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Abstract— Controllability is significant for dynamical sys-
tems, and iterative recovery of controllability is indispensable
sometimes. We consider any large, sparse Erdős-Rényi random
digraph with a linear time-invariant control model as an
input graph, obtained by adding one node to an original
random digraph, and we seek to recover its controllability via
efficiently identifying a maximum matching of it rather than
recomputation. Particularly, we assume that any input graph
contains a known matching that is a maximum matching of
the original random digraph. In our solution, we depend on a
bipartite graph one-to-one mapped by an input digraph to find
its augmenting paths relative to a matching corresponding to
the known matching of the input graph. By finding augmenting
paths within this mapped bipartite graph, we eventually find
a maximum matching and recover the controllability of this
input digraph in linear time as a result.

I. INTRODUCTION

Complex networks at the influential position have been
over decades [1] [2] [3] [4], which influence us to further
control [5] and observe [6] networked systems. Because the
linear time-invariant(LTI) systems could change over time
due to malicious attack, random failure or insertion and
deletion of new system nodes or edges, their digraphs would
also be changed by additions or deletions of nodes or edges.
Clearly, efficient recovery of controllability of a digraph in
LTI systems after each change is essential, so that iterative
recovery of controllability can be effectively executed. We
solve the problem of recovery of controllability of a digraph
after an addition of one node with the worse-case complexity.
Our contribution is faster recovery of controllability in linear
time compared with related work of [24] [25] [26] [27].

Based on the Kalman’s control theory [7] and Lin’s struc-
tural controllability [8], Liu et al [5] raised the minimum
input theorem to give a powerful mechanism of effectively
obtaining the minimum number of external inputs to fully
control a digraph in linear time-invariant systems via the
maximum matching. A matching of a digraph is a set of
arcs without sharing any common head or tail, when this set
is not a subset of any other matching set, it is a maximum
matching [9]. If a node is a head of an arc of a maximum
matching, it is called a matched node based on this maximum
matching, otherwise, it is unmatched.

According to the minimum input theorem [5], continu-
ously or iteratively identifying a maximum matching of a
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digraph under malicious attack can be used to reflect the
fluctucation of controllability during the period of deletions
of nodes or edges and further quantitatively illustrate the
robustness of network controllability against malicious at-
tacks [10] [11] [12]. On the other hand, optimising network
controllability [13] [14] also needs to iteratively calculating a
maximum matching of the latest improved digraph to check
whether the controllability is satisfying or not. However, any
best-known maximum matching algorithms [15] [16] is not
efficient to reuse over times. Thus, our problem proposed to
be solved by efficiently finding a maximum matching of an
digraph after addition of one node withour recomputation.

We assume that any given large, sparse Erdős-Rényi
random input digraph of linear time-invariant dynamics is
generated by adding one node and relative arcs into an
original random digraph, where existence of edges between
added node and the original digraph depends on the edge
existence probability [17] of this original random digraph,
and this original digraph also contains a known maximum
matching. To find a maximum matching of an input digrph,
we use a bipartite representation of it to find augmenting
paths [18] [19] related to a matching mapped by the known
one of the input graph. In the worst case, we could finally
obtain a maximum matching of an input digraph, and recover
its controllability in linear time, so as to iteratively recover
controllability of each digraph after an addition of one node
could be effectively operated.

Remaining paper is structured as follows: Sec.II shows
related work about controllability and maximum match-
ing problems. Sec.III illustrates the network controllability.
Sec.IV introduces input graphs and augmenting paths. Sec.V
recoveries controllability of an input digraph. Last section
concludes this paper.

II. RELATED WORK

Controllability of LTI systems could be approached and
recovered by several ways. One is by the maximum matching
of the digraph of a LTI system [5] as a way to obtain
complete controllability. And another way is by the power
dominating set [20] to firstly obtain structural controllability
and then acquire controllability in general cases. It is said
that direct computation of power dominating set problem is
not desirable in general graphs but Θ(log n)-approximable
[21], where n is the number of vertices. By the original
research about power dominiting set [22], [23], Alwasel
et al. [24] [25] [26] recovered the approximated structural
controllability [8] of the Erdős-Rényi random digraph after
removing vertices by using power dominating set, while
Alcaraz et al. [27] also used a same approach to recover
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exact structural controllability of scale-free networks after
nodal removal. By contrast, we are going to recover the
network controllability by finding a maximum matching of
a digraph in LTI system after adding one node.

Finding a maximum cardinality or weighted matching
is related to the combinatorial optimization, which has a
long history [28]. Given the static graphs, the best-known
Hopcroft-Karp algorithm [15] of effectively identifying a
maximum matching in the bipartite graph runs in O(

√
nm),

where n is the number of vertices of a graph, and m is
that of edges. When the given bipartite is dense such as
m = n2, time complexity becomes O(m

√
n/logn) [29].

By contrast, Micali and Vazirani [16] found the maximum
cardinality matching on the general graphs, and the worst-
case execution time of their algorithm is also O(

√
nm). Up

to date, these two results are the bound of efficiently finding
maximum matching by deterministic algorithms unless it
allows approximation, which could be executed much faster
than identifying an exact maximum matching on static graphs
[30]. Since graphs would be changed along with the change
of systems, it means that recovery of controllability might
be iterative after each change. In this way, simply using
these two algorithms or finding power dominating set for
iteratively acquiring certain controllability is not efficient or
even unrealistic for large digraphs.

Thus, we propose to efficiently identify a maximum
matching of each digraph after adding a node without
recomputation. This problem can be further classified into
the dynamic graph problem [31], which mainly seeks to
efficiently update a solution via maintaining a data structure
after a change rather than recompute a solution from a
change. A fully dynamic graph problem addresses the update
operations of unlimited insertions and deletions of edges
or vertices, while a partially dynamic only considers either
insertions or deletions of edges or vertices. Fully dynamic
approximate maximum-cardinality matching problem is pop-
ular in recent years. In 2010, Rubinfeld et al. [32] designed a
randomized algorithm that maintains a O(1)-approximation
maximum matching in O(log2n) time. Baswana, Gupta and
Sen [33] then gave a 2-approximation maximum matching
in a dynamic graph with O(log n) amortized time. In
[34], with a deterministic data structure, the approximation
ratio is (3/2 + ε) and the worst case time complexity is
O(m1/4ε−2.5)(ε > 0). Until now, [35] presented a de-
terministic data structure with (2 + ε)-approximation and
the worst-case time complexity is O(log3n). Nevertheless,
to derive an exact size of a maximum matching in the
fully dynamic, the best known update time is O(n1.495)
[36]. In comparison, our problem is partially dynamic and
each update only allows addition of one node. Besides,
our algorithms are deterministic and we only concerns the
worst-case complexity. We can efficiently derive a maximum
matching of an input digraph in the linear time rather than
recompute a new maximum matching by using an algorithm
of either [15] or [16]. Once a maximum matching of an
incremental digraph is found, its controllability could be also
recovered according to the minimum input theorem [5].

III. NETWORK CONTROLLABILITY

A dynamic system is controllable if this system can be
driven from any initial state to any proposed final state
by properly using external inputs within limited time [7]
[18] [37]. In general, linear time-invariant(LTI) dynamics is
represented by a state equation:

ẋ(t) = Ax(t) + Bu(t) (1)

In this equation, vector x(t) = (x1(t), x2(t), . . . , xN (t))T

captures the state of the system of N nodes at time t; A is
the N × N matrix describing the wiring topology and the
interaction among N system nodes; B is the N ×M (M ≤
N ) input matrix containing the nodes driven by M external
inputs, input vector u(t) = (u1(t), u2(t), . . . , uM (t))T holds
the external inputs at time t to drive the system. Any system
described by (1) is controllable if and only if the N ×NM
matrix C = [B,AB,A2B, . . . , AN−1B] has full rank, noted
by rank(C) = N [7].

However, for any system of (1) in reality, most entries of
A and B are only known by approximation except for zero
entries [8]. Besides, calculating the rank of any matrix C
requires 2N−1 combinations [5], which would be impossible
for a large system. Both constrains prevent against using the
rank condition to verify the controllability of a given LTI
system. In order to avoid these two constrains and also figure
out whether any system described by (1) is controllable or
not, Lin [8] raised structural controllability :

Definition 1: Structural Controllability [8] A system
described by (1) is structural controllable iff there exists a
completely controllable system having the same structure as
it.

This definition implies, an uncontrollable system of (1)
will be controllable if we properly change the value of
some entries of A or B of (1). Additionally, necessary and
sufficicent conditions of structural conrollability are given
via system’s graph representation. Given a system described
by (1), a digraph G(A,B) = (V1 ∪ V2, E1 ∪ E2), where
V1∩V2 = ∅, could be obtained by a bijection ω. Specifically,
for any element bij 6= 0 and bij ∈ B, aij 6= 0 and
aij ∈ A, ω : aij →

−−−−→
〈xj , xi〉,

−−−−→
〈xj , xi〉 ∈ EA, xi, xj ∈ V1

and ω : bij →
−−−−→
〈uj , xi〉,

−−−−→
〈uj , xi〉 ∈ E2, uj ∈ V2, in which

any uj ∈ V2 obtained above is an external input. Then, few
necessary definitions are below:

Definition 2: Inaccessibility [8] In G(A,B), any xi ∈ V1
is inaccessible if there is no directed path from any vertex
uj ∈ V2.

Definition 3: Dilation of Digraphs [8] Any G(A,B) in-
cludes two kinds of vertex sets, S ⊆ V1, and T (S) =

{xj |
−−−−→
〈xj , xi〉 ∈ E1 ∪ E2, xi ∈ S}. When G(A,B) contains a

dilation iff |S| > |T (S)|, in which |S| and |T (S)| represent
the cardinality of S and T (S).

Definition 4: Stem and Bud [8] For a digraph
such as G(A,B), a stem is a directed path such as
{
−−−−−→
〈x1, x2〉,

−−−−−→
〈x2, x3〉, . . . ,

−−−−→
〈xj , xi〉}. A bud is a directed cycle

such as {
−−−−−→
〈x1, x2〉,

−−−−−→
〈x2, x3〉, . . . ,

−−−−−→
〈xj , x1〉} plus an arc sharing



its head with this cycle and this arc is called distinguished
edge.

Definition 5: Cactus [8] By definition 4, any stem is a
cactus. Besides, a stem S0 and buds B1, B2, . . . , Bl, then,
S0 ∪B1 ∪B2 ∪ . . . Bl is a cactus if for any i(1 ≤ i ≤ l) the
tail of the distinguished edge of Bi is not the top vertex of
S0 but is the only common vertex of S0∪B1∪B2∪. . . Bi−1.
A set of vertex-disjoint cacti is called a cactus.

Now, the necessary and sufficicent conditions of structural
controllability are given below:

Theorem 1: Lin’s Structural Controllability Theorem
[8] The following three statements are equivalent:

1) A system of (1) is structurally controllable.
2) a) G(A,B) contains no inaccessible nodes.

b) G(A,B) contains no dilation.
3) G(A,B) is spanned by cacti.
Particularly, structural controllable systems can be ex-

pressed to be controllable for almost all values of entries
of A and B of (1) except for some pathological cases
with certain constrains [5]. For example, an LTI system
contains nodes {x1, x2, x3, x4} with one external input
u1, and arcs {

−−−−−→
〈u1, x1〉,

−−−−−→
〈x1, x2〉,

−−−−−→
〈x2, x3〉,

−−−−−→
〈x3, x2〉,

−−−−−→
〈x3, x4〉}.

According to theorem 1, this system is structurally control-
lable because its digraph contains neither inaccessible nodes
nor dilation, but its digraph would be not completely con-
trollable if any strength among its all vertices is one, causing
the rank condition [38] [7] be dissatified. Nevertheless, if this
system delets the directed interaction

−−−−−→
〈x3, x2〉, its current

digraph would be always completely controllable by u1,
because rank of matrix C is now independent with the value
of its any non-zero entry.

Except for pathological cases, Liu et al [5] proved that
the maximum matching determines the minimum external
inputs required to maintain full control of a digraph in LTI
systems according to that controllability rank condition. With
a digraph, noted by G(A) = (V1, E1), where V1 and E1 have
been defined above, is fully controllable if and only if all
unmatched nodes are directly controlled by external inputs
and all matched nodes can be visited by inputs along with
directed paths [39]. In other words, it is generalized by the
minimum input theorem:

Theorem 2: Minimum Input Theorem [5] The minimum
number of inputs to fully control a digraph such as G(A) =
(V1, E1) is one if there is a perfect matching in G(A).
Otherwise, it is equal to the number of unmatched nodes
according to any maximum matching.

When each node of a graph is matched, it is said that this
graph contains a perfect matching.

IV. PRELIMINARIES

In this section, firstly, we define a kind of input digraphs,
in which we assume that each input digraph is generated by
adding a node with relative arcs to a same type of digraphs.
We propose to efficiently identify a maximum matching
without recomputation.

Definition 6: We consider any large, sparse Erdős-Rényi
random digraph that excludes isolated vertices, parallel arcs

and selfloops as our input graph, noted by D = (V , E),
where vertex set V = {vi|1 ≤ i ≤ N}(N > 1) and arc set
E = {

−−−−→
〈vi, vj〉|1 ≤ i, j ≤ N, i 6= j}. A known matching of

D is noted by M0.
Besides, any D = (V,E) is obtained by adding a node

noted by u with relative arcs to an original digraph, noted by
D0 = (V0, E0). The probability of edges existence between
u and D0 is same as that of D0. In particular, D0 is also
assumed to contain a known maximum matching noted by
M0. A maximum matching of D proposed to be identified
is noted by M , and it is possible that M = M0.

Then, we use a directed biaprtite representation of D to
find M , which is defined below:

Definition 7: Given D = (V,E) of definition 6, a bipartite
graph B = (VB , EB) |EB | = |E|, VB = V +

B ∪ V
−
B ,

V +
B ∩V

−
B = ∅ is derived by two bijections: α, β. For every arc

−−−−→
〈vi, vj〉 ∈ E −M0,

−−−−→
〈vi, vj〉 /∈ ∅, α :

−−−−→
〈vi, vj〉 →

−−−−−→
〈v+i , v−j 〉,−−−−−→

〈v+i , v−j 〉 ∈ EB , v+i ∈ V +
B , and v−j ∈ V −

B . A matching
mapped from M0 of D is noted by MB0

. For each arc−−−−→
〈vx, vy〉 ∈ M0,

−−−−→
〈vx, vy〉 6∈ ∅, β :

−−−−→
〈vx, vy〉 →

−−−−−→
〈v−y , v+x 〉,−−−−−→

〈v−y , v+x 〉 ∈MB0 , v+x ∈ V +
B , v−y ∈ V −

B .
Therefore, identifying a maximum matching of D is trans-

ferred by finding a maximum matching in B. By definition
7 and the added node u ∈ D to D0, we could also obtain at
most two nodes correspond to u. We note them as u+ ∈ V +

B

and u− ∈ V −
B . Whether u+ ∈ ∅ and u− ∈ ∅ or not depends

on whether u is a head or a tail of its incident arcs.
Regarding to finding a maximum matching of a bipartite

graph, it is indispensible to mention the augmenting path [18]
[19] here. With B = (VB , EB) and a matching MB0

∈ B,
the augmenting path can be defined:

Definition 8 (Augmenting path [19] [18]): Within B =
(VB , EB) of definition 7, an alternating path with respect to
MB0 alternatively contains the edges in MB0 and EB−MB0 .
When the both top and bottom nodes of this alternating path
are only out of MB0

, it is called an augmenting path relative
to MB0

.
Here are few very important proved propositions about the

augmenting path and matching:
Proposition 1: By definition 8, if MB0

∈ EB is a
matching and Pa is an augmenting path relative to it, then
the symmetric difference of MB0

and Pa represented by
MB0 ⊕ Pa, is a bigger matching than MB0 in cardinality
by one [19] [18].

Proposition 2: By definition 8, MB0 ∈ EB is a maximum
matching of B iff there is no augmenting path relative to
MB0

[19] [18].

V. RECOVER CONTROLLABILITY OF D

A. Identify a maximm matching of B

It is assumed that D = (V,E) of definition 6 is obtained
by adding u to D0, we can also assume that B = (VB , EB)
is obtained by adding u+ or u− to a bipartite graph, noted
by B0 = (VB0

, EB0
). Then, a maximum matching of B0 is

noted by MB0 in following paper.



Since MB0
is the maximum matching of B0, and adding

u− or u+ with relative edges generates B. Obviously,
augmenting paths relative to MB0 can be only incident to
u− or u+. Nevertheless, when both u+ and u− exisit in V −

B

and V +
B , there can not be an edge connecting u+ and u−,

otherwise there would be selfloop in D, which is contradicted
with D without selfloop of definition 6.

The following algorithm finds augmenting paths starting
from u+ and ending at a node of V −

B out of MB0
in B =

(VB , EB) when u+ 6∈ ∅. An edge set noted by Tu+ whose
tails are u+. Any edge of Tu+ is noted by e ∈ Tu+ , P0

represents an edge set, and P (P0) dentoes a set including
edges of EB pointed by edges of P0. For any edge of P (P0)

is noted by e
′ ∈ P (P0) and e

′
=
−−−−−→
〈v+x , v−y 〉. Besides, Psub

denotes any subpath of a returned augmenting path ending at
a node of V −

B and out of MB0
, and Pn notes a path starting

from u+ and ending at one node of MB0 . Besides, we use
P+
a to denote any augmenting path incident to u+.

Algorithm 1 Find Augmenting Paths incident to u+

Input: B = (VB , EB), MB0 , u+ 6∈ ∅
Output: Augmenting Paths incident to u+

1: P0 = ∅
2: while Tu+ 6= ∅ and e ∈ Tu+ do
3: Tu+ = Tu+ − e
4: if two terminals of e out of MB0

or e pointing Psub

then
5: return P+

a = e or P+
a = {e, Psub}

6: else if e just pointing a node of MB0
then

7: P0 = P0 + e
8: for P (P0) ∈ EB and e

′ ∈ P (P0) do
9: P0 = P0 + e

′
and EB = EB − e

′

10: if e
′

pointing Pn and v−y out of MB0 then
11: return P+

a = {Pn, e
′}

12: else if e
′

pointed by Pn and pointing Psub then
13: return P+

a = {Pn, e
′
, Psub}

Proof: Initially, since u+ 6∈ ∅, Tu+ can not be empty. If
e is not adjacent to any edge of MB0

, e is an augmenting path
by definition 8 and returned. If not, e of Tu+ is added into P0

to find augmenting paths involving from line 8-13. In detail,
any e

′
of P (P0) pointed by e is concerned in line 10 and

then added into P0 and removed from EB to guarantee that
each edge of EB is considered at most once. Since by now
e
′ ∈ MB0

, e and e
′

can not be an augmenting path. Thus,
keep visiting edges pointed by current P0 until an edge of
EB whose head is out of MB0

, and such a path from u+

is an augmenting path involving Pn and e
′
. Because several

augmenting paths from u+ may be vertex joint or overlapped,
we just need to check whether an edge is poniting a subpath
of a known augmenting path or not rather than revisiting
some edges. Once P (P0) = ∅, it means that search of all
paths starting from e is complete. After that, the following
edge of Tu+ is one by one considered. For the same reason,
following augmenting path starting from this newly added
edge of Tu+ may be overlapped with reviously returned ones.

Therefore, new edge of Tu+ needs to be checked whether it
is pointing a Psub of an augmenting path in line 4. If so,
it is directly returned. Otherwise, it would construct a new
augmenting path with Pn. Finally, since each edge of Tu+

is removed in line 3, we would obtain Tu+ = ∅, when this
procedure terminates. For time complexity, it depends on the
cardinality of Tu+ and the number of edges of P0. Thus, it
can be represented by O(|EB |) or O(|E|) by definition 7.

When u− 6∈ ∅, this algorithm can also find augmenting
paths starting from a node out of MB0

of V +
B and ending

at u− in O(|E|), where Tu+ should be replaced with Hu−

meaning a set of edges whose head is u−. P (P0) would be a
set of edges pointing edges of P0, Psub now starting from a
node of V +

B out of MB0
and pointing e or e

′
, and Pn starting

from a node of MB0
and ending at u−. P−

a represnets any
augmenting path incident to u−.

If two augmenting paths incident to u+ and u− respec-
tively are vertex joint, we can not use them to derive any
maximum matching.

Accordingly, the following algorithm identifies vertex-
joint augmenting paths when u+ 6∈ ∅ and u− 6∈ ∅. In
this algorithm, Sa is a subgraph of B, having all found
augmenting paths, and Sb denotes nodes of Sa, noted by
Sb = N(Sa). For any v∗ ∈ Sb, we use δ(v∗) to represent
the number of adjacent nodes of Sb to v∗. We also use Sc to
represent the set of vertex-joint augmenting paths, and CSa

denotes a component of Sa.

Algorithm 2 Find vertex-joint augmenting paths
Input: Sa, Sb

Output: vertex-joint P+
a and P−

a

1: Sc = ∅ and Sb = Sb − u− − u+
2: for Sb 6= ∅ and v∗ ∈ Sb do
3: Sb = Sb − v∗
4: if δ(v∗) > 2 then
5: Find vertex-joint P+

a and P−
a in CSa containing v∗

6: Sc = Sc + P+
a + P−

a and Sa = Sa − CSa

7: Sb = N(Sa)
8: return Sc

Proof: Except u− and u+, δ(v∗) > 2 means v∗ of Sb

is shared by multiple augmenting paths, we then find vertex-
joint P−

a and P+
a . Traversing arcs only once of CSa of Sa

that contains v∗ until there is no arc can operate procedure
of line 5. It means that each traversed arc is connected to v∗

based on the underlying undirected graph of Sa. Then, those
visited paths during traverse of CSa

must be vertex-joint,
and we can immediately known which P+

a is vertex joint
to which P−

a . Identified vertex-joint P−
a and P+

a would be
added into Sc, while CSa is removed from Sa to guarantee
that each arc of Sa is traversed once at most in line 5. After
this, remaining nodes of Sa would be checked and further
find vertex-joint augmenting paths by finding shared nodes in
the first place. Because each checked node of Sb is removed,
and cardinality of Sb is reduced along with reduce of Sa in
line 6,7, this algorithm would terminate when Sb = ∅. For



time complexity, it depends on |NA| and SA indicated by line
2, 5. Since |EB | = |E|, |VB | ≤ 2|V | by definition 7, time
complexity of this algorithm is represented by O(|V |+ |E|).

After obtaining available augmenting paths incident to u−

or u+, and also obtaining all vertex-joint augmenting paths.
The next algorithm determines a maximum matching of B
under all possible cases.

Algorithm 3 Obtain a Maximum Matching of B
Input: MB0

, Sa, Sc

Output: A maximum matching of B
1: if ∃ P−

a , P
+
a and P−

a , P
+
a vertex disjoint then

2: return MB0

⊕
P−
a

⊕
P+
a

3: else if ∃ P−
a , P

+
a and P−

a , P
+
a vertex joint then

4: return MB0

⊕
P−
a or MB0

⊕
P+
a

5: else if Sc = ∅ and ∃ P+
a = P−

a then
6: return MB0

⊕
P−
a or MB0

⊕
P+
a

7: else if @ P+
a and ∃ P−

a then
8: return MB0

⊕
P−
a

9: else if ∃ P+
a and @ P−

a then
10: return MB0

⊕
P+
a

11: else if Sa = ∅ then
12: return MB0

Proof: According to proposition 1, 2, we know how
to use the augmenting paths construct a bigger cardinality
matching than a known one. Thus, with found augmenting
paths by using Algorithm 1 we could directly use the
symmetric difference among MB0

, any P−
a or P+

a to obtain
a maximum matching by augmenting MB0

. Because any
augmenting path of B is leaded by u− and u+, which can be
seen as the effect of adding u− and u+ to B0 as mentioned
before. As a result, we classify all possible cases based on
whether P−

a or P+
a exists in B. Thus, it is possible that both

P−
a and P+

a exist and they might be vertex-joint augmenting
paths or not. Such cases are given from line 1 to 5. Besides,
there might be P−

a = ∅ or P+
a = ∅, meaning augmenting

paths starting from u+ or ending at u− do not exist, althouth
u− or u+ exists in B. Based on cases related to this, lines
of 7-12 give the other all possible results about a maximum
matching of B. Since any P+

a , P− and vertex-joint P+
a

and P− have been known before by using Algorithm 1, 2.
Therefore, there is no need of extra computation to confirm
whether P+

a and P−
a exist or not and whether they are vertex

joint or not, time complexity of this procedure is therefore
O(1).

In following part, we denote MB as the returned maximum
matching of B by Algorithm 3. And we would identify a
maximum matching of D of definition 6 in the next part.

B. Identify a maximum matching of D

Since our goal is to efficiently recover controllability of
an input digraph D = (V,E) of definition 1 via finding
its maximum matching, rather than reusing the best-known
algorithms of [15] and [16]. With the identified MB of
B = (VB , EB) of definition 7, we now can directly obtain a

maximum matching M of D by inverse of bijection α and
β of definition 7 in following algorithm. Each edge of MB

is noted by eMB
∈MB , and it is either eMB

=
−−−−−→
〈v−i , v

+
j 〉 or

eMB
=
−−−−−→
〈v+i , v

−
j 〉.

Algorithm 4 Identify a maximum matching M of D
Input: D = (V,E), MB0

, MB

Output: Maximum matching of D
1: M = ∅
2: for MB 6= ∅ and each eMB

∈MB do
3: MB = MB − eMB

4: if eMB
6∈MB0 and eMB

=
−−−−−→
〈v+i , v

−
j 〉 then

5: α− : eMB
→
−−−−→
〈vi, vj〉 and M = M +

−−−−→
〈vi, vj〉

6: else if eMB
∈MB0

and eMB
=
−−−−−→
〈v−i , v

+
j 〉 then

7: β− : eMB
→
−−−−→
〈vj , vi〉 and M = M +

−−−−→
〈vj , vi〉

8: return M

Proof: Since each mapped edge of MB is removed in
line 3, MB would be empty, and this procedure terminates.
For time complexity, it is Θ(|MB |) or O(|EB |). Due to
|E| = |EB | by definition 7, time complexity of this algorithm
is also O(|E|).

C. Complexity Analysis

The whole process of our scenario can be represented:

Algorithm 5 Identify a maximum matching of D
Input: D = (V,E), M0

Output: A maximum matching of D
1: Generate the bipartite graph B by D.
2: Find all augmenting paths incident to u− and u+.
3: Distinguish vertex-joint augmenting paths incident to u−

and u+.
4: Obtain MB of B.
5: Identify M of D through MB .
6: return M .

In this scenario, each line presents a procedure, in line
1, the procedure of obtaining the bipartite graph B by the
digraph D can be finished in Θ(|E|) by definition 7. Then,
from procedures of line 2 to line 5, they can be finished by
previous linear Algorithm 1-4 respectively. Therefore, the
worst-case execution time of the whole process of obtaining
a maximum matching of digraph D = (V,E) of definition
6 is O(|V | + |E|), concluded by plus time complexity of
each procedure. As a result, we efficiently obtain a maximum
matching of an input digraph D of definition 6, rather than
recomputation of a maximum matching of D, and finally we
acquire its controllability via the found maximum matching
according to theorem 2.

Consequently, iterative recovery of controllability via max-
imum matching could be executed in an effective manner in
practice, such as calculating control robustness against nodal
remvoal attack.



VI. CONCLUSION

The structure of dymanical systems might be changed
for different reasons, such as being attacked, extented by
giving new vertices or random failure happens. As a result,
embedded digraphs would be also changed by insertion or
deletion of nodes or edges. In this situation, recomputation of
a maximum matching is no longer effective to acquire con-
trollability of each changed digraph for several times. Facing
with this problem, we come up with a method of efficiently
obtaining a maximum matching of each incremental digraph
in linear time, so as to reduce the complexity of iterative
computation of maximum matchings in the whole process.
Our mehod mainly based on a bipartition representation of a
given incremental digraph and find augmenting paths that are
only incident to the nodes corresponding to the added nodes.
Besides, we also distinguish whether found augmenting
paths are vertex joint or not, so that we could eventually
obtain a maximum matching of an incremental digraph and
further obtain its controllability. For future work, concerning
malicious attack changes controllability dramatically, it is
essential and interesting to iteratively recover controllability
after each attack such as a nodal removal.
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