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The Power Of Locality In Network Algorithms

Abstract
Over the last decade we have witnessed the rapid proliferation of large-scale complex networks, spanning
many social, information and technological domains. While many of the tasks which users of such networks
face are essentially global and involve the network as a whole, the size of these networks is huge and the
information available to users is only local. In this dissertation we show that even when faced with stringent
locality constraints, one can still effectively solve prominent algorithmic problems on such networks.

In the first part of the dissertation we present a natural algorithmic framework designed to model the
behaviour of an external agent trying to solve a network optimization problem with limited access to the
network data. Our study focuses on local information algorithms --- sequential algorithms where the network
topology is initially unknown and is revealed only within a local neighborhood of vertices that have been
irrevocably added to the output set. We address both network coverage problems as well as network search
problems.

Our results include local information algorithms for coverage problems whose performance closely match the
best possible even when information about network structure is unrestricted. We also demonstrate a sharp
threshold on the level of visibility required: at a certain visibility level it is possible to design algorithms that
nearly match the best approximation possible even with full access to the network structure, but with any less
information it is impossible to achieve a reasonable approximation.

For preferential attachment networks, we obtain polylogarithmic approximations to the problem of finding
the smallest subgraph that connects a subset of nodes and the problem of finding the highest-degree nodes.
This is achieved by addressing a decade-old open question of BollobÃ¡s and Riordan on locally finding the
root in a preferential attachment process.

In the second part of the dissertation we focus on designing highly time efficient local algorithms for central
mining problems on complex networks that have been in the focus of the research community over a decade:
finding a small set of influential nodes in the network, and fast ranking of nodes. Among our results is an
essentially runtime-optimal local algorithm for the influence maximization problem in the standard
independent cascades model of information diffusion and an essentially runtime-optimal local algorithm for
the problem of returning all nodes with PageRank bigger than a given threshold.

Our work demonstrates that locality is powerful enough to allow efficient solutions to many central
algorithmic problems on complex networks.
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ABSTRACT

THE POWER OF LOCALITY IN NETWORK
ALGORITHMS

Michael Brautbar

Michael Kearns

Over the last decade we have witnessed the rapid proliferation of large-scale complex

networks, spanning many social, information and technological domains. While many of

the tasks which users of such networks face are essentially global and involve the network

as a whole, the size of these networks is huge and the information available to users is only

local. In this dissertation we show that even when faced with stringent locality constraints,

one can still effectively solve prominent algorithmic problems on such networks.

In the first part of the dissertation we present a natural algorithmic framework designed

to model the behaviour of an external agent trying to solve a network optimization problem

with limited access to the network data. Our study focuses on local information algorithms

— sequential algorithms where the network topology is initially unknown and is revealed

only within a local neighborhood of vertices that have been irrevocably added to the output

set. We address both network coverage problems as well as network search problems. Our

results include local information algorithms for coverage problems whose performance

closely match the best possible even when information about network structure is unre-

stricted. We also demonstrate a sharp threshold on the level of visibility required: at a

certain visibility level it is possible to design algorithms that nearly match the best approxi-

mation possible even with full access to the network structure, but with any less information

it is impossible to achieve a reasonable approximation.

For preferential attachment networks, we obtain polylogarithmic approximations to the

problem of finding the smallest subgraph that connects a subset of nodes and the problem

of finding the highest-degree nodes. This is achieved by addressing a decade-old open

question of Bollobás and Riordan on locally finding the root in a preferential attachment
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process.

In the second part of the dissertation we focus on designing highly time efficient local

algorithms for central mining problems on complex networks that have been in the focus

of the research community over a decade: finding a small set of influential nodes in the

network, and fast ranking of nodes. Among our results is an essentially runtime-optimal

local algorithm for the influence maximization problem in the standard independent cas-

cades model of information diffusion and an essentially runtime-optimal local algorithm

for the problem of returning all nodes with PageRank bigger than a given threshold.

Our work demonstrates that locality is powerful enough to allow efficient solutions to

many central algorithmic problems on complex networks.
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“When we try to pick out anything by itself, we find it hitched to everything else

in the universe.”

—John Muir, “My First Summer in the Sierra” (1911)
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Chapter 1

Introduction

Over the last decade we have witnessed the rapid growth of large-scale complex networks,

spanning many social, information and technological realms [40, 63, 98]. Examples include

social networks (such as Facebook, LinkedIn), information linkage networks (such as the

Web, Wikipedia), communication networks (such as the Internet, telephone networks), and

many others.

One of the main characteristics of these modern networks is their huge size. Facebook

recently announced they now have more than a billion active users [116]. As of early May

2013, the indexed World Wide Web is estimated to have more than fourteen billion pages

[117]. Typically, tasks which users of such complex networks face are global and involve

the network as a whole. Some tasks include network coverage, such as used for advertising

on networks, others include centrality computation of nodes, such as PageRank computa-

tion. As the sizes of complex networks become bigger these tasks become harder to solve.

An inherent difficulty in solving such tasks is the natural locality of connections where

one only learns about the structure of the network in close vicinity to nodes previously ac-

cessed. In social networks like Facebook, an external user can learn of the local structure

around a node only up to a small radius. On the Web, one can learn about the out-links (but

not the in-links) of a page by examining it. Can one solve such problems with only local

information? This is the research focus of this dissertation.
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There are two flavors of problems one needs to address. In many settings, commonly in

social networks and routing networks among others, there is a cost of connecting to a node

but such a connection holds new information about the local ball around the new node

in the network. The goal is then to minimize the number of connections initiated by an

external user of the system in his endeavour to solve some global problem on the network.

Coverage problems are a common example in this framework. Can one do so competitively

without knowing the structure of the whole network in advance? This is the topic of the

first part of the dissertation.

In other settings, we are mainly interested in runtime efficiency — the massive growth

and volatility of information networks necessitate the need to mine them in the quickest

time possible. Prominent examples include fast computation of PageRank for the purpose

of ranking of Web pages by search engines [15, 100] and finding a small set of influential

node in social networks for the purpose of viral marketing [31, 71]. In these problems, a

typical instance of the network is represented in an incidence list form and one needs to pay

for every piece of information gained, including the traversal of the nodes in the incidence

list of a previously accessed node. The importance of being able to solve these problems

quickly is paramount since methods that do not scale with network size are doomed to be

intractable in practice. Over the past decade a surge of techniques have been created to mine

such large data without scanning through its whole, colloquially referred to as “sublinear

time algorithms” [106]. In the context of networks and the lack of full knowledge of the

network, one is particularly interested in local methods. Such methods are based on local

advancements from a node to its neighbors together with some basic mechanism that allows

some access to other areas in the network. Can we design local methods, with provable

guarantees, that are highly time efficient to solve these problems? The second part of the

dissertation addresses and answers this question.

Before describing the dissertation contributions we proceed to discuss the network ac-

cess mechanism which lies at the heart of our algorithms and results.

2



1.1 The Jump and Crawl Paradigm

What is a natural way to access very large networks? Crawling is a common feature as well

as some type of search mechanism that permits the discovery of nodes from other areas in

the network. In social networks, the Web, routing networks and many others, one has ac-

cess to a neighbor of a previously acceded node which can then be itself accessed (crawled).

Modern networks also provide some sort of global search mechanism that permits the dis-

covery of new nodes that may be quite distant from all those previously known. Web search

lets us enter text phrases and see relevant pages; in information networks one can use ran-

dom indexing to get a uniform node; and in several social networks, like Facebook, one

can type in a name and get a profile of someone with that name. One natural modelling

decision is to allow random sampling, what we call a Jump, to access other parts of the

network. Random sampling is also pivotal in several related paradigms — sublinear-time

algorithms and property testing, local computations, and graph limits, discussed below. In

fact the Jump and Crawl paradigm can be viewed as distilling the type of queries used in

these models, for both goals of non-costly algorithmic exploration and efficient algorithmic

mining of very large networks.

In our framework a node can choose to query the network with either a Jump or a

Crawl operation at any time step. Some problems can be solved well by using only Crawls;

for other problems, Jumps are necessary in order to get good solution quality and their

usage brings to rich theoretical contributions. Throughout the dissertation we have taken

a conservative approach: our algorithms use Jumps only where it is clear that without the

use of Jumps local algorithms to the problem at hand would perform very poorly.

We are now ready to survey the main contributions in this dissertation.

1.2 Dissertation Structure and Results

The dissertation is divided into two parts. In the first part we deal with local information

algorithms for search problems (Chapter 3) and local information algorithms for coverage

3



problems (Chapter 4). In the second part we move to design highly runtime efficient local

algorithms for networks, under the adjacency list representation of sparse networks, for

the target set selection problem (Chapter 6) and for PageRank and personalized PageRank

computations (Chapter 7).

We note that our dissertation can be thought of as divided into chapters based on the

type of problems solved, but also as divided into chapters according to solution techniques.

Indeed, each chapter deploy a novel, and very different solution technique for the set of

problems it deals with. In Chapter 3 we develop a novel coupling of the traversal path of

a greedy algorithm on preferential attachment graphs to a super-critical branching process.

In Chapter 4 we use an amortized analysis technique to show that several greedy coverage

algorithms yield good approximations. In Chapter 6 we develop a novel technique to sum-

marize large-scale diffusion information in a concise hypergraph representation. And in

Chapter 7, we develop a novel PageRank computation method that is based on a multi-scale

node sampling that repeatedly invokes a novel random-walk based personalized PageRank

approximation.

We proceed with a concise exposition of our results, followed by a survey of related

prior work.

1.2.1 Local Information Algorithms

In the first part of the dissertation, we study the power of local information algorithms for

optimization problems on networks. We focus on sequential algorithms where the network

topology is initially unknown and is revealed only within a local neighborhood of vertices

that have been irrevocably added to the output set. This framework models the behavior

of an external agent that does not have direct access to the network data, such as a user

interacting with an online social network.

4



Local Information Algorithms for Network Search Problems

In Chapter 3, we focus on the ability of local algorithms to solve central search problems

— searching for a connecting path between two source nodes, and searching for a node

with the highest degree. We show that in general, such problems cannot be solved effi-

ciently with local information. We then focus on a natural model of social networks — the

“preferential attachment” process.

When the underlying graph is a preferential attachment network, we show that one can

find the root (i.e. initial node) in a polylogarithmic number of steps, using a greedy, local

algorithm that repeatedly queries the visible node of maximum degree. This addresses a

decade-old open question of Bollobás and Riordan. Our solution technique is based on

a novel coupling technique where we couple the growth of the set of nodes accessed by

the local algorithm with a super-critical branching process. This result is motivated by

its implications: we obtain polylogarithmic approximations to the problems of finding a

connecting path between two source nodes and that of finding a highest-degree node.

Local Information Algorithms for Network Coverage Problems

In Chapter 4 we study several network coverage problems.

We first address the min dominating set coverage problem where the goal is to find a

small set of nodes that dominate the whole network (i.e. all nodes are at a distance of at

most one from that set). We then consider two natural variants of this problem. The first

is inspired by prize-collecting problems where the goal is to get a reward for each node

dominated and get penalized for those node left undominated. We call this problem the

“neighbor-collecting” problem. In the second variant, the partial dominating set problem,

the goal is only to cover a certain proportion of the population.

For both the minimum dominating set problem and the neighbor-collecting problem

we show how to design local information algorithms for arbitrary networks whose per-

formances approximately match the best possible even when information about network

structure is unrestricted. We also demonstrate a sharp threshold on the level of visibility

5



required: at a certain visibility level it is possible to design algorithms that nearly match

the best approximation possible even with full access to the network structure, but with

any less information it is impossible to achieve a reasonable approximation. These results

demonstrate that a network provider’s decision of how much structure to make visible to

its users can have a significant effect on a user’s ability to interact strategically with the

network.

For the partial dominating set problem (where the goal is to cover a given constant

fraction of the network with as few nodes as possible) we give an impossibility result which

rules out the existence of good local algorithms for the problem. We then show how to

devise good local algorithms for a relaxed setting, a bicriteria one, where the algorithm is

compared against an adversary who must cover an additional small fraction of the network.

Our results are based on amortized analysis techniques, which allow us to show that the

behaviours of several greedy coverage algorithms are not too far from optimal.

1.2.2 Local Algorithms for Stringent Time Constraints

In the second part of the dissertation, we focus on designing highly time efficient local

algorithms for two prominent mining goals in large networks: influence maximization and

node ranking.

Quasilinear and Sublinear Time Local Algorithms for Influence Maximization

In Chapter 6, we address the algorithmic problem of finding a set of k initial seed nodes in a

network so that the expected size of the resulting cascade is maximized, under the standard

independent cascade model of network diffusion. The promise of such an algorithm lies in

applications to viral marketing. However, runtime is of critical importance in this endeavor

due to the massive size and volatility of the relevant networks.

Our first result is a novel local algorithm for the influence maximization problem that

obtains the near-optimal approximation factor of (1 − 1
e − ε), for any ε > 0, in time

O((m + n)ε−3 logn) where n and m are the number of vertices and edges in the net-

6



work. The runtime of our algorithm is independent of the number of seeds k and improves

upon the previously best-known algorithms which run in time Ω(mnk · POLY(ε−1)). Im-

portantly, our algorithm is essentially runtime-optimal (up to a logarithmic factor) as we

establish a lower bound of Ω(m + n) on the runtime required to obtain a constant approx-

imation.

Our second result is a novel local algorithm that allows a provable tradeoff between so-

lution quality and runtime. Our algorithm is the first to provide such a tradeoff for the influ-

ence maximization problem, giving an Θ( 1
β )-approximation in time O(n · a(G) log3(n)/β)

for any β > 1, where a(G) denotes the arboricity of the diffusion network G. In particular,

for graphs with bounded arboricity (as is the case for many models of network formation

and empirically observed social networks) our algorithm is nearly runtime-optimal (up to

logarithmic factors) for any fixed seed size k.

Our solution is based on a novel preprocessing scheme that generates a sparse hyper-

graph representation of the underlying network via sampling. We show that this represen-

tation makes it possible to efficiently estimate marginal influence in the original diffusion

process with very few samples, and that the quality of this estimation degrades gracefully

with reduced preprocessing time.

Sublinear Time Local Algorithms for PageRank Computations

Finally, in Chapter 7 we study the fundamental algorithmic problem of outputting all nodes

in a network whose PageRank is more than a given threshold value ∆, and no node with

PageRank less than ∆/c, given a fixed c > 1. We call the problem SIGNIFICANTPAGER-

ANKS.

We develop a nearly optimal, local algorithm for the problem with time complexity

Õ(n/∆) on networks with n nodes, where the tilde hides a polylogarithmic factor. We

show that any algorithm for solving this problem must have runtime of Ω(n/∆), render-

ing our algorithm optimal up to logarithmic factors. Our algorithm has sublinear time

complexity for applications including Web crawling and Web search that require efficient
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identification of nodes whose PageRanks are above a threshold ∆ = nδ, for some constant

0 < δ < 1.

Our algorithm comes with two main technical contributions. The first is a multi-scale

sampling scheme for a basic matrix problem that could be of interest on its own. In the

abstract matrix problem it is assumed that one can access an unknown matrix, with entries

from [0,1], by querying its rows, where the cost of a query and the accuracy of the answers

depend on a precision parameter ε. At a cost propositional to 1/ε, the query will return

a list of O(1/ε) entries and their indices that provide an ε-precision approximation of the

row. Our task is to find a set that contains all columns whose sum is at least ∆, and omits any

column whose sum is less than ∆/c. Our multi-scale sampling scheme solves this problem

with cost Õ(n/∆), while traditional sampling algorithms would take time Θ((n/∆)2).

Our second main technical contribution is a new local algorithm for approximating per-

sonalized PageRank, which is more robust than the earlier ones developed in [4, 64] and

is highly efficient particularly for networks with large in-degrees or out-degrees. Together

with our multiscale sampling scheme we are able to optimally solve the SIGNIFICANT-

PAGERANKS problem.

1.3 Related Work

In this section we survey related prior work and compare it with our work on local infor-

mation algorithms and the design of highly time efficient Jump and Crawl algorithms.

1.3.1 Local Distributed Algorithms

Distributed computation aims to understand how computation can be carried out by a set

of connected computers, each knowing only a small piece of the input and responsible to

generate a small piece of the output. The set of computers is fixed and so is the connecting

topology describing which computers can directly communicate with each other. We will

particularly be interested in the synchronous model, where communication between neigh-

8



boring computers is simultaneous and on each round a node can send messages to any of its

neighbors [88]. It is not surprising that for most tasks the number of communication rounds

is at least the diameter of the network, as information needs to spread between all nodes.

However, some problems can be computed in a number of rounds which is independent of

the network size. The Local Distributed Model aims to understand what problems can be

computed in constant number of rounds.

The work on local distributed algorithms was initiated by Linial [86] who showed that at

least Ω(log∗ n) rounds of communications are necessarily in order to compute a maximal

independent set on a ring. Later, Naor and Stockmeyer presented the first positive result,

showing that there are several problems of node labeling, such as weak 2-colorings of

nodes, that can be computed locally in a constant number of rounds on interesting families

of graphs [96]. Much work has focused on graphs with bounded degree ∆, where the

number of communication rounds depends only on ∆; see [115] for a recent survey on local

distributed algorithms. In recent years, a weaker notion of locality called pseudo-locality

was suggested in order to address a larger class of problems. Pseudo-local algorithms allow

for mid-range information to be available by permitting the number of rounds to depend

polylogarithmically on the network size [78–80]. Pseudo-local distributed algorithms have

been developed for several combinatorial optimization problems that do not admit local

distributed algorithms with reasonable approximation guarantees. Among the problems

addressed are the problems of maximum matching, minimum vertex cover and minimum

dominating set [80].

Recently, Parnas and Ron [102] provided a neat reduction that allows one to transform

any local distributed approximation algorithm (as well as pseudo-local approximation al-

gorithm) for an optimization problem to a sublinear-time centralized algorithm with a weak

approximation guarantee. The main idea behind the reduction is that any processor v in a

local distributed algorithm gets to see only information from a fixed small radius r around

it before making its final output decision. Thus v’s output decision can be figured out by

simulating the communication in the r-ball around v. Let ε > 0. If D is a distributed algo-
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rithm that computes an α-multiplicative approximation to some optimization problem, then

by sampling a fixed number of nodes O(1/ε2) and simulating D’s behavior on these nodes

one can get an approximation value in the interval [|OPT|,α|OPT|+ εn], where |OPT|

is the size of the optimal solution and n is the number of nodes. Thus, one can devise such

an algorithm in time O(∆r/ε2).

We note that such a reduction can also be seen as generating a local information al-

gorithm that has radius r of information. The reduction generates a weak approxima-

tion guarantee on the size of the optimal solution with an εn additive error. By taking

ε = (α−1)|OPT|
n , this can be used to get an α-multiplicative approximation to the size of

OPT, namely an approximation to |OPT| that lies in the interval [|OPT|,α|OPT|], in time

Õ
((

n
(α−1)|OPT|

)2
)

, which in general can be at least linear in the size of OPT. In contrast,

the goal of local information algorithms is to generate a set that yields a good multiplica-

tive approximation, rather than just estimating the size of OPT. Importantly, the goal is to

do so in number of operations that is very close to |OPT|. Moreover, our main interest

would be in local information algorithms with radius r that is a small fixed number, e.g. 2,

rather than a function of ∆; for many networks, such as social networks, the radius of local

information is only a small fixed constant, even though the largest degree ∆ scales with the

network size.

It is interesting to compare the models of local distributed algorithms and local in-

formation algorithms with respect to a main source of computation. In local distributed

algorithms it is the number of rounds of distributed computation while in local information

algorithms it is the amount (radius) of local information. Consider the minimum dominat-

ing set problem. In this dissertation we devise a local information algorithm with radius

less than 2 to achieve a O(∆)-multiplicative approximation, while it is known that any dis-

tributed algorithm must have at least Ω
(
max{

√
logn, log∆}

)
rounds of computation in

order to achieve a polylogarithmic approximation ratio [80].

On the other hand, consider the problem of finding a connecting path between two

source nodes. If r is the distance between these nodes, even with local information of radius
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Θ(r), any local information algorithm (possibly randomized) needs in general Ω(n/r2)

Jump and Crawl queries. However, one can device a distributed algorithm (essentially

distributed-BFS), that finds such a path in O(r) rounds (which is essentially optimal).

Thus the two models are not directly comparable and some problems that are “easy” in

one model are not so in the other model.

1.3.2 Local Computations

Over the past decade there has been much interest in local computations, especially for the

problems of graph partitioning [4, 113] and personalized PageRank computations [3, 4].

Local computations are based on procedures that run in time independent of the network

size and return a solution near the vertex they are initialized with. Usually these procedures

only use crawl operations and are then incorporated with random sampling to create the

final algorithm. For example, for graph partitioning, Spielman and Teng [113] developed

a procedure, Nibble, that given target conductance φ finds a local cluster around the node

it is initialized with conductance close to φ, given that such cluster exists near that node

of interest. Nibble is then used repeatedly to get good graph partitioning by repeatedly

sampling nodes (from the degree distribution) in the network and running Nibble on them,

resulting in an almost linear time algorithm for graph partitioning.

Our algorithms in the second part of the dissertation can be thought of as extending

the local computation paradigm by allowing Crawls and Jumps to be used in the same

phase in order to create an algorithm with a highly efficient runtime. However, our solution

techniques are very different. Local clustering and local graph partitioning are based on de-

terministic simulations of random walks from chosen source nodes [4, 113]. Similarly, so

does the work on approximating personalized PageRank [3, 4]. In contrast, our algorithm

for target set selection is based a careful simulation of realized adoption trees in the net-

work. These trees are realized from a diffusive process that spreads to all neighbors rather

than a walk-based one than spreads to only one neighbor at a time, making the two types of

processes very different. In the context of PageRank estimation, instead of simulating the
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PageRank induced random walk, our algorithm is based on a multi-scale framework where

we sample rows according to a precision parameter of the values appearing in that row. We

estimate that row’s values using a carefully designed Monte-Carlo random walk simulation

rather than a deterministic one, that runs fast for the required precision.

1.3.3 Local Computation Algorithms (LCAs)

Local Computation Algorithms (LCAs) were introduced by Rubinfeld et al. [107]. Imag-

ine computing some function defined over the input locations; for example, consider a

boolean function describing for each node whether it is in a particular maximal matching

of the graph. The goal of an LCA is to do so locally — answer for a given set of input

locations consistently while only exploring the local neighborhoods of those locations. In

other words, the answer for each input location must be consistent with some (possibly

many) functions (a maximal matching in the example given). LCAs require that with high

probability the answer is correct for any such input set.

Beck’s algorithmic approach to the Lovász Local Lemma [10], as well as a technique

of Onak and Nguyen [99] for simulating several classical greedy algorithms locally, have

been successfully adapted to give LCAs for the problems of maximal independent set,

maximal matching and hypergraph-coloring [2, 89, 107]. These LCAs have runtime that is

polylogarithmic (in the total input length) times the number of input locations specified.

First, we note that one could use a similar approach to that of Parnas and Ron [102]

and essentially use any LCA to an optimization problem to design a local information

algorithm that simulates the size of an optimal solution. However, as for the case of local

distributed algorithms, this would translate to a large additive error of the form εn and

seems to suffer from the same drawbacks of Parans and Ron’s approach where one needs a

pure multiplicative approximation (and the approximation set itself).

Second, while the LCAs we surveyed above fall under the Jump and Crawl paradigm

as they make use of Crawls only (which use no local information), their goal is very dif-

ferent. LCAs only give consistent local answers to a predefined set of input locations, and
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in runtime complexity that scales with the number of those input locations. In contrast,

the goal of local information algorithms is to compute a valid solution to an optimization

problem with a cost that scales only with the size of an optimal solution, even if the optimal

solution has a very small size compared to the whole input. In particular, the radius of local

information plays a central role in algorithm design. Thus in order to develop good local

information algorithms in the Jump and Crawl setting one seems to need a different set of

techniques than those that are successful for LCAs.

1.3.4 Property Testing and Sublinear-Time Algorithms

In property testing one is interested in deciding in sublinear time in the size of the input if

the input has the given property P or is far from satisfying P. Over the past two decades

there has been much interest in understanding the testability of graph properties, both for

dense and sparse graphs [51, 52, 106]. It is not hard to see that the way the graph is

represented matters to the measurement of its distance to having a property and the research

has been divided into dealing with dense graphs (represented with adjacency matrices) and

bounded-degree graphs (represented with adjacency lists). We will focus on testability

of bounded-degree graphs as social, information and technological networks are typically

sparse and as such can be compactly represented in the linked-list network representation.

The seminal work of Benjamini, Schramm and Shapira [14] shows that every minor-

closed graph property is testable in time that depends only on the parameter measuring

how far the input is to having the property and does not depend on the size of the graph.

The authors show that one can always use a canonical tester that samples a number of

nodes k, and explore radius r balls around each of the sampled nodes. As they beautifully

show, both k and r can depend only on the approximation parameter ε and nothing else. (a

bounded-degree graph of maximum degree d is ε-far to having P if one needs to change at

least εdn edges to make the graph have the property P). As such, the Benjamini, Schramm

and Shapira tester can be thought of as a Jump and Crawl one.

Except for testing, there has been some work on constructing sublinear time algorithms
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for estimating graph properties under the adjacency-list representation of graphs. Promi-

nent examples include estimating the number of connected components in a graph and

estimating the weight of a minimum spanning tree in a weighted sparse graph [29]. Our

algorithms for target set-selection and PageRank operates under a stringent version of the

graph-access model used by property-testers and sublinear-time algorithms and as such can

also be thought of as sublinear-time algorithms in that model. We note that the techniques

we present in this dissertation to analyze these problems have not been proposed or used

before in the literature of testing and sublinear-time algorithms.

1.3.5 Low-Rank Matrix Approximations

One approach to simplify computational costs is to use a simpler structure that is similar

to the original one but on which performing computations is substantially less costly. This

approach has been quite fruitful in the context of matrices; see for example [58, 68] for

recent surveys. Given a matrix A and parameter k (smaller than the dimension of A),

one typically looks for a matrix Ã with dimension k such that Ã is close to A in the

Frobenius norm. For some applications finding an Ã that is close to A under the `2 operator

norm is also of high interest. This approach could turn relevant to achieve highly efficient

algorithm on graphs, as one can represent the graph by its adjacency or Laplacian matrices.

In particular, one can ask whether such approach can yield good approximations for the

target set selection and PageRank approximation problems considered in this dissertation.

We note that our approaches to solve these problems are orthogonal to low-rank matrix

approximations. Our algorithms work well for any graph, even if that graph does not

have good low rank approximation. In addition, we note that all methods for low-rank

approximation take time at least linear in the number of rows and columns of the matrix

to build good low-rank approximations [58, 68]. In contrast, our methods for target set

selection and PageRank computations run in sublinear-time and are runtime optimal for a

large set of the parameter space in the case of target set selection, and runtime optimal for

PageRank computations. As such, low-rank matrix approximations do not seem to be a
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good avenue to tackle these problems.

1.3.6 Graph Sparsifications

Here the goal is to keep only a small number of the edges of the graph but to maintain

some of the properties of the original graph. The seminal example is the work of Karger

and Benczúr that designs a randomized sparsifier so the resulting graph keeps the value

of all cuts approximately [12]. This idea was later extended to deal with good spectral

approximations [112] as well as to approximately keeping flow values through the graph

[41]. However, it is not clear how such methods can be used for creating low-cost local

information algorithms or highly efficient local algorithms. Such methods seem inherently

linear in the size of the network — one needs to first sparsify the whole graph and then

perform the necessary computation in the less complex graph. In contrast, all our methods

are highly local and essentially avoid the need to rely on such preprocessing of the graph.

1.3.7 Graph Limits

Over the past few years Lovász and colleagues have developed an elegant theory of graph

limits. A book describing their many contributions and ongoing research on the topic has

recently been published [87]. The idea is to use the limit of a sequence of graphs to learn

about the properties of the sequence itself. Defining the limit for a sequence of bounded-

degree graphs is more involved (and perhaps less natural) than for a sequence of dense

graphs due to a lack of a known pseudo-regular partition (namely, a Szemerédi partition)

of such graphs. The idea of Graphing was introduced to represent such a limit and can be

thought of as a measure on an infinite graph that is measure persevering: counting edges

from A to B from A under this measure gives the same outcome as counting the edges from

B to A from B, for any two measurable subsets A and B.

At the heart of the limiting behaviour of a sequence of bounded-degree graphs lies a

local view developed by Benjamini and Schramm [13]: sample a node uniformly at random

and look at the rooted r-ball around this node. For a given rooted graph F, denote by
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ρH,r(F) the probability that this sampling method returns F on the graph H. We then say

that the sequence of graphs (Gn) with |V(Gn)| →∞ is locally convergent to a graphing G

if the r-local densities ρGn,r(F) converge to ρG,r(F), for every r and finite rooted graph F.

The topic of relating graph limits of bounded degree graphs to the analysis of algorithms

on graphs (such as propriety testing algorithms) is a recent area of research and little is

currently known. Moreover, it is not clear whether the graph limit perspective would bring

to the design of more efficient graph algorithms. The current effort is to translate the known

results on algorithmics on graphs to the language of graph limits.

1.3.8 Streaming and Sketching Algorithms

The main goal of a streaming algorithm is to process elements as they come, and by using

only a small space, to be able to still produce good approximations to quantities of interest

[95]. A canonical example is the frequency moments problem where one wants to compute

the first few moments of the empirical distribution of a data stream [1, 62]. Some work

has been devoted to graph streams, where the edges forming a graph arrive one by one in

a streaming fashion. Problems considered include deciding if the graph is connected and

counting small network motifs (such as triangles) [91].

One very successful approach to solving streaming problems is of sketching: a homo-

morphism projecting the stream into a low-dimensional space. The hope is then that many

operations can be performed, using limited space, on the space-efficient sketch rather than

on the original stream. In particular, for some problems such as estimating the `2 frequency

moment of a stream, one can deal with the concatenation of streams by simply adding their

respective sketches [91, 95].

We would like to compare these data analysis paradigms to the Jump and Crawl one.

The Jump and Crawl paradigm is quite different from streaming and our solution techniques

benefit much from multiple runs on small portions of the input. In particular, there is no

emphasize at all on small space and our methods are not space-efficient in general. Instead

we focus on minimizing cost of friending nodes (in local information algorithms) or on
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minimizing runtime (in highly runtime-efficient local algorithms). Also, Jump and Crawl’s

main concern is with locality, and as such, methods like sketching that depend on the input

as a whole and access all nodes in the network do not seem applicable to our purposes.

1.4 Bibliographical Notes

The work on local information algorithms for network search problems, presented in Chap-

ter 3, is based on joint work with Christian Borgs, Jennifer Chayes, Sanjeev Khanna, and

Brendan Lucier [20]. The local information algorithm for finding a high degree node dis-

cussed in Section 3.2.2 is based on joint work with Michael Kearns [23]. The work on local

information algorithms for coverage problems in networks, presented in Chapter 4, is based

on joint work with Christian Borgs, Jennifer Chayes, Sanjeev Khanna, and Brendan Lucier

[20]. The almost-linear and sublinear-time local algorithms for influence maximization

and their analysis, presented in Chapter 6, are based on joint work with Christian Borgs,

Jennifer Chayes, and Brendan Lucier [21]. Finally, the work on sublinear-time local algo-

rithms for PageRank and personalized PageRank computations, presented in Chapter 7, is

based on joint work with Christian Borgs, Jennifer Chayes, and Shang-Hua Teng [22].
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Local Information Algorithms
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Chapter 2

Introduction

In the past decade there has been a surge of interest in the nature of complex networks that

arise in social, information and technological contexts. In the computer science commu-

nity, this attention has been directed largely towards algorithmic issues, such as the extent

to which network structure can be leveraged into efficient methods for solving complex

tasks. Common problems include finding influential individuals, detecting communities,

constructing subgraphs with desirable connectivity properties, and so on.

The standard paradigm in these settings is that an algorithm has full access to the net-

work graph structure. More recently there has been growing interest in local algorithms,

in which decisions are based upon local rather than global network structure. This local-

ity of computation has been motivated by applications to distributed algorithms [46, 96],

improved runtime efficiency [43, 113], and property testing [59, 106]. In this work we

consider a different motivation: in some circumstances, an optimization is performed by an

external user who has inherently restricted visibility of the network topology.

For such a user, the graph structure is revealed incrementally within a local neighbor-

hood of nodes for which a connection cost has been paid. The use of local algorithms in

this setting is necessitated by constraints on network visibility, rather than being a means

toward an end goal of efficiency or parallelizability.

We consider graph algorithms in a setting of restricted network visibility. We focus on
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optimization problems for which the goal is to return a subset of the nodes in the network;

this includes coverage and search problems. An algorithm in our framework proceeds

by incrementally and adaptively building an output set of nodes, corresponding to those

vertices of the graph that have been queried (or connected to) so far. When the algorithm

has queried a set S of nodes, the structure of the graph within a small radius of S is revealed,

guiding future queries. The principle challenge in designing such an algorithm is that

decisions must be based solely on local information, whereas the problem to be solved

may depend on the global structure of the graph. In addition to these restrictions, we ask

for algorithms that run in polynomial time.

Before delving into algorithm design, we would like to demonstrate the broad applica-

bility of local information algorithms.

A leading example is of advertising in social networks. An advertiser may wish to

maximize the exposure of users to his product by giving it to a set of users that together

cover a large number of neighbors [109]. Except for being an important goal by itself,

it is a natural alternative to influence maximization under complex diffusion models; for

many such models it is often hard to analyse and track the diffusion effects, namely, who

influenced who, when, dealing with missing data, etc. [73, 108].

More generally, an advertiser may want to find a small set such that all network nodes

are exposed, namely, a small set of nodes that dominate the network and can post informa-

tion about the product in their online profile. This corresponds to the minimum dominating

set problem. Other natural goals would be to choose a small set of users such that the

amount of exposure (namely, nodes at distance at most one from that set) is at least a fixed

fraction of the network’s nodes. This corresponds to the partial dominating set problem.

Yet another, quite different goal for advertising, is given k to find a set of k nodes with

the highest degree. This has been shown to be the set with the highest influence for the

well-known voter model of information diffusion, under its long run behaviour [42].

Finding a high-degree node is also beneficial socially [45]. Consider an agent in a

social network who wishes to find (and link to) a highly connected individual. For instance,
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this agent may be a newcomer to a community (such as an online gaming or niche-based

community) wanting to interact with influential or popular individuals. Finding a high-

degree node is a straightforward algorithmic problem without information constraints, but

many online and real-world social networks reveal graph structure only within one or two

hops from a user’s existing connections.

More generally, one might want to be able to find a path to some other agent in the

network, without knowing the whole network in advance.

The common feature in all these examples is that befriending a node is a costly op-

eration — both socially and time-wise and in some networks (such as LinkedIn) also

monetary-wise (as one can pay the system in order to get introduced to new nodes). Impor-

tantly, once a node is befriended, one gets to learn new information — the structure of the

local neighborhood around that node up to a small radius. This is a standard feature in all

online social networks.

We note that the applicability of the local information model is not confined to the

social networks’ domain. For example, finding a small set of nodes dominating large parts

of the network is important for monitoring communication and power delivery networks

[53, 114]. In such networks information about the small neighborhood around a node can

be compactly store at a node but there is a cost of installing and maintaining monitoring

software at the nodes.

In chapter 3 we focus on local information algorithms for two fundamental search prob-

lems: s-t connectivity and finding a high-degree node. In chapter 4, we focus on design of

efficient algorithms for coverage problems. We will use very different techniques to tackle

search problems than those we use to tackle coverage problems. While analysis of greedy-

walks on preferential attachment networks would be our main technical contribution to

solve search problems, in coverage problems an amortized-analysis technique would be

rendered successful and would allow us to show that the solution produced locally is not

too far from optimal.

We now turn to formally describe the model of local information algorithms.
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2.1 The Model

We shall study graph optimization problems in which the goal is to return a minimal-cost

set of vertices S satisfying a feasibility constraint. In most of the problems we consider,

the cost of set S will simply be |S|. We will consider a class of algorithms that build S

incrementally under local information constraints. We begin with a definition of distance

to sets and a definition local neighborhoods.

Definition 1. The distance of v from a set S of nodes in a graph G is the minimum, over all

nodes u ∈ S, of the shortest path length from v to u in G.

Definition 2 (Local Neighborhood). Given a set of nodes S in the graph G, the r-closed

neighborhood around S is the induced subgraph of G containing all nodes at distance less

than or equal to r from S, plus the degree of each node at distance r from S. The r-open

neighborhood around S is the r-closed neighborhood around S, after the removal of all

edges between nodes at distance exactly r from S.

Definition 3 (Local Information Algorithm). Let G be an undirected graph unknown

to the algorithm, where each vertex is assigned a unique identifier. For integer r ≥ 1, a

(possibly randomized) algorithm is an r-local algorithm if:

1. The algorithms gets as input the size of the network n and a set S, initialized to either

∅ or to a given set of seed nodes.

2. The algorithm proceeds sequentially, growing step-by-step, adding each grown node

into S.

3. Given that the algorithm has queried a set S of nodes so far, it can only observe the

r-open neighborhood around S.

4. On each step, the algorithm can add a node to S either by selecting a specified vertex

from the r-open neighborhood around S (a crawl) or by selecting a vertex chosen

uniformly at random from all graph nodes (a jump).
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5. In its last step the algorithm returns S as its output.

Similarly, for r ≥ 1, we call an algorithm a r+-local algorithm if its local information

(i.e. in item 2) is made from the r-closed neighborhood around S.

We focus on computationally efficient (i.e. polytime) local algorithms. Our framework

naturally applies to coverage and search problems, where the family of valid solutions is

upward-closed.

More generally, it is suitable for measuring the complexity, using only local informa-

tion, for finding a subset of nodes having a desirable property. In this case the size of S

measures the number of queries made by the algorithm; we think of the graph structure

revealed to the algorithm as having been paid for by the cost of S.

For our lower bound results, we will sometimes compare the performance of an r-local

algorithm with that of a (possibly randomized) algorithm that is also limited to using Jump

and Crawl queries, but may use full knowledge of the network topology to guide its query

decisions. The purpose of such comparisons is to emphasize instances where it is the lack

of information about the network structure, rather than the necessity of building the output

in a local manner, that impedes an algorithm’s ability to perform an optimization task.

The approximation achieved by an algorithm is the ratio between the number of Jump

and Crawl queries made by the algorithm to find a feasible solution (e.g. connecting sub-

graph) to the minimum number of Jump and Crawl queries made by an algorithm with full

knowledge of the graph.
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Chapter 3

Local Information Algorithms for

Network Search Problems

3.1 Introduction

In this chapter we will develop and analyze local information algorithms for two prominent

network search problems: s-t connectivity and finding high-degree. The goal in the s-t

connectivity problem is to locally find a connecting subgraphs containing s and t and the

goal in the high degree problem is to used a small number of queries to find a node of close

to high degree.

For both these problems we derive strong lower bounds on the performance of local

algorithms for general graphs. We therefore turn to the class of preferential attachment (PA)

graphs, which model properties of many real-world social and technological networks. For

PA networks, we prove that local information algorithms do surprisingly well at these two

search problems.

Detailed Results and Techniques

The main focus of this chapter concerns local information algorithms for search prob-

lems in preferential attachment (PA) networks. Such networks are defined by a process by

which nodes are added sequentially and form random connections to existing nodes, where
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the probability of connecting to a node is proportional to its degree.

We first consider the problem of finding the root (first) node in a PA network. A ran-

dom walk would encounter the root in Õ(
√

n) steps (where n is the number of nodes in

the network). The question of whether a better local information algorithm exists for this

problem was posed by Bollobás and Riordan [18], who state that “an interesting question

is whether a short path between two given vertices can be constructed quickly using only

‘local’ information” [18]. They conjecture that such short paths can be found locally in

Θ(logn) steps. We make the first progress towards this conjecture by showing that poly-

logarithmic time is sufficient: there is an algorithm that finds the root of a PA network in

O(log4(n)) time, with high probability. We then show how to use this algorithm to obtain

polylogarithmic approximations for finding the smallest subgraph that connects a subset of

nodes (including shortest path) and finding the highest-degree node.

The local information algorithm we propose uses a natural greedy approach: at each

step, it queries the visible node with highest degree. Demonstrating that such an algorithm

reaches the root in O(log4(n)) steps requires a probabilistic analysis of the PA process.

A natural intuition is that the greedy algorithm will find nodes of ever higher degrees over

time. However, such progress is impeded by the presence of high-degree nodes with only

low-degree neighbors. We show that these bottlenecks are infrequent enough that they

do not significantly hamper the algorithm’s progress. To this end, we derive a connection

between node degree correlations and supercritical branching processes to prove that a path

of high-degree vertices leading to the root is always available to the algorithm.

Related Work Over the last decade there has been a substantial body of work on under-

standing the power of sublinear-time approximations. In the context of graphs, the goal

is to understand how well one can approximate graph properties in a sublinear number of

queries. See [106] and [51] for recent surveys. In the context of social networks a recent

work has suggested the Jump and Crawl model, where algorithms have no direct access

to the network but can either sample a node uniformly (Jump) or access a neighbor of a

previously discovered node (a Crawl) [23]. Local information algorithms can be thought
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of as a generalization the Jump and Crawl query framework that includes a dimension of

information: a Crawl query can now return any node in the local neighborhood of nodes

seen so far.

Motivated by distributed computation, a notion of local computation was formalized

by [107] and further developed in [2]. The goal of a local computation algorithm is to com-

pute only certain specified bits of a global solution. In contrast, our notion of locality is

motivated by informational rather than computational constraints imposed upon a sequen-

tial algorithm. As a result, the informational dimension of visibility tends not to play a role

in the analysis of local computation algorithms. In contrast, the main issue in designing a

local information algorithm is to find a good tradeoff between the amount of local informa-

tion the algorithm is allowed to see to the number of queries it needs to make in order to

solve a network optimization problem.

Local algorithms motivated by efficient computation, rather than informational con-

straints, were explored by [4, 113]. These works explore local approximation of graph

partitions to efficiently find a global solution. In particular, they explore the ability to find

a cluster containing a given vertex by querying only close-by nodes.

Preferential attachment (PA) networks were suggested by [9] as a model for large social

networks. There has been much work studying the properties of such networks, such as

degree distribution [19] and diameter [18]; see [17] for a short survey. The problem of

finding high degree nodes, using only uniform sampling and local neighbor queries, is

explored by Brautbar and Kearns in [23]. The results of that work, as applied to our local

infromatioh setting, are dicussed later in this chapter.

The low diameter of PA graphs can be used to implement distributed algorithms in

which nodes repeatedly broadcast information to their neighbors [37, 46]. A recent work [37]

showed that such algorithms can be used for fast rumor spreading. Our results on the ability

to find short paths in such graphs differs in that our algorithms are sequential, with a small

number of queries, rather than applying broadcast techniques.

The ability to quickly find short paths in social networks has been the focus of much
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study, especially in the context of small-world graphs [47, 75]. It is known that local routing

using short paths is possible in such models, given some awareness of global network

structure (such as coordinates in an underlying grid).

In contrast, our shortest-path algorithm for PA graphs does not require an individual

know the graph structure beyond the degrees of his neighbors. However, our result requires

that routing can be done from both endpoints; in other words, both nodes are trying to find

each other.

3.2 Search problems in Arbitrary Networks

We start with a formal description of the search problems we analyze in this chapter.

The s-t Connectivity Problem The local information algorithm is given two source nodes

s,t in a graph G with a connecting path between s and t. The goal of the algorithm is, given

sources s and t, to find a small connected subgraph containing both s and t.

The High-Degree Node Problem The local information algorithm is given a precision

parameter α. The goal of the algorithm is to find a node in a graph G with degree at least α

time the maximum degree in G.

3.2.1 Searching for a Connecting Subgraph

In this section we will focus on the local information algorithms for the s-t connectivity

problem in arbitrary graphs. We present a lower bound demonstrating that in general one

cannot hope to get good approximations.

Theorem 3.1. Let r, n≥ 12r + 24 be positive integers. For any r-local algorithm for the s-

t connectivity problem with success probability bigger than 7
8 , the expected approximation

over successful runs is Ω( n
r2 ) on connected graphs with n nodes.

Corollary 3.2. For any 1-local algorithm for the s-t connectivity problem with success

probability bigger than 7
8 , the expected approximation over successful runs is Ω(n), the
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worst asymptotically possible, on connected graphs with n nodes.

Proof of Theorem 3.1. The proof will invoke the application of Yao’s Minimax Principle

for the performance of Monte Carlo randomized algorithms on a family of inputs [119].

The lemma states that half the least expected cost of deterministic Monte Carlo algorithms

with failure probability of ε ∈ [0,1] on a distribution over any family of inputs is a lower

bound on the expected cost of the optimal randomized Monte Carlo algorithm with failure

probability of ε
2 over that family of inputs.

To use the lemma we will focus on Monte Carlo deterministic algorithms that have

failure probability smaller than 1
4 on the uniform distribution over a carefully chosen set

of inputs. We proceed with the details. Each input is a graph on n nodes constructed as

follows: we have two distinct nodes s and t. We define a broken path as path on 2r + 4

nodes where the ’middle’ edge has been removed. The graph will be made from n−2−(2r+4)
2r+4

distinct broken paths from s to t together with one distinct connected path, connecting s

with t. The identity of the connected path would be chosen uniformly at random from the

set of ` = n−2
2r+4 paths. In total the family of inputs contains n−2

2r+4 members.

See Figure 3.1 for an illustration.

As the algorithm is r-local, being at s or t it cannot see the middle node on the broken

path so it cannot decide if a path is broken before traversing at least one node in it. A

compelling property therefore holds: if the algorithm has not found the connected path

after i queries then the algorithm learns nothing about the identity of the broken path except

that it is not one of the paths it traversed so far. As the connected path is chosen uniformly

at random from all paths, the probability that after 1
6

n−2
2r+4 = `/6 queries the connected path

is not found is(
1− 1

`

)(
1− 1

(`− 1)

)
. . .
(

1− 1
5`/6 + 1

)
≥
(

1− 1
5`/6 + 1

)`/6

≥

exp
(
−2

`

6
1

5`/6 + 1

)
≥ exp

(
−2`

5`+ 6

)
≥

≥ exp(−1/3) ≥ 0.71,
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Figure 3.1: An example illustrating the “broken path” lower bound construction for the s-t

connectivity problem.

where we used the fact that 1− x ≥ exp(−2x) for 0≤ x ≤ 1/3 (here x = 1
5`/6+1 < 1/3

by assumption), and that ` ≥ 6.

By assumption, the algorithm is successful with probability at least 3
4 . Thus with con-

stant probability at least 0.75− 0.29 = 0.46, the cost of finding a path from s to t must

be Ω(n
r ), so the expected cost is at least Ω(n

r ). Using Yao’s principle applied to Monte

Carlo algorithms, the cost of any randomized algorithm with success probability of at least

7/8 would be at least Ω(n
r ) on one of the inputs. However, on any of the input graphs, an

algorithm with full knowledge of the graph can query all the nodes in the unique path con-

necting s and t in 2r + 4 queries. The approximation ratio of the r-local algorithm would

therefore be worse than Ω( n
r2 ).

3.2.2 Searching for a High-Degree Node

In this section we will focus on the local information algorithms for the High-Degree Node

Problem in arbitrary graphs. We begin with a lower bound demonstrating that in general

29



one cannot hope to get good approximations.

Theorem 3.3. Let r, n ≥ r and 4 ≤ d ≤ n/10 be positive integers. For any r-local al-

gorithm for finding a node of degree at least four with success probability at least 7
8 , the

expected approximation over successful runs is Ω( n
dr2 ) on connected graphs with n nodes

and maximum degree d.

The theorem provides us with the following stringent impossibility result.

Corollary 3.4. For any r-local algorithm for finding a node of degree at least four in graphs

on n nodes with success probability at least 7
8 , the expected approximation over successful

runs is Ω(
√

n) on connected graphs with maximum degree
√

n.

Proof of Theorem 3.3. We first focus our attention on proven the claim for 1-local algo-

rithms on connected graphs. The proof will follow similar lines to that of theorem 3.1. As

done previously, we shall invoke Yao’s MinImax Principle on the performance of Monte

Carlo randomized algorithms [119].

For that we focus on analyzing the performance of deterministic Monte Carlo algo-

rithms with success probability 3/4 on a uniformly at random chosen input from a care-

fully chosen family of inputs. We proceed with the details. Each input is a graph on n

nodes constructed as follows: each input is a graph made from a complete binary tree on

n− d nodes called T, labeled with a random permutation of the numbers 1,2, . . . ,n− d.

In addition one leaf node s would be connected to d new nodes, forming a star subgraph

on these nodes, where s is its center. We denote this star subgraph on node s and its new

neighbors by H. The nodes of H (except s) will be labeled with a random permutation of

the numbers n− d + 1,n− d + 2, . . . ,n.

Note that node only nodes in H (and in fact only node s) have degree bigger than three

and so any algorithm that want to achieve a good approximation to the problems must at

least access a node in H.

See Figure 3.2 for an illustration.

Such an algorithm knows only the degrees of the nodes it already traversed. The input

comes with a compelling property: if the algorithm has not found a node in the subgraph
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Figure 3.2: An example illustrating the “augmented leaf” lower bound construction for the

high-degree problem.

H after i queries then it learned nothing about the identity of s except that it is one of the

leaf nodes not queried so far1. Without loss of generality we can assume that the algorithm

makes all its Jumps before its Crawls as the result of a Jump is independent of the outcome

of any Jump and Crawl queries taken so far.

We now focus on the probability of success of the algorithm. As noted before, the

algorithm is successful if it returns a node in H. We will now show that the probability the

algorithm accesses, after making n
6d queries, any node in H is strictly smaller than 3/4,

proving the result.

The probability of hitting a node in H is the probability of hitting a node in H given

that no Jump has hit a node in H plus the probability that a Jump query had hit a node in

H.

With taking at most n
6d Crawls, the probability of hitting H is tantamount to either

1the deterministic algorithm “knows” the distribution over inputs, i.e. that s is a leaf connected to a star

subgraph
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starting from H or starting randomly in T and hitting the node s using Crawls (as H is

connected to T only through node s). The probability of starting from H is d/n ≤ 1/10.

If we denote the number of leafs in T by `, then the probability of not hitting the node s is

at least(
1− 1

`

)(
1− 1

(`− 1)

)
. . .
(

1− 1
`− n/6d + 1

)
≥
(

1− 1
n/6d

)n/6d
≥

exp
(
−2 · 6d

6d

)
≥ 0.86,

where we used the fact that 1− x ≥ exp(−2x) for 0≤ x ≤ 1/3. So in this case, the total

probability of hitting s is at most 0.1 + 0.14 = 0.24. The first inequality follows from the

simple fact that the number of leaves in a complete binary tree on n− d nodes is `= n−d+1
2

and that d < n/3.

Next, with taking at most n
6d Jumps, the probability of not hitting a node in H is(

1− (d + 1)
n

) n
6d
≥ exp

(
−2

d + 1
n
· n

6d

)
≥

exp
(
− (d + 1)

3d

)
≥ exp(−2/5) ≥ 0.67 ,

where we used the simple fact 1− x ≥ exp(−2x) for 0≤ x ≤ 1/3 and that d+1
d ≤

6
5 .

Thus the total success probability of the algorithm is at most 0.24 + 0.33 = 0.57.

Thus, for any algorithm that is successful with fixed probability of at least 1− 1
4 , with

constant probability of at least 0.75− 0.57 = 0.18 the query cost is Ω(n/d) and so is the

expected cost over the inputs.

By Yao’s principle the expected cost of any randomized algorithm with success prob-

ability at least 7/8 would be at least Ω(n/d) on at least one of the inputs. However, an

algorithm with full knowledge of the graph can find node s with at most Θ(log(n)) queries

on any of the inputs by reaching the root of T and then taking the right path to connect to

reach the leaf s. We conclude that the expected approximation of any 1-local algorithm on

at least one of the inputs would be Ω( n
d log(n)).

To generalize the bound to hold for r-local algorithms we replace each edge (u,v) in

the complete binary tree subgraph of the construction above by a distinct path from u to v
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of length r. The total number of nodes becomes C = n + (n− 1)(r− 2). The number of

queries one needs to make in order to access a node in H with probability at least 3/4 is

essentially given by the preceding analysis and is Ω(n
d ) = Ω( C

dr ).

As an algorithm with full information of the graph can find node s in at most log(C)r

time, the result follows.

We next focus on 1-local algorithms and present an almost matching upper bound for

the problem for such algorithms. The designed algorithm first guesses the value of the

maximum degree d∗ using a simple doubling trick. It then takes about n
d∗ Jumps and return

a node if it has degree at least d∗. The pseudo-code of the algorithm is given on the next

page.

Theorem 3.5. Algorithm FindAlmostHighestDegreeNode makes O( n
d∗ log2 n) Jump and

Crawl queries, where d∗ is the maximum degree in the network, and returns with probability

1− 1/n a node with degree at least half of d∗.

Proof. Note that n≤ k < 2n. The outer loop of the algorithm (line 2) costs at most log(2n)

and the inner loop (line 3) costs at most n
d∗ logn. There are no other query calls. The total

cost is therefore bounded by O(n logn2).

Let d be a guess of d∗ that differ from it by two. We focus on the iteration when such

a d is picked in line 2 of the algorithm. We therefore assume that the algorithm has not

terminated yet. The maximum degree vertex v has d∗ neighbors. Therefore, the probability

of hitting such a neighbor by making a Jump query is d∗
n . In line 3 the algorithm proceeds

by making n
d∗ logn Jump queries and would therefore hit a neighbor of v with probability

at least 1− (1− d∗
n )

n
d∗ logn ≥ 1− exp

(
d∗
n ·

n
d∗ logn

)
≥ 1− 1

n and terminate successfully.

Here we used the simple fact that 1− x ≤ exp(−x).

Last we note that if in a previous iteration to the one d was picked we found a node of

degree at least 2d then it must be a highest degree node since d∗ ≤ 2d, and the algorithm

would successfully terminate.
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Algorithm 1 FindAlmostHighestDegreeNode

1: Set k to be the smallest power of 2 bigger or equal to n.

2: for d = k,k/2,k/4, . . . ,1 do

3: for n
d logn times do

4: Make a Jump query. Let v be the vertex found.

5: if v has a neighbor u of degree at least d then

6: Terminate and return u.

7: end if

8: end for

9: end for

10: Return Fail.

3.3 Preferential Attachment Networks

Given the stringent impossibility results for solving the s-t connectivity problem and solv-

ing the high-degree problem on arbitrary graphs we focus on the solvability of these prob-

lems in networks generated according to a standard model for social and information net-

works — the preferential attachment (PA) process. We will show that in contrast to the

impossibility results proven on general networks, we can achieve good approximations to

search problems in preferential attachment networks by using a greedy procedure that aims

to find the oldest node in the network (i.e. “the root”). The main focus of this chapter

would be to analyze the performance of this greedy procedure in preferential attachment

networks, addressing an open question of Bollobás and Riordan [18].

The preferential attachment (PA) process was conceived by Barabási and Albert [9].

Informally, the process is defined sequentially with nodes added one by one. When a node

is added it sends m links backward to previously created nodes, connecting to a node with

probability proportional to its current degree.

We will use the following, now standard, formal definition of the process, due to [18].

Given m ≥ 1, we inductively define random graphs Gt
m, 1≤ t ≤ n. The vertex set for Gt

m
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Figure 3.3: An illustration of the Preferential Attachment Process.

is [t] where each node is identified by its creation time (index). G1
m is the graph with node 1

and m self-loops. Given G(t−1)
m , form Gt

m by adding node t and then forming m edges from

t to nodes in [t], say p1(t), . . . , pm(t). The nodes pk(t) are referred to as the parents of t.

The edges are formed sequentially. For each k, node s is chosen with probability deg(s)/z

if s < t, or (deg(s) + 1)/z if s = t, where z is a normalization factor.

Note that deg(s) denotes degree in Gt−1
m , counting previously-placed edges.See Figure

3.3 for an illustration.

We first present a 1-local approximation algorithm for the following natural problem

on PA graphs: given an arbitrary node u, return a minimal connected subgraph containing

nodes u and 1 (i.e. the root of Gn
m).

Our algorithm, TraverseToTheRoot, is listed as Algorithm 2. The algorithm grows a set

S of nodes by starting with S = {u} and then repeatedly adding the node in N(S)\S with

highest degree. We will show that, with high probability, this algorithm traverses the root

node within O(log4(n)) steps.

Theorem 3.6. With probability 1 − o(1) over the preferential attachment process on n
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Algorithm 2 TraverseToTheRoot

1: Initialize a list L to contain an arbitrary node {u} in the graph.

2: while L does not contain node 1 do

3: Add a node of maximum degree in N(L)\L to L.

4: end while

5: return L.

nodes, TraverseToTheRoot returns a set of size O(log4(n)).

Remark: For convenience, we have defined TraverseToTheRoot assuming that the algo-

rithm can determine when it has successfully traversed the root. This is not necessary in

general; our algorithm will instead have the guarantee that, after O(log4(n)) steps, it has

traversed node 1 with high probability.

Before proving Theorem 3.6, we discuss its algorithmic implications to the search prob-

lem we doscussed before.

3.3.1 Applications of TraverseToTheRoot to Search problems

We now describe how to use TraverseToTheRoot to implement local algorithms fr s-t con-

nectivity and the high-degree problem. For ease of readability, the proofs of all auxiliary

lemmas will be only presented at the end of the chapter.

s-t connectivity. As we now show, one may use TraverseToTheRoot to obtain a polyloga-

rithmic approximation to this problem.

Corollary 3.7. Let G be a PA graph on n nodes. Then, with probability 1− o(1) over

the PA process, Algorithm 3 (listed above), a 1-local algorithm, returns a connected sub-

graph of size O(log4(n)) containing vertices s and t. Furthermore, for any fixed k, with

probability 1− o(1) over the PA process, a subset of k nodes can be connected by a local

algorithm in O(k log4(n)) steps, using a subset of size O(k log4(n)).

Proof. Theorem 3.6 implies that, algorithm TravesetToTheRoot(G, s) returns a path from s

to node 1 in time O(log4(n)), with probability 1− o(1).
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Algorithm 3 s-t-Connect
1: P1← TraverseToTheRoot(G, s)

2: P2← TraverseToTheRoot(G, t)

3: Return P1 ∪ P2

Similarly, with probability 1− o(1), TraverseToTheRoot(G, t) returns a connected path

from s to node 1 in time O(log4(n)). Concatenating the two paths at node 1 is a path

of length O(log4(n)) from s to t. Given k terminal one can connect all of them to

nodes 1. Theorem 3.6 implies that for each terminal, with probability 1 − o(1), algo-

rithm TravesetToTheRoot(G, s) returns a path from s to node 1 in time O(log4(n)). For a

fixed k, the claim then follows from the union bound.

Finding a high degree node. As we now show, the algorithm TraverseToTheRoot obtains

a polylogarithmic approximation to this problem.

Corollary 3.8. Let G be a preferential attachment graph on n nodes. Then,

• Algorithm TraverseToTheRoot will return, with probability 1− o(1), a node of de-

gree at least 1
log2.9(n)

of the maximum degree in the graph, in time O(log4(n)).

• For any fixed k independent of n, by running algorithm TraverseToTheRoot for an

additional k steps and returning the k nodes with the highest degree found in its

entire run, with probability 1− o(1) and in time O(log4(n)), this set would provide

an O(1/log2.9(n)) approximation to the largest sum of k node-degrees, over all k

nodes in the network.

Proof of Corollary 3.8. TraveseToTheRoot ends when node 1 is found. From lemma 3.10

(presented later on), with probability 1− o(1), nodes 1 has degree at least m
√

n
log1.9(n)

. How-

ever, from [17] (Theorem 17 therein), with probability 1− o(1), the maximum degree is

less than m
√

n log(n). As TraveseToTheRoot runs with probability 1− o(1) in O(log4(n))

steps, and stops when it founds node 1, the first part is proven.
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We now prove the second part of the corollary. From Lemma 3.10 (presented later on),

with probability 1− o(1), all nodes j ≤ log(n) have degree at least m
√

n
log1.9(n)

. Also, with

probability 1− o(1), the network on the first log(n) nodes is connected (see for example

corollary 5.15 in [37], used with n := log(n)). Thus running TraveseToTheRoot for an

additional k steps after node 1 is found, and returning the k largest nodes found in its entire

run, would guarantee that each of the k nodes has degree at least m
√

n
log1.9(n)

, with probability

1− o(1).

3.3.2 Analysis of TraverseToTheRoot Algorithm

We now turn to develop, step by step, a proof to Theorem 3.6. Our proof will make use of an

alternative specification of the preferential attachment process, which is now standard in the

literature [18], [37]. We will now describe this model briefly. Sample mn pairs (xi,j,yi,j)

independently and uniformly from [0,1]× [0,1] with xi,j < yi,j for i ∈ [n] and j ∈ [m]. We

relabel the variables such that yi,j is increasing in lexicographic order of indices. We then

set W0 = 0 and Wi = yi,m for i ∈ [n]. We define wi = Wi −Wi−1 for all i ∈ [n]. We then

generate our random graph by connecting each node i to m nodes p1(i), . . . , pm(i), where

each pk(i) is a node chosen randomly with P[pk(i) = j] = wj/Wi for all j ≤ i. We refer

to the nodes pk(i) as the parents of i.

Bollobás and Riordan showed that the above random graph process is equivalent2 to

the preferential attachment process. They also show the following useful properties of

this alternative model. Set s0 = 160log(n)(loglog(n))2 and s1 = n
225 log2 n

. Let It =

[2t + 1,2t+1]. Define constants β = 1/4 and ζ = 30.

Lemma 3.9 (adapted from [18]). Let m ≥ 2 be fixed. Using the definitions above, each of

the following events holds with probability 1− o(1):

2As has been observed elsewhere [37], this process differs slightly from the preferential attachment pro-

cess in that it tends to generate more self-loops. However, it is easily verified that all proofs in this section

continue to hold if the probability of self-loops is reduced.
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• E1 = {|Wi −
√

i
n | ≤

1
100

√
i
n for s0 ≤ i ≤ n}.

• E2 = {It contains at most β|It| nodes i with wi <
1

ζ
√

in
for log(s0)≤ t≤ log(s1)}.

• E3 = {w1 ≥ 4
logn

√
n}.

• E4 = {wi ≥ 1
log1.9(n)

√
n

for all i ≤ s0}.

• E5 = {wi ≤ log(n)√
in

for s0 ≤ i ≤ n}

Note that we modified these events slightly (from [18]) for our purposes: event E2 uses

different constants β and ζ, and in event E4 we provide a bound on wi for all i ≤ s0 rather

than i ≤ n1/5. Finally, event E5 is a minor variation on the corresponding event from [18].

The proof of Lemma 3.9 follows closely that of Lemma 7 in [18] and can be found in

section 3.4.

Given Lemma 3.9, we can think of the Wi’s as arbitrary fixed values that satisfy events

E1, . . . , E5, rather than as random variables. Lemma 3.9 implies that, if we can prove The-

orem 3.6 for random graphs corresponding to all such sequences of Wi’s, then it will also

hold for preferential attachment graphs. We now turn to the proof of Theorem 3.6. Let

us provide some intuition. We would like to show that TraverseToTheRoot queries nodes

of progressively higher degrees over time. However, if we query a node i of degree d,

there is no guarantee that subsequent nodes will have degree greater than d; the algorithm

may encounter local maxima. Suppose, however, that there were a path from i to the root

consisting entirely of nodes with degree at least d. In this case, the algorithm will only

ever traverse nodes of degree at least d from that point onward. One might therefore hope

that the algorithm finds nodes that lie on such “good” paths for ever higher values of d,

representing progress toward the root.

Motivated by this intuition, we will study the probability that any given node i lies on

a path to the root consisting of only high-degree nodes (i.e. not much less than the degree

of i). We will argue that many nodes in the network lie on such paths. We prove this in

two steps. First, we show that for any given node i and parent pk(i), pk(i) will have high
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degree relative to i with probability greater than 1/2 (Lemma 3.11). Second, since each

node i has at least two parents, we use the theory of supercritical branching processes to

argue that, with constant probability for each node i, there exists a path to a node close to

the root following links to such “good” parents (Lemma 3.12).

This approach is complicated by the fact that existence of such good paths is highly

correlated between nodes; this makes it difficult to argue that such paths occur “often” in

the network. To address this issue, we show that good paths are likely to exist even after

a large set of nodes (Γ in our argument below) is adversarially removed from the network.

We can then argue that each node is likely to have a good path independently of many

others nodes, as we can remove all nodes from one good path before testing the presence

of another.

We will now proceed with the details of the proof. The proofs of all technical lemmas

appear at the end of this section. Set s0 = 160log(n)(loglog(n))2 and s1 =
n

225 log2 n
. We

think of vertices in [1, s0] as close to the root, and vertices in [s1,n] as very far from the

root. Let It = [2t + 1,2t+1] be a partition of [n] into intervals. Define constants β = 1/4

and ζ = 30. We now define what we mean by a typical node.

Definition 4 (Typical node). A node i is typical if either wi ≥ 1
ζ
√

in
or i ≤ s0.

Note that event E2 implies that each interval It, log(s0)≤ t≤ log(s1) contains a large

number of typical nodes.

The lemma below encapsulates concentration bounds on the degrees of nodes in the

network as well as other useful properties of PA networks.

Lemma 3.10. The following events hold with probability 1− o(1):

• E6 = {∀i ≥ s0 : deg(i) ≤ 6m log(n)
√n

i }.

• E7 = {∀s0 ≤ i ≤ s1 that is typical : deg(i) ≥ m
2ζ

√n
i }.

• E8 = {∀i ≤ s0 : deg(i) ≥ m
√

n
5log1.9(n)

}.

• ∀i ≥ s0 : P[i is connected to 1] ≥ 3.9
log(n)

√
i
.
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• ∀j ≥ i ≥ s0,1≤ k ≤ m : P[pk(j) ≤ i] ≥ 0.9
√

i√
j

.

Our next lemma states that, for any set Γ that contains sufficiently few nodes from each

interval It, and any given parent of a node i, with probability greater than 1/2 the parent

will be typical, not in Γ, and not in the same interval as i.

Definition 5 (Sparse set). A subset of nodes Γ⊆ [n] is sparse if |Γ ∩ It| ≤ |It|/loglog(n)

for all log s0 ≤ t ≤ log s1. That is, Γ does not contain more than a 1/loglogn fraction of

the nodes in any interval It contained in [s0, s1].

Lemma 3.11. Fix sparse set Γ. Then for each i ∈ [s0, s1] and k ∈ [m], the following are

true with probability ≥ 8/15 : pk(i) 6∈ Γ, pk(i) ≤ i/2, and pk(i) is typical.

We now claim that, for any given node i and sparse set Γ, there is likely a short path

from i to vertex 1 consisting entirely of typical nodes that do not lie in Γ. Our argument is

via a coupling with a supercritical branching process. Consider growing a subtree, starting

at node i, by adding to the subtree any parent of i that satisfies the conditions of Lemma

3.11, and then recursively growing the tree in the same way from any parents that were

added. Since each node has m ≥ 2 parents, and each satisfies the conditions of Lemma

3.11 with probability > 1/2, this growth process is supercritical and should survive with

constant probability (within the range of nodes [s0, s1]). We should therefore expect that,

with constant probability, such a subtree would contain some node j < s0.

To make this intuition precise we must define the subtree structure formally. Fix sparse

set Γ and a node i ∈ [s0, s1]. Define HΓ(i) to be the union of a sequence of sets H0, H1, . . . ,

as follows. First, H0 = {i}. Then, for each ` ≥ 1, H` will be a subset of all the parents of

the nodes in H`−1. For each j ∈ H`−1 and k ∈ [m], we will add pk(j) to H` if and only if

the following conditions hold:

1. pk(j) is typical, pk(j) 6∈ Γ, and pk(j) ≤ j/2,

2. pk(j) 6∈ Hr for all r ≤ `, and

3. For the interval It containing pk(j), |It ∩ (H0 ∪ . . . ∪ H`)| < 10loglogn.
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Item 1 contains the conditions of Lemma 3.11. Item 2 is that pk(j) has not already been

added to the subtree; we add this condition so that the set of parents of any two nodes in

the subtree are independent. Item 3 is that the subtree contains at most 10loglogn nodes

from each It. We will use this condition to argue that Γ remains sparse if we add all the

elements of HΓ(i) to Γ.

Our next lemma states that any given node i ∈ [s0, s1] has a short path to the root con-

sisting of only typical nodes with probability at least 3/4.

Lemma 3.12. Fix any sparse set Γ. Then for each node i ∈ [s0, s1], the probability that

HΓ(i) contains a node j ≤ s0 is at least 1/5.

Lemma 3.12 implies the following result, which we will use in our analysis of the

algorithm TraverseToTheRoot. First a definition.

Definition 6 (Good path). A path (j0, j1, ..., jk) is good if jk ≤ s0, each j` is typical and, for

each ` > 0, j` ≤ j`−1/2. We say vertex i ∈ [s0, s1] has a good path if there is a good path

with j0 = i.

Lemma 3.13. Choose any set T of at most 16logn nodes from [s0, s1]. Then each i ∈ T

has a good path with probability at least 1/5, independently for each i.

We will apply Lemma 3.13 to the set of nodes queried by TraverseToTheRoot to argue

that progress toward the root is made after every sequence of polylogarithmically many

steps.

We can now complete the proof of Theorem 3.6, which we give below.

Proof of Theorem 3.6. Our analysis will consist of three steps, in which we consider three

phases of the algorithm. The first phase consists of all steps up until the first time Traver-

seToTheRoot traverses a node i < s1 with a good path. The second phase then lasts until

the first time the algorithm queries a node i < s0. Finally, the third phase ends when the al-

gorithm traverses node 1. We will show that each of these phases lasts at most O(log4(n))

steps.
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We note that we will make use of Lemma 3.13 in our analysis by way of consider-

ing whether certain nodes have good paths. We will check at most 16logn nodes in this

manner, and hence the conditions of Lemma 3.13 will be satisfied.

Analysis of phase 1 Phase 1 begins with the initial node u, and ends when the algorithm

traverses a node i < s1 with a good path. We divide phase 1 into a number of iterations.

Iteration zero starts at node u. Define iteration t as the first time, after iteration t− 1, that

the algorithm queries a node i ≤ s1.

Each new node i considered in iteration t will have i < s1 with probability at least

Ws1/1 ≥ 1
213 logn , regardless of the previous nodes traversed. By the multiplicative Cher-

noff bound (A.1), with probability of at least 1− 1/n2, after at most 5log2(n) steps such

a node i < s1 would be found. By Lemma 3.13 we know that node i has a good path with

probability at least 1/5 independent of all nodes traversed so far.

By the multiplicative Chernoff bound (A.1), we conclude that after at most 10log(n)

iterations, and total time of O(log3(n)), the algorithm traverses a node that has both i < s1

and a good path, with probability at least 1− 10log(n)
n2 − 1

n .

We note that the number of invocations of Lemma 3.13 made during the analysis of

this phase is at most 2logn with high probability, and hence the cardinality restriction of

Lemma 3.13 is satisfied.

Analysis of phase 2 Phase 2 begins once the algorithm has traversed some node i < s1 with

a good path, and ends when the algorithm traverses a node j < s0. We split phase 2 into a

number of epochs. For each log s0 < t≤ log s1, we define epoch t to consist of all steps of

the algorithm during which some node i ∈ It with a good path has been traversed, but no

node in any I` for ` < t with a good path has been traversed. Define random variable Yt to

be the length of epoch t. Note phase 2 ends precisely when epoch log s0 ends. Further, the

total number of steps in phase 2 is ∑
log s1
t=log s0

Yt.

Fix some log s0 ≤ t ≤ log s1 and consider Yt. Suppose the algorithm is in epoch t, and

let i ∈ It be the node with a good path that has been traversed by the algorithm. Then,

from the definition of a good path and event E7, i has a parent j ∈ I` for some ` < t with
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deg(j)≥ m
2ζ

√n
i . This node j is a valid choice to be traversed by the algorithm, so any node

queried before j must have degree at least m
2ζ

√n
i . Moreover, traversing node j would end

epoch t, so every step in epoch t traverses a node with degree at least m
2ζ

√n
i . By event

E6, any such node ` satisfies ` < zi log2(n) for constant z = (4ζ)2. But we now note that,

for any node ` < zi log2(n) traversed by the algorithm, the probability that ` has a parent3

r < i/2 is at least
Wi/log2(n)

W`
≥ 1

4ζ log2 n
. Any such node r has degree greater than any node

in It, again by Lemma 3.10, so if a queried node had such a parent then the subsequent

step must query a node of index at most 2t. Moreover, Lemma 3.13 implies that this node

of index at most 2t has a good path with probability at least 1/5. Thus each step of the

algorithm results in the end of epoch t with probability at least 1
20ζ log2 n

. We conclude

that Yt is stochastically dominated by a geometric random variable with mean 20ζ log2 n.

Also, the number of invocations of Lemma 3.13 made during epoch t is dominated by a

geometric random variable with mean 5.

We conclude that ∑
log s1
t=log s0

Yt is dominated by the sum of at most logn geometric ran-

dom variables, each with mean 20ζ log2 n = 600log2 n. Concentration bounds for geo-

metric random variables (Lemma A.3) now imply that, with high probability, this sum is

at most 210 log3 n. We conclude that phase 2 ends after at most 210 log3 n steps with high

probability. Similarly, the total number of invocations of Lemma 3.13 made during the

analysis of this phase is at most 6logn with high probability, again by Lemma A.3.

Analysis of phase 3 We turn to analyze the time it takes from the first time the algorithm

encountered a node of i≤ s0 until node 1 is found. We start by noting that the induced graph

on the first s0 nodes is connected with probability 1− o(1) (see for example corollary 5.15

in [37], used with n := s0). We note that by Lemma 3.10 every node j ≤ s0 has degree at

least d = m
√

n
5log1.9(n)

. As there is a path from i to node 1 where all nodes have degree at least

d, the algorithm, as it follows the highest neighbor of its current set S, will reach node 1

before it had traversed any node of degree less than d. We can therefore assume that the

3Note that even if the algorithm queried node ` via its connection to one of its parents, it will still have at

least one other parent that is independent of prior nodes queried by the algorithm since m ≥ 2.
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algorithm only traverses nodes of degree at least d.

By Lemma 3.10, each node j > s0 has deg(j) ≤ 6m log(j)
√

n
j with high probability,

and therefore any node j with degree ≥ d must satisfy j ≤ (60ζ)2 log5.8(n). For any such

node, E1 implies that Wj ≤ 11
10

(60ζ) log2.9(n)√
n . Thus, for each such j, the probability that j is

connected to the root is w1/Wj ≥ 1
211 log3.9(n)

, by event E3. Chernoff bounds (Lemma A.1)

then imply that such an event will occur with high probability after at most O(log4(n))

steps. Thus, with high probability, phase 3 will end after at most s0 + O(log4(n)) =

O(log4(n)) steps.

3.4 Deferred Proofs from the Analysis of TraveseToThe-

Root

3.4.1 Proof of Lemma 3.9

We provide details for the proof of Lemma 3.9. The proof follows closely a similar lemma

of Bollobás and Riordan, Lemma 7 in [18].

The proof that events E1 and E2 hold with high probability follows without change (as

in Lemma 7 in [18]), except for a trivial modification of certain constants. The proof that

events E3 holds with high probability follows entirely without change.

We next show that event E4 holds with high probability, by showing that Pr[Ec
4 ∩ E1] =

o(1). Suppose that Ec
4 ∩ E1 holds and let δ = 1

log1.9(n)
√

n
. As E1 holds we have Ws0 ≤

11loglog(n)
√

log(n)
10
√

n . As E4 does not hold there exists some interval [x, x + δ] with 0≤ x ≤
11loglog(n)

√
log(n)

10
√

n that contains two of the Wi and hence two of the yi,j. Each such inter-

val is contained in some interval Jt = [tδ, (t + 2)δ] for 0 ≤ t ≤ δ−1 11loglog(n)
√

log(n)
10
√

n <

2log2.5(n). The probability that some yi,j lands in such an interval is (4t + 4)δ2, so the

probability that at least two lie in Jt is at most m2n2(4t + 4)2δ4/2 < 32m2/log2.6(n).
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Thus

P(Ec
4 ∩ E1) ≤

2log2.5(n)

∑
t=0

32m2/log2.6(n) = o(1)

as required.

We will next show that the event E5 holds with high probability. Recall that event E5

is {wi ≤ log(n)√
in

for s0 ≤ i ≤ n}. We will show that P(Ec
5 ∩ E1) = o(1), which will imply

that P(E5) = 1− o(1) as required.

Suppose that Ec
5 ∩ E1 holds. Then there is some i ≥ s0 is such that wi >

log(n)√
in

. Define

δ =
log(n)√

in
; it must therefore be that the interval (Wi−1,Wi−1 + δ] does not contain Wi, and

hence contains at most m − 1 of the yi,j. Since E1 holds, we must have Ws0 ≥ 9
10

√
s0
n .

We now define a partition of [ 9
10

√
s0
n ,1] into intervals Jt = [xt, xt+1) for t ≥ 0, where we

define x0 =
9

10

√
s0
n and xt = xt−1 +

log(n)
xt−1nm for all t ≥ 1, until xt ≥ 1. We note that there

are at no more than mn intervals Jt in total. We also note that, since E1 holds, each interval

(Wi−1,Wi−1 + δ] contains at least m− 1 intervals Jt, each satisfying xt ≥Wi−1, one of

which must contain no yi,j since E5 does not hold.

For a given t satisfying xt ≥Wi−1, the number of yi,j in Jt has a Bi(mn, pt) distribution

with

pt = x2
t+1 − x2

t ≤ 2xt
log(n)
xtnm

=
2log(n)

nm
.

The probability that no yi,j lies in this interval is thus

(1− pt)
mn ≤ e−mnpt < e−2log(n) = o(n−1).

Summing over the O(n) values of t shows that Pr(Ec
5 ∩ E1) = o(1), as required.

3.4.2 Proof of Lemma 3.10

We will first prove that the following events hold with probability 1− o(1):

• E6 = {∀i ≥ s0 : deg(i) ≤ 6m log(n)
√n

i }.

• E7 = {∀s0 ≤ i ≤ s1 that is typical : deg(i) ≥ m
2ζ

√n
i }.
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• E8 = {∀i ≤ s0 : deg(i) ≥ m
√

n
5log1.9(n)

}.

Note that event E7 states that typical nodes have typical degree, motivating our choice

of terminology.

We start by noting that deg(i) = ∑n
j=i+1 ∑m

k=1 Yk,j where each of the Yi,js is an i.i.d

Bernoulli random variable that gets the value of one with success probability of wi
Wj

. This

follows from the fact the each new node j sends m edges backwards and the probability of

each hitting node i is exactly wi
Wj

. From E1 and E5,

E(deg(i)) ≤
n

∑
j=i+1

m
log(n) 1√

in

9
10

√
j
n

 =
n

∑
j=i+1

(
m log(n)

10
9

1√
ij

)
.

By estimating the sum with an integral we get

E(deg(i)) ≤ 10m
9

log(n)
√

n√
i

.

From the multiplicative Chernoff bound (A.1) we conclude that with probability bigger

than 1 − 1/n2, deg(i) ≤ 3m log(n)
√

n√
i

for a given node i. By using the union bound,

event E6 then holds with probability 1− 1/n.

To prove E7 holds with probability 1− 1/n, we first recall that, for a typical node i,

wi ≥ m
ζ
√

in
. This implies, similarly to the first part of the proof, that

E(deg(i)) ≥ 10m
11

√
n

ζ
√

i
.

As Exp(deg(i)) ≥ 16m log(n) for any s0 ≤ i ≤ s1 (since s1 =
n

225 log2 n
), we can invoke

the Chernoff bound (A.1) to get that E7 holds with probability bigger than 1− 1/n2 for a

given node i. This follows by thinking of deg(i) as a sum of Bernoulli random variables

Yi,j, where Yi,j succeeds with probability
1

ζ
√

in
Wj

. By using the union bound, event E7 then

holds with probability 1− 1/n.

The proof that E8 holds with probability 1− 1/n follows similarly to the proof for such

a claim for E7, by using the property that wi ≥ 1
log1.9(n)

√
n

.

To complete the proof of Lemma 3.10, we must show that
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• ∀i ≥ s0 : P[i is connected to 1] ≥ 3.9
log(n)

√
i
, and

• ∀j ≥ i ≥ s0,1≤ k ≤ m : P[pk(j) ≤ i] ≥ 0.9
√

i√
j

.

The first item follows from events E1 and E3 of Lemma 3.9, plus the fact that P[pk(i) =

1] = w1
Wi

for every i and k. The second item follows from event E1 of Lemma 3.9, plus the

fact that P[pk(j) ≤ i] = Wi
Wj

.

3.4.3 Proof of Lemma 3.11

We first recall the statement of the lemma. Fix any sparse set Γ. Then for each i, s0≤ i≤ s1,

and each k ∈ [m], the following statements are all true with probability at least 8/15 :

pk(i) 6∈ Γ, pk(i) ≤ i/2, and pk(i) is typical.

Fix i and k. For each of the three statements in the lemma, we will bound the probability

of that statement being false.

First, we will show that P[pk(i) not typical ] < 1/15. Note that, given that pk(i) falls

within an interval It, this probability is bounded by the total weight of atypical nodes in It

divided by the total weight of It. Since each atypical node j has weight at most 1
10
√

jn
and

j > 2t for all j ∈ It, E4 implies that the total weight of atypical nodes in It is at most

β|It|
1

10
√

2tn
= β

√
2t

10
√

n
.

Also, E1 implies that the total weight of It is

W2t+1 −W2t ≤
√

2t

n

(
99

100

√
2− 101

100

)
.

Since these bounds hold for all t, we conclude that

P[pk(i) not typical ] <
10β

99
√

2− 101

which will be at most 1/15 for β = 1/4.

Next, we will show that P[pk(i) > i/2] < 1
3 . Event E1 implies that

P[pk(i) > i/2] = 1−Wi/2/Wi ≤ 1− 99
101
√

2
<

1
3

.
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Finally, we will show that P[pk(i) ∈ Γ] < 1/15. Given that pk(i) falls within an inter-

val It, this probability is bounded by the total weight of It ∩ Γ divided by the total weight

of It. In this case, due to the assumed sparsity of Γ and E5, the former quantity is at most

|It| 1
(loglogn)

√
2tn
≤
√

2t

n . Also, as above, the total weight of It is at most
√

2t

n (
99
10

√
2− 101

10 ).

Since these bounds hold for all t, we conclude that P[pk(i) ∈ Γ] < 1
99
√

2−101
which is at

most 1/15.

Taking the union bound over these three events, we have that the probability none of

them occur is at least 8/15 as required.

3.4.4 Proof of Lemma 3.12

Let us first recall the statement of the lemma. Fix any sparse set Γ. Then for each node

i ∈ [s0, s1], the probability that HΓ(i) contains a node j ≤ s0 is at least 1/5.

Fix Γ and i, and write H = HΓ(i). Let C = [s0], the set of all nodes with index s0 or

less. We will show that the probability that H ∩ C = ∅ is at most 4/5.

Let ` be such that i ∈ I`. We will say that H saturates a given interval It if |H ∩ It| =

10loglogn. (Note that we must have |H ∩ It| ≤ 10loglogn, from the definition of H).

Let us first consider the probability that H ∩ C = ∅ and H does not saturate any intervals.

Since H does not saturate any intervals, and since the set H ∪ Γ is itself a sparse set,

then for each node j ∈ H and k ∈ [m] the parent pk(j) will be added to H precisely if

the conditions of Lemma 3.11 hold, which occurs with probability at least 8/15. We can

therefore couple the growth of the subtree H within the range [s0, i] with the growth of a

branching process in which each node spawns up to two children, each with probability at

least 8/15. In this coupling, the event H ∩ C = ∅ implies the event that this branching

process generates only finitely many nodes. Write p for the probability that the branching

process generates infinitely many nodes. Then p = 8
15 p + (1− 8

15 p) 8
15 p, from which we

obtain p = 15
64 . We therefore have P[H ∩ C = ∅] ≤ 1 − p = 49

64 conditional on H not

saturating any intervals. Next consider the probability that H ∩ C = ∅ given that H does

saturate some interval. In this case, there is some smallest t such that It is saturated by H.
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Then, given that H saturates It but no interval It′ for t′ < t, then we can again couple the

growth of subtree H from interval It onward with 10loglogn instances of the branching

process described above, each one starting at a different node in H ∩ It. In this case, the

probability that H ∩ C = ∅ is bounded by the probability that each of these 10loglogn

copies of the branching process all generate only finitely many children. This probability is

at most (49/64)10loglogn = o( 1
log2(n)

). Thus, taking the union bound over all possibilities

for the value of t (of which there are at most logn), the probability that H ∩ C = ∅ given

that H saturates some interval is at most o(logn/log2(n)) = o(1).

Combining these two cases, we see that P[H ∩ C = ∅] ≤ 49/64 + o(1) < 4/5.

3.4.5 Proof of Lemma 3.13

Write T = {t1, . . . , tk}. We will apply Lemma 3.12 to each node ti in sequence. First, for

node t1, define Γ1 = ∅. Lemma 3.12 with Γ = Γ1 implies that HΓ1(t1) contains a node

j ≤ s0 with probability at least 1/5.

For each subsequent node ti, define Γi = Γi−1 ∪ HΓi−1(i − 1). We claim that Γi

is sparse. To see this, recall that each HΓ(ti−1) contains at most 10loglogn nodes in

each interval It, and Γi is the union of at most 16logn such sets, therefore |Γi ∩ It| ≤

160log(n) loglog(n) for each t. Since |It| ≥ s0 ≥ 160log(n)(loglog(n))2, we have

|Γi ∩ It| ≤ |It|/loglog(n) and hence Γi is sparse. Lemma 3.12 with Γ = Γi then implies

that HΓi(ti) contains a node j ≤ s0 with probability at least 1/5. Moreover, this probabil-

ity is independent of the events for nodes t1, . . . , ti−1, since HΓi(ti) is constrained to not

depend on nodes in Γi, which contains all nodes that influenced the outcome for t1, . . . , ti−1.

We conclude that, for each i, HΓi(ti) contains a node j ≤ s0 with probability at least

1/5, independently for each ti. For any given i, in the case that this event occurs and by the

definition of HΓi(ti), HΓi(ti) contains a path P from ti to j consisting entirely of typical

nodes, all of which are at most ti, and each node on the path P has creation time (index) at

most half of its immediate predecessor.
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3.5 Discussion

We would like to end this chapter with a short discussion on the potential applicability of

the correctness analysis of TraverseToTheRoot to other problems. At the core of the anal-

ysis (and intuition) behind TraverseToTheRoot lie Lemma 3.11. For convenience of the

reader, we restate it here:

“Fix sparse set Γ. Then for each i ∈ [s0, s1] and k ∈ [m], the following are true with proba-

bility ≥ 8/15 : pk(i) 6∈ Γ, pk(i) ≤ i/2, and pk(i) is typical.”

At its highest level, Lemma 3.11 brings an appealing mathematical description of the pref-

erential attachment process: with constant probability, all nodes not too far or too close

to the root (namely in [s0, s1]) have typical parents and these parents are far enough back.

However, the lemma brings an extra combinatorial ingredient: such a picture of the prefer-

ential attachment process is true even if a fraction of 1/loglog(n) nodes from each interval

It is forbidden to be used. As such, the lemma provides a tool for analysis of traversal pro-

cesses that have rather large dependencies in the way they work. This dependency would

be encoded as the forbidden set (namely Γ) and the lemma can be used as if there is no

dependency, as long as Γ does not overlap too much with any interval It. Specifically in

the context of TraverseToTheRoot, the lemma, combined with natural properties of prefer-

ential attachment networks, allows us to show progress towards a closer to the root node

although many past paths might have been rendered unsuccessful.

It is an interesting future direction to see whether there are other useful traversal pro-

cesses on preferential attachment networks where the lemma could help to analyze.
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Chapter 4

Local Information Algorithms for

Network Coverage Problems

4.1 Introduction

In this chapter we continue our exploration of local information algorithms. Our focus in

this chapter is on the expected cost of local information algorithms for network coverage

problems. As we saw in the previous chapter, between others, this problem is motivated by

network advertising and network monitoring.

We begin by exploring local algorithms for finding small number of individuals that

assist in covering all the nodes in the network. We then consider two natural variants of

this problem. The first variant, which we call the “neighbor-collecting” problem, is inspired

by prize-collecting problems where the goal is to get a reward for each node we choose,

and get penalized for those nodes we leave undominated (i.e. getting penalized for nodes

that neither have a neighbor which was chosen nor were chosen themselves). In the second

variant, the goal is to cover a given proportion of the population.

Detailed Results and Techniques

First, we explore local information algorithms for the min dominating set problem. A

dominating set is a set S such that each node in the network is either in S or the neighbor-
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hood of S. We design a randomized local information algorithm for the minimum dominat-

ing set problem that achieves an approximation ratio that nearly matches the lower bound

on polytime algorithms with no information restriction. As has been noted in [57], the

greedy algorithm that repeatedly selects the visible node that maximizes the size of the

dominated set can achieve a very bad approximation factor. We consider a modification

of the greedy algorithm: after each greedy addition of a new node v, the algorithm will

also add a random neighbor of v. We show that this randomized algorithm, which uses

only Crawl queries, obtains an approximation factor that matches the known lower bound

of Ω(log∆) (where ∆ is the maximum degree in the network) up to a constant factor. We

note that our algorithm produces a connected dominating set and as such can also be seen

as an O(H(∆)) approximation to the connected dominating set problem 4. We also show

that having enough local information to choose the node that maximizes the incremental

benefit to the dominating set size is crucial: any algorithm that can see only the degrees of

the neighbors of S would achieve a poor approximation factor of Ω(n) .

We then discuss the “neighbor-collecting” problem, in which the goal is to minimize

c|S| plus the number of nodes left undominated by S, for a given parameter c. For this

problem we show that the modified greedy algorithm presented above (which is 1+-local

algorithm) can be used to give an O(c log∆) approximation (where ∆ is the maximum

degree in the network). We also show that the dependence on c is unavoidable, and that

the amount of local information is crucial: any 1-local algorithm would achieve a poor

approximation factor of Ω(
√

n/c) .

For the partial dominating set problem (where the goal is to cover a given constant frac-

tion of the network with as few nodes as possible) we give an impossibility result: no local

information algorithm can obtain an approximation better than O(
√

n) on networks with

n nodes. However, a natural modification to the local information algorithm for minimum

dominating set yields a a bicriteria result: given ε > 0, we compare the performance of

an algorithm that covers ρn nodes with the optimal solution that covers ρ(1 + ε)n nodes

4this immediately follows from the fact that the size of the minimum connected dominating set is at most

twice that of the minimum dominating set
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(assuming ρ(1+ ε)≤ 1). Our modified algorithm achieves a O((ρε)−1H(∆)) approxima-

tion (in which we compare performance against an adversary who must cover an additional

ε fraction of the network).

Related Work

Pseudo-local distributed algorithms for the minimum dominating set problem were de-

veloped in [80]. A multiplicative approximation factor of order nO(1/k) log(∆) can be

achieved in O(k) rounds, and so a polylogarithmic approximation can be achieved in at

least Θ(logn) rounds. As discussed in the dissertation’s introduction, such an algorithm

can be simulated by a local information algorithm with a fixed radius of information (such

as 2) but with an exponential number of queries as a function of the radius of information.

This is clearly too expensive (resulting in a need to query the whole network). Further-

more, it is known that at least a logarithmic number of rounds are necessary for any local

distributed algorithm to achieve a polylogarithmic approximation for many coverage prob-

lems, including the minimum dominating set problem [80]. These results indicate that

local distributed computation may not be a good approach for the design of competitive

local information algorithms.

For the minimum dominating set problem, Guha and Khuller [57] designed an O(log∆)-

approximation algorithm (where ∆ is the maximum degree in the network) that can be

viewed as a local information algorithm in our framework. As a local information algo-

rithm, their method requires that the network structure is revealed up to distance two from

the current dominating set. By contrast, our local information algorithm requires less infor-

mation to be revealed on each step. Our focus, and the motivation behind this distinction,

is to determine sharp bounds on the amount of local information required to approximate

this problem (and others) effectively.

The “neighbor-collecting” problem we consider is inspired by the long work on prize-

collecting network design problems [8, 66]. Highly speaking, in such problems there is a

cost c associated in satisfying a demand that needs to be “served” and a penalty associated

with demands that are left unsatisfied. In our context, the cost c is charged for each node in

54



S and a penalty is given for each of the nodes left undominated.

Exact, exponential time algorithms for the partial dominating set problem are discussed

in [76]. Approximation algorithms for the partial dominating set problem are not discussed

explicitly in the literature. However, it is well known that that the min dominating set prob-

lem has polynomial-time approximation preserving reduction to the min set cover problem

and vise-versa. See [67], Theorem A.1. It is easy to see that the same reductions are

approximation persevering between the the partial dominating set problem and partial set

cover problem (where in the partial set cover problem the goal is to find the smallest set

that covers a given number ρn of the elements). Kearns is the first to study the partial

dominating set problem [70] (Theorem 5.15). He shows that the standard greedy set-cover

algorithm can be adapted to provide an approximation factor of 2H(|U|) + 3 on a universe

U. Slavı́k shows that a minor modification to the greedy algorithm obtains an approxi-

mation factor of H(min{∆,ρn}), where ∆ here means the maximum size of a set in the

system [110].

Könemann et al. show that using a specially designed LP program for a generalized

partial cover problem (where items have profits and sets has costs) one can achieve an

approximation factor of (4/3 + ε)H(∆), for any fixed ε > 0 [77].

4.2 Preliminaries

Notation and definitions We write nG for the number of nodes in an undirected graph

G = (V, E), dG(v) for the degree of a vertex v in G = (V, E), and NG(v) for the set of

neighbors of v in G = (V, E). Given a subset of vertices S⊆ V, NG(S) is the set of nodes

adjacent to at least one node in S. We also write DG(S) for the set of nodes dominated

by S: DG(S) = NG(S) ∪ S. We say S is a dominating set if DG(S) = V. Given nodes u

and v, the distance between u and v is the number of edges in the shortest path between

u and v. The distance between vertex sets S and T is the minimum distance between a

node in S and a node in T. Given a subset S of nodes of G, the subgraph induced by S is
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the subgraph consisting of S and every edge with both endpoints in S. Finally, ∆G is the

maximum degree in G. In all of the above notation we often suppress the dependency on

G when clear from context.

4.3 Minimum Dominating Set on Arbitrary Networks

We now consider the problem of finding a dominating set S of minimal size for an ar-

bitrary graph G (with n nodes). Even with full (non-local) access to the network struc-

ture, it is known that for any ε > 0 it is impossible to approximate the Minimum Dom-

inating Set Problem to within a factor of (1− ε) lnn in polynomial time, unless NP ⊆

DTIME
(

nO(loglogn)
)

[44]. Since the n’th harmonic number H(n) converges to lnn + γ

where (the Euler-Mascheroni constant) γ ≈ 0.577, and the maximum degree ∆ is smaller

than n, this yields a (1− ε)H(∆) hardness under the same assumptions, for any ε > 0.

In this section we explore how much local network structure must be made visible in

order for it to be possible to match this lower bound.

Guha and Khuller [57] design an O(H(∆))-approximate algorithm for the minimum

dominating set problem, which can be interpreted in our framework as a 2+-local algo-

rithm. Their algorithm repeatedly selects a node that greedily maximizes the number of

dominated nodes, considering only nodes within distance 2 of a previously selected node.

As we show, the ability to observe network structure up to distance 2 is unnecessary if we

allow the use of randomness: we will construct a randomized O(H(∆)) approximation

algorithm that is 1+-local. We then show that this level of local information is crucial: no

algorithm with less local information can return a non-trivial approximation.

4.3.1 A 1+-local Algorithm

We now present a 1+-local randomized O(H(∆))-approximation algorithm for the min

dominating set problem. Our algorithm obtains this approximation factor both in expecta-

tion and with high probability in the optimal solution size. Our algorithm actually generates
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Algorithm 4 AlternateRandom

1: Select an arbitrary node u from the graph and initialize S = {u}.

2: while |D(S)| < |V| do

3: Choose x ∈ argmaxv∈N(S){|N(v)\D(S)|} and add x to S.

4: if N(x)\S 6= ∅ then

5: Choose y ∈ N(x)\S uniformly at random and add y to S.

6: end if

7: end while

8: return S.

a connected dominating set, so it can also be seen as an O(H(∆)) approximation to the

connected dominating set problem.

Roughly speaking, our approach is to greedily grow a subtree of the network, repeatedly

adding vertices that maximize the number of dominated nodes. Such a greedy algorithm

is 1+-local, as this is the amount of visibility required to determine how much a given

node will add to the number of dominated vertices. Unfortunately, this greedy approach

does not yield a good approximation; it is possible for the algorithm to waste significant

effort covering a large set of nodes that are all connected to a single vertex just beyond the

algorithm’s visibility. To address this issue, we introduce randomness into the algorithm:

after each greedy addition of a node x, we will also query a random neighbor of x. The

algorithm is listed above as Algorithm 4 (AlternateRandom).

We now show that AlternateRandom obtains an O(H(∆)) approximation, both in ex-

pectation and with high probability. In what follows,OPT will denote an optimal solution

to the problem at hand, on the implicit input graph.

Theorem 4.1. AlternateRandom is 1+-local and returns a dominating set S where E[|S|]≤

(2H(∆) + 4)|OPT |+ 1. Also, P[|S| > (2H(∆) + 6)|OPT |+ 1] < e−
|OPT |

4 .

Proof. Correctness follows from line 2 of the algorithm. To show that it is 1+-local, it

is enough to show that line 3 can be implemented by a 1+-local algorithm. This follows
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because, for any v ∈ N(S), |N(v)\D(S)| is precisely equal to the degree of v minus the

number of edges between v and other nodes in D(S).

We will bound the expected size of S via the following charging scheme. Whenever

a node x is added to S on line 4, we place a charge of 1/|N(x)\D(S)| on each node

in N(x)\D(S). These charges sum to 1, so sum of all charges increases by 1 on each

invocation of line 4. We will show that the total charge placed during the execution of

the algorithm is at most (2 + H(∆))OPT in expectation. This will imply that E[(|S| −

1)/2] ≤ (2 + H(∆))OPT as required.

Let OPT be a minimum dominating set. Partition the nodes of G as follows: for each

i ∈ OPT , choose a set Si ⊆ D({i}) containing i such that the sets Si form a partition of

G. Choose some i ∈ OPT and consider the set Si. We denote by a “step” any execution

of line 4 in which charge is placed on a node in Si. We divide these steps into two phases:

phase 1 consists of steps that occur while Si ∩ S = ∅, and phase 2 is all other steps. Note

that since we never remove nodes from S, phase 1 occurs completely before phase 2.

We first bound the total charge placed on nodes in Si in phase 1. In each step, some num-

ber k of nodes from Si are each given some charge 1/z. This occurs when |N(x)\D(S)|=

z and (N(x)\D(S))∩ Si = k. In this case, if phase 1 has not ended as a result of this step,

there is a k/z probability that a node in Si is selected on the subsequent line 6 of the algo-

rithm, which would end phase 1. We conclude that if the total charge added to nodes in Si

on some step is p ∈ [0,1], phase 1 ends for set Si with probability at least p. The following

probabilistic lemma now implies that the expected sum of charges in phase 1 is at most 1.

Lemma 4.2. For 1 ≤ i ≤ n, let Xi be a Bernoulli random variable with expected value

pi ∈ [0,1]. Let T be the random variable denoting the smallest i such that Xi = 1 (or n if

Xi = 0 for all i). Then ET

[
∑T

i=1 pi

]
≤ 1.

Proof. We proceed by induction on n. The case n = 1 is trivial. For n > 1, we note that

ET

[
T

∑
i=1

pi

]
= p1 + (1− p1)ET

[
T

∑
i=2

pi | X1 = 0

]
≤ p1 + (1− p1) · 1 = 1

where the inequality follows from the inductive hypothesis applied to X2, . . . , Xn.
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Consider the charges added to nodes in Si in phase 2. During phase 2, vertex i is

eligible to be added to S in step 4. Write uj = |Si\D(S)| for the number of nodes of Si not

dominated on step j of phase 2. Then, on each step j, uj − uj+1 nodes in Si are added to

D(S), and at least uj nodes in G are added to D(S) (since this many would be added if i

were chosen, and each choice is made greedily). Thus the total charge added on step j is at

most
uj−uj+1

uj
. After at most t≤ ∆ + 1 iterations all the nodes in Si are covered, so the total

charge over all of phase 2 is at most

t

∑
j=1

uj − uj+1

uj
=

t

∑
j=1

uj

∑
`=(uj+1+1)

1
uj

≤
t

∑
j=1

uj

∑
`=(uj+1+1)

1
`

(becuase ` ≤ uj)

=
t

∑
j=1

(
H(uj)− H(uj+1)

)
= H(u1)− H(ut+1)

≤ H(|Si|)− H(0) ≤ H(∆ + 1) ≤ H(∆) + 1.

We conclude that the expected sum of charges over both phases is at most 2 + H(∆).

We now turn to show that P[|S| > 2(3 + H(∆))|OPT |+ 1] < e−
|OPT |

4 .

We will use the same charging scheme we defined in the main text; it suffices to show that

the total charge placed, over all nodes in G, is at most (2+ H(∆))|OPT | with probability

at least 1 − e−
|OPT |

4 . Note that our bound on the charges from phase 2 in the analysis

of the expected size of |S| holds with probability 1. It is therefore sufficient to bound

the probability that the sum, over all i, of the charges placed in phase 1 of Si is at most

2|OPT |.

For each node x added to S on line 4, consider the total number of nodes in N(x)\D(S)

that lie in sets Si that are in phase 1. Now suppose there are k such nodes, and that

|N(x)\D(S)| = z. Then the sum of charges attributed to phase 1 increases by k/z on

this invocation of line 4. Also, the probability that any of these k nodes is added to S on the

next execution of line 6 is at least k/z, and this would end phase 1 for at least one set Si.
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We conclude that, if the sum of charges for phase 1 increases by some p ∈ [0,1], then

with probability p at least one set Si leaves phase 1. Also, no more charges can be attributed

to phase 1 once all sets Si leave phase 1, and there are |OPT | such sets. The event that the

sum of charges attributed to phase 1 is greater than 2|OPT | is therefore dominated by the

event that a sequence of Bernoulli random variables X1, . . . , Xn, each Xi having mean pi

with ∑ pi > 2|OPT |, has sum less than |OPT |. However, by the multiplicative Chernoff

bound (lemma A.1), this probability is at most

P

[
n

∑
i=1

Xi < |OPT |
]
≤ P

[
n

∑
i=1

Xi <
1
2

E[
n

∑
i=1

Xi]

]
< e−

|OPT |
4

as required.

We end this section by showing that 1+-locality is necessary for constructing good local

approximation algorithms.

Theorem 4.3. For any randomized 1-local algorithm A for the min dominating set prob-

lem, there exists an input instance G for which E[|S|] = Ω(n)|T|, where S denotes the

output generated by A on input G, and T denotes the output of the best algorithm with full

knowledge of the input graph.

Proof. We consider a distribution over input graphs G = (V, E) of size n, described by

the following construction process. Choose n− 2 nodes uniformly at random from V and

form a clique on these nodes. Choose an edge at random from this clique, say (u,v), and

remove that edge from the graph. Finally, let the remaining two nodes be u′ and v′, and

add edges (u,u′) and (v,v′) to E. See Figure 4.1 for an illustration.

By Yao’s Minimax Principle [119], it suffices to consider the least expected perfor-

mance of deterministic 1-local algorithms on inputs drawn from this distribution.

Note that each such graph has a dominating set of size 2, namely {u,v} and that using

Crawl queries, T ≤ 3. Moreover, any dominating set of G must contain at least one node

in C = {u,v,u′,v′}, and hence a 1-local algorithm must query a node in C. However, if no
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Figure 4.1: An illustration of the lower bound construction for 1-local algorithms for the

min dominating set problem.

nodes in C have been queried, then nodes u and v are indistinguishable from other visible

unqueried nodes (as they all have degree n− 1). Thus, until the algorithm queries a node

in C, any operation is equivalent to querying an arbitrary unqueried node from V\{u′,v′}.

With high probability, Ω(n) such queries will be executed before a node in C is selected.

By Yao’s Minimax Principle this gives a lower bound of Ω(n) on the expected performance

of any randomized 1-local algorithm, on at least one of the inputs.

4.4 Partial Coverage Problems on Arbitrary Networks

We next study problems in which the goal is not necessarily to cover all nodes in the

network, but rather dominate only sections of the network that can be covered efficiently.

We consider two central problems in this domain: the the neighbor collecting problem and

the partial dominating set problem.
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4.4.1 The Neighbor Collecting Problem

Inspired by prize-collecting network design problems, we next consider the objective of

minimizing the total cost of the selected nodes plus the number of nodes left uncovered:

choose a set S of G that minimizes f (S) = c|S|+ |V\D(S)| for a given parameter c > 0.

Note that when c < 1 the problem reduces to the minimum dominating set problem: it

is always worthwhile to cover all nodes. Assuming c ≥ 1, the 1+-local algorithm for the

minimum dominating set problem achieves an O(cH(∆)) approximation.

Theorem 4.4. For any c≥ 1 and setOPT minimizing f (OPT ), algorithm AlternateRan-

dom returns a set S for which E[ f (S)] ≤ 2c(2 + H(∆)) f (OPT ).

Proof of Theorem 4.4. We have f (OPT ) = |V−D(OPT )|+ c|OPT | and f (OPT ∪

{V − D(OPT )}) = c|OPT ∪ {V − D(OPT )}| = c|OPT | + c|V − D(OPT )| ≥

c|T∗| where T∗ is a minimum dominating set of the graph. Next, we know from Theorem

4.1 that |T∗| ≥ (2(2 + H(∆)))−1E[|S|] = (2(2 + H(∆)))−1c−1E[ f (S)].

Finally, f (OPT ) = |V−D(OPT )|+ c|OPT | so c|OPT |+ c|V−D(OPT )| ≤

c f (OPT ). We conclude that E[ f (S)] ≤ 2(2 + H(∆))c f (OPT ).

Since the neighbor-collecting problem contains the minimum dominating set problem

as a special case (i.e. when c = 1), we cannot hope to avoid the dependency on H(∆) in

the approximation factor in Theorem 4.4. As we next show, the dependence on c in the

approximation factor we obtain in Theorem 4.4 is also unavoidable.

Theorem 4.5. Let c = o(n1/4). Then for any randomized 1+-local algorithm A for the

neighbor-collecting problem, there exists an input instance G for which

E[ f (S)] = Ω(max{c, H(∆)}) · f (|T|),

where S denotes the output generated by A on input G, and T denotes the output of the

best algorithm with full knowledge of the input graph.

Proof. As done previously, we shall invoke the application of Yao’s Minimax Principle for

the performance of randomized algorithms [119].
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Figure 4.2: An illustration of the lower bound construction for 1+-local algorithms for the

neighbor-collecting problem.

We will build the following family of inputs. Given n we construct a connected graph

on n nodes in the following way. Let k = o(
√

n/c) be a parameter to be set specifically

later. Create two star subgraphs one on n −
√

n − 2k nodes and one on
√

n nodes. We

connect one arbitrary leaf of the big star subgraph to one arbitrary leaf of the smaller star

subgraph. Next, choose k spoke nodes from the bigger star subgraph and connect each of

them to one new node of degree one. To complete the construction, randomly assign labels

to the nodes from [n]. This gives us a connected graph on n vertices. Note that T is at most

6c + k as an algorithm can always cover the hubs of the two stars in four Crawl steps. See

Figure 4.2 for an illustration of the construction.

We show that the expected cost of a deterministic algorithm on the distribution of inputs

is at least (1 + k/2 + 2)c. This happens when the 1+ local algorithm starts from a spoke

in the bigger star component (with occurs with probability 1− o(1)) and needs to traverse

half of the k spokes that were assigned one new neighbor. Only after traversing such nodes

it moves into a spoke of the small star subgraph and then to the hub of the smaller star
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subgraph. We note that k = o(
√

n/c), so taking any Jump queries would result in a worse

cost.

Thus the approximation ratio is at least (1+k/2+2)c
6c+k . This expression is the biggest (as

a function of k = o(
√

n/c)) for k = Θ(c). In that case the expression is Θ(c). By Yao’s

Minimax Principle this gives a lower bound of Ω(c) on the expected performance of any

randomized 1+-local algorithm, on at least one of the inputs.

Finally, one cannot move from 1+-local algorithms to 1-local algorithms without sig-

nificant loss: every 1-local algorithm has a polynomial approximation factor.

Theorem 4.6. For any randomized 1-local algorithm A for the neighbor-collecting prob-

lem, there exists an input instance G for which E[ f (S)] = Ω(
√

n/c) · f (|T|), where S

denotes the output generated by A on input G, and T denotes the output of the best algo-

rithm with full knowledge of the input graph.

Proof. As done previously, we shall invoke the application of Yao’s Minimax Principle for

the performance of randomized algorithms [119].

We will build the following family of inputs. Build a clique on n−
√

n vertices and

remove one edge (u,v). Next build a star with
√

n− 1 leaves, say with root r, and label

one of the leaves v′. Finally, add edge (v,v′). To complete the construction, randomly

assign labels to the nodes from [n]. See Figure 4.3 for an illustration of the construction.

For such graph, the set {r,v} has cost 2c and can be found in five Crawls, so f (|T|) ≤

5c. Consider the set S returned by a 1-local deterministic algorithm; we will show that S

will have cost at least
√

n with high probability. If S does not include r then it must leave
√

n nodes uncovered (or else contain at least
√

n vertices), in which case it has cost at least
√

n. So S must contain some node in the star centered at r. A node in the star can be found

either via a random query or by querying node v. Since the star contains
√

n nodes, it

would take Ω(
√

n) random queries to find a node in the star with high probability. On the

other hand, node v is indistinguishable from the other nodes but u in the (n−
√

n)-clique

until after it has been queried; it would therefore take Ω(n) queries to the nodes in the

clique to find v, again with high probability. We conclude that the cost of S is at least
√

n
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Figure 4.3: An illustration of the lower bound construction for 1-local algorithms for the

neighbor-collecting problem.

in expectation. By Yao’s Minimax Principle, the expected cost of a randomized 1-local

algorithm is at least Ω(
√

n) and its approximation ratio is therefore Ω(
√

n/c).

4.4.2 The Partial Dominating Set Problem

In the partial dominating set problem we are given a parameter ρ ∈ (0,1]. The goal is to

find the smallest set S such that |D(S)| ≥ ρn.

We begin with a negative result: for any constant k and any k-local algorithm, there are

graphs for which the optimal solution has constant size, but with high probability Ω(
√

n)

queries are required to find any ρ-partial dominating set. Our example will apply to ρ =

1/2, but can be extended to any constant ρ ∈ (0,1).

Theorem 4.7. Let k = o(
√

n). For any randomized k-local algorithm A (with success

probability, say 2/3) for the partial dominating set problem with ρ = 1/2, there exists an

input G for which the expected size of the output returned is E[|S|] = Ω(
√

n
k ) · |T|, where
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Figure 4.4: An illustration of the lower bound construction for k-local algorithms for the

partial dominating set problem.

S denotes the output generated by A on input G, and T denotes the output of the best

algorithm (with success probability, say 2/3) that has full knowledge of the input graph.

Proof. Fix n and write r = n/2−
√

n−1
k . We define a distribution over input graphs on

n nodes corresponding to the following construction process. Build two stars, one with

n/2 −
√

n − 1 leaves and one with
√

n − 1 leaves, where the nodes in these stars are

chosen uniformly at random. Let v and u be the roots of these stars, respectively. Construct

r paths, each of length k + 1, again with the nodes being chosen uniformly at random.

Connect one endpoint of each path to a separate leaf of the larger star, the one rooted at v.

Choose one of these r paths and connect its other endpoint to node u. Last, add
√

n isolated

nodes to get the number of nodes equal n in the construction. By Yao’s Minimax Principle

[119] it suffices to consider the least expected performance of deterministic algorithms on

a graph chosen from this distribution. See Figure 4.4 for an illustration of the construction.

With full knowledge of such a graph, one can find a node in the large connected compo-
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nent with probability 2/3, using O(1) Jumps, and then use at most k + 2 Crawls to get to

the roots of star graphs (node vand u). Thus the least expected cost (over successful runs)

is E[T] ≤O(k).

We claim that any deterministic k-local algorithm performs at least
√

n queries in ex-

pectation (over successful runs) on this family of inputs. First, if the algorithm does not

return the root of the smaller star as part of its solution, then it must return at least O(
√

n)

nodes and hence it must use Ω(
√

n) queries. On the other hand, suppose that the algorithm

does return the root of the smaller star. Then it must have either traversed the root some

node along the path connecting the centers of the stars, or else found a node in the smaller

star via a random jump query. The latter takes Ω(
√

n) Jump queries, in expectation (over

the randomness in the Jump queries). For the former, note that an algorithm cannot distin-

guish the path connecting the two stars from any other path connected to node v, until after

a vertex on one of the two paths has been queried. It would therefore take Ω(r) = Ω(n/k)

queries in expectation to traverse one of the nodes on the path between the two stars. By

Yao’s Minimax Principle, we conclude that any randomized k-local algorithm must perform

at least Ω(
√

n) queries in expectation in order to construct an admissible solution.

Motivated by this lower bound, we consider a bicriteria result: given ε > 0, we compare

the performance of an algorithm that covers ρn nodes with the optimal solution that covers

ρ(1 + ε)n nodes (assuming ρ(1 + ε) ≤ 1). We show that a modification to Algorithm 4,

in which jumps to uniformly random nodes are interspersed with greedy selections, yields

an 1+-local algorithm with an O((ρε)−1H(∆)) approximation guarantee.

Theorem 4.8. Given any ρ ∈ (0,1), ε ∈ (0,ρ−1 − 1], and set of nodes OPT with the

property |D(OPT )| ≥ ρ(1 + ε)n, Algorithm 5 (AlternateRandomAndJump) returns a set

S of nodes with |D(S)| ≥ ρn and E[|S|] ≤ (ρε)−1(H(∆) + 2)|OPT |.

Proof. We apply a modification of the charging argument used in Theorem 4.1. Let OPT

be a set of nodes as in the statement of the theorem. We will partition the nodes of

D(OPT ) as follows: for each i ∈ OPT , choose a set Si ⊆ D({i}) containing i, such

that the sets Si form a partition of D(OPT ).

67



Algorithm 5 AlternateRandomAndJump
1: Initialize S = ∅.

2: while |D(S)| < |V| do

3: Choose a node u uniformly at random from the graph and add u to S.

4: Choose x ∈ argmaxv∈N(S){|N(v)\D(S)|} and add x to S.

5: if N(x)\S 6= ∅ then

6: Choose y ∈ N(x)\S uniformly at random and add y to S.

7: end if

8: end while

9: return S.

During the execution of algorithm 5, we will think of each node in D(OPT) as be-

ing marked either as Inactive, Active, or Charged. At first all nodes in D(OPT ) are

marked Inactive. During the execution of the algorithm, some nodes may have their status

changed to Active or Charged. Once a node becomes Active it never subsequently be-

comes Inactive, and once a node is marked Charged it remains so for the remainder of the

execution. Specifically, all nodes in D(OPT ) ∩ D(S) are always marked Charged, in

addition to any nodes that have been assigned a charge by our charging scheme (described

below). Furthermore, for each i ∈ OPT , the nodes in Si that are not Charged are said to

be Active if i ∈ D(S); otherwise they are Inactive.

Our charging scheme is as follows. On each iteration of the loop on lines 2-7, we

will either generate a total charge of 0 or of 1. Consider one such iteration. Let u be the

node that is queried on line 3 for this iteration. If u 6∈ D(OPT)\D(S) then we will not

generate any charge on this iteration. Suppose instead that u ∈ D(OPT)\D(S). If no

nodes are Active after u has been queried5 then we place a unit of charge on u. Otherwise,

let x be the node selected on line 4. Let z = |N(x)\D(S)| be the number of new nodes

dominated by x, and let z′ be the number of Active nodes. Let w = min{z,z′}. We will

then charge 1/w to w different vertices, as follows. First, we charge 1/w to each vertex

5This situation can occur only when u is the only node in Si\D(S) for some i.
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in D(OPT) ∩ (N(x)\D(S)) (note that there are at most w such nodes). If fewer than

w nodes have been charged in this way, then charge 1/w to (arbitrary) additional Active

nodes until a total of w nodes have been charged. We mark all charged nodes as Charged.

We claim that the total expected charge placed over the course of the algorithm will be

at least ρε|S|. To see this note that, on each iteration of the algorithm, there are at least

ρεn nodes in D(OPT)\D(S) (since the algorithm has not yet completed). Thus, with

probability at least ρε, a node from D(OPT)\D(S) will be chosen on line 2. Thus, at least

a ρε fraction of iterations will generate a charge, and on algorithm termination the sum of

the charges on all vertices is expected to be at least ρε|S|.

Choose some i ∈OPT and consider set Si. We will show that the total charge placed on

the nodes of Si during the execution of algorithm A2 is at most (2+ H(∆)) in expectation.

Since there are |OPT | such sets, and since only nodes in sets Si ever receive charge, this

will imply that the total expected charge over all nodes is at most (2 + H(∆))|OPT |. We

then conclude that ρεE[|S|] ≤ (2 + H(∆))|OPT |, completing the proof.

The analysis of the total charge placed on nodes of Si is similar to the analysis in

Theorem 4.1. In expectation, a total charge of 1 will be placed on the nodes of Si before

i ∈ D(S) (this is phase 1 in the proof of Theorem 4.1). After i ∈ D(S), all nodes in

Si\D(S) are marked Active. When a node is crawled on line 4, if k > 0 nodes in Si\D(S)

are Active, then it must be that i ∈ D(S) but i 6∈ S. Thus, i is a valid choice for the node

selected on line 4. So, on any such iteration, it must be that the node selected on line

4 dominates at least k new nodes. We conclude that each node that is charged on this

iteration receives a charge of at most 1/k.

To summarize, if k nodes of Si are Active on a given iteration, then any nodes in Si

can be charged at most 1/k on that iteration. Since |Si| ≤ ∆ + 1, we conclude in the same

manner as in Theorem 4.1 that the total expected charge allocated to nodes in Si, after the

first node in Si becomes Active, is at most ∑∆+1
k=1

1
k ≤ (H(∆) + 1). We conclude that the

total expected charge placed on all nodes in Si is at most (2 + H(∆))
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4.5 Discussion

We would like to end this chapter with a short discussion on the applicability of our tech-

niques and results to other problems. We have shown that a greedy-random approach yields

low-cost local information algorithms, with small radius of information. In its essence this

approach is based on the idea of an exploitation step , namely a greedy step, followed by an

exploration step, a random Crawl step. We believe that this idea could be beneficial in part

to other optimization problem as well, leading to the design of low-cost local information

algorithms with small radius of information.

Perhaps, as an example demonstrating the potential of the greedy-random approach,

consider the minimum r-hop dominating set problem, where one wants to find a set of

minimum size such that all nodes in the graph are at distance at most r from that set. We

first observe that a set is r-hop dominating in G if that set is 1-hop dominating in the r-

closure graph of G, namely the graph where any two nodes at distance at most r in G

are neighbors. The r-closure graph of G can be induced from r-local information. Thus,

following algorithm 4 and its analysis one can immediately design a r+-local algorithm

with O(H(∆G))-approximation to the minimum r-hop dominating set problem. We note

that similarly to the lower bound presented in section 4.3, one can show that any algorithm

(possibly randomized) to the minimum r-hop dominating set problem with less local in-

formation would give a poor approximation (by replacing each edge in the lower bound

construction with a path of length r).

4.6 Conclusions

We presented a model of computation in which algorithms are constrained in the informa-

tion they have about the input structure, which is revealed over time as expensive explo-

ration decisions are made. Our motivation lies in determining whether and how an external

user in a network, who cannot make arbitrary queries of the graph structure, can efficiently

solve optimization problems in a local manner.
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Our results on local algorithms for coverage problems suggest that inherent structural

properties of social networks may be crucial in obtaining strong performance bounds.

Another implication is that the designer of a network interface, such as an online social

network platform, may gain from considering the power and limitations that come with the

design choice of how much network topology to reveal to individual users. On one hand,

revealing too little information may restrict natural social processes that users expect to

be able to perform, such as searching for potential new connections. On the other hand,

revealing too much information may raise privacy concerns, or enable unwanted behavior

such as automated advertising systems searching to target certain individuals.

The results presented in this chapter suggest that even minor changes to the structural

information made available to a user may have a large impact on the class of optimization

problems that can be reasonably solved by the user.
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Part II

Local Algorithms for Stringent Time

Constraints
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Chapter 5

Introduction

In this part of the dissertation we focus on the design and analysis of highly time efficient

algorithms over large networks. In many examples, such as node ranking and influence

maximization one must find a solution in the quickest time possible; methods that do not

scale with network size are doomed to be intractable in practice. As the size of networks is

huge, there is prominent interest in local methods that do not traverse the whole network to

solve the problem at hand. Such methods would only rely on Jump and Crawl queries that

are natural and easy to implement in many domains, instead of classical approaches that

rely on processing and traversing the whole network multiple times. Information about the

network is only provided for the nodes accessed, namely there is no local information, and

one must pay a unit (of time) for each new piece of information traversed. We will refer to

such methods as local.

In chapter 6 we focus on designing highly time efficient local algorithms for influence

maximization under the standard Independent Cascades model. In chapter 7, we design

highly time efficient local algorithms for computing the set of nodes with significant PageR-

ank score. We will use very different techniques to tackle these problems than those used

in previous chapters. While a novel technique to summarize large-scale diffusion informa-

tion in a concise hypergraph representation will be our main technical contribution to solve

the influence maximization problem, for PageRank computations a multi-scale node sam-
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pling method, that repeatedly invokes a novel random-walk based personalized PageRank

approximation, would be rendered successful.
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Chapter 6

Quasilinear and Sublinear Time Local

Algorithms for Influence Maximization

6.1 Introduction

Diffusion is a fundamental process in the study of complex networks, modeling the spread

of disease, ideas, or product adoption through a population. The common feature in each

case is that local interactions between individuals can lead to epidemic outcomes. This is

the idea behind word-of-mouth advertising, in which information about a product travels

via links between individuals; see, for example, [7, 25, 27, 28, 50, 54, 105]. In recent years,

as online social network structure has become increasingly visible, applications of diffu-

sion models on networks to advertising have become increasingly relevant. A prominent

application is a viral marketing campaign which aims to use a small number of targeted in-

terventions to initiate cascades of influence that create a global increase in product adoption

[38, 50, 71, 81].

A large part of this interest focuses on the algorithmic problem of inferring potential

influencers from network topology. Given a network, how can we determine which indi-

viduals should be targeted to maximize the magnitude of a resulting cascade? [38, 71, 104].

Supposing that there is a limit k on the number of nodes to target (e.g. due to advertising
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budgets), the goal is to efficiently find an appropriate set of k nodes with which to “seed” a

diffusion process.

In this chapter we develop fast local approximation algorithms for the above influence-

maximization problem, under the standard independent cascades model of influence spread.

Before describing out techniques and results, we would like to provide a detailed back-

ground into the problem at hand.

The Model: Independent Cascades We adopt the independent cascades (IC) model of

diffusion, formalized by Kempe et al. [71]. In this model we are given a directed edge-

weighted graph G with n nodes and m edges, representing the underlying network. Influ-

ence spreads via a random process that begins at a set S of seed nodes. Each node, once

infected, has a chance of subsequently infecting its neighbors: the weight of edge e = (v,u)

represents the probability that the process spreads along edge e from v to u. If we write

I(S) for the (random) number of nodes that are eventually infected by this process, then

we think of the expectation of I(S) as the influence of set S. Our optimization problem,

then, is to find set S maximizing E[I(S)] subject to |S| ≤ k.

For the corresponding algorithmic problem we assume that the network topology is

described in the sparse representation of an (arbitrarily ordered) adjacency list for each

vertex, as is natural for representing complex networks. We are interested in developing

efficient, and highly-local algorithms for the problem. The only queries to be used by our

algorithm are accessing a vertex uniformly at random and traversing the edges incident to a

previously-accessed vertex. Such algorithms access the network structure in a very limited

way and are implementable in a wide array of graph access models, including the ones used

for sublinear-time and property testing algorithms on sparse graphs [52, 106].

The IC model has become one of the prominent ways to model influence spread; see for

example [31–33, 72, 83, 118]. One of the reasons is that it captures the common intuition

that influence can spread stochastically through a network, much like a disease [36, 50, 71].

An important property of the IC model is its computational tractability. Indeed, Kempe

et al. show that E[I(·)] is a submodular monotone function [71], and hence the problem of
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maximizing E[I(·)] can be approximated to within a factor of (1− 1
e − ε) for any ε > 0, in

polynomial time, via a greedy hill-climbing method. In contrast, many other formulations

of the influence maximization problem have been shown to have strong lower bounds on

polynomial-time approximability [11, 30, 92, 103]

The greedy approach to maximizing influence in the IC model described above takes

time O(kn), given oracle access to the function E[I(·)]. In general, however, these influ-

ence values must be computed from the underlying network topology. A common approach

is to simulate the random diffusion process many times to estimate influence values for each

node. This ultimately6 leads to a total runtime7 of Ω(mnk · POLY(ε−1)). Due to the mas-

sive size and temporal volatility of many network dataset instances, this does not provide

a fully satisfactory solution: it is crucial for an algorithm to scale well with network size

[31, 83]. This requirement has spawned a large body of work aimed at developing more

efficient methods of finding influential individuals in social networks. See, for example,

[31–33, 65, 74, 83, 90, 118]. However, to date, this work has focused primarily on empir-

ical methods; no algorithm has been found to provide provable approximation guarantees

in time asymptotically less than Θ(nmk).

What is the bottleneck in developing better algorithms? One issue is the difficulty of

estimating the expected influence of a given vertex. As an illustrating example, consider

the simple network of a star on n nodes8 in which each edge is bidirectional and has weight

p = n−1/4. In this example the center node has expected influence n3/4 (infecting each leaf

with probability p), whereas each leaf has expected influence Θ(n1/2). In this example,

estimating the influence of a leaf via random sampling requires significant effort: one would

have to realize the graph Ω( 1
p ) times to obtain a reasonable estimate. As each realization

requires linear time (to provide estimates for all leaves), a superlinear runtime would be

6After simple optimizations, such as reusing each simulation for multiple nodes.
7The best implementations appear to have running time O(mnk log(n) · POLY(ε−1)) [32], though to the

best of our knowledge a formal analysis of this runtime has not appeared in the literature.
8Of course, the star graph is simple enough that there are obvious alternative methods for finding ap-

propriate seed sets; we present it merely to illustrate the potential runtime requirements of estimating node

influences directly.
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required to estimate influences even if we are willing to tolerate multiplicative errors as

large as n1/4−ε. A different approach is thus required if we are to achieve running time

that is close to linear in the network size.

First Result: A Quasi-Linear Time Local Algorithm Our first and main result is a local

algorithm for finding (1− 1/e− ε)-approximately optimal seed sets in arbitrary directed

networks, which runs in time O((m + n)ε−3 logn). Importantly, the runtime of our al-

gorithm is independent of the number of seeds k and is essentially runtime optimal as we

give a lower bound of Ω(m + n) on the runtime required to obtain a constant approxima-

tion for this problem (assuming an adjacency list representation). We also note that this

approximation factor is nearly optimal, as no polytime algorithm achieves approximation

(1− 1
e + ε) for any ε > 0 unless P = NP [71, 72].

Our method is randomized, and it succeeds with probability 3/5; moreover, failure is

detectable, so this success probability can be amplified through repetition.

Our algorithm proceeds in two steps. First, we apply random sampling techniques

to preprocess the network and generate a sparse hypergraph representation that estimates

the influence characteristics of each node. Each hypergraph edge corresponds to a set of

individuals that was influenced by a randomly selected node in the transpose graph. This

preprocessing is done once, resulting in a structure of size O((m + n)ε−3 log(n)). This

hypergraph encodes our influence estimates: for a set of nodes S, the total degree of S in

the hypergraph is approximately proportional to the influence of S in the original graph.

We can therefore run a standard greedy algorithm on this hypergraph to return a set of size

k of approximately maximal total degree.

To make this approach work one needs to overcome several inherent difficulties. First,

we show that the marginal influence of a node v is proportional to the probability that v

is influenced by a randomly chosen node u in the transpose graph. These probabilities

can be estimated more efficiently than influence itself. In particular, this transpose-graph

formulation simplifies the process of estimating marginal influence, so that we need not

repeat the estimation procedure when considering different partial solutions. This results
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in substantial savings in runtime.

The next difficulty to overcome is the stringent runtime constraint — we must construct

our hypergraph in time O((m + n)ε−3 log(n)). We show that this number of steps suf-

fices to approximate the influence of each set of nodes in the graph. This approximation

comes, for each set, as a probabilistic guarantee with confidence 1− 1/POLY(n). Finally,

in order to prevent errors from accumulating when applying the greedy algorithm to the

hypergraph, it is important that our estimator for influence (i.e. total hypergraph degree) is

itself a monotone submodular function.

Second Result: A Sublinear Time Local Algorithm We extend our approximation al-

gorithm to allow a provable tradeoff between runtime and approximation quality. Given

a network G with arboricity9 a(G) and a parameter β ∈ (1,n], our algorithm attains ap-

proximation Θ( 1
β ) in time O(

n log3(n)·a(G)
β ). To the best of our knowledge, ours is the first

algorithm with such a tradeoff between runtime and approximation quality.

In particular, on networks of bounded arboricity, our algorithm finds a node of approx-

imately maximal influence in sublinear time when β = ω(log3(n)). We note that many

rich classes of graphs have bounded arboricity, including planar graphs, graphs with small

maximum in-degree or maximum out-degree, other graphs with bounded treewidth (as the

treewidth is at most twice the arboricity), many models of network formation and empiri-

cally observed social and technological networks [26, 49, 82].

We provide a lower bound of Ω((m + n)/β ·min{β,k}) on the runtime needed to

obtain an O(β)-approximation. Thus, for networks with bounded arboricity, our algorithm

is essentially runtime-optimal (up to logarithmic factors) given any fixed seed size k. Our

method is randomized, and it succeeds with probability 3/5; moreover, we show that this

probability can be amplified through repetition.

The intuition behind our modified algorithm is that a tradeoff between execution time

and approximation factor can be achieved by constructing fewer edges in our hypergraph

representation. Given an upper bound on runtime, we can build edges until that time has

9The arboricity of a network is the minimum number of spanning forests needed to cover all edges [97].
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expired, then run the influence maximization algorithm using the resulting (impoverished)

hypergraph. We show that this approach generates a solution whose quality degrades grace-

fully with the preprocessing time, with an important caveat. If there are many individ-

uals with high influence, it may be that a reduction in runtime prevents us from achiev-

ing enough concentration to estimate the influence of any node. If so, the highest-degree

node(s) in the constructed hypergraph will not necessarily be the nodes of highest influence

in the original graph. However, in this case, the fact that many individuals have high in-

fluence enables an alternative approach: a node chosen at random, according to the degree

distribution of nodes in the hypergraph representation, will have high influence with high

probability.

Given the above, our algorithm will proceed by constructing two possible seed sets:

one using the greedy algorithm applied to the constructed hypergraph, and the other is a

singleton selected at random according to the hypergraph degree distribution. To decide

between the two, we design a procedure for efficienctly estimating the influence of a given

set, up to a maximum of n/β. We then return the set with higher tested influence.

Our test for estimating influence proceeds by repeatedly constructing depth-first trees

of various sizes, rooted at the nodes to be tested. This is done in a careful way in order to

keep the overall runtime small, which depends on the density of the densest subgraph in

the network: if the nodes to be tested lie in a particularly dense region of the graph, extra

time may be required to build partial spanning trees, even if the graph is sparse on average.

This dependency is what motivates the arboricity term in the approximation factor of the

algorithm.

Finally, we emphasize that our solution concept is to return a set with high expected

influence, with respect to the influence diffusion process, with probability greater than 1/2

over randomness in the approximation algorithm. A potential relaxation would be to de-

velop an algorithm that returns a set with high expected influence, where the expectation is

with respect to both the diffusion process and the randomness in the approximation algo-

rithm. For this weaker notion of approximability, the final testing phase of the algorithm
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described above is unnecessary: we could simply return one of our two potential solutions

at random. This modified algorithm would have a runtime of O(
(n+m) log3(n)

β ), dropping

the dependence on arboricity. As the lower bound of Ω((m + n)/β ·min{β,k}) holds

even for this relaxed solution concept, this algorithm is nearly optimal (up to logarithmic

factors) for arbitrary networks, given a fixed k. While we feel that the original (stronger)

approximation notion is more relevant, this alternative formulation may be of interest in

cases where variability in solution quality can be tolerated.

Related Work

Models of influence spread in networks, covering both cascade and threshold phenom-

ena, are well-studied in the sociology and marketing literature [50, 56, 105]. The problem

of finding the most influential set of nodes to target for a diffusive process was first posed

by Domingos and Richardson [38, 104]. A formal development of the IC model, along

with a greedy algorithm based upon submodular maximization, was given by Kempe et

al. [71]. Many subsequent works have studied the nature of diffusion in online social net-

works, using empirical data to estimate influence probabilities and infer network topology;

see [54, 84, 85].

It has been shown that many alternative formulations of the influence maximization

problem are computationally difficult. The problem of finding, in a linear threshold model,

a set of minimal size that influences the entire network was shown to be inapproximable

within O(n1−ε) by Chen [30]. The problem of determining influence spread given a seed

set in the IC model is #P-hard [31].

There has been a large line of work aimed at improving the runtime of the algorithm

by Kempe et al. [71]. These have focused mainly on heuristics for special settings, such

as assuming that all nodes have relatively low influence or that the input graph is clustered

[31, 33, 74, 118], as well as empirically-motivated implementation improvements [32, 83].

One particular approach of note involves first attempting to sparsify the input graph,

then estimating influence on the reduced network [33, 90]. However, these sparsification

problems are shown to be computationally intractible in general.
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Various alternative formulations of influence spread as a submodular process have been

proposed and analyzed in the literature [72, 93], including those that include iterations

between multiple diffusive processes [16, 55]. We focus specifically on the IC model,

and leave open the question of whether our methods can be extended to apply to these

alternative models.

The influence estimation problem shares some commonality with the problems of local

graph partitioning, as well as estimating pagerank and personalized pagerank vectors [3,

4, 111]. These problems admit local algorithms based on sampling short random walks.

However, these methods do not seem directly applicable to influence maximization due to

the inherently non-local nature of influence cascades. To elaborate on this, consider a large

rooted d-regular tree in which all edges point away from the root towards the leaves. The

root of such tree will influence most of the network if all edges have weight at least 1/d,

but this is not apparent from any local neighborhood around the root. We should therefore

not expect to be able to efficiently estimate influence via short random walks.

6.2 Model and Preliminaries

The Independent Cascade Model In the independent cascade (IC) model, influence spreads

via an edge-weighted directed graph G. An infection begins at a set S of seed nodes, and

spreads through the network in rounds. Each infected node v has a single chance, upon first

becoming infected, of subsequently infecting his neighbors. Each directed edge e = (v,u)

has a weight pe ∈ [0,1] representing the probability that the process spreads along edge e

to node u in the round following the round in which v was first infected.

As noted in [71], the above process has the following equivalent description. We can

interpret G as a distribution over unweighted directed graphs, where each edge e is inde-

pendently realized with probability pe. If we realize a graph g according to this probability

distribution, then we can associate the set of infected nodes in the original process with the

set of nodes reachable from seed set S in g. We will make use of this alternative formulation
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of the IC model throughout this chapter.

Notation We let m and n denote the number of edges and nodes, respectively, in the

weighted directed graph G. We write g ∼ G to mean that g is drawn from the random

graph distribution G. Given set S of vertices and (unweighted) directed graph g, write

Cg(S) for the set of nodes reachable from S in g. When g is drawn from G, we will refer to

this as the set of nodes influenced by S. We write Ig(S) = |Cg(S)| for the number of nodes

influenced by S, which we call the influence of S in g. We write EG [I(S)] = Eg∼G [Ig(S)]

for the expected influence of S in G.

Given two sets of nodes S and W, we write Cg(S|W) for the set of nodes reachable from

S but not from W. That is, Cg(S|W) = Cg(S) \ Cg(W). As before, we write Ig(S|W) =

|Cg(S|W)|; we refer to this as the marginal influence of S given W. The expected marginal

influence of S given W is EG [I(S|W)] = Eg∼G [Ig(S|W)].

In general, a vertex in the subscript of an expectation or probability denotes the vertex

being selected uniformly at random from the set of vertices of G. For example, Ev,G [I(v)]

is the average, over all graph nodes v, of the expected influence of v.

For a given graph g, define gT to be the transpose graph of g: (u,v) ∈ g iff (v,u) ∈ gT.

We apply this notation to both weighted and unweighted graphs.

The Influence Maximization Problem Given graph G and integer k ≥ 1, the influence

maximization problem is to find a set S of at most k nodes maximizing the value of

EG [I(S)]. For β > 1, we say that a particular set of nodes T with |T| ≤ k is a 1
β -

approximation to the influence maximization problem if EG [I(T)] ≥
maxS:|S|=k EG [I(S)]

β .

We assume that graph G is provided in adjacency list format, with the neighbors of a

given vertex v ordered arbitrarily.

A Simulation Primitive Our algorithms we will make use of a primitive that realizes an

instance of the nodes influenced by a given vertex u in weighted graph G, and returns this

set of nodes. Conceptually, this is done by realizing some g ∼ G and traversing Cg(u).

Let us briefly discuss the implementation of such a primitive. Given node u, we can run

a depth first search in G starting at node u. Before traversing any given edge e, we perform
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a random test: with probability pe we traverse the edge as normal, and with probability

1− pe we do not traverse edge e and ignore it from that point onward. The set of nodes

traversed in this manner is equivalent to Cg(u) for g∼ G, due to deferred randomness. We

then return the set of nodes traversed. The runtime of this procedure is precisely the sum

of the degrees (in G) of the vertices in Cg(u).

We can implement this procedure for a traversal of gT, rather than g, by following in-

links rather than out-links in our tree traversal. Also, we will sometimes wish to run this

procedure with an upper bound on the number of nodes to traverse; in this case we simply

abort the depth-first traversal when the bound has been reached and return the set of nodes

explored up to that point.

6.3 A Local Approximation Algorithm for Influence Max-

imization

In this section we present a local algorithm for the influence maximization problem on arbi-

trary directed graphs. Our algorithm returns a (1− 1
e − ε)-approximation to the influence

maximization problem, with success probability 3/5, in time O((m + n)ε−3 logn). We

note that this algorithm is a simplification of a more general version that permits a tradeoff

between runtime and approximation, which appears in Section 6.4.

The algorithm is described formally as Algorithm 6, but let us begin by describing our

construction informally. Our approach proceeds in two steps. The first step, BuildHyper-

graph, stochastically generates a sparse, undirected hypergraph representation H of our

underlying graph g. This is done by repeatedly simulating the influence spread process on

the transpose of the input graph, gT. This simulation process is performed as described

in Section 6.2: we begin at a random node u and proceed via depth-first search, where

each encountered edge e is traversed independently with probability pe. The set of nodes

encountered becomes an edge in H. We then repeat this process, generating multiple hy-

peredges. The BuildHypergraph subroutine takes as input a bound R on its runtime; we
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continue building edges until a total of R steps has been taken by the simulation process.

(Note that the number of steps taken by the process is equal to the number of edges con-

sidered by the depth-first search process). Once R steps have been taken in total over all

simulations, we return the resulting hypergraph.

In the second step, BuildSeedSet, we use our hypergraph representation to construct

our output set. This is done by repeatedly choosing the node with highest degree in H,

then removing that node and all incident edges from H. The resulting set of k nodes is the

generated seed set.

While Algorithm 6 is relatively simple to describe, it is not obvious at all why such an

algorithm should work well under its imposed, stringent time constraints. We now turn to

provide a detailed analysis of Algorithm 6. Fix k and a weighted directed graph G. Let

OPT = maxS:|S|=k{EG [I(S)]}, the maximum expected influence of a set of k nodes.

Our goal is to bound the approximation factor of the set returned by Algorithm 6.

Theorem 6.1. Fix ε > 0. Algorithm 6 returns a set S with EG [I(S)]≥ (1− 1
e − ε)OPT ,

with probability at least 3/5, and runs in time O(
(m+n) log(n)

ε3 ).

To prove Theorem 6.1, we first observe that the influence of a set of nodes S is precisely

n times the probability that a randomly selected node u influences any node from S in the

transpose graph gT.

Observation 6.2. For each subset of nodes S ⊆ G,

Eg∼G [Ig(S)] = nPru,g∼G [S ∩ CgT(u) 6= ∅].

Proof.

Eg∼G [Ig(S)] = ∑
u∈g

Prg∼G [∃v ∈ S such that u ∈ Cg(v)]

= ∑
u∈g

Prg∼G [∃v ∈ S such that v ∈ CgT(u)]

= nPru,g∼G [∃v ∈ S such that v ∈ CgT(u)]

= nPru,g∼G [S ∩ CgT(u) 6= ∅].
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Algorithm 6 Maximize Influence

Require: Precision parameter ε ∈ (0,1), directed edge-weighted graph G.

1: R← 72(m + n)ε−3 log(n)

2: H← BuildHypergraph(R)

3: return BuildSeedSet(H,k)

BuildHypergraph(R):

1: InitializeH = (V,∅).

2: repeat

3: Choose node u from G uniformly at random.

4: Simulate influence spread, starting from u, in GT. Let T be the set of nodes discov-

ered.

5: Add T to the edge set ofH.

6: until R steps have been taken in total by the simulation process.

7: return H

BuildSeedSet(H,k):

1: for i = 1, . . . ,k do

2: vi← argmaxv{degH(v)}

3: Remove vi and all incident edges fromH

4: end for

5: return {v1, . . . ,vk}
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Observation 6.2 implies that we can estimate EG [I(S)] by estimating the probability of

the event S ∩ CgT(u) 6= ∅. The degree of a node v in H is precisely the number of times

we observed that v was influenced by a randomly selected node u. We can therefore think

ofH as encoding an approximation to the influence function in graph G.

We now show that the algorithm takes enough samples to accurately estimate the in-

fluences of the nodes in the network. This requires two steps. First, we show that runtime

R = 72(m + n)ε−3 log(n) is enough to build a sufficiently rich hypergraph structure, with

high probability over the random outcomes of the influence cascade model.

Lemma 6.3. Hypergraph H will contain at least 24n log(n)
OPT ε3 edges, with probability at least

2
3 .

Proof. Given a vertex u and an edge e = (v,w), consider the random event indicating

whether edge e is checked as part of the process of growing a depth-first search rooted at u

in the IC process corresponding to graph gT ∼ GT. Note that edge e is checked if and only

if node v is influenced by node u in this invocation of the IC process. In other words, edge

e = (v,w) is checked as part of the influence spread process on line 4 of BuildHypergraph

if and only if v ∈ T. Write mgT(u) for the random variable indicating the number of edges

that are checked as part of building the influence set T starting at node u in gT.

Let X =
24n log(n)

OPTε3 for notational convenience. Consider the first (up to) X iterations of

the loop on lines 2-6 of BuildHypergraph. Note that H will have at least X edges if the

total runtime of the first X iterations is at most R. The expected runtime of the algorithm
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over these iterations is

X ·Eu,g∼G [1 + mgT(u)] = X +
X
n

Eg∼G

[
∑
u

mgT(u)

]

= X +
24log(n)
OPTε3 Eg∼G

[
∑
u

mgT(u)

]

= X +
24log(n)
OPTε3 ∑

e=(v,w)∈GT

Eg∼G
[
|{u : v ∈ CgT(u)}|

]
= X +

24log(n)
OPTε3 ∑

e=(v,w)∈GT

Eg∼G
[
|{u : u ∈ Cg(v)}|

]
≤ 24n log(n)

ε3 +
24log(n)
OPTε3 ∑

e=(v,w)∈GT

OPT

=
24(m + n) log(n)

ε3 .

Here , the second equality (line 4 from above) follows by noting that an edge (v,w) ∈ GT

is traversed as part of mgT(u) if and only if v appears in CgT(u).

Thus, by the Markov inequality, the probability that the runtime over the first X itera-

tions is greater than R = 72(m + n)ε−3 log(n) is at most 1
3 . The probability that at least

X edges are present in hypergraphH is therefore at least 2
3 , as required.

Next, we show that the resulting hypergraph is of sufficient size to estimate the influence

of each set, up to an additive error that shrinks with ε, with probability 1− 1/POLY(n).

We then show that such estimation guarantees suffice to find good approximations to the

influence maximization problem.

Write m(H) and degH(S) for the number of edges ofH and the number of edges from

H incident with a node from S, respectively. An important subtlety is that the value of

m(H) is a random variable, determined by the stopping condition of BuildHypergraph.

We must be careful to bound the effect on our influence estimation. We show that the value

of m(H) is sufficiently concentrated that the resulting bias is insignificant.

Lemma 6.4. Suppose that m(H) ≥ 24n log(n)
OPT ε3 . Then, for any set of nodes S ⊆ V,

Pr[|EG [I(S)]−
n

m(H)
degH(S)| > εOPT ] < 1

n3 ,

88



with probability taken over randomness inH.

Proof. By assumption we have that m(H) ≥ 24n log(n)/(OPT ε3), and we also know

m(H) ≤ R = 72(m + n) log(n)/ε3 (since each edge has size at least 1). Fix some arbi-

trary

J ∈ [
24n log(n)
OPT ε3 ,

72(m + n) log(n)
ε3 ].

We will study the probability that

|EG [I(S)]−
n

m(H)
degH(S)| > εOPT

conditional on m(H) = J.

Suppose first that EG [I(S)] ≥ εOPT. Let DS denote the degree of S in H, for nota-

tional convenience. Thinking of DS as a random variable, we have that DS is the sum

of m(H) = J identically distributed Bernoulli random variables each with probability

EG [I(S)]/n ≥ εOPT/n, by Observation 6.2.

In particular, since m(H) = J ≥ 24n log(n)/(OPTε3),

E[DS] ≥
εOPT

n
m(H) ≥ 24ε−2 logn.

The Multiplicative Chernoff bound (A.1) then implies that

Pr
[

DS < (1− ε)
m(H)

n
EG [I(S)]

]
≤ Pr [DS < (1− ε)E[DS]]

< e−E[DS]ε
2/2 < e−12log(n) =

1
n12 .

Similarly, we can use the Multiplicative Chernoff bound (A.1) to conclude that

Pr
[

DS > (1 + ε)
m(H)

n
EG [I(S)]

]
< e−E[DS]ε

2/2

≤ e−12log(n) =
1

n12 .

Next suppose that EG [I(S)] < εOPT, so that E[DS] < ε ·OPT · m(H)/n. In this case,
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the Multiplicative Chernoff bound (A.1) implies that

Pr
[

DS > E[DS] +
εOPT

n
m(H)

]
= Pr

[
DS > E[DS]

(
1 +

εOPT
n

m(H)

E[DS]

)]
< e−

εOPT
n m(H)/4

≤ e−6log(n) ≤ 1
n6 .

Thus, in all cases, the probability that the event of interest occurs is at most 1
n6 . Since we

conditioned on m(H) = J, and since there are no more than 72(m+ n) log(n)/ε3 = o(n3)

potential values of J, the law of total probability implies that the unconditional probability

that |EG [I(S)]− n
m(H)

degH(S)| > εOPT , is at most 1
n3 as required.

Finally, we must show that the greedy algorithm applied to H in BuildSeedSet returns

a good approximation to the original optimization problem. Recall that, in general, the

greedy algorithm for submodular function maximization proceeds by repeatedly select-

ing the singleton with maximal contribution to the function value, up to the cardinality

constraint. The following lemma shows that if one submodular function is approximated

sufficiently well by a distribution of submodular functions, then applying the greedy algo-

rithm to a function drawn from the distribution yields a good approximation with respect

to the original.

Lemma 6.5. Choose δ > 0 and suppose that f : 2V → R≥0 is a non-decreasing submod-

ular function. Let D be a distribution over non-decreasing submodular functions with the

property that, for all sets S with |S| ≤ k, Pr f̂∼D[| f (S)− f̂ (S)| > δ] < 1/n3. If we write

S f̂ for the set returned by the greedy algorithm on input f̂ , then

Pr
f̂∼D

[
f (S f̂ ) < (1− 1/e)

(
max

S : |S|=k
f (S)

)
− 2δ

]
< 1/n.

Proof. Choose S∗ ∈ argmax|S|=k{ f (S)}. With probability at least 1− 1/n3, f̂ (S∗) ≥

f (S∗)− δ. So, in particular, max|S|=k f̂ (S) ≥ f (S∗)− δ.
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We run the greedy algorithm on function f̂ ; let Si be the set of nodes selected up to

and including iteration i (with S0 = ∅). On iteration i, we consider each set of the form

Si−1 ∪ {x} where x is a singleton. There are at most n of these sets, and hence the union

bound implies that f and f̂ differ by at most δ on each of these sets, with probability at least

1− 1/n2. In particular, | f (Si)− f̂ (Si)| < δ. Taking the union bound over all iterations,

we have that | f (Sk)− f̂ (Sk)| < δ with probability at least 1− 1/n. We therefore have

f (Sk) ≥ f̂ (Sk)− δ ≥ (1− 1/e)max
S

f̂ (S)− δ ≥ (1− 1/e) f (S∗)− 2δ

conditioning on an event of probability 1− 1/n.

We are now ready to complete our proof of Theorem 6.1.

Proof of Theorem 6.1. Lemma 6.3 and 6.4 together imply that, conditioning on an event of

probability at least 3/5, we will have

Pr
[∣∣∣∣EG [I(S)]− n · degH(S)

m(H)

∣∣∣∣ > εOPT
]
<

1
n3

for each S ⊆ V. We then apply Lemma 6.5 with f (S) := EG [I(S)], f̂ (S) := n·degH(S)
m(H)

(drawn from distribution corresponding to distribution ofH returned by BuildHypergraph),

and δ = εOPT . Lemma 6.5 implies that, with probability at least 1 − 1
n , the greedy

algorithm applied to H returns a set S with EG[I(S)] ≥ (1 − 1/e)OPT − 2εOPT =

(1− 1/e− 2ε)OPT . Noting that this is precisely the set returned by BuildSeedSet gives

the desired bound on the approximation factor (rescaling ε by a factor of 2). Thus the claim

holds with probability at least 2/3− 1/n ≥ 3/5 (for n ≥ 20).

Finally, we argue that our algorithm can be implemented in the appropriate runtime.

The fact that BuildHypergraph executes in the required time follows from the explicit

bound on its runtime. For BuildSeedSet, we will maintain a list of vertices sorted by their

degree in H; this will allow us to repeatedly select the maximum-degree node in constant

time. The initial sort takes time O(n logn). We must bound the time needed to remove

an edge from H and correspondingly update the sorted list. We will implement the sorted

list as a doubly linked list of groups of vertices, where each group itself is implemented as
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a doubly linked list containing all vertices of a given degree (with only non-empty groups

present). Each edge ofH will maintain a list of pointers to its vertices. When an edge is re-

moved, the degree of each vertex in the edge decreases by 1; we modify the list by shifting

any decremented vertex to the preceding group (creating new groups and removing empty

groups as necessary). Removing an edge from H and updating the sorted list therefore

takes time proportional to the size of the edge. Since each edge in H can be removed at

most once over all iterations of BuildSeedSet, the total runtime is at most the sum of node

degrees inH, which is at most R = O((m + n)ε−3 log(n)).

6.3.1 Amplifying the Success Probability

Algorithm 6 returns a set of influence at least (1− 1
e − ε) with probability at least 3/5.

The failure probability is due to Lemma 6.3: hypergraphH may not have sufficiently many

edges after R steps have been taken by the simulation process in line 4 of the BuildHyper-

graph subprocedure. However, note that this failure condition is detectable via repetition:

we can repeat Algorithm 6 multiple times, and use only the iteration that generates the most

edges. The success rate can then be improved by repeated invocation, up to a maximum

of 1− 1/n with log(n) repetitions (at which point the error probability due to Lemma 6.4

becomes dominant).

We next note that, for any ` > 1, the error bound in Lemma 6.4 can be improved to 1
n` ,

by increasing the value of R by a factor of `, since this error derives from Chernoff bounds.

This would allow the success rate of the algorithm to be improved up to a maximum of

1− 1
n` by further repeated invocation. To summarize, the error rate of the algorithm can

be improved to 1− 1
n` for any `, at the cost of increasing the runtime of the algorithm by a

factor of `2 log(n).
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6.4 Approximation in Sublinear Time

In this section we describe a modified local algorithm that provides a tradeoff between

runtime and approximation quality. For an an arbitrary β > 1, our algorithm will obtain a

Θ(1/β)-approximation to the influence maximization problem, in time O(
n·a(G) log3(n)

β ),

where a(G) is the arboricity of graph G, with probability at least 3/5. The success rate can

be improved by standard amplification techniques; we discuss this in Section 6.4.1.

Our algorithm is listed as Algorithm 7 below. The intuition behind our construction is

as follows. We wish to find a set of nodes with high expected influence. One approach

would be to apply Algorithm 6 and simply impose a tighter constraint on the amount of

time that can be used constructing our hypergraph representation. This might correspond

to reducing the value of parameter R by, say, a factor of β. Unfortunately, the precision of

our sampling method does not always degrade gracefully with β: if β is sufficiently large,

we may not have enough data to guess at a maximum-influence node (even if we allow

ourselves a factor of β in the approximation ratio). In these cases, the sampling approach

fails to provide a good approximation.

However, as we will show, our sampling fails precisely because many of the edges in

our hypergraph construction were large, and (with constant probability) this can occur only

if many of the nodes that make up those edges have high influence. In this case, we could

proceed by selecting a node from the hypergraph at random, with probability proportional

to its hypergraph degree. We prove that this procedure is likely to return a node of very

high influence precisely in settings where the original approach is not.

However, for this to work we need to figure out which of the two approaches will suc-

ceed (since, in particular, the required bound on the hypergraph size is a function ofOPT ,

which is unknown). We therefore apply both methods, then directly estimate the influence

of each solution. We must do so carefully in order to keep our runtime small. To this end,

the TestInfluence procedure generates a rough sketch of the probability distribution over

influence values by repeatedly growing depth-first trees of various sizes. By balancing tree

sizes with sampling precision, we are able to give an estimate of influence up to a maximum
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of n/β. We then return whichever solution has the greater estimated influence.

We note that, since our final estimation step proceeds by repeatedly exploring subgraphs

of an input graph G, its runtime will be tied to the arboricity of G. Indeed, the arboricity is

used to explicitly bound the time needed to construct a depth-first tree of a given size.

Definition 7. The arboricity number of an undirected graph G, denoted as a(G), is the

minimum number of spanning forests needed to cover all the edges of the graph. The

arboricity of a directed, weighted graph is the arboricity of the undirected, unweighted

version of the graph.

Theorem 6.6. For any β > 1, Algorithm 7 returns, with probability of at least 3/5, a node

with expected influence at least min{1
2 , 1

β} ·OPT. Its runtime is O(
n·a(G) log3(n)

β ).

Before proving Theorem 6.6, let us discuss its statement and some minor variations.

Discussion 1. It will turn out that the runtime of Algorithm 7 is dominated by subprocedure

TestInfluence: the time needed to estimate the influence of a given solution. Given access to

an oracle that estimates the influence of a given set, up to a maximum of n/β, the runtime

of Algorithm 7 becomes O(
(n+m) log3(n)

β + X(n,m, β)), where X(n,m, β) is a bound on the

runtime of the oracle. We provide an implementation of such an oracle, based on growing

spanning forests. Our analysis is given in terms of the arboricity of the underlying graph

and shows that X(n,m, β) ⊆O(
n·a(G) log3(n)

β ).

Another important note is in regards to the probabilistic guarantee we require from our

algorithm. Algorithm 7 returns a set that has high influence (in expectation over the random

diffusion process), with probability at least 3/5 over the random bits of the algorithm. The

runtime of Algorithm 7 can be improved if our goal is relaxed to returning a set of high

influence in expectation both over the random diffusion process and the randomness in the

algorithm. For this relaxed solution concept, it becomes unnecessary to test the influence

of the two potential solutions: the algorithm can simply choose between them at random.

The expected influence of the set returned would then be at least OPT /2β. The runtime

of this modified algorithm is O(
(n+m) log3(n)

β ).
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Algorithm 7 Influence Maximization with Tradeoff
Require: Approximation parameter β > 1, directed weighted graph G.

1: R← (24·36)(n+m) log2(n)
β

2: H← BuildHypergraph(R)

3: S← BuildSeedSet(H,k)

4: Choose v ∈ V with probability proportional to degree inH

5: if TestInfluence(S) > TestInfluence(v) then return S

6: else return {v}

TestInfluence(S):

– τ: our guess at β times the influence of S.

– L: our guess at the realized influence size that contributes most to the expected influence.

1: for τ = n,n/2,n/4, . . . ,1 do

2: for L = n,n/2,n/4, . . . ,τ do

3: for j = 1, . . . ,32(L/τ) log(n) do

4: Simulate influence in G, starting from S, to a maximum of L/β distinct nodes.

5: Let Tj be the set of nodes discovered.

6: if ∑j |Tj| > 96(n/β) log(n) then return τ/β

7: end for

8: if at least 256log(n) sets Tj satisfy |Tj| ≥ L/β then return τ/β

9: end for

10: end for

11: return 1
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Let us now turn to the proof of Theorem 6.6. Observe that when β =O(logn), the con-

ditions of Theorem 6.6 are satisfied by Algorithm 6 with (say) ε = 1/6 (to get an approxi-

mation factor bigger than 1/2), since its runtime is O((m+ n) log(n))⊆O(
n·a(G) log3(n)

β )

(see Fact 6.10 in the appendix). We can therefore assume that β > log(n).

Our analysis proceeds via two cases, depending on whether H has sufficiently many

edges as a function of OPT . We first show that, subject to H having many edges, set S

from line 3 is likely to have high influence. This follows the analysis from Theorem 6.1

almost exactly.

Lemma 6.7. Suppose that m(H) ≥ 24n log(n)
OPT . Then, with probability at least 1− 1

n , set S

satisfies EG [I(S)] ≥ 1
2OPT, with probability taken over randomness inH.

Proof. This follows by applying Lemma 6.4 with ε = 1
6 , followed by the analysis of

BuildSeedSet(H,k) from the proof of Theorem 6.1.

Note that β does not appear explicitly in the statement of Lemma 6.7. The (implicit)

role of β in Lemma 6.7 is that as β becomes large, Algorithm 7 uses fewer steps to construct

hypergraphH and hence the condition of the lemma is less likely to be satisfied.

We next show that if m(H) is small, then node v from line 4 is likely to have high

influence. Recall our assumption that β > log(n).

Lemma 6.8. Suppose that m(H) <
24n log(n)

OPT . Then, with probability at least 2/3, node v

satisfies

EG [I(v)] ≥ OPT log(n)/β, with probability taken over randomness inH.

Proof. Let random variable X denote the number of times that a node with influence at

most OPT log(n)/β was added to a hyperedge of H. Since H has fewer than 24n log(n)
OPT

edges, the expected value of X is at most

E[X] ≤ 24n log(n)
OPT ∑

u∈V

1
n

min{EG [I(u)],OPT log(n)/β}

≤ 24n log2(n)
β

.
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Markov inequality then gives that Pr[X >
(24·6)n log2(n)

β ] < 1/6. Conditioning on this

event, we have that at most (24·6)n log2(n)
β of the nodes touched by BuildHypergraph have

influence less than OPT log(n)/β. Since at least (24·36)n log2(n)
β nodes were touched in

total, the probability that node v from line 4 has influence less than OPT log(n)/β is at

most 1/6. The union bound then allows us to conclude that v has E[I(v)]≥OPT/β with

probability at least 1− (1/6 + 1/6) ≥ 2/3.

Next, we show that procedure TestInfluence(S) returns a sufficiently good estimate of

the influence of a given set of nodes. The proof, which is somewhat technical, is deferred

to Section 6.6.1.

Lemma 6.9. Given a set of nodes S procedure TestInfluence returns a value from the range

[x/log(n), x] with probability at least 1− 1
2n , where x = min{EG [I(S)],n/β}.

Finally, we show that the runtime of Algorithm 7 is at most O(
n·a(G) log3(n)

β ). The

following fact about arboricity will be particularly useful.

Fact 6.10 (Nash-Williams [97]). Given any graph g and subgraph h of g (containing at

least two nodes), m(h)
n(h)−1 ≤ a(g).

As noted by Nash-Williams this characterization of arboricity is tight as there is always

one such h with d m(h)
n(h)−1e= a(g). We are now ready to bound the runtime of Algorithm 7.

Lemma 6.11. Algorithm 7 runs in time O(
n·a(G) log3(n)

β ).

Proof. Similarly to the analysis of Algorithm 6, lines 1-3 take at most R=O(
(n+m) log2(n)

β ).

Fact 6.10 implies that this is O(
n log2(n)·a(G)

β ).

We must now show that calling TestInfluence() costs at most O(
n log3(n)·a(G)

β ) which

completes the proof. On each choice of L and τ TestInfluence() grows several trees, where

the sum over those tree sizes is at most O(n
β ) logn. By the Nash-Williams theorem [97],

each subgraph explored during this process has arboricity at most a(G).

Thus the total time to build the trees (for a given τ and L) is most O(n·a(G)
β log(n)). To

implement the test on line 7, for each value of L, one needs to keep track on the number of
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trees with size at least L
β . This can easily be done online by keeping a counter, updating the

counter after each tree is realized. Since we also iterate over log(n) values for L and τ, the

total runtime is O(
n log3(n)·a(G)

β ).

We are now ready to complete the proof of Theorem 6.6.

Proof of Theorem 6.6. Lemma 6.7 and Lemma 6.8 imply that, with probability at least

2/3 − 1/n2 ≥ 3/5 (for n ≥ 5), one of S or {v} has influence at least OPT log(n)/β

(recalling that β > logn). Since TestInfluence determines the influence of each set up to a

potential under-valuation of a factor of log(n), the set for which TestInfluence returns the

highest estimate must therefore have influence at least OPT log(n)
β · 1

log(n) =OPT /β. The

required bound on the runtime of Algorithm 7 follows directly from Lemma 6.11.

6.4.1 Amplifying the Success Probability

Algorithm 7 returns, with probability 3/5, a set that approximates the maximum expected

influence over sets of size k in G. We note that this returned set comes with an estimate of

the optimal influence in the network; the “failure” conditions correspond to selecting this

estimate incorrectly. To amplify success probability, we could return this estimate along

with the set S. One could then call the algorithm multiple times; each successful invocation

would generate an estimate at least OPT/β, whereas failed invocations would potentially

generate smaller estimates. Amplification of success probability then corresponds to ac-

cepting whichever output is associated with the highest estimate. This would allow success

probability to be raised up to 1− 1/n, at which point sampling error in Lemma 6.7 be-

comes the dominant error factor.

As in our original algorithm, the error bound in Lemma 6.7 can be improved to 1− 1
n`

by increasing the value of R by a factor of `, since this error derives from Chernoff bounds.

This would allow the success rate of the algorithm to be improved up to a maximum of

1− 1
n` by further repeated invocation. To summarize, the error rate of the algorithm can

be improved to 1− 1
n` for any `, at the cost of increasing the runtime of the algorithm by a

98



factor of `2 log(n).

6.4.2 A Lower Bound

We now turn to provide a lower bound on the time it takes an algorithm to compute a β-

approximation for the maximum expected influence problem. In particular, for any given

budget k, at least Ω(n/β) queries are required to obtain approximation factor 1
β with con-

stant probability.

Theorem 6.12. Let 0 < ε < 1
10e , β > 1 be given. Any randomized algorithm for the max-

imum influence problem that has runtime of m+n
24βmin{k,β} cannot return, with probability at

least 1− 1
e − ε, a set of nodes with approximation ratio better than 1

β .

Proof. Note first that for a graph consisting of n singletons, an algorithm must return at

least k/β nodes to obtain an approximation ratio of 1
β . Doing so in at most n/2β2 queries

requires that 2k/β≤ n/β2, which implies 2kβ≤ n. We can therefore assume 2kβ≤ n for

the remainder of the proof.

The proof will invoke the application of Yao’s Minimax Principle for the performance

of Las Vegas randomized algorithms on a family of inputs [119]. The lemma states that the

least expected cost of deterministic Las Vegas algorithms on a distribution over a family of

inputs is a lower bound on the expected cost of the optimal randomized Las Vegas algorithm

over that family of inputs.

We define the cost of the algorithm as 0 if it returns a set nodes with approximation ratio

better than 1
β and 1 otherwise. Note that the cost of an algorithm equals its probability of

failure and we can think of any Monte-Carlo randomized algorithm (with runtime at most
m+n

24βmin{k,β} ) as a Las Vegas one.

Assume for notational simplicity that β is an integer. We will build a family of lower

bound graphs, one for each value of n (beginning from n = β + 1); each graph will have

m ≤ n, so it will suffice to demonstrate a lower bound of n
12βmin{k,β} .

We now consider the behavior of a deterministic algorithm A with respect to the uni-

form distribution on the constructed family of inputs. For a given value β the graph would
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Figure 6.1: An illustration of the lower bound construction for approximate influence max-

imization.

be made from k components of size 2β and n − 2kβ singleton components (recall that

2kβ ≤ n). See Figure 6.1 for an illustration of the construction.

If algorithm A returns nodes from ` of the k components of size 2β, it achieves a total

influence of 2`β + (k − `). Thus, to attain approximation factor better than 1
β , we must

have 2`β + (k− `) ≥ 1
β2kβ, which implies ` ≥ k

2β−1 for any β > 1.

Suppose k > 12β. The condition ` ≥ k
2β−1 implies that at least k

2β−1 of the large com-

ponents must be queried by the algorithm, where each random query has probability 2kβ
n

of hitting a large component. If the algorithm makes fewer than n
12β2 queries, then the ex-

pected number of components hit is n
12β2 ·

2kβ
n = k

6β . The Multiplicative chernoff bound

(Lemma A.1, part 3) then imply that the probability hitting more than k
2β components is no

more than e−
k

6β ·2/3 ≤ 1
e4/3 < 1− 1

e − ε, a contradiction.

If k ≤ 12β then we need that ` ≥ 1, which occurs only if the algorithm queries at least

one of the kβ vertices in the large components. With n
2kβ queries, for n large enough, this

happens with probability smaller than 1
e − ε, a contradiction.
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We conclude that, in all cases, at least n
12βmin{k,β} queries are necessary to obtain ap-

proximation factor better than 1
β with probability at least 1− 1

e − ε, as required.

By Yao’s Minimax Principle this gives a lower bound of Ω( nd
24βmin{k,β} ) on the ex-

pected performance of any randomized algorithm, on at least one of the inputs.

Finally, we note that our construction can be modified to apply to non-sparse networks,

as follows. For any d ≤ n, we can augment our graph by overlaying a d-regular graph

with exponentially small weight on each edge. This does not significantly impact the in-

fluence of any set of nodes, but it increases the time to determine whether a node is in

a large component by a factor of O(d) (as edges must be traversed until one with non-

exponentially-small weight is found). Thus, for each d ≤ n, we have a lower bound of
nd

24βmin{k,β} on th expected performance of A on a distribution of networks with m = nd

edges.

6.5 Discussion

We would like to end this chapter with a short discussion on the applicability of our results

and techniques to other problems.

We would like to start by mentioning that although we have focused on the influence

maximization problem under the independent cascades model, our results apply as they are

to the probabilistic k-coverage problem as well. In the probabilistic k-coverage problem,

each edge comes with an exposure probability, and the goal is to choose a set of k nodes

such that its one-hop expected exposure (namely coverage) in maximized. One can clearly

run our algorithms, growing diffusion trees only one hop away, namely stars. As now we

grow stars instead of deep diffusion trees, the dependency of our results (for sublinear-time

approximation) on the arboricity of the graph disappears.

We next turn to discuss how our results could potentially be used for addressing the

influence maximization problem under other diffusion models. Our algorithms were based

on designing a concise submodular function, the degree of a set in the hypergraphH, such

that the influence of a set S can be computed much faster from the concise submodular
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function representation. Looking back at the proof of theorem 6.1, only two ingredients

need to hold in order to get a (1− 1/e− ε)-approximation in quasilinear time: the first,

is that one can compute a distribution of concise submodular functions that approximate

influence with weak probabilistic guarantee: only with probability at least 1 − n3, the

concise-submodular family approximates well the influence of every set of size at most k.

That is the guarantee of lemma 6.4. As we have shown, Lemma 6.5 can then be used for any

such approximation to get good expected approximation! The second ingredient is to be

able to compute, in at most quasilinear time, a maximizing set in the concise representation

used (the hypergraph H in our results). As long as we use some type of graph as the

concise-representation and are interested in node degrees in it, this could potentially be

possible.

Unfortunately, it is not clear how to get the first ingredient (the equivalent of Lemma

6.4) from the methods we developed in this work. In particular, Lemma 6.4 heavily re-

lies on key observation 6.2, which does not hold for non-independent cascading effects.

Proving (or disproving) an equivalent to Lemma 6.4 for other diffusion models, as well as

developing appropriate concise-representations of other diffusion processes is an interest-

ing direction for future work.

6.6 Omitted Proofs

6.6.1 Proof of Lemma 6.9

First recall the statement of Lemma 6.9. We must show that, given a set of nodes S,

with probability at least 1 − 1
2n , procedure TestInfluence returns a value from the range

[x/log(n), x], where x = min{EG [I(S)],n/β}. The key to algorithm TestInfluence is to

efficiently decide, for a given set S and potential influence value τ ≤ n/β, whether S has

influence at least τ log(n) or less than τ. We begin with two useful observations that will

assist us in this task.
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Lemma 6.13. For any v∈ G, there exists some t, 1≤ t≤ logn, such that 2t Prg∼G [Ig(v)≥

2t] ≥ Eg∼G [Ig(v)]/log(n).

Proof.

Eg[I(v)] =
n

∑
y=1

Prg∼G [Ig(v) ≥ y]

=
logn

∑
t=0

2t+1

∑
y=2t

Prg∼G [Ig(v) ≥ y]

≤
logn

∑
t=0

2tPrg∼G [Ig(v) ≥ 2t]

and hence Eg∼G [Ig(v)] ≤ log(n)maxt{2t Prg∼G [IS(v) ≥ 2t]}, as required.

Lemma 6.14. For any v ∈ G and any 1≤ t≤ logn, 2t Prg∼G [Ig(v)≥ 2t]≤Eg∼G [Ig(v)].

Proof.

Eg∼G [Ig(v)] =
n

∑
y=1

yPrg∼G [Ig(v) = y]

≤
n

∑
y=2t

2tPrg∼G [Ig(v) = y]

= 2tPrg∼G [Ig(v) ≥ 2t].

Note that we think of L in algorithm TestInfluence(S) as a guess at the value of 2t from

the statement of Lemma 6.13. We are now ready to proceed with the proof of Lemma 6.9.

Consider a given iteration of TestInfluence, corresponding to a value of τ. We think of

τ as a guess at the value of EG [I(S)]β. We will first show that, with high probability, we

do not return on an iteration in which Eg∼G [I(S)] < τ/β. We must consider the return

conditions on line 6 and line 7.

Suppose Eg∼G [Ig(S)] < τ/β. Consider the return condition on line 7. For set S,

Prg∼G [Ig(S) ≥ L/β] < (τ/L) for each choice of L, by Lemma 6.14. Thus, for any given
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choice of L, the probability that the event [Ig(S) ≥ L/β] occurs more than 256log(n)

times in (L/τ)32log(n) trials is, by multiplicative Chernoff bound (A.1), at most

e−6(32log(n))/3 = 1/n64. Taking the union bound over all values of L, we conclude that

with probability at least 1− 1/n63 we will not return on an iteration for which Eg∼G [Ig(S)]<

τ/β on line 7.

Next consider the condition on line 6. Suppose Eg∼G [Ig(S)] < τ/β, and pick some

L′ ∈ {n,n/2, . . . ,τ}. As above, Prg∼G [Ig(S) ≥ L′/β] < (τ/L′). Consider the sets of

nodes built for node S on the iteration corresponding to some choice of L. If L ≤ L′,

then each set Tj will have size at most L′/β. For any L > L′, we know that by the mul-

tiplicative chernoff bound (A.1), the probability that event [Ig(S) ≥ L′/β] occurs more

than 2(L/τ)32log(n) · (τ/L′) = 64(L/L′) log(n) times is at most e−32log(n)/3≤ 1/n10.

Taking the union bound over all choices of L and L′, we have that with probability at least

1− 1/n8, for each L and L′ ≤ L, fewer than 2(L/L′)32log(n) trees built on iteration L

have size greater than L′/β. Thus, conditioning on this event, we have that the sum of tree

sizes is less than
log L

∑
t=1

(2t/β)2(L/2t) log2(n) ≤ 2
n
β

32log3(n).

Taking the union bound over all values of L, we conclude that with probability at least

1− 1/n9 we will not return on an iteration for which Eg∼G [Ig(S)] < τ
β , on line 6.

We will now show that, in an iteration in which τ log(n)/β ≤ EG [I(S)], the algo-

rithm returns with high probability. Suppose S has Eg∼G [Ig(S)] ≥ (τ/β) log(n). Then,

by Lemma 6.13, there exists some L≥ τ, L a power of 2, such that Prg∼G [Ig(S)≥ L/β]≥
τ

2L log(n). The Multiplicative chernoff bound (A.1) implies that, during the 32(L/τ) log(n)

trees built for set S, the probability that fewer than 1
232log(n) = 16log(n) reach size L/β

is at most e−32log(n)/8 = 1/n4. Thus with probability 1−O(1/n4), if our algorithm does

not return on line 6, it will return on line 7, as required.
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Chapter 7

Sublinear Time Local Algorithms for

PageRank Computations

7.1 Introduction

A basic problem in network analysis is to identify the set of network nodes that are “signif-

icant.” For example, they could be the significant Web pages that provide the authoritative

contents in Web search; they could be the critical proteins in a protein interaction network;

and they could be the set of people (in a social network) most effective to seed the influence

for online advertising. As the networks become larger, we need more efficient algorithms

to identify these “significant” nodes.

Identifying Nodes with Significant PageRanks

The meanings and measures of significant vertices depend on the semantics of the net-

work and the applications. In this chapter, we focus on a particular measure of significance

— the PageRank of the vertices.

Formally, the PageRank (with restart constant, also known as the teleportation constant,

α) of a Web page is proportional to the probability that the page is visited by a random

surfer who explores the Web using the following simple random walk: at each step, with

probability (1− α) go to a random Web page linked to from the current page, and with
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probability α, restart the process from a uniformly chosen Web page. For the ease of

presentation of our later results, we consider a normalization of PageRank so that the sum

of the PageRank values over all vertices is equal to n, the number of vertices in the network,

∑
u∈V

PageRank(u) = n.

PageRank has been used by the Google search engine and has found applications in a

wide range of data analysis problems [15, 24]. In this chapter, we consider the following

natural problem of finding vertices with “significant” PageRank:

SIGNIFICANTPAGERANKS: Given a network G = (V, E), a threshold value

1≤ ∆≤ |V| and a positive constant c > 1, compute a subset S⊆ V with thWe

property that S contains all vertices of PageRank at least ∆ and no vertex with

PageRank less than ∆/c.

For the corresponding algorithmic problem we assume that the network topology is de-

scribed in the sparse representation of an (arbitrarily ordered) adjacency list for each vertex,

as is natural for sparse graphs such as social and information networks. We are interested

in developing an efficient local algorithm [3, 4, 112] for the problem in the context of Web

applications. The algorithm is only allowed to randomly sample out-links of previously

accessed nodes in addition to sampling nodes uniformly at random from the network. This

model is highly suitable for PageRank maintenance in Web graphs and online information

networks.

As the main contribution of this chapter, we present a nearly optimal, local algorithm

for SIGNIFICANTPAGERANKS.

The running time of our algorithm is Õ(n/∆). We also show that any algorithm for

SIGNIFICANTPAGERANKS must have query complexity as well as runtime complexity

Ω(n/∆). Thus, our algorithm is optimal up to a logarithmic factor.

Note that when ∆ = Ω(nδ), for some constant 0 < δ < 0, our algorithm has sublinear

time complexity.
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Our SIGNIFICANTPAGERANKS algorithm applies a multiscale matrix sampling scheme

that uses a fast Personalized PageRank estimator (see below) as its main subroutine.

Personalized PageRanks

While the PageRank of a vertex captures the importance of the vertex as collectively

assigned by all vertices in the network, one can use the distributions of the following ran-

dom walks to define the pairwise contributions of significance [60]: given a teleportation

probability α and a starting vertex u in a network G = (V, E), at each step, with probabil-

ity (1− α) go to a random neighboring vertex, and with probability α, restarts the process

from u. For v ∈ V, the probability that v is visited by this random process, denoted by

PersonalizedPageRanku(v), is u’s personal PageRank contribution of significance to v. It

is not hard to verify that

∀u ∈ V, ∑
v∈V

PersonalizedPageRanku(v) = 1; and

∀v ∈ V, PageRank(v) = ∑
u∈V

PersonalizedPageRanku(v).

Personalized PageRanks has been widely used to describe personalized behavior of

Web users [100] as well as for developing good network clustering techniques [4]. As

a result, fast algorithms for computing or approximating personalized PageRank are quite

useful. One can approximate PageRanks and personalized PageRanks by the power method

[15], which involves costly matrix-vector multiplications for large scale networks. Apply-

ing effective truncation, Jeh and Widom [64] and Andersen, Chung, and Lang [4] developed

personalized PageRank approximation algorithms that can find an ε-additive approxima-

tion in time proportional to the product of ε−1 and the maximum in-degree in the graph.

Multi-Scale Matrix Sampling

Following the matrix view of the personalized PageRank formulation of Haveliwala

[60] and the subsequent approximation of algorithms [4, 64], we introduce a matrix prob-

lem whose solution would lead to fast PageRank approximation and sublinear-time algo-

rithms for SIGNIFICANTPAGERANKS.

In the basic form of this matrix problem, we consider a blackbox model for accessing
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an unknown n× n matrix with entries from [0,1], in which we can only make a query of the

following form: matrixAccess(i,ε), where 1≤ i ≤ n and ε ∈ (0,1]. This query will return,

with high probability, a list of entry-index pairs that provide an ε-precise approximation of

row i in the unknown matrix: For each 1≤ j ≤ n, if (p, j) is in the list of entry-index pairs

returned by matrixAccess(i,ε), then |p − mi,j| ≤ ε, where mi,j is the (i, j)th entry of the

unknown matrix; otherwise if there is no entry containing index j, then mi,j is guaranteed

to be at most ε. Importantly, we require that such query cost is propositional10 to 1/ε.

We will refer to this blackbox model as the sparse and approximate row access model, or

SARA model for short.

We now define the basic form of our matrix problem:

SIGNIFICANTMATRIXCOLUMNS: Given an n × n matrix M, with entries

from [0,1], in the SARA model, a threshold ∆ and a positive constant c > 1,

return a subset of columns S⊆V with the property that S contains all columns

of sum at least ∆ and no column with sum less than ∆/c.

There is a straightforward connection between SIGNIFICANTMATRIXCOLUMNS and

SIGNIFICANTPAGERANKS. Following [3], we define a matrix PPR (short for Personal-

izedPageRank) to be the n× n matrix, whose uth row is

PersonalizedPageRanku(·).

Clearly PPR is a matrix with entries from [0,1] and for 1 ≤ v ≤ n, PageRank(v) is equal

to the sum of the vth column in PPR. Therefore, if we can solve the SIGNIFICANTMA-

TRIXCOLUMNS problem with cost Õ(n/∆) and also solve the problem of computing an

ε-additive approximation of personalized PageRank in Õ(log(n)/ε) time, then we are able

to solve SIGNIFICANTPAGERANKS in Õ(n/∆) time.

In this chapter, we analyze a multi-scale sampling algorithm for SIGNIFICANTMA-

TRIXCOLUMNS. The algorithm selects a set of precision parameters {ε1, ...,εh} where h

10Note that for this to hold there must be at most O(1/ε) entries bigger than ε in that row. This property

is true, for example, for all right-stochastic matrices.
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grows linearly with n/∆ and εi = i/h. It then makes use of the sparse-and-approximate-

row-access queries to obtain approximations of randomly sampled rows. For each i in

range 1≤ i ≤ h, the algorithm makes Õ(1) (depending on the desired success probability)

row-access queries to get a good approximation to the contribution of column elements of

value of order εi. We show that with probability 1− o(1), the multi-scale sampling scheme

solve SIGNIFICANTMATRIXCOLUMNS with cost Õ(n/∆).

While we could present our algorithm directly on PPR, we hope this matrix abstraction

enables us to better highlight the two key algorithmic components in our fast PageRank

approximation algorithm:

• multi-scale sampling, and

• robust approximation of personalized PageRanks.

Robust Approximation of PersonalizedPageRanks

For networks with constant maximum degrees, we can simply use personalized PageR-

ank approximation algorithms developed by Jeh-Widom [64] or Andersen-Chung-Lang

[4] inside the multi-scale scheme to obtain an Õ(n/∆) time algorithm for SIGNIFICANT-

PAGERANKS. However, for networks such as Web graphs and social networks that may

have nodes with large degrees, these two approaches are not sufficient for our needs.

We develop a new local algorithm for approximating personized PageRank that satisfies

the desirable robustness property that our multiscale sample scheme requires. Given λ,ε >

0 and a starting vertex u in a network G = (V, E), our algorithm estimates each entry in

the Pprsonalized PageRank vector defined by u,

PersonalizedPageRank(u, .)

to a [1− λ,1+ λ] multiplicative approximation around its value plus an additive error of at

most ε. The time complexity of our algorithm is O
(

log2 n log(ε−1)
ελ2

)
. Our algorithm requires

a careful simulation of random walks from the starting node u to ensure that its complexity

does not depend on the degree of any node. Together with the multi-scale sampling scheme,

109



this algorithm leads to an Õ(n/∆) time algorithm for SIGNIFICANTPAGERANKS. We con-

clude our analysis by showing that our algorithm for solving SIGNIFICANTPAGERANKS is

optimal up to a polylogarithmic factor.

Related Work

Our research is inspired by the body of work on local algorithms [3, 4, 112], sublinear-

time algorithms [106], and property testing [51] which study algorithm design for finding

relevant substructures or estimating various quantities of interest without examining the

entire input. Particularly, we focus on identifying nodes with significant PageRanks and

approximating personalized PageRanks without exploring the entire input network. In ad-

dition, our framework is based on a combination of uniform crawling and uniform sampling

of vertices in a graph and hence it can be viewed as a sublinear algorithm (when ∆ = nΩ(1))

in a rather general access model as discussed in [106].

It is well-known that in a directed graph, high in-degree of a node does not imply high

PageRank for that node and vice versa. In fact, even in real-world Web graphs, only weak

correlations have been reported between PageRank and in-degree [101]. One therefore

needs to use methods for PageRank estimation that are not solely based on finding high in-

degree nodes. Indeed, over the past decade, various beautiful methods have been developed

to approximate the PageRank of all nodes. The common thread is that they all run in time

at least linear in the input (See [15] for a survey of results). Perhaps the closest ones

to our framework are the following two Monte-Carlo based approaches. The PageRank

estimation method of [5] conducts simulation of a constant number of random walks from

each of the nodes in the network and therefore it requires linear time in the size of the

network. A similar approach is analyzed in [6], where a small number of random walks

are computed from each network node, which shows that a tight estimate for the PageRank

of a node with a large enough PageRank can be computed from the summary statistics of

these walks. In addition, the paper shows how these estimates can be kept up to date, with

a logarithmic factor overhead, on a certain type of a dynamic graph in which a fixed set of

edges is inserted in a random order.
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Our scheme is suitable to handle any network with arbitrary changes in it as well, in-

cluding addition or removal of edges and nodes, with the necessary computation being per-

formed “on the spot” as needed. But in contrast to the above approaches, for ∆ = nΩ(1), our

construction gives a sublinear-time algorithm for identifying all nodes whose PageRanks

are above threshold ∆ and approximating their PageRanks.

We have benefited from the intuition of several previous works on personalized PageR-

ank approximation. Jeh and Widom developed a method based on a deterministic simu-

lation of random walks by pushing out units of mass across nodes [64]. Their algorithm

gives an ε-additive approximation with runtime cost of order of logn/ε times the max-

imum out-degree of a node in the network. Andersen, Chung, and Lang [4] provided a

clever implementation of the approach of Jeh and Widom that removes the logn factor

from the runtime cost, still stopping when the residual amount to push out per node is at

most11 ε. We note, however, that for networks with large out-degrees, the complexity of

this algorithm may not be sublinear.

Andersen et al. [3] developed a “backwards-running” version of the local algorithm of

[4]. Their algorithm finds an ε-additive approximation to the PageRank vector with runtime

proportional to 1
ε , times the maximum in-degree in the network, times the PageRank value.

The authors show how it can be used to provide some reliable estimate to a node’s PageR-

ank: for a given k, with runtime proportional to Θ̃(k) times the maximum in-degree in the

network (and no dependency on the PageRank value), it can bound the total contribution

from the k highest contributors to a given node’s PageRank. However, for networks with

large in-degrees, its complexity may not be sublinear even for small values of k. We also

note that the method does not scale well for estimating the PageRank values of multiple

nodes, and needs to be run separately for each target node.

The problem of SIGNIFICANTMATRIXCOLUMNS can also be viewed as a matrix spar-

sification or matrix approximation problem, where the objective is to remove all columns

11Thus at termination the infinity norm of the residual vector is at most ε, which can easily be shown to

bound from above the infinity norm of the difference between the true personalized PageRank vector and the

estimation computed.
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with l1 norm less than ∆/c while keep all columns with l1 norm at least ∆. To achieve

time-efficiency, it is essential to allow the algorithm the freedom in deciding whether to

keep or delete columns whose l1 norm is in the range [∆/c,∆].

While there has been a large body of work of finding a low complexity approximation

to a matrix (such as a low-rank matrix) that preserves some desirable properties, many of

the techniques developed are not directly applicable to our task.

First, we would like our algorithms to work even if the graph does not have a good low

rank approximation; indeed, all of our algorithms work for any input graph. Second, our

requirement to approximately preserve l1 norm only for significant columns enable us to

achieve Õ(n/∆) complexity for any matrix with entries from the unit interval, whereas

all low-rank matrix approximations run in time at least linear in the number of rows and

columns of the matrix in order explicitly reconstruct a low-rank approximation; see [68, 69]

for recent surveys on low-rank approximations.

On a high level, the problem of SIGNIFICANTMATRIXCOLUMNS may seem to share

some resemblance to the heavy-hitters problem considered in the data streaming literature

[35]. In the heavy-hitter problems, the goal is to identify all elements in a vector stream

that have value bigger than the sum of all elements. The main difficulty to overcome is the

sequential order by which items arrive and the small space one can use to store information

about them. The main technique used to overcome these difficulties is the use of multiple

hash functions which allows for concise summary of the frequent items in the stream.

However, in SIGNIFICANTMATRIXCOLUMNS we are faced with a completely different

type of constraints — access to only a small fraction of the input matrix (in order to achieve

sublinear runtime) and having a precision-dependent cost of matrix row-approximations.

As a result, hashing does not seem to be a useful avenue for this goals and one needs to

develop different techniques in order to solve the problem.

Organization In Section 7.2, we introduce some notations that will be used in this paper.

In Section 7.3, to better illustrate the multi-scale framework, we present a solution to a

somewhat simpler abstract problem that distills the computational task we use to solve
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SIGNIFICANTMATRIXCOLUMNS. In particular, we consider a blackbox model accessing

an unknown vector that either returns an exact answer or 0 otherwise. Like the access

model in SIGNIFICANTMATRIXCOLUMNS, higher precision costs more. In Section 7.4,

we present our multi-scale sampling algorithm for SIGNIFICANTMATRIXCOLUMNS. In

Section 7.5, we address the problem of finding significant columns in a PageRank matrix

by giving a robust local algorithm for approximating personalized PageRank vectors. The

section ends with a presentation of a tight lower bound for the cost of solving SIGNIFICANT

MATRIX COLUMNS over PageRank matrices.

7.2 Preliminaries

In this section, we introduce some basic notations that we will frequently use in the paper.

For a positive integer n, [1 : n] denotes the set of all integers j such that 1 ≤ j ≤ n. If

M ∈ Rn×n is an n × n real matrix, for v ∈ [1 : n], we will use M(v, ·) and M(·,v) to

denote vth row and the vth column of M, respectively. We denote the sum of the column

v in M by ColumnSum(M,v). When the context is clear we shall suppress M in this

notation and denote it by ColumnSum(v).

Most graphs considered in this paper are directed. For a given directed graph G =

(V, E), we usually assume V = [1 : n]. We use an n × n matrix A(G) to denote the

adjacency matrix of G. In other words, A(i, j) = 1 if and only (i, j) ∈ E.

The PageRank vector of a graph G is the (unique) stationary point of the following

equation [60, 100]:

PageRank(·) = α · en + (1− α)PageRank(·) · D−1A(G),

where en is the n-place row vector of all 1’s, 0 < α < 1 is a teleportation probability

constant, and D is a diagonal matrix with the out-degree of v at entry (v,v).

Similarly, the personalized PageRank vector of u in the graph G is the (unique) station-

ary point of the following equation [60]:

PersonalizedPageRanku(·) = α · 1u + (1− α)PersonalizedPageRanku(·) · D−1A(G),
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where 1u is the indicator function of u.

Note that with the above definition of PageRank, the sum of the entries of the PageRank

vector is normalized to n. This normalization is more natural in the context of personalized

PageRank than the traditional normalization in which the sum of all PageRank entries is 1.

For any x, log(x) means log2(x) and ln(x) denotes the natural logarithm of x.

7.3 Multi-Scale Approximation of Vector Sum

Before presenting our algorithms for SIGNIFICANTMATRIXCOLUMNS, we give a multi-

scale algorithm for a much simpler problem that, we hope, captures the essence of the

general algorithm.

We consider the following blackbox model for accessing an unknown vector p =

(p1, ..., pn) ∈ [0,1]n: we can only access the entries of p by making a query of the form

vectorAccess(i,ε). If pi ≥ ε, the query vectorAccess(i,ε) returns pi, otherwise when pi < ε,

vectorAccess(i,ε) returns 0. Furthermore, vectorAccess(i,ε) incurs a cost of 1/ε. In this

subsection, we consider the following abstract problem:

VECTORSUM: Given a blackbox model vectorAccess() for accessing an un-

known vector p = (p1, ..., pn) ∈ [0,1]n, a threshold ∆ ∈ [1 : n] and a positive

constant c > 1, return PASS if ∑i pi ≥ ∆, return FAIL if ∑i pi <
∆
c , and oth-

erwise return either FAIL or PASS.

To motivate our approach, before describing our multi-scale algorithm to solve this

problem, let us first analyze the running time of a standard sampling algorithm. In such an

algorithm, one would take h i.i.d. samples s1, . . . , sh uniformly from [1 : n] and query pst

at some precision ε to obtain an estimator

n
h

h

∑
t=1

pst I[pst ≥ ε]

for the sum ∑i pi. The error stemming from querying at precision ε would be of order nε,

so we clearly will have to choose ε of order ∆/n or smaller not to drown our estimate in the
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query error, leading to a run time of order hn/∆. The number of samples, h, on the other

hand, has to be large enough to guarantee concentration, which at a minimum requires that

the expectation of the sum ∑h
t=1 pst I[pst ≥ ε] is of order at least unity. But the expectation

of this sum is upper bounded by (h/n)∑ pi which is of order h∆/n in the most interesting

case where ∑ pi is roughly equal to ∆. We thus need h to be of order at least n/∆, giving

a running time of order (n/∆)2, while we are aiming for a sublinear running time of order

Õ(n/∆).

Our algorithm is based on a different idea by querying pt at a different precision each

time, namely, by querying pst at precision εt = t/h in the tth draw, and considering the

estimator
n
h

h

∑
t=1

I[pst ≥ εt] (7.1)

for the sum ∑i pi. In expectation, this estimator is equal to n times

1
h

h

∑
t=1

P[pst ≥ εt] =
1
h

h

∑
t=1

P
[

pst ≥
t
h

]
(7.2)

with st denoting an integer chosen uniformly at random from [1 : n]. This is a Riemann

sum approximation to the well known expression

E[ps] =
∫ 1

0
dxP[ps ≥ x]

and differs from this integral by an error O( 1
h ). In the most interesting case where ∑i pi

is of order ∆, concentration again requires h to be of order at least n/∆, which also guar-

antees that the error O(1/h) from the Riemann sum approximation does not dominate the

expectation E[ps] =
1
n ∑i pi. But now we only query ps at the highest resolution ε1 = 1/h

once, leading to a much faster running time. In fact, up to log factors, the running time

will be dominated by the first few queries, giving a running time of Õ(h) = Õ(n/∆), as

desired.

In the next section we proceed with the algorithm’s formal description and analysis.
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7.3.1 A Multi-Scale Algorithm for Approximating Vector Sum

The following algorithm, MultiScaleVectorSum, replaces the standard sampling to estimate

the sum ∑i pi by a multi-scale version which spends only a small amount of time at the

computation intensive scales requiring high precision. In addition to the blackbox ora-

cle vectorAccess(), this algorithm takes three other parameters: ∆ ∈ (1,n) and c > 1 as

defined in VECTORSUM, and a confidence parameter δ ∈ (0,1): this algorithm uses ran-

domization and we will show that it correctly solves VECTORSUM with probability at least

1− δ. Our algorithm implements the strategy discussed above except for one modification:

instead of sampling at a different precision εt each time, we sample at each precision a

constant number of times τ, where τ depends on the desired success probability, given a

total number of queries equal to L = τh, where h = Θ(n/∆) with the implicit constant in

the Θ-symbol depending on c in such a way that it grows with (c− 1)−2 as c→ 1 (some-

what arbitrary, but convenient for our notation and proofs, we introduce the c dependence

of our constructions through the variable β = c−1
4c ; in terms of this variable, we write the

lower cutoff ∆/c as ∆(1− 4β), and use the midpoint ∆(1− 2β) between ∆ and ∆/c as

the cutoff for the algorithm to decide between PASS and FAIL).

Theorem 7.1 (Multi-Scale Vector Sum). For any p∈ (0,1)n accessible by vectorAccess(),

threshold ∆ ∈ (1,n), robust parameter c > 1, and failure parameter δ ∈ (0,1), the method

MultiScaleVectorSum (vectorAccess(),∆, c,δ) correctly solves VECTORSUM with prob-

ability at least (1− δ) and costs

O

(
n
∆

(
1

c− 1

)2

log
( n

∆(c− 1)

)
log
(2

δ

))
.

Proof. By Steps 3-7, for any constant c > 1, the cost of the algorithm is

L

∑
t=1

1
εt

= τ
h

∑
i=1

h
i
≤ L(1 + log h) = O

(
n
∆

(
1

c− 1

)2

log
( n

∆(c− 1)

)
log
(2

δ

))
.

We now prove the correctness of the algorithm.

Algorithm MultiScaleVectorSum, after the initialization Steps 1 and 2, computes the
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Algorithm 8 MultiScaleVectorSum

Require: vectorAccess(·, ·), threshold ∆ ∈ (1,n), cutoff parameter c > 1, failure proba-

bility δ ∈ (0,1).

1: β = c−1
4c ; τ = dlog(1/δ)e; h = d 3n

∆β2 e; L = τh

2: sum = 0.

3: for t = 1 : L do

4: εt =
1
hd

t
τ e.

5: Let st be an uniform random element from [1 : n].

6: zt = vectorAccess(st,εt).

7: sum = sum + zt.

8: end for

9: if sum ≥ (1− 2β) L∆
n then

10: Return PASS.

11: else

12: return FAIL.

13: end if
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multi-scale parameters εt and applies sampling to calculate the sum

Q =
L

∑
t=1

zt =
L

∑
t=1

I [pst ≥ εt]

where s1, . . . , sL are chosen i.i.d. uniformly at random from [1 : n]. The expectation of Q is

easily estimated in terms of the bounds

E[Q] =
1
n

n

∑
k=1

L

∑
t=1

I [εt ≤ pk] =
1
n

n

∑
k=1

L

∑
t=1

I [dt/τe ≤ hpk]

=
τ

n

n

∑
k=1

h

∑
i=1

I [i ≤ hpk] =
τ

n

n

∑
k=1
bhpkc ≤

τ

n

n

∑
k=1

hpk =
L
n

n

∑
k=1

pk (7.3)

and

E[Q] ≥ τ

n

n

∑
k=1

(
hpk − 1

)
=

L
n

n

∑
k=1

pk − τ. (7.4)

We thus use n
L Q as an estimate of ∑n

k=1 pk when we decide on whether to output PASS in

Step 9.

Assume first that ∑ pk ≥ ∆. Since τ ≤ β2 L∆
3n ≤ β L∆

n , we then have

E[Q] ≥ L∆
n
− τ ≥ (1− β)

L∆
n

,

implying that

(1− β)E[Q] ≥ (1− 2β)
L∆
n

.

This allows us to use the multiplicative Chernoff bound in the form of Lemma A.1 to

conclude that

Pr
[

Q ≤ (1− 2β)
L∆
n

]
≤ Pr [Q ≤ (1− β)E[Q]] ≤

exp
(
−β2

2
E[Q]

)
≤ exp

(
−3

8
β2L∆

n

)
≤ δ,

where we used β ≤ 1/4 in the last step.

On the other hand, if ∑ pk ≤ ∆/c = (1− 4β)∆, we bound

E[Q] ≤ L∆
n

(1− 4β)

which in turn implies that

(1 + 2β)E(Q) ≤ (1− 2β)
L∆
n

.
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Using the multiplicative Chernoff bound in the form A.1 (part 3), this gives

Pr
[

Q ≥ (1− 2β)
L∆
n

]
≤ exp

(
−β2 L∆

n
1− 2β

1 + 2β

)
≤ exp

(
−β2L∆

3n

)
≤ δ.

where we again used β ≤ 1/4.

Thus, MultiScaleVectorSum (vectorAccess(),∆, c,δ) correctly solves VECTORSUM

with probability at least 1− δ.

7.4 Multi-Scale Matrix Sampling

In this section, we consider SIGNIFICANTMATRIXCOLUMNS in a slightly more general

matrix access model than what we defined in Section 7.3. The extension of the model is

also needed in our PageRank approximation algorithm, which we will present in the next

section.

7.4.1 Notation: Sparse Vectors

To better specify this model and the subsequent algorithms, we first introduce the notation

of sparse vector introduced by Gilbert, Moler, and Schreiber [48] for Matlab. Suppose

a = (a1, ..., an) ∈Rn is a vector. Let nnz(a) denotes the number of nonzero elements in a.

Let Sparse(a) denote the sparse form of vector a by “squeezing out” any zero elements in

a. Conceptually, one can view Sparse(a) as a list of nnz(a) index-entry pairs, one for each

nonzero element and its index in a. For example, we can view Sparse([0,0.3,0.5,0,0.2])

as ((2,0.3), (3,0.5), (5,0.2)) .

A sparse vector can be easily implemented using a binary search tree 12. Throughout

the paper we shall make use of the following simple proposition:

12For average case rather than worst-case guarantees, a hash table is a typical implementation choice.
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Proposition 7.2. For a,b ∈ Rn, a + b can be implemented in time O(nnz(b) · logn)

saving the result in the data structure of a.

Proof. Each sparse vector can be implemented as a balanced binary search tree, where the

index of an entry serves as the entry’s key. When performing the addition, we update the

binary search tree of a by inserting one by one the elements of b into it (and updating

existing entries whenever needed). By the standard theory of binary search trees, each such

insertion operation takes O(logn) time.

In the rest of the paper, without further elaboration, we assume all vectors are expressed

in this sparse form. We also adpot the following notations: let Sparse([ ]) denote the all

zero’s vector in the sparse form, and for any i ∈ [1 : n] and b ∈ R − {0}, let Sparse(i,b)

denote the sparse vector with only one nonzero element b located in the ith place in the

vector. In addition, we will use the following notation: for two vectors n-place vectors

a = (a1, ..., an) and b = (b1, ...,bn), and parameters ε ∈R and C > 0, we use a≤ C · b+ ε

to denote ai ≤ Cḃi + ε, ∀i ∈ [1 : n].

7.4.2 The Matrix Access Model

In the model that we will consider in the rest of this section, we can access an unknown

n × n matrix M =
(
mi,j
)
, with entries from [0,1], by only using queries of the form

matrixAccess(i,ε,λ, p), where i ∈ [1 : n] specifies a row, ε ∈ (0,1] specifies a required ad-

ditive precision, λ ∈ (0,1] specifies a multiplicative precision, and p ∈ (0,1] specifies the

probability requirement. This query will return a sparse vector m̃i = Sparse([m̃i,1, ..., m̃i,n])

such that

• with probability at least 1− p,

(1− λ) ·mi − ε ≤ m̃i ≤ (1 + λ) ·mi + ε, (7.5)

where mi = M(i, ·) denotes the ith row of matrix M, and

• with probability at most p (the query may fail), m̃i could be an arbitrary sparse vector.
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We refer to this blackbox model as the probabilistic sparse-and-approximate row-access

model with additive/multiplicative errors. For constant integers c1, c2, c3, c4 > 0, we say

that matrixAccess is an (c1, c2, c3, c4)-SARA model if for all i ∈ [1 : n], ε ∈ (0,1), λ ∈

(0,1), and p ∈ (0,1), both the cost of calling m̃i =matrixAccess(i,ε,λ, p) and nnz(m̃i) are

bounded from above by

c1

(
1
λ

)c2
(

logc3(1/ε)

ε

)
(logc4 n) log(1/p).

7.4.3 The Matrix Problem

In this section, we give a solution to the following abstract problem.

SIGNIFICANTMATRIXCOLUMNS: Given an n × n matrix M, with entries

from [0,1], in the (c1, c2, c3, c4)-SARA model, a threshold ∆ and a positive con-

stant c > 1, return a sparse vector cSum with the property that for all j ∈ [1 :

n], if ColumnSum(M, i) ≥ ∆, then cSum(j) 6= 0 and if ColumnSum(M, i) <

∆/c, then cSum(j) = 0.

7.4.4 Understanding the Impact of Additive/Multiplicative Errors

Our algorithm for SIGNIFICANTMATRIXCOLUMNS is straightforward. At a high level, it

simultaneously applies Algorithm 8 to all columns of the unknown matrix. It uses a sparse-

vector representation for efficient bookkeeping of the columns with large sum according

to the sampled data. Our analysis of this algorithm is similar to the one presented that

in Theorem 7.1 for VECTORSUM as we can use the union bound over the columns to

reduce the analysis to a single column. The only technical difference is the handling of the

additive/multiplicate errors.

To understand the impact of these errors, we consider a vector p = (p1, ..., pn) ∈ [0,1]n

and chose εt, t = 1, . . . , L as in Algorithm 8. Fix φ,λ ∈ (0,1/2), and suppose that we

access pi with multiplicative error λ and additive error φ · εt. We will show that if this

returns a number p̃i ≥ εt, the actual value of pi is at least ρεt, where ρ = 1− λ− φ. To
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see this, we bound

pi ≥ (1 + λ)−1( p̃i − φ · εt) ≥ (1 + λ)−1(1− φ)εt.

Since (1− φ)/(1 + λ) ≥ (1− λ− φ), this implies pi ≥ ρεt, as desired.

In a similar way, it is easy to see that pi ≥ ρ−1εt implies that p̃i ≥ εt,. Indeed, if

pi ≥ ρ−1εt then

p̃i ≥ (1− λ)pi − φ · εt ≥
(

1− λ

1− λ− φ
− φ

)
εt.

The lower bound is clearly larger than εt, , showing that p̃i ≥ εt.

For s1 . . . , sL ∈ [1 : n], the sum

Q̃ =
L

∑
t=1

I[ p̃st ≥ εt] (7.6)

can therefore be bounded from below and above by

Q− =
L

∑
t=1

I[pst ≥ ρ−1εt] and Q+ =
L

∑
t=1

I[pst ≥ ρεt], (7.7)

respectively:

Q− ≤ Q̃ ≤ Q+. (7.8)

Finally, we also note that if we access pi with multiplicative error λ and additive error

φ · εt, then this a returns a number which is never larger than ρ−1. Indeed, this follows by

bounding p̃i by 1 + λ + φ · εt ≤ 1 + λ + φ ≤ ρ−1.

7.4.5 A Multi-Scale Algorithm

In this section we present the multi-scale algorithm in full details and proceed with an

analysis of its runtime and correctness. The algorithm is essentially an extension of Algo-

rithm 8, applying the VectorSum algorithm to all columns in parallel. As now the call to

vectorAcesss has been replaced by a combined additive-multiplicative method, the constant

β is set to a slightly smaller value than in Algorithm 8. In addition to the constants β,τ, h, L
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that are used in Algorithm 8, we also have the constant λ for the value of multiplicative ap-

proximation needed and φ for the additive-approximation needed; and last, p is the wanted

success probability of the row approximation procedure (matrixAccess) invoked through-

out the algorithm. We note that these constants are defined to allow complete and rigorous

analysis of our algorithm and its correctness. As the multi-scale algorithm will essentially

be implementing Algorithm 8 over all columns, we will need a method that can return all

elements in a row that fall within a certain bin; we call it the rangeIndicator method.

rangeIndicator(): for a sparse vector a, and l,u ∈ R such that l < u, the call b =

rangeIndicator(a, l,u) returns a sparse vector b such that for all i ∈ [1 : n],

b(i) =

 1 if l ≤ a(i) ≤ u

0 otherwise

For example, rangeIndicator(Sparse([0,0.3,0.5,0,0.2]),0.1,0.3) returns the sparse form of

[0,1,0,0,1]. We shall use the following simple proposition:

Proposition 7.3. rangeIndicator(a, l,u) takes O(nnz(a)logn) time.

Proof. The sparse vector nnz(a) is implemented using a binary search tree; one can there-

fore scan its content using, say, an inorder scan and insert each element in the range [l,u]

to a sparse vector b, initially empty. The inorder scan costs O(nnz(a)) time and each

insertion into b costs O(logn) time, giving the desired result.

We are now ready to state our main theorem.

Theorem 7.4 (Multi-Scale Column Sum). For any matrix M, with entries from [0,1], ac-

cessible by matrixAccess, threshold ∆ ∈ (1,n), robust parameter c > 1, and failure pa-

rameter δ ∈ (0,1), with probability at least (1− δ),

cSum = MultiScaleVectorSum (vectorAccess(),∆, c,δ) .

correctly solves SIGNIFICANTMATRIXCOLUMNS.
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Algorithm 9 MultiScaleColumnSum

Require: matrixAccess(·, ·, ·, ·), threshold ∆ ∈ (1,n), cutoff c > 1, failure probability

δ ∈ (0,1).

1: β = c−1
5c ; τ = dlog(2n/δ)e; h = d 3n

∆β2 e; L = τh; p = δ/(2L); λ = β/2;

φ = β/2; ρ = 1− λ− φ.

2: cSum = Sparse([ ]).

3: for t = 1 : L do

4: εt =
1
hd

t
τ e.

5: Let st be an uniform random element from [1 : n]; qt = matrixAccess(st,φ ·

εt,λ, p).

6: zt = rangeIndicator
(
qt,εt,ρ−1).

7: cSum = cSum + zt.

8: end for

9: cSum = rangeIndicator
(

cSum, (1− 2β) L∆
n , L

)
;

10: Return cSum.
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Furthermore, if matrixAccess is an (c1, c2, c3, c4)-SARA model, then the cost

of MultiScaleVectorSum (vectorAccess(),∆, c,δ) is

O

(
c1

( n
∆

)( 1
c− 1

)c2+3

logc3+2
( 1

c− 1

)
logc3+c4+3 n log2

(2
δ

))
.

Proof. The cost of the algorithm is dominated by the sparse matrix operations in line 5-

7, plus the cost of the last operation in line 9. Using our access model together with

Propositions 7.2 and 7.3, the cost of the steps in line 5-7 at time t are of order

O

(
c1

(
1
β

)c2 logc3( 1
βεt

)

βεt
logc4+1 n log(2L/δ)

)
≤

O

(
c1

h
dt/τe logc3 h

(
1
β

)c2+1

logc4+1 n log(
2n

∆βδ
)

)
.

Note that this includes the extra factor of logn from Proposition 7.2, a factor which is

absent in the sparseness of qt and zt.

Summing over t gives a running time of order

O

(
c1L logc3+1 h

(
1
β

)c2+1

logc4+1 n log(
2n

∆βδ
)

)

= O

(
c1

( n
∆

)
logc3+1

( n
∆β

)( 1
β

)c2+3

logc4+1 n log
( 2n

∆βδ

)
log
(2

δ

))

= O

(
c1

( n
∆

)( 1
β

)c2+3

logc3+2
( 1

β

)
logc3+c4+3 n log2

(2
δ

))
.

To estimate the cost of the last step of the algorithm, we bound the sparseness of cSum

at the completion of the FOR loop by nnz(cSum) ≤ ∑t nnz(zt) and then apply Proposi-

tion 7.3 once more, giving a cost which of the same order as the total cost of the algorithm

accrued up to this step.

To prove the correctness of the algorithm, we first note that with probability at least

(1 − p)L ≥ 1 − pL, each of the L calls of matrixAccess in line 5 will return a sparse

vector obeying the bound (7.5). Next, we apply the union bound to reduce the focus of the
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analysis to a single column:

Pr [MULTISCALECOLUMNSUM is unsuccessful] ≤

∑n
i=1 Pr [MULTISCALECOLUMNSUM is unsuccessful on column i] .

When considering column i, we now let p = (p1, ..., pn)T = M(·, i), the ith column of M.

In other words, pj = mi,j for all j ∈ [1 : n]. Note that the ith entry of cSum after step 8 is of

the form (7.6). Taking into account the bound (7.8), our proof will be very similar to that

of Theorem 7.1.

We first consider the case that ∑i pi ≥ ∆ in which case we bound

E[Q−] ≥
Lρ

n ∑
k

pk − τ ≥ ∆L
n

[
ρ− β2

3

]
=

∆L
n

[
1− β− β2

3

]
.

Multiplying both sides by (1− β), we obtain

(1− β)E[Q−] ≥
∆L
n

(1− 2β) .

Combined with the bound (7.8) and the multiplicative Chernoff bound (Lemma A.1), this

shows that conditioned on matrixAccess returning a sparse vector obeying the bound (7.5)

in each instance in line 5, we get

Pr
{

cSum(i) ≤ (1− 2β)
∆L
n

}
≤ exp

(
−β2

2
E[Q−]

)
≤ exp

(
−3

8
β2L∆

n

)
≤ δ

2n
.

In a similar way, if ∑k pk ≤ ∆/c = ∆(1− 5β), we bound

E[Q+] ≤
∆L
nρ

(1− 5β) =
∆L
n

1− 5β

1− β
,

implying that

(1 + 2β)E[Q+] ≤
∆L
n

(1− 2β)

and hence

Pr
{

cSum(i) ≥ (1− 2β)
∆L
n

}
≤ exp

(
−β2 ∆L

n
1− 2β

1 + 2β

)
≤ exp

(
−∆Lβ2

3n

)
≤ δ

2n
,

again conditioned on matrixAccess returning a sparse vector obeying the bound (7.5) in

each instance in line 5.

Thus the total failure probability is at most Lp + n δ
2n = δ, as desired.
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7.5 Identifying Nodes with Significant PageRank

7.5.1 Robust Approximation of Personalized PageRanks

We now present our main subroutine for SIGNIFICANTPAGERANKS which, we recall,

addresses the following problem: Given a directed graph G = (V, E), a threshold value

1≤ ∆ ≤ |V| and a positive constant c > 1, compute a subset S ⊆ V with the property that

S contains all vertices of PageRank at least ∆ and no vertex with PageRank less than ∆/c.

Let PPR denote the personalized PageRank Matrix of G defined in the Introduction,

where we recall that PPR(i, j) is equal to the personalized PageRank contribution of node

i to node j in G. Under this notation, the SIGNIFICANTPAGERANKS can be viewed as

a SIGNIFICANTMATRIXCOLUMNS problem, if we can develop an efficient procedure for

accessing the rows of PPR. This procedure, which we refer to as PPRmatrixAccess(), takes

a row number i, an additive precision parameter ε, a multiplicative precision parameter λ

and success probability p, and returns a sparse vector m̃i = Sparse([m̃i,1, ..., m̃i,n]) such

that

• with probability at least 1− p,

(1− λ) ·mi − ε ≤ m̃i ≤ (1 + λ) ·mi + ε,

where mi = PPR(i, ·), and

• with probability at most p, m̃i can be any sparse vector.

Our algorithm for PPRmatrixAccess() uses the following key observation that connects

personalized PageRank with the hitting probability of a Markov model.

Observation 7.5. PPR(v, j) is equal to the success probability that a random walk starting

at v and independently terminating at each time step with probability α, hits j just before

termination.

Proof. Let 1v be the indicator vector of v. Solving the system given by

PersonalizedPageRank(v, ·) = α1v + (1− α)PersonalizedPageRank(v, ·)D−1A,
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Algorithm 10 PPRmatrixAccess
Require: node v, additive approximation ε, multiplicative approximation λ.

1: cSum = Sparse([ ]).

2: Set length = dlog 1
(1−α)

(4
ε )e.

3: Set r = d 1
ελ2 · 4ln(n/p)e.

4: for r rounds do

5: Run one realization of a restarting random walk from v. Artificially stop the walk

after length steps if it has not terminated already.

6: if the walk visited a node j just before making a termination step then

7: cSum = cSum + Sparse(j,1/r) //namely, add 1/r to j’s value.

8: end if

9: Return cSum.

10: end for

one obtains

PersonalizedPageRank(v, ·) = α1v(I − (1− α)D−1A)−1 = α1v

∞

∑
i=0

((1− α)D−1A)i.

The observation then follows directly from the last equation.

Our algorithm for PPRmatrixAccess given below conducts a careful simulation of such

restarting random walks. As such it only needs an oracle access to a random out-link of a

given node.

Theorem 7.6. For any node v, values 0 < ε < 1, 0 < λ < 1, 0 < α < 1, and success

probability 0 < p < 1, PPRmatrixAccess(v,ε,λ, p) is a (10max{log−1( 1
1−α ),1},2,1,2)-

SARA model. In particular, its runtime is upper bounded by

O

(
ln2(n) ln(1/p) log(ε−1)

ελ2

)
.

Proof. We start by analyzing the runtime guarantee. Algorithm PPRmatrixAccess per-

forms d 1
ελ2 · 4ln(n/p)e rounds where at each round it simulates a random walk with
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termination probability of α for at most length steps. Each step is simulated by taking

uniform sample (’termination’ step) with probability α and by choosing a random out-link

with probability 1− α. The update of cSum in line 7 takes at most logn (see proposi-

tion 7.2). Thus the total number of queries used is⌈
4ln(n/p)

ελ2

⌉
·
⌈

log 1
(1−α)

(
4
ε

)⌉
log(n) ≤

⌈
4ln(n/p)

ελ2

⌉
·
⌈

log(4
ε )

log( 1
1−α )

⌉
log(n) ≤

(8 + 2)max
{

log−1(
1

1− α
),1
}

ln2(n) log(1/p) log(ε−1)

ελ2 .

We now prove the guarantees on the returned vector cSum (line 9 in the algorithm).

Given a node j, denote by pk(v, j) the contribution to j from restarting walks originating at

v that are of length at most k, namely,

pk(v, j) = α1v

k

∑
i=0

(1− α)D−1A)i.

We ask how much is contributed to j’s entry from restarting walks of length bigger or

equal to k. The contribution is at most (1− α)k since the walk needs to survive at least

k consecutive steps. Taking (1 − α)k ≤ ε
4 will guarantee that at most ε

4 is lost by only

considering walks of length smaller than k, namely:

PPR(v, j)− ε

4
≤ pk(v, j) ≤ PPR(v, j).

For this to hold it suffices to take k = dlog 1
(1−α)

(4
ε )e, the value the parameter length is set

to in step 2.

Next, the algorithm computes an estimate of pk(v, j) by realizing walks of length at

most k. This is the value of cSum at index j returned by the algorithm. Denote this by

p̂k(v, j). The algorithm computes such an estimation (in line 7) by taking the average

number of hits over r trials (adding 1/r per hit).

Now, if PPR(v, j) ≥ ε
2 then pk(v, j) ≥ ε

4 and by the multiplicative Chernoff bound

(Lemma A.1),

Pr ( p̂k(v, j) > (1 + λ)pk(v, j)) ≤ exp(− ln(n/p))
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and

Pr ( p̂k(v, j) < (1− λ)pk(v, j)) ≤ exp(− ln(n/p)).

By the union bound we can conclude that with probability 1− 2p
n ,

(1− λ)(PPR(v, j)− ε

4
) ≤ p̂k(v, j) ≤ (1 + λ)PPR(v, j).

Similarly, if PPR(v, j)< ε
2 then pk(v, j)< ε

2 and by the multiplicative Chernoff bound

(Lemma A.1, part 3),

Pr
(

p̂k(v, j) > (1 + λ)
ε

2

)
≤ exp(− ln(n/p)) = p/n.

As λ < 1 we therefore have 0≤ p̂k(v, j)≤ ε with probability at least 1− p/n. And as

PPR(v, j) < ε
2 we clearly have, with probability 1− p/n,

(1− λ)PPR(v, j)− ε ≤ p̂k(v, j) ≤ (1 + λ)PPR(v, j) + ε,

as needed.

By the union bound, the complete claim holds with probability at least 1− p.

7.5.2 A Tight Lower Bound for Solving SIGNIFICANTPAGERANKS

In this subsection, we present a corresponding lower bound for identifying all nodes with

significant PageRank values. Our lower bound holds under the stringent model where one

can access any node of interest in the graph in one unit of cost and that the PageRank of the

node accessed is given for free. We call such a model the strong query model. We first give

a lower bound to illurstrate the challenge for identifying nodes with significant PageRanks,

even in graphs where there is only one significant node.

We then show that for any integral threshold ∆ and precision c there are instances where

the output size of SIGNIFICANTPAGERANKS is Ω(n/∆). Clearly, this also serves as a

lower bound for the runtime of any algorithm that solves the SIGNIFICANTPAGERANKS

problem, regardless of the computational model used to compute the required output. We
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note that the runtime of our algorithmic solution to SIGNIFICANTPAGERANKS is at most

only a small polylogarithmic factor away from this bound.

For clarity of exposition we present our lower bounds for α = 0.5. Similar lower bounds

hold for any fixed 0 < α < 1.

Theorem 7.7 (Hardness for Identifying One Significant Node). Let α = 0.5. For n large

enough, any algorithm making less than n
6∆ queries in the strong query model on graphs on

n nodes and threshold ∆ ≤ n
9 , would fail with probability at least 1/e to find a node with

PageRank at least ∆, on at least one graph on n nodes.

Proof. The proof will apply Yao’s Minimax Principle for analyzing randomized algo-

rithms [119], which uses the average-case complexity of the deterministic algorithms to

derive a lower bound on the randomized algorithms for solving a problem.

Given positive integers n and ∆ ≤ n
9 , we construct a family F of undirected graphs on

n nodes by taking a cycle subgraph on n− d− 1 nodes and an isolated star subgraph on

the remaining d + 1 nodes, where we set d = 3∆ − 1. To complete the construction we

take a random labeling of the nodes. See Figure 7.1 for an illustration.

Let A be a deterministic algorithm for the problem. We shall analyze the behavior of

A on a uniformly random graph from F .

First, by solving the PageRank equation system it is easy to check that each node on the

cycle subgraph has PageRank value of 1, the hub of the subgraph has PageRank d
3 +

2
3 , and

a leaf of the star subgraph has PageRank 2
3 +

1
3d . The only node with PageRank at least ∆

is the hub of the star subgraph.

Let T be the number of queries the algorithm make. The probability that none of the

nodes of the star subgraph are found after T queries by A is at least

(1− d + 1
n

)T ≥ exp(−2T
d + 1

n
) ≥ exp(−1),

for T ≤ n
6∆ = n

2(d+1) . Here we used the fact that 1− x ≥ exp(−2x), for 0≤ x ≤ 1/3.

We define the cost of the algorithm as 0 if it has found a node of Pagerank at least ∆

and 1 otherwise. Note that the cost of an algorithm equals its probability of failure and we
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Figure 7.1: An example illustrating the “cycle and star” lower bound construction for

PageRank computations.

can think of any Monte Carlo randomized algorithm (performing less than n
6∆ queries) as

a Las Vegas one. Then by Yao’s Minimax Principle, any randomized algorithm that makes

at most n
6∆ queries will have an expected cost of at least 1/e, i.e., a failure probability of at

least 1/e on at least one of the inputs.

Theorem 7.8 (Graphs with Many Significant Nodes). Let α = 0.5, ∆ be integral and c be

given. Then, there are infinitely many n such that there exists a graph on n nodes where

the output to SIGNIFICANTPAGERANKS on that graph has size Ω( n
∆ ).

Proof. The construction is a variant of the one used in the proof of Theorem 7.8. The graph

is made of n
(3∆+1) identical copies of an undirected star graph on d + 1 = 3∆ nodes. An

easy calculation with the PageRank equations shows that each hub has PageRank of ∆ + 1
3

and each leaf has PageRank of 2
3 + 1

(9∆−3) ≤ 1. The number of nodes with PageRank at

least ∆ is therefore n
d = Ω( n

∆ ).
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7.6 Other Applications

In this chapter we will focus on other applications of our algorithm for SIGNIFICANTMA-

TRIXCOLUMNS, beyond PageRank approximation.

We will start with a few definitions. Let Ri be a a random walk that starts at i and

independently terminate at each time step with probability α. Let Estop(i, j) denote the

event of the walk Ri hits j and then terminate. Let the event Fi,j be some event associated

with the (i, j)th matrix entry. Assume that Fi,j can be decided in O(t) time, where t is the

length of the walk before termination. We will be interested in matrices where the (i, j)th

matrix entry is the probability that both Estop(i, j) and Fi,j occurred. For example, one may

be interested in random walks that visit a specific node k sometime before visiting j and

terminating.

Claim 7.9. Let M be a matrix such that ∀i, j : M(i, j) = Pr(Estop(i, j) and F(i, j)). Then

one can solve SIGNIFICANTMATRIXCOLUMNS on the input matrix M in time Õ( n
∆ ).

Proof. The proof closely follows that of Theorem 10. In that proof we have shown that

the (i, j)th matrix entry is exactly the hitting probability of a restarting random walk at

j. We then developed a combined additive and multiplicative approximation based on

simulation of the random walk and the understanding that such walk has an exponential

chance to decay as a function of time. One can clearly estimate M(i, j), where M(i, j) =

Pr(Estop(i, j) and F(i, j)), by also checking in each simulation that event Fi,j occurred on

top of checking that the walk hit node j, which can be decided in the length of the walk.

We can then use these estimates, exactly as done in Theorem 10, to complete the proof:

the additive approximation follows from the fact that the walk still needs to survive the

same number of steps before termination, and the multiplicative bound follows from the

Chernoff bounds as before.

We now turn to ask whether we could use the algorithms developed in this chapter to

estimate other eigenvectors of the PageRank system. We start with a simple observation.
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Observation 7.10. Let M be a non-negative matrix such that for entries (i, j): M(i, j) =

b · Pr(Estop(i, j)), where b > 1. Then one can solve SIGNIFICANTMATRIXCOLUMNS on

the input matrix M in time Õ(nb
∆ ).

Proof. The proof is immediate: run SIGNIFICANTMATRIXCOLUMNS on the matrix M/b

with threshold ∆′ = ∆
b . Multiply the output by b.

We note that for this observation to hold it is important to have an input matrix which

is exactly b times a hitting-probability matrix. Consider for example a matrix where all

entries equal 1/n, but one “special” entry (i, j) has value n (thinking of b = n2). Any

algorithm that runs in Õ(n/∆) time (including ours) would surly miss sampling the entries

from the “special” row and would therefore produce poor approximations to the jth column.

Interestingly, observation 7.6 can be used for providing approximations to other eigen-

vectors of the PageRank system. Recall that for PageRank computation we would like to

approximate a probability vector u with the property

u = α · en + (1− α)u · D−1A(G),

where en is the n-place row vector of all 1’s, 0 < α < 1 is a teleportation probability

constant, and D is a diagonal matrix with the out-degree of v at entry (v,v). This can be

written as:

u = u
(

αJn + (1− α) · D−1A(G)
)

,

where Jn is the n× n matrix of all 1s.

Namely, the PageRank vector can be thought of as a left eigenvector of the above ma-

trix, corresponding to eigenvalue “1”. Since the matrix is right-stochastic, “1” is the largest

eigenvalue of it and one might want to solve the system for other, real eigenvalues λ 6= 0

assuming they exist and are known:

λu = u
(

αJn + (1− α) · D−1A(G)
)

.

By manipulating the equation and writing β = 1−α
λ , one gets

u
(

I − βD−1A(G)
)
=

α

λ + α− 1
(1− β)en.

134



Now if λ > (1 − α) then β < 1 and so one can invoke Theorem 7.10 (with b taken as
α

λ+α−1 > 1) to get:

Corollary 7.11. Let b = α
λ+α−1 . Then on can solve SIGNIFICANTMATRIXCOLUMNS on

the PageRank system corresponding to a given eigenvalue (1− α)< λ < 1 in time Õ(nb
∆ ).
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Part III

Appendix
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Appendix A

Tools from Probability Theory

Here we state several fundamental results from probability theory that are used throughout

the dissertation.

A.1 Chernoff Bounds

The Chernoff bounds, also known as Chernoff-Hoeffding bounds, provide concentration re-

sults for the sum of independent Bernoulli random variable around its mean. These bounds

are credited to Chernoff [34] and Hoeffding [61].

Lemma A.1. (Multiplicative Chernoff Bound) Let X = ∑n
i=1 Xi be a sum of independent

(but not necessarily identical) Bernoulli random variables. Then,

1. For 0 < λ < 1,

Pr[X < (1− λ)E[X]] < exp(−λ2

2 E[X])

Pr[X > (1 + λ)E[X]] < exp(−λ2

4 E[X]).

2. For λ ≥ 1,

Pr[X > (1 + λ)E[X]] < exp(−λE[X]

3
).
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3. For any constant ∆ ≥ (1 + λ)E[X],

Pr[X > ∆] <

 exp(−λ2

4 ·
∆

1+λ ) if 0 < λ < 1

exp(−λ
3 ·

∆
(1+λ)

) if λ ≥ 1

Proof. The case of 0 < λ < 1 is standard and a proof can be found, for example, in chapter

4 of [94]. For any λ, it is also shown therein that

Pr[X > (1 + λ)µn] ≤
(

eλ

(1 + λ)(1+λ)

)µn

.

Now for λ ≥ 1,

eλ

(1 + λ)(1+λ)
< exp

(
− λ2

2 + λ

)
≤ exp

(
−λ

3

)
,

and the second claimed item follows.

We now prove the last claimed item. Assume that ∆
(1+λ)

− E[X] > 0 (otherwise the

proof follows immediately from part 1). Define k = d ∆
(1+λ)

− E[X]e and Y = ∑n+k
i=1 Yi,

where for 1 ≤ i ≤ n, Yi = Xi and for n < i ≤ n + k, Yi are independently distributed

Bernoulli random variables with expectation ( ∆
(1+λ)

− E[X])/k each. Note that k ≥ 1,

Yi are indeed Bernoulli random variables as 0 < ( ∆
1+λ − E[X])/k ≤ 1, and that E[Y] =

E[X] + ( ∆
(1+λ)

− E[X]) = ∆
(1+λ)

. Now,

Pr(X > ∆) = Pr(X > (1 + λ)∆/(1 + λ)) ≤

Pr(Y > (1 + λ)∆/(1 + λ)) <


exp(−λ2

4 ·
∆

1+λ) if λ < 1

exp(−λ
3 ·

∆
(1+λ)) if λ ≥ 1

The next to last inequality follows from the fact that Y first-order stochastically domi-

nates X, and the last inequality follows from parts 1 and 2 of the lemma.

Lemma A.2. (Additive Chernoff Bound) Let X = ∑n
i=1 Xi be a sum of independent (but

not necessarily identical) Bernoulli random variables. Then for λ > 0,

Pr[X < E[X]− λ] < exp(−2λ2/n).

Pr[X > E[X] + λ] < exp(−2λ2/n).

Lemma A.2 is standard and a proof can be found, for example, in chapter 1 of [39].
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A.2 Concentration of Geometric Random Variables

The following lemma gives concentration result for a sum of i.i.d. Geometric random

variables around its mean.

Lemma A.3. (Concentration of Geometric Random Variables) Let Yi be n i.i.d. Geometric

random variables. Define Y = ∑n
i=1 Yi. Then for λ > 0,

Pr[Y > (1 + λ)E[Y]] ≤ exp(−2λ2n).

Proof. Denote µ = E[Y1] and define W(n, p) to be the a random variable for the number

of independent Bernoulli experiments, with bias p = 1
µ each, to get n successes. Denote

by B(t, p) a Binomial random variable on a sequence of t trials and success probability p

on each trial. First, by definition, Y is identically distributed to W(n, p). Next, it easily

follows that

Pr[W(n, p) ≥ t] = Pr[B(t, p) ≤ n] , (1)

see for example exercise 2.4 in [39]. Now set t = d(1 + λ)µne. Then using equation (1)

and the integrality of W(n, p) we get,

Pr[Y > (1 + λ)µn] = Pr[W(n, p) > (1 + λ)µn] = Pr[W(n, p) ≥ t] =

Pr[B(t, p) ≤ n] = Pr[B(t, p) ≤ (1 + λ)n− λn].

As E[B(t, p)] = tp ≥ (1 + λ)n, we get,

Pr[B(t, p) ≤ n] ≤ Pr[B(t, p) ≤ E[B(t, p)]− λn].

Last, by lemma A.2 we get,

Pr[B(t, p) ≤ E[B(t, p)]− λn] ≤ exp(−2((λn)2/n) = exp(−2λ2n).
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[18] Béla Bollobás and Oliver Riordan. The diameter of a scale-free random graph. Com-

binatorica, 24(1):5–34, 2004.
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gree sequence of a scale-free random graph process. Random Struct. Algorithms,

18(3):279–290, 2001.

141



[20] Christian Borgs, Michael Brautbar, Jennifer T. Chayes, Sanjeev Khanna, and Bren-

dan Lucier. The power of local information in social networks. In WINE, pages

406–419, 2012.

[21] Christian Borgs, Michael Brautbar, Jennifer T. Chayes, and Brendan Lucier. In-

fluence maximization in social networks: Towards an optimal algorithmic solution.

CoRR, abs/1212.0884, 2012.

[22] Christian Borgs, Michael Brautbar, Jennifer T. Chayes, and Shang-Hua Teng. A

sublinear time algorithm for pagerank computations. In WAW, pages 41–53, 2012.

Journal version to appear in Internet Mathematics.

[23] Mickey Brautbar and Michael Kearns. Local algorithms for finding interesting in-

dividuals in large networks. In Innovations in Computer Science (ICS), pages 188–

199, 2010.

[24] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web

search engine. Computer Networks, 30(1-7):107–117, 1998.

[25] J. J. Brown and P. H. Reingen. Social ties and word of mouth referral behavior.

Journal of Consumer Research, 14(3):350–362, 1987.

[26] S. Carmi, S. Havlin, S. Kirkpatrick, Y. Shavitt, and E. Shir. A model of internet

topology using k-shell decomposition. PNAS, pages 11150–11154, 2007.

[27] Damon Centola and Michael Macy. Complex contagions and the weakness of long

ties. American Journal of Sociology, 113(3):702–734, 2007.

[28] Meeyoung Cha, Alan Mislove, and P. Krishna Gummadi. A measurement-driven

analysis of information propagation in the flickr social network. In WWW, pages

721–730, 2009.

142



[29] Bernard Chazelle, Ronitt Rubinfeld, and Luca Trevisan. Approximating the mini-

mum spanning tree weight in sublinear time. SIAM J. Comput., 34(6):1370–1379,

2005.

[30] Ning Chen. On the approximability of influence in social networks. In SODA, pages

1029–1037, 2008.

[31] Wei Chen, Chi Wang, and Yajun Wang. Scalable influence maximization for preva-

lent viral marketing in large-scale social networks. In KDD, pages 1029–1038, 2010.

[32] Wei Chen, Yajun Wang, and Siyu Yang. Efficient influence maximization in social

networks. In KDD, pages 199–208, 2009.

[33] Wei Chen, Yifei Yuan, and Li Zhang. Scalable influence maximization in social

networks under the linear threshold model. In ICDM, pages 88–97, 2010.

[34] Herman Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based

on the sum of observations. Annals of Mathematical Statistics, 23(4):493–507, 1952.

[35] Graham Cormode and S. Muthukrishnan. An improved data stream summary: the

count-min sketch and its applications. J. Algorithms, 55(1):58–75, 2005.

[36] P. Dodds and D. Watts. Universal behavior in a generalized model of contagion.

Phys Rev Lett, 92(21):218701, 2007.

[37] Benjamin Doerr, Mahmoud Fouz, and Tobias Friedrich. Social networks spread

rumors in sublogarithmic time. In STOC, pages 21–30, 2011.

[38] Pedro Domingos and Matthew Richardson. Mining the network value of customers.

In KDD, pages 57–66, 2001.

[39] D. P. Dubhashi and A. Panconesi. Concentration of Measure for the Analysis of

Randomised Algorithms. Cambridge University Press, 2009.

143



[40] D. Easley and J. Kleinberg. Networks, Crowds, and Markets, reasoning about a

Highly Connected World. Cambridge University Press, 2010.

[41] Matthias Englert, Anupam Gupta, Robert Krauthgamer, Harald Räcke, Inbal

Talgam-Cohen, and Kunal Talwar. Vertex sparsifiers: New results from old tech-

niques. In APPROX-RANDOM, pages 152–165, 2010.

[42] Eyal Even-Dar and Asaf Shapira. A note on maximizing the spread of influence in

social networks. Inf. Process. Lett., 111(4):184–187, 2011.

[43] Christos Faloutsos, Kevin S. McCurley, and Andrew Tomkins. Fast discovery of

connection subgraphs. In KDD, pages 118–127, 2004.

[44] Uriel Feige. A threshold of ln(n) for approximating set cover. J. ACM, 45(4):634–

652, 1998.

[45] Linton C. Freeman. Centrality in social networks conceptual clarification. Social

Networks, 1(3):215–239, 1978.

[46] George Giakkoupis and Thomas Sauerwald. Rumor spreading and vertex expansion.

In SODA, pages 1623–1641, 2012.

[47] George Giakkoupis and Nicolas Schabanel. Optimal path search in small worlds:

dimension matters. In STOC, pages 393–402, 2011.

[48] John R. Gilbert, Cleve Moler, and Robert Schreiber. Sparse matrices in matlab:

design and implementation. SIAM J. Matrix Anal. Appl., 13(1):333–356, January

1992.

[49] G. Goel and J. Gustedt. Bounded arboricity to determine the local structure of sparse

graphs. In WG, pages 159–167, 2006.

[50] J. Goldenberg, B. Libai, and E. Mulle. Talk of the network: A complex systems

look at the underlying process of word-of-mouth. Marketing Letters, pages 221–

223, 2001.

144



[51] Oded Goldreich. Introduction to testing graph properties. In Property Testing, pages

105–141, 2010.

[52] Oded Goldreich and Dana Ron. Property testing in bounded degree graphs. Algo-

rithmica, 32(2):302–343, 2002.

[53] Daniel Golovin and Andreas Krause. Adaptive submodularity: Theory and appli-

cations in active learning and stochastic optimization. J. Artif. Intell. Res. (JAIR),

42:427–486, 2011.

[54] Manuel Gomez-Rodriguez, Jure Leskovec, and Andreas Krause. Inferring networks

of diffusion and influence. TKDD, 5(4):21, 2012.

[55] Sanjeev Goyal and Michael Kearns. Competitive contagion in networks. In STOC,

pages 759–774, 2012.

[56] M. Granovetter. Threshold models of collective behavior. American Journal of

Sociology, (83):1420–1443, 1978.

[57] Sudipto Guha and Samir Khuller. Approximation algorithms for connected domi-

nating sets. Algorithmica, 20(4):374–387, 1998.

[58] Nathan Halko, Per-Gunnar Martinsson, and Joel A. Tropp. Finding structure with

randomness: Probabilistic algorithms for constructing approximate matrix decom-

positions. SIAM Review, 53(2):217–288, 2011.

[59] Avinatan Hassidim, Jonathan A. Kelner, Huy N. Nguyen, and Krzysztof Onak. Local

graph partitions for approximation and testing. In FOCS, pages 22–31, 2009.

[60] T.H Haveliwala. Topic-sensitive pagerank: A context-sensitive ranking algorithm

for web search. In Trans. Knowl. Data Eng, volume 15(4), pages 784–796, 2003.

[61] Wassily Hoeffding. Probability inequalities for sums of bounded random variables.

Journal of the American Statistical Association, 58(301):13–30, 1963.

145



[62] Piotr Indyk and David P. Woodruff. Optimal approximations of the frequency mo-

ments of data streams. In STOC, pages 202–208, 2005.

[63] M. Jackson. Social and Economic Networks. Princeton University Press, 2008.

[64] Glen Jeh and Jennifer Widom. Scaling personalized web search. In WWW, pages

271–279, 2003.

[65] Qingye Jiang, Guojie Song, Gao Cong, Yu Wang, Wenjun Si, and Kunqing Xie.

Simulated annealing based influence maximization in social networks. In AAAI,

2011.

[66] David S. Johnson, Maria Minkoff, and Steven Phillips. The prize collecting steiner

tree problem: theory and practice. In SODA, pages 760–769, 2000.

[67] Viggo Kann. On the approximability of np-complete optimization problems, 1992.

PhD thesis, Department of Numerical Analysis and Computing Science, Royal In-

stitute of Technology, Stockholm.

[68] Ravi Kannan and Santosh Vempala. Spectral algorithms. Foundations and Trends

in Theoretical Computer Science, 4(3-4):157–288, 2009.

[69] Ravindran Kannan. Spectral methods for matrices and tensors. In STOC, pages

1–12, 2010.

[70] Michael J. Kearns. Computational complexity of machine learning. ACM distin-

guished dissertations. MIT Press, 1990.
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