]| is non-negligible. Then we
construct an adversary B = (B1,B2) that breaks the context-hiding w.r.t. the simulator HA.Sim. The description of B
is as follows.
B is given (vk, ek, sk), generates KSKE

$← SKE.KeyGen(1κ) and σ
$← HA.Sign(sk,KSKE), and sets crs := ek,

kP := (KSKE,σ), and kV := (vk, sk). Then it gives (1κ, crs, kV) to A. When A queries its i-th (x,w), if (x,w) /∈ R,
B returns ⊥. Otherwise it computes as follows.

• If i ≤ j−1, then it computes ct $← SKE.Enc(KSKE, w) and σ $← HA.Sim(vk, ek, sk, fx,ct, 1), and returns (ct, σ).

• If i = j, then it computes ct $← SKE.Enc(KSKE, w) and queries (fx,ct,KSKE,σ) to its own oracle to obtain σ,
and returns (ct, σ).

• If i ≥ j + 1, then it computes ct $← SKE.Enc(KSKE, w) and σ $← HA.Eval(ek, fx,ct,KSKE,σ), and returns
(ct, σ).

Finally, when A outputs β, B also outputs β.
This completes the description of B. It is easy to see that B perfectly simulates Hj−1 or Hj depending on the coin of

the challenger of the experiment defining context-hiding in which B is involved. Thus |Pr[T′j−1]−Pr[T′j ]| is negligible
if ΠHA satisfies context-hiding.

Lemma C.3. If SKE is CPA-secure, then |Pr[T1]− Pr[T2]| = negl(κ).

Proof. Suppose that |Pr[T1]−Pr[T2]| is non-negligible. Then we construct an adversaryB that breaks the CPA-security
of SKE. The description of B is as follows.
B is given 1κ, generates (vk, ek, sk) $← HA.KeyGen(1κ, 1`), sets crs := ek andkV := (vk, sk), and gives (1κ, crs, kV)

toAwhere the prove oracle forA is simulated as follows. WhenA queries (x,w) to the oracle, it returns⊥ if (x,w) /∈ R.
Otherwise, it queries (0m, w) to its encryption oracle to obtain ct, computes σ $← HA.Sim(vk, ek, sk, fx,ct, 1) and
returns (ct, σ). Finally, when A outputs β, B outputs β.

It is easy to see that B perfectly simulates Game1 or Game2 depending on the random coin chosen by the challenger
in the SKE game in which B is involved. Therefore we have |Pr[T1]− Pr[T2]| = negl(κ) if SKE is CPA-secure.

This completes the proof of Theorem C.1.

Remark C.4 (Public verifiability). As observed by Kim and Wu [KW18a], if an underlying HomAuth scheme is publicly
verifiable (i.e., HomSig scheme), then the resulting PP-NIZK can also be made publicly verifiable (i.e., DP-NIZK) by
letting kV public at the cost of weakening the zero-knowledge property to programmable CRS zero-knowledge from
non-programmable CRS zero-knowledge.

Instantiations. Here, we discuss that HomAuth schemes for NC1 suffice to instantiate the above construction if we
assume an additional mild assumption. Specifically, the above construction requires ΠHA to support a function class
that contains {fc,ct}x∈{0,1}n,ct∈CT . On the other hand, constructions of HomAuth given in this paper only supports
NC1. Therefore we have to assume that {fc,ct}x∈{0,1}n,ct∈CT is contained in NC1. This is possible if we assume the
following.

• C(x, ·) is computable in NC1. This can be assumed without loss of generality by using {sg}g∈Gates as a witness
for the language where Gates is the set of all gates of C(x, ·) and sg is the output value of the gate g when C(x, ·)
is evaluated on input w. This reduces the depth of a circuit to compute C(x, ·) at the cost of expanding the size of
a witness to be as large as the size of C(x, ·). We note that the same trick was also used in [GGH+16].
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• SKE.Dec can be computable inNC1. Such an SKE scheme can be constructed based on any weak PRF computable
in NC1. We can construct such a weak PRF from the CDH assumption on a subgroup of Z∗p for a prime p by
modifying the weak PRF from the DDH assumption due to Naor et al. [NPR99] so that we generate the output
bits using the Goldreich-Levin hardcore function. In order to make the evaluation circuit of the PRF be in NC1,
we introduce a preprocessing on an input similarly to Naor-Reingold PRF [NR04] and change the evaluation
circuit so that it computes multiple product (rather than exponentiation) followed by the computation of the
Goldreich-Levin hardcore function. The former operation is in NC1 due to the result by [BCH86] and the latter is
actually the inner-product function, which is in NC1 as well.

Especially, we can instantiate the above construction based on any of the HomAuth schemes constructed in this paper.
The proof sizes of the NIZKs obtained by these instantiations are poly(κ, |C|).

C.3 More Compact Proof from HomAuth for Arithmetic Circuits
Here, we show that we can reduce the proof size with an additional trick if we instantiate the scheme based on a
HomAuth scheme for arithmetic circuits of polynomial degree over Zp, which is given in Section 5. Namely, the scheme
can be instantiated under the DDH assumption, and its proof size is |C|+ poly(κ).

For simplicity, we assume that C(x, ·) consists of only NAND gates. (This is just for notational simplicity, and a
similar result can be obtained as long as each gate of C can be expressed as a constant degree polynomial over Zp.)
Now, we fix (x,w) ∈ R ∩ {0, 1}n × {0, 1}m and a prime p > |C|. Let Gates denote the set of all gates of C(x, ·),
and for each gate g ∈ Gates of the circuit C(x, ·) let sg denote the output value of g when we evaluate C(x, ·) on the
input w. For each gate g of the circuit C, let Ag and Bg denote the gates whose output wire is connected to the input
wire of g. Then we have sg = 1 − sAg · sBg mod p for every gate g and sout = 1 mod p where out is the output
gate of C(x, ·). Conversely, it is easy to see that there exists w ∈ {0, 1}m such that C(x,w) = 1 if and only if there
exists {sg}g∈Gates ∈ {0, 1}|Gates| such that sg = 1− sAg

· sBg
mod p for every gate g and sout = 1 mod p, which is

equivalent to ∏
g∈Gates

(1− (1− sAg · sBg − sg)2) · (1− (1− sout)2) = 1 mod p. (8)

Here, we apply a similar trick to the one used by Katsumata [Kat17] to reduce the degree of the above equation. Namely,
we first remark that the above equation is satisfied if and only if all terms (1− sAg · sBg − sg) and (1− sout) are 0.
Also, remark that |Gates| ≤ |C| < p and all terms (1 − sAg · sBg − sg) and (1 − sout) are in {−1, 0, 1}, we have∑

g∈Gates(1 − sAg
· sBg

− sg)2 + (1 − sout)2 < p, and thus this sum is equal to 0 modulo p if and only if all terms
(1− sAg

· sBg
− sg) and (1− sout) are 0. Therefore Equation (8) is equivalent to the condition that∑

g∈Gates
(1− sAg

· sBg
− sg)2 + (1− sout)2 = 0 mod p.

Hence there exists {sg}g∈Gates ∈ {0, 1}|Gates| such that PC(x,·)({sg}g∈Gates) := 1 +
∑
g∈Gates(1− sAg

· sBg
− sg)2 +

(1− sout)2 = 1 mod p if and only if there exists w ∈ {0, 1}m such that C(x,w) = 1. Here, we remark that the degree
of PC(x,·) is at most 4, which is in particular a constant.

Next, we remark that if SKE.Dec can be computed inNC1, then it can be expressed as a polynomial overZp of degree
DDec(κ) that is polynomial in κ. Based on these observations, if we set ct← SKE.Enc(KSKE, {sg}g∈Gates) instead of
ct← SKE.Enc(KSKE, w), and we slightly modify the definition of fx,ct as fx,ct(KSKE) := PC(x,·)(SKE.Dec(KSKE, ct))
in the construction given in Appendix C.2, then the degree of fx,ct is 4DDec(κ), and there exists KSKE such that
fx,ct(KSKE) = 1 mod p if and only if there exists w ∈ {0, 1}m such that C(x,w) = 1. Thus we can instantiate the
above construction based on a HomAuth scheme that supports polynomials over Zp of degree at most 4DDec(κ).

As such a HomAuth scheme, we use the one constructed in Section 5. The size of an evaluated signature of the
scheme is poly(κ,D) where D denotes the degree of the polynomial to evaluate. Here, since the degree of fx,ct is
2DDec(κ), which is polynomial in κ and independent of the size of |C|, the size of the signature contained in the above
PP-NIZK scheme is poly(κ) that is independent of |C|. Hence the whole size of the proof is |C|+ poly(κ) since the
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size of ct← SKE.Enc(KSKE, {sg}g∈Gates) is |C|+ poly(κ). We note that this construction can naturally be generalized
to PP-NIZK for unbounded languages without increasing the proof size. In summary, we obtain Theorem 5.13. In
particular, our PP-NIZK is statistical sound and non-programmable CRS zero-knowledge.

C.4 PP-NIZK for Leveled Relations with Sublinear Proof Size
Here, we give a variant of the Kim-Wu construction whose proof size is sublinear in the size of the circuit that computes
the NP relation to prove from a compact HomAuth scheme. This construction only works for NP languages with
“leveled” relation, which is a relation that can be expressed by a leveled circuit, i.e., a circuit whose gates are divided
into L levels, and all incoming wires to a gate of level i+ 1 come from gates of level i. For this case, the proof size of
the scheme becomes |w|+ |C|/ log κ+ poly(κ). To the best of our knowledge, this is the first PP-NIZK with sublinear
proof size without using FHE or non-falsifiable assumptions.

Leveled Circuits and Relations. First, we define leveled circuits and its “special” levels following [BGI16]. We say
that a circuit is a leveled circuit of depth D if its gates are partitioned into D + 1 levels, all input gates are of level 0,
all output gates are of level D + 1, and all incoming wires to a gate of level i+ 1 come from gates of level i for each
i ∈ [D]. The width at level i is defined to be the number of gates of level i. For a leveled circuit C of depth D, we
define a set SC ⊂ {0, ..., D + 1} of “special” levels in the following manner. For each j ∈ {0, ..., bD/ log κc − 1},
SC contains one level i in the interval [j log κ + 1, ..., (j + 1) log κ] such that the width at level i is the minimum
among the width at levels in this interval. (If there exist multiple levels whose width are minimum, we choose the
smallest level.) We say that i is a special level if i ∈ SC . Let pre(i) denote the precedent special level of i, i.e., the
maximal i′ < i such that i′ ∈ SC (if such i′ does not exist, then we define pre(i) := 0) and LC denote the largest special
level of C, i.e., the largest i such that i ∈ SC . It is easy to see that the number of gates of a special level is at most
|C|/ log κ since SC contains levels whose width are the smallest in the corresponding interval of length log κ. For
any gate g of a special level i ∈ SC , we can compute the output value of g as a function of output values of gates of
level pre(i). We denote this function by EvalfromPreg. Since each special level is at most 2 log κ far apart from its
precedent special level, EvalfromPreg can be expressed as a circuit of depth at most 2 log κ. Similarly, we define a
function EvalfromPreout to be a function that computes the output value of C given output values gates of level LC as
input. Similarly, EvalfromPreout can be expressed as a circuit of depth at most 2 log κ.

An NP relation R ⊆ {0, 1}∗ × {0, 1}∗ is said to be a leveled relation if there exists a family {Cn,m : {0, 1}n ×
{0, 1}m → {0, 1}} of leveled circuits such that for x ∈ {0, 1}n and w ∈ {0, 1}m, we have Cn,m(x,w) = 1 if and only
if (x,w) ∈ R. In the following, we fix n andm, and omit the subscripts n andm from C for notational simplicity. For
x ∈ {0, 1}n, we let SGates[C(x, ·)] be the set of all gates ofC(x, ·) whose level is a special level. For a gate g ofC(x, ·),
we let sg be the output value of the gate g when C(x, ·) is evaluated on input w. We call w′ := (w, {sg}g∈SGates[C(x,·)])
an expanded witness of w w.r.t. x and C. It is easy to see that we have |w′| ≤ |w|+ |C|/ log κ since |SGates[C(x, ·)]|
is at most |C|/ log κ. Then we define an expanded circuit ExpCirC(x,·) for the expanded witness as follows.

ExpCirC(x,·)(w′): It parses (w, {sg}g∈SGates[C(x,·)]) ← w′. For all i ∈ SC , we denote the output values of gates
of level i (in a canonical order) by Si and we let S0 := w. For all gates g of a special level i ∈ SC , it
verifies if sg = EvalfromPreg(Spre(i)) holds, and returns 0 if this does not hold. If all check pass, it outputs
EvalfromPreout(SLC(x,·)).

It is easy to see that for any x ∈ {0, 1}n, there exists an expanded witness w′ such that ExpCirC(x,·)(w′) = 1 if and
only if there exists a witness w ∈ {0, 1}m such that C(x,w) = 1. We can implement ExpCirC(x,·) by a circuit of depth
at most 2 log κ+ log(|C|/ log κ+ 1). This can be seen by observing that ExpCirC(x,·) first computes EvalfromPreg for
at most |C|/ log κ different g and EvalfromPreout, each of which can be computed by a circuit of depth at most 2 log κ,
followed by taking the AND of them. Since the last AND is fan-in at most |C|/ log κ+ 1, this can be implemented by a
circuit of depth log(|C|/ log κ+ 1) and fan-in 2. Especially, if |C| = poly(κ), then there exists a constant c such that
ExpCirC(x,·) can be computed by a circuit of depth at most c log κ.

Then we instantiate the construction given in Appendix C.2 with the following setting.

• Let n(κ) and m(κ) be any fixed polynomials. Let L be an NP language defined by a leveled relation
R ⊆ {0, 1}∗×{0, 1}∗. Namely, there exists a leveled circuitC such that for all x ∈ {0, 1}n andw ∈ {0, 1}m, we
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have C(x,w) = 1 if and only if (x,w) ∈ R. We assume that ExpCirC(x,·) as defined in the previous paragraph
can be computed by a circuit of depth at most c log κ for a constant c for all x ∈ {0, 1}n.

• Let SKE = (SKE.KeyGen,SKE.Enc,SKE.Dec) be a symmetric key encryption scheme with ciphertext space
CT and key space {0, 1}` whose ciphertext overhead (i.e., ciphertext length minus message length) is poly(κ)
where poly is a polynomial independent of the message length, and whose decryption algorithm is computed by a
circuit of depth at most DDec(κ)

• For x ∈ {0, 1}n and ct ∈ CT , we define a function fx,ct(KSKE) := ExpCirC(x,·)(SKE.Dec(KSKE, ct)). We note
that the depth of fx,ct is at most c log κ+DDec(κ) for every x ∈ {0, 1}n and ct ∈ CT .

• Let HA = (HA.KeyGen,HA.Sign,HA.Eval,HA.VerifyFresh,HA.VerifyEvaled) be a compact HomAuth scheme
that supports all circuits of depth at most c log κ + DDec(κ). Recall that “compact” means that the size of an
evaluated signature is poly(κ) that does not depend on the message length or the function to evaluate.

• We set ct ← SKE.Enc(KSKE, w
′) instead of ct ← SKE.Enc(KSKE, w) where w′ is the expanded witness of w

w.r.t. x and C.
Since we simply changed the language to prove in the construction given in Appendix C.2, the security can be

proven similarly.
Proof Size. In the above construction, a proof consists of an encryption ct of the expanded witness w′ and an evaluated
signatures of ΠHA. The size of expanded witness is at most |w| + |C|/ log κ, and therefore the size of ct is at most
|w| + |C|/ log κ + poly(κ). The size of the signature is at most poly(κ) by the assumed compactness of ΠHA. In
summary, the proof size of the above scheme is at most |w|+ |C|/ log κ+ poly(κ).
Instantiations. The above scheme can be instantiated based on any compact HomAuth schemes. They include the
following schemes:

1. The HomMAC based on the CDHI assumption proposed by Catalano and Fiore [CF18].

2. The HomSig given in Section 4.2 based on the CDHER assumption. Since this scheme is publicly verifiable, we
can make the above scheme publicly verifiable (i.e., DP-NIZK).

3. The HomMAC given in Section 5 based on the DDH assumption. Though the HomMAC is not compact, we
can achieve sublinear proof size by using the technique presented in Appendix C.3 as sketched below. First, we
expand a witness w to generate an expanded witness w′ = (w, {sg}g∈SGates). Then C(x,w) can be computed as∏

g∈SGates
(1− (sg − EvalfromPreg(Spre(ig)))2) · (1− (1− EvalfromPreout(SLC(x,·)))

2)

where ig denotes g’s level. By using a similar trick to the one used in Appendix C.3, the condition thatC(x,w) = 1
is equivalent to the condition that

PC(x,·)(w′) := 1 +
∑

g∈SGates
(sg − EvalfromPreg(Spre(ig)))2 + (1− EvalfromPreout(SLC(x,·)))

2

= 1 mod p.

Since the degrees of EvalfromPreg EvalfromPreout are at most κ2 as they are implemented by a circuit of depth
at most 2 log κ, the degree of PC(x,·) is poly(κ), which does not depend on |C|. Hence, the degree of the
function that is evaluated on signatures in the construction of PP-NIZK is poly(κ), and thus the size of evaluated
signature is poly(κ). (Recall that the evaluated signature size in HomMAC given in Section 5 only depends
on the degree of the function, and does not depend on the size of the function.) Then the whole proof size is
|w|+ |C|/ log κ+ poly(κ).

4. The HomSig scheme based on the LWE assumption proposed by Gorubnov, Vaikuntanathan, and Wichs
[GVW15b] (or its variant by Kim and Wu [KW18a]). We note that since the HomSig of [GVW15b] supports all
polynomial-size circuits and have (weak)-compactness, the proof sizes of the original Kim-Wu construction with
the HomSig are |w|+ poly(κ, d) where d is the depth of the circuit computing the NP relation. Therefore, unless
d is very large, the conversion presented in this subsection may not be useful for the LWE-based HomSig scheme.
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C.5 Bounded to Unbounded PP-NIZK
Here, we briefly remark that we can convert any PP-NIZK for bounded languages to the one for unbounded languages.
Let L be an NP language defined by a relationR, which can be computed by a family of circuits {Cn,m}n,m∈N. Namely,
for all x ∈ {0, 1}n and w ∈ {0, 1}m, Cn,m(x,w) = 1 if and only if (x,w) ∈ R. We explain how to generate a proof
forR without a priori fixing n andm. Let ΠPPNIZK be a PP-NIZK for bounded languages, and we construct Π′PPNIZK,
which is a PP-NIZK for unbounded languages. To make this conversion, we additionally use a commitment scheme. The
main idea is as follows: The proving algorithm Π′PPNIZK given x ∈ {0, 1}n and w ∈ {0, 1}m, computes an expanded
witness {sg}g∈Gates where Gates is the set of all gates of Cn,m(x, ·), and sg is the output value of the gate g when
Cn,m(x, ·) is evaluated on the input w. Then it generates a commitment c of the expanded witness {sg}g∈Gates in a
bit-by-bit manner. Then it generates a proof of the consistency of {sg}g∈Gates for each gate of Cn,m(x, ·) by using the
proving algorithm of ΠPPNIZK. Here, each execution of the proving algorithm of ΠPPNIZK simply verifies that at most 3
committed values are consistent with the corresponding gate of C(x, ·). Especially, it is clear that the complexity of this
consistency check is independent of n andm. It is easy to reduce the soundness and the zero-knowledge property of
Π′PPNIZK to those of ΠPPNIZK and the security of the underlying commitment scheme.

D Homomorphic Authenticators with Online-Offline / Amortized Verifica-
tion Efficiency

In this section, we show that our HomSig construction for NC1 in Section 4.2 can be extended to the multi-data setting.
Furthermore, the construction provides online-offline and amortized verification efficiency. Notably, in the former, the
offline phase of the verification algorithm only consists of a constant number of pairing operations.

D.1 Multi-Data Homomorphic Authenticators
In this section, we provide the definition of a multi-data homomorphic authentication scheme with online-offline
efficiency [BFR13, GVW15b] and show that the HomAuth scheme in Section 4 satisfies this notion with minor
modifications. In a multi-data HomAuth scheme, each set of data is assigned a unique data set identifier ∆. The simple
HomAuth scheme we defined in Section 2.3 is referred to as a single-data HomAuth. The advantage of a multi-data
HomAuth over a single-data HomAuth is that the verifier only needs to perform work proportional to the circuit size
of C once to verify arbitrarily many signatures evaluated on C under different data set identifiers and signed by any
signers. Specifically, an online-offline efficient multi-data offers a much better amortized efficiency for the verifier.

Let {Xκ}κ∈N be a family of message spaces. Let {Cκ}κ∈N be a family of circuits, where Cκ is a set of polynomial
sized circuits with domain X `(κ)

κ and range Xκ whose depth is bounded by d(κ). In the following, we occasionally drop
the subscript when the meaning is clear. In case X = {0, 1}, we set C to be simply a family of boolean circuits.

Below, we define a single-shot multi-data homomorphic authenticator scheme. Let L ⊆ {0, 1}∗ be the set of data
set identifiers. Let {ΣFreshκ}κ∈N and {ΣEvaledκ}κ∈N be families of signature spaces, where each of them corresponds to
the output space of fresh signatures and evaluated signatures, respectively.

Definition D.1 (Multi-Data Homomorphic Authenticators). A multi-data homomorphic authenticator (HomAuth)
scheme ΠHA with message space X for the circuit class C is defined by the following algorithms:

HA.KeyGen(1κ, 1`)→ (vk, ek, sk): The key generation algorithm takes as input the security parameter 1κ and the
message length 1` and outputs a verification key vk, an evaluation key ek, and a signing key sk.

HA.Sign(sk,∆,x = (x1, · · · , x`))→ σ: The signing algorithm takes as input a signing key sk, a data set identifier
∆ ∈ L, and messages x ∈ X `, and outputs a signature σ ∈ ΣFresh.

HA.Eval(ek,∆, C,x,σ)→ σ: The signature-evaluation algorithm takes as input an evaluation key ek, a data set
identifier ∆ ∈ L, a circuit C : X ` → X in C, messages x ∈ X `, and a signature σ ∈ ΣFresh and outputs an
evaluated signature σ ∈ ΣEvaled.

68



HA.VerifyFresh(vk,∆,x,σ)→ > or ⊥: The fresh verification algorithm takes as input a verification key vk, a data
set identifier ∆ ∈ L, messages x ∈ X `, and a signature σ ∈ ΣFresh, and outputs > if the signature is valid and
outputs ⊥ otherwise.

HA.VerifyEvaled(vk,∆, C, z, σ)→ > or ⊥: The evaluated verification algorithm splits into a pair of algorithms
(HA.VerifyEvaledOffL, HA.VerifyEvaledOnL):

− HA.VerifyEvaledOffL(vk, C)→ vkC: The offline evaluated verification algorithm takes as input a verification
key vk and a circuit C : X ` → X in C, and outputs an evaluated verification key vkC .

− HA.VerifyEvaledOnL(vk′,∆, z, σ)→ > or ⊥: The online evaluated verification algorithm takes as input an
(evaluated) verification key vk′, a data set identifier ∆ ∈ L, a message z ∈ X , and a signature σ ∈ ΣEvaled,
and outputs > if the signature is valid and outputs ⊥ otherwise.

Correctness. We say a multi-data homomorphic authentication scheme ΠHA is correct, if for all κ ∈ N, ` ∈ poly(κ),
data set identifiers ∆ ∈ L, messages x = (x1, · · · , x`) ∈ X `, and (vk, ek, sk) ∈ HA.KeyGen(1κ, 1`) the following two
conditions hold:
(1) Signing Correctness: For all σ ∈ HA.Sign(sk,∆,x) in ΣFresh, we have

Pr[HA.VerifyFresh(vk,∆,x,σ) = >] = 1.

(2) Evaluation Correctness: For all circuits C ∈ C, signatures σ such that HA.VerifyFresh(vk,∆,x,σ) = >,
σ ∈ HA.Eval(ek,∆, C,x,σ) in ΣEvaled, and vkC ∈ HA.VerifyEvaledOffL(vk, C) we have

Pr[HA.VerifyEvaledOnL(vkC ,∆, C(x), σ) = >] = 1.

Compactness and Online-offline Efficiency. We say a multi-data HomAuth scheme ΠHA is compact if there exists
a universal polynomial poly(·) such that for all valid fresh data set identifier-message-signature pair (∆,x,σ) ∈
L × X ` × ΣFresh and circuit C ∈ C, the size of the evaluated signature σC ← HA.Eval(ek,∆, C,x,σ) satisfies
|σC | ≤ poly(κ). We say ΠHA is weakly-compact if |σC | ≤ poly(κ, d) instead, where d is the maximum depth of the
circuit in C.

Furthermore, we say ΠHA is online-offline efficient if there exists a universal polynomial poly(·) such that the running
time of HA.VerifyEvaledOnL(vkC ,∆, C(x), σC) is poly(κ) for any data set identifier ∆ ∈ L, messages x ∈ X `,
circuit C ∈ C, signatures σ such that HA.VerifyFresh(vk,∆,x,σ) = >, σC ∈ HA.Eval(ek,∆, C,x,σ) in ΣEvaled, and
evaluated verification key vkC ∈ HA.VerifyEvaledOffL(vk, C). Notably, regardless of the associated data set identifier,
the time it takes to verify an evaluated signature on circuit C should be much smaller than the time it takes to compute
C once the verification key has been preprocessed. Here, we allow the running time of the offline phase, i.e., the
time it takes to run vkC ← HA.VerifyEvaledOffL(vk, C), to depend on the time it takes to compute C. Above, in
case the running time is bounded by poly(κ, d), where d is the maximum depth of the circuit in C, we say it is weakly
online-offline efficient.

(Single-Shot) Unforgeability. We now define single-shot multi-data unforgeability for a HomAuth scheme, where
the adversary must declare the challenge messages all at once. Below we assume that checking membership of
C,ΣFresh,ΣEvaled can be done efficiently. The security notion is defined formally by the following game between a
challenger and an adversary A.

Setup: At the beginning of the game, the adversary A is given 1κ as input and sends 1` to the challenger. Then the
challenger generates a key pair (vk, ek, sk)← HA.KeyGen(1κ, 1`) and gives ek to A. In case it is an HomSig
scheme, i.e., the signatures are publicly verifiable, then the challenger further provides vk to A. Finally, the
challenger prepares an empty list T .

Signing Query: The adversary A can ask an arbitrary number of signing queries. In each query, A submits a set of
messages x ∈ X ` and a data set identifier ∆ ∈ L to be signed. If ∆ ∈ T , the challenger aborts. Otherwise, the
challenger responds by creating a signature σ ← HA.Sign(sk,∆,x) and sends σ ∈ ΣFresh to A. Finally, the
challenger adds ∆ to T .
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Verification Query: The adversaryAmay adaptively query a data set identifier-message-signature(-circuit) pair. When
the query is of type (∆,x,σ) ∈ L×X `×ΣFresh, the challenger returns the output of HA.VerifyFresh(vk,∆,x,σ).
When the query is of type (∆, z, σ, C) ∈ L × X × ΣEvaled × C, the challenger returns the output of
HA.VerifyEvaled(vk,∆, C, z, σ). For any other types of queries, the challenger returns ⊥.13

Forgery: Then the adversary A outputs a circuit C?, a data set identifier ∆?, a message z? ∈ X , and a signature σ? as
the forgery. We say that A wins the game if C? ∈ C, σ? ∈ ΣEvaled, HA.VerifyEvaled(vk,∆?, C?, z?, σ?) = >
and either:

− Type 1 forgery: ∆? /∈ T , i.e., no signing query with label ∆? was ever made.
− Type 2 forgery: ∆? ∈ T and C?(x) 6= z?, where x is the associated message of the data set identifier ∆?

which was submitted by the adversary during the signing query, i.e., a signing query with label (∆?,x) was
made, but the verified signature verifies on a false evaluation output.

The advantage of an adversary winning the above game is defined by Pr[A wins], where the probability is taken over
the randomness used by the challenger and the adversary. A multi-data homomorphic authenticator scheme ΠHA is said
to satisfy (single-shot) statistical unforgeability if the advantage of any (possibly inefficient) adversary A is negligible.
In case it only holds for adversaries that are computationally bounded, we say it satisfies computational unforgeability.

Context-Hiding. We now define context-hiding for a multi-data HomAuth scheme. Since our proposed scheme
satisfies the stronger statistical notion of context-hiding, we only provide a simulation-based notion for succinctness of
presentation. The computational variant can be defined similarly to the single-data definition in Section 2.3.

A multi-data homomorphic authenticator scheme ΠHA is statistically context-hiding if for all κ ∈ N, ` ∈ poly(κ),
there exists a PPT simulator HA.Sim such that, for any (vk, ek, sk) ∈ HA.KeyGen(1κ, 1`), C ∈ C, ∆ ∈ L, and any pair
(x, z) ∈ {(x, z) ∈ X ` ×X | C(x) = z}, σ ∈ HA.Sign(sk,∆,x), we have

{σ ← HA.Eval(ek,∆, C,x,σ)} stat
≈ {σ ← HA.Sim(vk, ek, sk,∆, C, z)},

where the probability is only over the randomness used by the HA.Eval and HA.Sim algorithm. If the above distributions
are exactly the same, we say that the scheme is perfectly context-hiding.

D.2 Construction of Homomorphic Signatures with Online-Offline Efficiency
In this section, we provide a construction of multi-data FHS for NC1 circuits from the CDHER assumption. The circuit
class dealt with by our scheme here is exactly the same as that in Section 4.2, i.e., CNC1 = {CNC1

κ,d,`,s}κ∈N.
Preparation. We first prepare the definition of pseudorandom functions (PRFs) and digital signature schemes, which
we use in our construction of multi-data HomSig.

DefinitionD.2 (PseudorandomFunction). A pseudorandom function is defined by a PPT algorithmPRF : K×X → Y ,
where K, X , and Y are sets (implicitly) parameterized by the security parameter κ, and we further assume K is an
efficiently sampleable set. We say PRF is pseudorandom if the following holds for all PPT adversary A:∣∣∣Pr[APRF(K,·)(1κ)→ 1] − Pr[AO(·)(1κ)→ 1]

∣∣∣ ,
where O : X → Y is a random function that returns uniformly random elements over Y .

Definition D.3 (Digital Signatures). A digital signature scheme with message space {0, 1}` is a triple of polynomial
time algorithms DS = (DS.KeyGen, DS.Sign, DS.Vrfy) of the following form:

DS.KeyGen(1κ) → (DS.vk,DS.sk) : The key generation algorithm takes as input the security parameter 1κ and
outputs a verification key DS.vk and signing key DS.sk.

13 Note that if we consider an HomSig scheme, this item can be dismissed since the verification step can be executed by the adversary himself.
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DS.Sign(DS.sk, x)→ σDS : The signing algorithm takes as inputs the signing key DS.sk and message x ∈ {0, 1}`,
and outputs a signature σDS.

DS.Vrfy(DS.vk, x, σDS)→ > or ⊥ : The verification algorithm takes as inputs the verification key DS.vk, message
x ∈ {0, 1}` and signature σDS, and outputs > if the signature is valid and outputs ⊥ otherwise.

Correctness. We say a digital signature scheme is correct if for all κ,` ∈ poly(κ), messages x ∈ {0, 1}`,
(DS.vk,DS.sk) ∈ DS.KeyGen(1κ), σDS ∈ DS.Sign(DS.sk, x), we have DS.Vrfy(DS.vk, x, σDS) = >.
Eu-cma Security. The security notion of existential unforgeability under an adaptive chosen message attack (eu-cma) is
defined by the following game between an adversary A and a challenger.

Setup: The challenger runs (DS.vk,DS.sk)← DS.KeyGen(1κ) and provides A the verification key DS.vk.

Signature Queries: When A submits a message x ∈ {0, 1}`, the challenger responds by returning σDS ←
DS.Sign(DS.sk, x).

Output: Finally, A outputs a pair (x?, σ?DS). The adversary A wins if DS.Vrfy(DS.vk, x?, σ?DS) = > and x∗ was not
submitted by A as a signature query.

We define the advantage of an adversaryA as the probability thatA wins the above game, where the probability is taken
over the randomness used by the challenger and the adversary. A digital signature scheme is called eu-cma secure if the
advantage of the above game is negligible for all PPT adversaries.

Construction of Multi-Data HomSig. Let PRF(·, ·) : K × L → Zp be a pseudorandom function, where K is the key
space. In addition, let DS = (DS.KeyGen,DS.Sign,DS.Vrfy) be a signature scheme and `DS := `DS(κ) be the bit
length of signatures in the scheme. In the following each signature spaces ΣFresh and ΣEvaled are set asG×Zp×{0, 1}`DS

and G4 × {0, 1}`DS × {0, 1}, respectively. We assume that DS.Sign is deterministic. This can be assumed without loss
of generality, since the signing algorithm of any signature scheme can be derandomized by a PRF. Then our construction
of online/offline efficient multi-data HomSig is provided as follows:

HS.KeyGen(1κ, 1`): On input the security parameter 1κ and the message length 1`, sample the group description
G = (G,GT , p, g, e(·, ·))← BGGen(1κ). Then, sample K $← K, (DS.vk,DS.sk) $← DS.KeyGen(1κ), a← Zp,
and bi, ci ← Z∗p for i ∈ [n] and output

HS.vk =


{
ga

j
}
j∈[m]

, {gci}i∈[n] ,
{
ga

j/bi

}
i∈[n],j∈[2m]
j 6=m+1

,
{
ga

m+1ci′/bici

}
i,i′∈[n],i6=i′

,

DS.vk, {gaci}i∈[n] ,
{
ga

j/bici

}
i∈[n],j∈[2m+1]

,
{
ga

jci′/bi

}
i,i′∈[n],j∈[m]

 (9)

and

HS.sk =
(
K,DS.sk, a, {bi, ci}i∈[n]

)
.

For notational simplicity, we assume the group description G is implicitly included both in HS.vk and HS.sk.

HS.Sign(HS.sk,∆,x = (x1, · · · , x`)): On input ∆ ∈ L and x ∈ {0, 1}`, first compute u := PRF(K,∆) and gu. Then,
run σDS

$← DS.Sign(DS.sk, gu‖∆) and EncInp(x) = y ∈ {0, 1}n and compute ũ ∈ Zp as

ũ = u−
∑
i∈[n]

yi ·
(
am+1/bici

)
, (10)

where yi ∈ {0, 1} is the i-th bit of y. Finally, output σ = (gu, ũ, σDS) ∈ ΣFresh.

HS.Eval(HS.vk,∆, C,x,σ): If x 6∈ {0, 1}`, ∆ /∈ L, C 6∈ CNC1 or σ = (gu, ũ, σDS) 6∈ ΣFresh, abort. Otherwise,
compute z = C(x) ∈ {0, 1} and construct the circuit C̃z ∈ C̃NC

1 defined as in Section 4.2, i.e., C̃z(x) outputs
the bool-value of (C(x) ?= z). Here, we have C̃z(x) = 1 by construction. Then, run EncInp(x) = y ∈ {0, 1}n
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and EncCir(C̃z) = M ∈ Zn×mp . By Lemma 4.5, y does not satisfy the span program M since C̃z(x) = 1.
Then find a vector d = (d1, . . . , dm)> ∈ Zmp such that d1 = −1 and 〈Mi,d〉 = 0 for all i ∈ [n] satisfying
yi = 0, where Mi is the i-th row of M. Note that such a vector exists and can be found efficiently due to
Lemma 4.4. Then pick r̃ $← Zp and compute K1, K2, and K3 as Eq. (2), (3), and (4) in Section 4.2. Finally,
output σ = (K1,K2,K3, g

u, σDS, z) ∈ ΣEvaled.

HS.VerifyFresh(HS.vk,x,∆,σ): Output ⊥ if x 6∈ {0, 1}` or σ = (gu, ũ, σDS) 6∈ ΣFresh. Otherwise, first run
EncInp(x) = y ∈ {0, 1}n. Then, check the following condition:

gu
?= gũ ·

∏
i∈[n]

(
ga

m+1/bici

)yi

, DS.Vrfy(DS.vk, gu‖∆, σDS) ?= >,

where yi ∈ {0, 1} is the i-th bit of y. If they hold output >, otherwise output ⊥.

HS.VerifyEvaledOffL(HS.vk, C): Output ⊥ if C 6∈ CNC1 . Otherwise, construct the circuit C̃z ∈ C̃NC
1 and run

EncCir(C̃z) = Mz ∈ Zn×mp for z ∈ {0, 1}. Then compute e(g, g)am+1 = e(ga, gam) and

Vz :=
∏

i∈[n],j∈[m]

(
ga

j/bi

)Mz,i,j

for z ∈ {0, 1}, whereMz,i,j is the (i, j)-th entry of Mz . Finally output HS.vkC = (ga, e(g, g)am+1
, V0, V1).

HS.VerifyEvaledOnL(HS.vkC ,∆, z, σ): Parse HS.vkC = (e(g, g)am+1
, V0, V1) and σ = (K1,K2,K3, g

u, σDS, z
′)

and output ⊥ if any of the following holds: z 6∈ {0, 1}, z 6= z′, and σ 6∈ ΣEvaled. Then, check the following
conditions:

e (K1, g
u · Vz)

?= e(K3, g), e(g,K2) · e(ga,K1)−1 ?= e(g, g)a
m+1

,

DS.Vrfy(DS.vk, gu‖∆, σDS) ?= >.

If the above equations hold, output >. Otherwise output ⊥.

Correctness. The correctness follows from that of DS and by a similar argument to the case of single-data scheme.
Online-Offline Efficiency. We can see that the online phase of the verification algorithm roughly consists of only 4
pairing computations plus the execution of DS.Vrfy, which is independent from the size of the circuit. For example, if
we instantiate DS with the Waters’ signature scheme [Wat05], the total cost of the verification in the online phase will
be about 6 pairing computations.

D.3 Security Proof
Here, we prove that our construction is context-hiding and single-shot unforgeable.

Theorem D.4. Our construction is perfectly context-hiding.

Proof. To show the context-hiding property, we first construct the homomorphic signature simulator HS.Sim as follows:

HS.Sim(HS.vk,HS.sk,∆, C, z) :On input the signing keyHS.sk, a data identifier∆, a circuitC ∈ CNC1 , and amessage
z ∈ {0, 1}, it first constructs the circuit C̃z ∈ C̃NC

1 associated to circuitC. Then, it computes EncCir(C̃z) = M ∈
Zn×mp . It also computes u = PRF(K,∆) and σDS = DS.Sign(DS.sk, gu‖∆). It then picks r $← Zp and computes
and (K1,K2,K3) as Eq. (5) in Theorem 4.6. Finally, it outputs σ = (K1,K2,K3, g

u, σDS, z) ∈ ΣEvaled.

We now proceed to show that this simulator HS.Sim satisfies the required conditions. Namely, the distribution of σ output
from HS.Sim(HS.vk,HS.sk,∆, C, z) and that output from HS.Eval(HS.vk, C,x,σ) for σ ∈ HS.Sign(HS.sk,∆,x) are
exactly the same. We first observe that u is uniquely defined from HS.sk and ∆. This then implies that σDS is uniquely
defined from HS.sk and ∆, where we use our assumption that the signing algorithm DS.Sign is deterministic. Then by
exactly the same proof as Theorem 4.6, it can also be seen that the distribution of (K1,K2,K3) computed as Eq. (5)
and that computed as Eq. (2), (3), and (4) are exactly the same. This concludes the proof of the theorem.
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Theorem D.5. Our construction satisfies single-shot unforgeability assuming that DS is eu-cma secure, PRF is
pseudorandom, and the (n,m)-CDHER assumption holds.

Proof. We prove the single-shot unforgeability of our multi-data HomSig scheme in Appendix D.2 assuming single-shot
partial adaptive unforgeability (See Remark 4.8 for the definition) of our single-data FHS scheme in Section 4.2 and
unforgeability of DS. We consider two types of forgery, namely, Type A and Type B. The Type A forgery is of the form
(C?,∆?, z?, σ? = (K?

1 ,K
?
2 ,K

?
3 , g

u?

, σ?DS, z
?)) where ∆? 6∈ T or ∆? ∈ T ∧ u? 6= PRF(K,∆?). On the other hand,

a Type B forgery satisfies ∆? ∈ T ∧ u? = PRF(K,∆?) and C?(x) 6= z?, where x is the corresponding message to
the signing query for ∆?. Let EA and EB be the event that an adversary A succeeds in generating Type A and Type B
forgeries, respectively. Since Type A and B forgeries cover all cases of the forgery, it suffices to show Pr[EA] ≤ negl(κ)
and Pr[EB] ≤ negl(κ) for any PPT adversary A.

Lemma D.6. We have Pr[EA] = negl(κ) assuming DS is eu-cma secure.

Proof. To prove the lemma, it suffices to show that there exists a PPT algorithm B that breaks eu-cma security of DS
with probability Pr[EA]. The description of B is as follows.

At the beginning of the game, B is given DS.vk from its challenger. Then, B chooses K $← K, a ← Zp, and
bi, ci ← Z∗p for i ∈ [n] and sets the verification key HS.vk as Eq. (9). Then, B gives HS.vk to A. During the
game, A makes signing queries. When A makes a query for (x,∆), B returns ⊥ if ∆ ∈ T . Otherwise, it computes
u = PRF(K,∆) and makes a signing query for gu‖∆ to its challenger. Given σDS from the challenger, B computes ũ as
Eq. (10) and returns σ = (gu, ũ, σDS) toA. At the end of the game, the adversaryA outputs a forgery (C?,∆?, z?, σ?).
Then, B checks C? ∈ C, σ? ∈ ΣEvaled, HS.VerifyEvaled(vk,∆?, C?, z?, andσ?) = >, and aborts if they do not hold.
It further checks whether ∆? 6∈ T or u? 6= PRF(K,∆?), and aborts if they do not hold. If both conditions hold, B
parses σ? → (K?

1 ,K
?
2 ,K

?
3 , g

u?

, σ?DS, z
?) and outputs (gu?‖∆?, σ?DS) as its forgery.

It is easy to observe that B wins the game if and only if A generates a Type A forgery. Furthermore, B’s simulation
is perfect. This concludes the proof of the lemma.

Lemma D.7.We have Pr[EB] = negl(κ) assuming our single-data HomSig scheme in Section 4.2 is partial adaptive
unforgeable and PRF is pseudorandom.

Proof. We show the lemma by considering the following sequence of games. In the following, let E′i denote the event
that the challenger outputs 1 in Gamei.

Game0: This game is the single-shot unforgeability game for multi-data HomSig. At the end of the game, the challenger
outputs 1 if and only if A succeeds in generating a Type B forgery. By definition, we have Pr[E′0] = Pr[EB].

Game1: This game is the same as the previous game, but the challenger uses a truly random function instead of
PRF(K, ·) to derive u for each signing query. In more details, the challenger prepares an empty list Q at the
beginning of the game. Then, when A makes a signing query for (x,∆) such that ∆ 6∈ T , the challenger samples
u

$← Zp and use the value to generate the signature. The challenger also adds (∆, gu) to Q. At the end of the
game, A outputs a forgery (C?,∆?, z?, σ?). The challenger outputs 1 if and only if the forgery satisfies the
winning condition of the single-shot unforgeability game and (∆?, gu

?) ∈ Q. By a straightforward reduction to
the security of PRF, we have Pr[E′1] ≥ Pr[E′0]− negl(κ).

Game2: In this game, we change the way the challenger samples u in order to answer signing queries. Given a signing
query (x,∆), the challenger first chooses ũ $← Zp and defines u as

u = ũ+
∑
i∈[n]

yi ·
(
am+1/bici

)
.

Then, σ = (gu, ũ, σDS) is returned toA. We can see that this change is only conceptual since the joint distribution
of (u, ũ) is unchanged. More specifically, u is distributed uniformly at random over Zp and ũ satisfy Eq. (10) in
both games. We therefore have Pr[E′2] = Pr[E′1].
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Game3: In this game, the challenger randomly chooses i? $← [qs] at the beginning of the game, where qs is the
upper-bound on the number of signing queries made by A. Then, at the end of the game, the challenger checks
whether the i?-th signing query made by A is of the form (∆,x) such that ∆ = ∆?. If this does not hold, the
challenger aborts without outputting anything. Otherwise, the challenger outputs the same bit as the previous
game. Since i? is independent from the view of A, we have Pr[E′3] = Pr[E′2]/qs.

In order to finish the proof of the lemma, it remains to prove Pr[E′3] ≤ negl(κ). To do so, we replace the challenger
in Game3 with an adversary B against the partial adaptive unforgeability of our single-data HomSig scheme with
advantage Pr[E′3]. The adversary B proceeds as follows.

At the beginning of the game, B is given ({gaj}j , {gci}i, {ga
j/bi}i,j,j 6=m+1, {ga

m+1ci′/bici}i,i′,i6=i′ , {gaci}i,
{gaj/bici}i,j , {ga

jci′/bi}i,i′,j) as the partial verification key of the single-data HomSig scheme. Then, B runs
(DS.vk,DS.sk) $← DS.KeyGen(1κ) and sets the verification key HS.vk of the multi-data HomSig scheme as Eq. (9).
Then, B gives HS.vk to A. B then prepares empty sets T and Q and chooses i? $← [qs].

During the game, A makes signing queries. B answers the queries as follows.

• For the i-th query (∆,x) such that i 6= i?, B returns ⊥ if ∆ 6∈ T . Otherwise, it first chooses ũ $← Zq , computes
y = EncInp(x), and sets

gu := gũ ·
∏
i∈[n]

(
ga

m+1/bici

)yi

,

where the terms {gam+1/bici} are taken from the partial verification key. Then it runs DS.Sign(DS.sk, gu‖∆)→
σDS and returns σ = (gu, ũ, σDS) to A. It also adds (∆, gu) and ∆ to Q and T , respectively.

• For the i?-th query (∆,x), B returns⊥ if∆ ∈ T . Otherwise, B submits x to its challenger as target and is given gu.
Then, B makes a signing query for its challenger and is given ũ. Finally, it runs DS.Sign(DS.sk, gu‖∆)→ σDS
and returns σ = (gu, ũ, σDS) to A. It also adds (∆, gu) and ∆ to Q and T , respectively.

Finally, A outputs a forgery (C?,∆?, z?, σ? = (K?
1 ,K

?
2 ,K

?
3 , g

u?

, σ?DS, z
?)). B checks whether C? ∈ C, σ? ∈ ΣEvaled,

HS.VerifyEvaled(vk,∆?, C?, z?, σ?) = > and aborts if any of them does not hold. Otherwise, it also checks whether
the i?-th signing query was of the form (∆,x) such that ∆ = ∆?, (∆?, gu

?) ∈ Q, and C?(x) 6= z?. If they do not
hold, it aborts. Otherwise, it outputs (K?

1 ,K
?
2 ,K

?
3 , z

?) as its forgery.
It is easy to see that B outputs a forgery iff E′3 occurs. Furthermore, B perfectly simulates Game3. Therefore,

assuming the partial adaptive unforgeability of the single-data scheme, we have Pr[E′3] ≤ negl(κ).

This completes the proof of the theorem.
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