17 research outputs found

    Iterative recovery of controllability via maximum matching

    Get PDF

    Labeled Nearest Neighbor Search and Metric Spanners via Locality Sensitive Orderings

    Get PDF
    Chan, Har-Peled, and Jones [SICOMP 2020] developed locality-sensitive orderings (LSO) for Euclidean space. A (τ,ρ)(\tau,\rho)-LSO is a collection Σ\Sigma of orderings such that for every x,yRdx,y\in\mathbb{R}^d there is an ordering σΣ\sigma\in\Sigma, where all the points between xx and yy w.r.t. σ\sigma are in the ρ\rho-neighborhood of either xx or yy. In essence, LSO allow one to reduce problems to the 11-dimensional line. Later, Filtser and Le [STOC 2022] developed LSO's for doubling metrics, general metric spaces, and minor free graphs. For Euclidean and doubling spaces, the number of orderings in the LSO is exponential in the dimension, which made them mainly useful for the low dimensional regime. In this paper, we develop new LSO's for Euclidean, p\ell_p, and doubling spaces that allow us to trade larger stretch for a much smaller number of orderings. We then use our new LSO's (as well as the previous ones) to construct path reporting low hop spanners, fault tolerant spanners, reliable spanners, and light spanners for different metric spaces. While many nearest neighbor search (NNS) data structures were constructed for metric spaces with implicit distance representations (where the distance between two metric points can be computed using their names, e.g. Euclidean space), for other spaces almost nothing is known. In this paper we initiate the study of the labeled NNS problem, where one is allowed to artificially assign labels (short names) to metric points. We use LSO's to construct efficient labeled NNS data structures in this model

    LIPIcs, Volume 274, ESA 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 274, ESA 2023, Complete Volum

    Efficient Data-Oblivious Computation

    Get PDF
    The rapid increase in the amount of data stored by cloud servers has resulted in growing privacy concerns for users. First, although keeping data encrypted at all times is an attractive approach to privacy, encryption may preclude mining and learning useful patterns from data. Second, companies are unable to distribute proprietary programs to other parties without risking the loss of their private code when those programs are reverse engineered. A challenge underlying both those problems is that how data is accessed — even when that data is encrypted — can leak secret information. Oblivious RAM is a well studied cryptographic primitive that can be used to solve the underlying challenge of hiding data-access patterns. In this dissertation, we improve Oblivious RAMs and oblivious algorithms asymptotically. We then show how to apply our novel oblivious algorithms to build systems that enable privacy-preserving computation on encrypted data and program obfuscation. Specifically, the first part of this dissertation shows two efficient Oblivious RAM algorithms: 1) The first algorithm achieves sub-logarithmic bandwidth blowup while only incurring an inexpensive XOR computation for performing Private Information Retrieval operations, and 2) The second algorithm is the first perfectly-secure Oblivious Parallel RAM with O(log3N)O(\log^3 N ) bandwidth blowup, O((logm+loglogN)logN)O((\log m + \log \log N)\log N) depth blowup, and O(1)O(1) space blowup when the PRAM has mm CPUs and stores NN blocks of data. The second part of this dissertation describes two systems — HOP and GraphSC — that address the problem of computing on private data and the distribution of proprietary programs. HOP is a system that achieves simulation-secure obfuscation of RAM programs assuming secure hardware. It is the first prototype implementation of a provably secure virtual black-box (VBB) obfuscation scheme in any model under any assumptions. GraphSC is a system that allows cloud servers to run a class of data-mining and machine-learning algorithms over users’ data without learning anything about that data. GraphSC brings efficient, parallel secure computation to programmers by allowing them to express computation tasks using the GraphLab abstraction. It is backed by the first non-trivial parallel oblivious algorithms that outperform generic Oblivious RAMs

    On algorithms for large-scale graph and clustering problems

    Get PDF
    Gegenstand dieser Arbeit sind algorithmische Methoden der modernen Datenanalyse. Dabei werden vorwiegend zwei übergeordnete Themen behandelt: Datenstromalgorithmen mit Kompressionseigenschaften und Approximationsalgorithmen für Clusteringverfahren. Datenstromalgorithmen verarbeiten einen Datensatz sequentiell und haben das Ziel, Eigenschaften des Datensatzes (approximativ) zu bestimmen, ohne dabei den gesamten Datensatz abzuspeichern. Unter Clustering versteht man die Partitionierung eines Datensatzes in verschiedene Gruppen. Das erste dargestellte Problem betrifft Matching in Graphen. Hier besteht der Datensatz aus einer Folge von Einfüge- und Löschoperationen von Kanten. Die Aufgabe besteht darin, die Größe des so genannten Maximum Matchings so genau wie möglich zu bestimmen. Es wird ein Algorithmus vorgestellt, der, unter der Annahme, dass das Matching höchstens die Größe k hat, die exakte Größe bestimmt und dabei k² Speichereinheiten benötigt. Dieser Algorithmus lässt sich weiterhin verwenden um eine konstante Approximation der Matchinggröße in planaren Graphen zu bestimmen. Des Weiteren werden untere Schranken für den benötigten Speicherplatz bestimmt und eine Reduktion von gewichtetem Matching zu ungewichteten Matching durchgeführt. Anschließend werden Datenstromalgorithmen für die Nachbarschaftssuche betrachtet, wobei die Aufgabe darin besteht, für n gegebene Mengen die Paare mit hoher Ähnlichkeit in nahezu Linearzeit zu finden. Dabei ist der Jaccard Index |A ∩ B|/|A U B| das Ähnlichkeitsmaß für zwei Mengen A und B. In der Arbeit wird eine Datenstruktur beschrieben, die dies erstmalig in dynamischen Datenströmen mit geringem Speicherplatzverbrauch leistet. Dabei werden Zufallszahlen mit nur 2-facher Unabhängigkeit verwendet, was eine sehr effiziente Implementierung ermöglicht. Das dritte Problem befindet sich an der Schnittstelle zwischen den beiden Themen dieser Arbeit und betrifft das k-center Clustering Problem in Datenströmen mit einem Zeitfenster. Die Aufgabe besteht darin k Zentren zu finden, sodass die maximale Distanz unter allen Punkten zu dem jeweils nächsten Zentrum minimiert wird. Ergebnis sind ein 6-Approximationalgorithmus für ein beliebiges k und ein optimaler 4-Approximationsalgorithmus für k = 2. Die entwickelten Techniken lassen sich ebenfalls auf das Durchmesserproblem anwenden und ermöglichen für dieses Problem einen optimalen Algorithmus. Danach werden Clusteringprobleme bezüglich der Jaccard Distanz analysiert. Dabei sind wieder eine Menge N von Teilmengen aus einer Grundgesamtheit U sind und die Aufgabe besteht darin eine Teilmenge CC zu finden, die max 1-|X ∩ C|/|X U C| minimiert. Es wird gezeigt, dass zwar eine exakte Lösung des Problems NP-schwer ist, es aber gleichzeitig eine PTAS gibt. Abschließend wird die weit verbreitete lokale Suchheuristik für k-median und k-means Clustering untersucht. Obwohl es im Allgemeinen schwer ist, diese Probleme exakt oder auch nur approximativ zu lösen, gelten sie in der Praxis als relativ gut handhabbar, was andeutet, dass die Härteresultate auf pathologischen Eingaben beruhen. Auf Grund dieser Diskrepanz gab es in der Vergangenheit praxisrelevante Datensätze zu charakterisieren. Für drei der wichtigsten Charakterisierungen wird das Verhalten einer lokalen Suchheuristik untersucht mit dem Ergebnis, dass die lokale Suchheuristik in diesen Fällen optimale oder fast optimale Cluster ermittelt

    35th Symposium on Theoretical Aspects of Computer Science: STACS 2018, February 28-March 3, 2018, Caen, France

    Get PDF

    The Power Of Locality In Network Algorithms

    Get PDF
    Over the last decade we have witnessed the rapid proliferation of large-scale complex networks, spanning many social, information and technological domains. While many of the tasks which users of such networks face are essentially global and involve the network as a whole, the size of these networks is huge and the information available to users is only local. In this dissertation we show that even when faced with stringent locality constraints, one can still effectively solve prominent algorithmic problems on such networks. In the first part of the dissertation we present a natural algorithmic framework designed to model the behaviour of an external agent trying to solve a network optimization problem with limited access to the network data. Our study focuses on local information algorithms --- sequential algorithms where the network topology is initially unknown and is revealed only within a local neighborhood of vertices that have been irrevocably added to the output set. We address both network coverage problems as well as network search problems. Our results include local information algorithms for coverage problems whose performance closely match the best possible even when information about network structure is unrestricted. We also demonstrate a sharp threshold on the level of visibility required: at a certain visibility level it is possible to design algorithms that nearly match the best approximation possible even with full access to the network structure, but with any less information it is impossible to achieve a reasonable approximation. For preferential attachment networks, we obtain polylogarithmic approximations to the problem of finding the smallest subgraph that connects a subset of nodes and the problem of finding the highest-degree nodes. This is achieved by addressing a decade-old open question of Bollobás and Riordan on locally finding the root in a preferential attachment process. In the second part of the dissertation we focus on designing highly time efficient local algorithms for central mining problems on complex networks that have been in the focus of the research community over a decade: finding a small set of influential nodes in the network, and fast ranking of nodes. Among our results is an essentially runtime-optimal local algorithm for the influence maximization problem in the standard independent cascades model of information diffusion and an essentially runtime-optimal local algorithm for the problem of returning all nodes with PageRank bigger than a given threshold. Our work demonstrates that locality is powerful enough to allow efficient solutions to many central algorithmic problems on complex networks
    corecore