178 research outputs found

    First-order distributed optimization methods for machine learning with linear speed-up

    Get PDF
    This thesis considers the problem of average consensus, distributed centralized and decentralized Stochastic Gradient Descent (SGD) and their communication requirements. Namely, (i) an algorithm for achieving consensus among a collection of agents is studied and its convergence to the average is shown, in the presence of link failures and delays. The new results improve upon the prior works by relaxing some of the restrictive assumptions on communication, such as bounded link failures and intercommunication intervals, as well as allowing for message delays. Next, (ii) a Robust Asynchronous Stochastic Gradient Push (RASGP) algorithm is proposed to minimize the separable objective F(z) = _{i=1}^n f_i(z) in a harsh network setting characterized by asynchronous updates, message losses and delays, and directed communication. RASGP is shown to asymptotically perform as well as the best bounds on a centralized gradient descent that takes steps in the direction of the sum of the noisy gradients of all local functions f_i(z). Next, (iii) a new communication strategy for Local SGD is proposed, a centralized optimization algorithm where workers make local updates and then calculate their average values only once in a while. It is shown that linear speed-up in the number of workers N is possible, using only O(N) communication (averaging) rounds, independent of the total number of iterations T. Empirical evidence suggests this bound is close to being tight as it is further shown that √N or N^{3/4} communications fail to achieve linear speed-up. Finally, (iv) under mild assumptions, the main of which is twice differentiability on any neighborhood of the optimal solution, one-shot averaging, which only uses a single round of communication, is shown to have optimal convergence rate asymptotically

    Low complexity convergence rate bounds for the synchronous gossip subclass of push-sum algorithms

    Full text link
    We develop easily accessible quantities for bounding the almost sure exponential convergence rate of push-sum algorithms. We analyze the scenario of i.i.d. synchronous gossip, every agent communicating towards its single target at every step. Multiple bounding expressions are developed depending on the generality of the setup, all functions of the spectrum of the network. While the most general bound awaits further improvement, with more symmetries, close bounds can be established, as demonstrated by numerical simulations.Comment: 15 pages, 8 figure

    PersA-FL: Personalized Asynchronous Federated Learning

    Full text link
    We study the personalized federated learning problem under asynchronous updates. In this problem, each client seeks to obtain a personalized model that simultaneously outperforms local and global models. We consider two optimization-based frameworks for personalization: (i) Model-Agnostic Meta-Learning (MAML) and (ii) Moreau Envelope (ME). MAML involves learning a joint model adapted for each client through fine-tuning, whereas ME requires a bi-level optimization problem with implicit gradients to enforce personalization via regularized losses. We focus on improving the scalability of personalized federated learning by removing the synchronous communication assumption. Moreover, we extend the studied function class by removing boundedness assumptions on the gradient norm. Our main technical contribution is a unified proof for asynchronous federated learning with bounded staleness that we apply to MAML and ME personalization frameworks. For the smooth and non-convex functions class, we show the convergence of our method to a first-order stationary point. We illustrate the performance of our method and its tolerance to staleness through experiments for classification tasks over heterogeneous datasets

    Middleware services for distributed virtual environments

    Get PDF
    PhD ThesisDistributed Virtual Environments (DVEs) are virtual environments which allow dispersed users to interact with each other and the virtual world through the underlying network. Scalability is a major challenge in building a successful DVE, which is directly affected by the volume of message exchange. Different techniques have been deployed to reduce the volume of message exchange in order to support large numbers of simultaneous participants in a DVE. Interest management is a popular technique for filtering unnecessary message exchange between users. The rationale behind interest management is to resolve the "interests" of users and decide whether messages should be exchanged between them. There are three basic interest management approaches: region-based, aura-based and hybrid approaches. However, if the time taken for an interest management approach to determine interests is greater than the duration of the interaction, it is not possible to guarantee interactions will occur correctly or at all. This is termed the Missed Interaction Problem, which all existing interest management approaches are susceptible to. This thesis provides a new aura-based interest management approach, termed Predictive Interest management (PIM), to alleviate the missed interaction problem. PIM uses an enlarged aura to detect potential aura-intersections and iii initiate message exchange. It utilises variable message exchange frequencies, proportional to the intersection degree of the objects' expanded auras, to restrict bandwidth usage. This thesis provides an experimental system, the PIM system, which couples predictive interest management with the de-centralised server communication model. It utilises the Common Object Request Broker Architecture (CORBA) middleware standard to provide an interoperable middleware for DVEs. Experimental results are provided to demonstrate that PIM provides a scalable interest management approach which alleviates the missed interaction problem

    Middleware services for distributed virtual environments

    Get PDF
    PhD ThesisDistributed Virtual Environments (DVEs) are virtual environments which allow dispersed users to interact with each other and the virtual world through the underlying network. Scalability is a major challenge in building a successful DVE, which is directly affected by the volume of message exchange. Different techniques have been deployed to reduce the volume of message exchange in order to support large numbers of simultaneous participants in a DVE. Interest management is a popular technique for filtering unnecessary message exchange between users. The rationale behind interest management is to resolve the "interests" of users and decide whether messages should be exchanged between them. There are three basic interest management approaches: region-based, aura-based and hybrid approaches. However, if the time taken for an interest management approach to determine interests is greater than the duration of the interaction, it is not possible to guarantee interactions will occur correctly or at all. This is termed the Missed Interaction Problem, which all existing interest management approaches are susceptible to. This thesis provides a new aura-based interest management approach, termed Predictive Interest management (PIM), to alleviate the missed interaction problem. PIM uses an enlarged aura to detect potential aura-intersections and iii initiate message exchange. It utilises variable message exchange frequencies, proportional to the intersection degree of the objects' expanded auras, to restrict bandwidth usage. This thesis provides an experimental system, the PIM system, which couples predictive interest management with the de-centralised server communication model. It utilises the Common Object Request Broker Architecture (CORBA) middleware standard to provide an interoperable middleware for DVEs. Experimental results are provided to demonstrate that PIM provides a scalable interest management approach which alleviates the missed interaction problem

    Designing and Development of a Data Logging and Monitoring Tool

    Get PDF
    Since the mid 90's computer communication has become more and more common in cars and other auto mobiles. CAN based networks with sensors transmitting small data packets are utilized in the automotive industry to operate and supervise vehicles' functionality. To ease communication several higher layer protocols for CAN based networks have been developed. In some applications it is necessary to exchange information between networks using different protocols, and by connecting the two networks to a gateway, the information is translated and forwarded and intercommunication is enabled. This master thesis is conducted at Torqeedo GmbH, Munich. Theme of the thesis was “Designing and Development of a Data Logging and Monitoring Tool”. Term “data logging” refers to the gathering or collection of specific data over a period of time. Monitoring means evaluate the data we are logging. Tools for data logging and monitoring are used in variant application these days. In medical, in-vehicle data logging and environment monitoring. This data could be voltage, current temperature, Time stump, heartbeat of the patient, vehicle fuel level etc. To capture and log data various communication channels used. Such channel varies from simple data cable to satellite link. There are variant protocols used for different communication channels. For our DBHS logging and monitoring tool we are using CANopen protocol. Main goal of this thesis is to develop a tool which can make debugging easy and log connection box data so we can use logged data later on for offline data analysis and simulation purposes

    Operating systems for computer networks

    Get PDF
    • 

    corecore