

Designing and Development of a Data Logging and

Monitoring Tool

Master Thesis

Submitted in Fulfillment of the

Requirements for the Academic Degree

M.Sc. Automotive Software Engineering

Dept. of Computer Science

Chair of Computer Engineering

Submitted by: Habib Ur Rehman

Student ID: 331342

Date: 27.07.2016

Supervisors: Prof. Dr. Wolfram Hardt

Dipl.-Inf. Stephan Dörr

i i

Declaration of Authorship

I, Habib Ur Rehman, assure that the thesis “Designing and Development of a Data Logging

and Monitoring Tool” is my own work under the guidance of my technical supervisors at

Torqeedo GmbH. The data collected during the literature review and referred in this

document is given due acknowledgment. All the references and helping materials are enlisted

in the Bibliography with all sincerity.

Signature: _____________________

Date: _________________________

i i i

Abstract

Since the mid 90's computer communication has become more and more common in cars and

other auto mobiles. CAN based networks with sensors transmitting small data packets are

utilized in the automotive industry to operate and supervise vehicles' functionality. To ease

communication several higher layer protocols for CAN based networks have been developed.

In some applications it is necessary to exchange information between networks using different

protocols, and by connecting the two networks to a gateway, the information is translated and

forwarded and intercommunication is enabled. This master thesis is conducted at Torqeedo

GmbH, Munich. Theme of the thesis was “Designing and Development of a Data Logging

and Monitoring Tool”.

Term “data logging” refers to the gathering or collection of specific data over a period of

time. Monitoring means evaluate the data we are logging. Tools for data logging and

monitoring are used in variant application these days. In medical, in-vehicle data logging and

environment monitoring. This data could be voltage, current temperature, Time stump,

heartbeat of the patient, vehicle fuel level etc. To capture and log data various

communication channels used. Such channel varies from simple data cable to satellite link.

There are variant protocols used for different communication channels. For our DBHS

logging and monitoring tool we are using CANopen protocol. Main goal of this thesis is to

develop a tool which can make debugging easy and log connection box data so we can use

logged data later on for offline data analysis and simulation purposes.

Keywords: Protocol Analyzer, CANopen protocol, CAN communication

iv

Acknowledgements

In the name of Allah, the Most Gracious, the Most Merciful.

I cannot thank enough to my company supervisor at Torqeedo Gmbh, Mr. Stephan Dörr who

was abundantly helpful and offered invaluable guidance throughout my project. Indeed

something as complex as Master thesis could not have been completed without his valuable

suggestion and dedicated time, his response always in form of "hmm yes" to my question

"whether he has time?" kept me motivated throughout my project.

I would also like to take this opportunity to express my gratitude to Michael Lorenz and

Mario Wohlwender for introducing me to this topic as well as their support and guidance all

the way.

Moving to the academic side, my Professor, Dr. Wolfram Hardt contributed to the

development of my skills even before my thesis had started. These skills certainly helped me

better understand the engineering problems and taught me the art of solving them.

Mr Felix Hänchen had been coordinating with me throughout the thesis as internal supervisor.

His hints on my documentations and concept presentations were beyond helpful. Thanks for

your time and effort.

There were two aspects of support during the course of my thesis; practical and moral. Having

mentioned the practical support, and beginning with the moral support, I would like to thank

my parents and siblings. Though they were miles away from me, their prayers reflected in the

success. It was their moral support that allowed me to keep this commitment, yet meet all the

deadlines.

v

Table of Contents
List of Abbreviations ... viii

List of Figures .. x

List of Tables ... xi

1. Introduction ... 1

1.1. Motivation .. 1

1.2 Overview ... 2

1.3 Objective ... 3

2. Basics .. 4

2.1 CAN Introduction ... 4

2.1.1 CAN Frame Format .. 6

2.1.2 Standard CAN Vs Extended CAN Frame Format .. 7

2.2. CANopen at Glance .. 8

2.2.1 Advantages of CANopen Protocol ... 8

2.3 CANopen Communication Model ... 9

2.3.1 Client/Server Relationship.. 9

2.3.2 Master/Slave Relationship .. 10

2.2.3 Producer/Consumer Relationship ... 10

2.4 CANopen Device Model ... 10

2.4.1 Object Dictionary ... 11

2.5 CANopen Communication Objects ... 12

2.5.1 Process Data Object .. 12

2.5.2 Service Data Object .. 15

2.5.3 Network Management .. 17

2.5.4 Timestamp .. 18

2.5.5 Emergency Messages ... 19

2.5.6 Synchronization Object .. 19

2.6 Protocol Analyzer .. 19

2.7 Payload Analysis ... 20

2.8 Deep Blue Hybrid system .. 20

2.9 System Connection Box .. 22

2.10 Summary ... 23

3. State of the art.. 25

3.1 CAN Bus Analyzers .. 25

vi

3.2 Data Transmission ... 25

3.2.1 CANopen Data Transmission ... 26

3.2.2 Flexible Transmission .. 26

3.3 Bus Balancing Algorithm .. 27

3.4 Off the Shelf Solutions .. 31

3.4.1 PCAN ... 31

3.4.2 CANalyzer .. 31

3.4.3 CANFestival ... 31

3.5 Summary ... 32

4.Concept ... 33

4.1 Problem Definition .. 33

4.2 Methods of data Analyses ... 33

4.3 Proposed Solution .. 34

4.4 Connection Box Units ... 34

4.4.1 Box Control Unit (BCU) .. 35

4.4.2 System Control Unit (SCU).. 35

4.4.3 Device Control Unit (DCU) ... 35

4.5 Summary ... 36

5. Implementation .. 37

5.1 Tools and Technologies ... 37

5.2 PC Based Online Monitoring Tool .. 37

5.2.1 Timing of CANopen SYNC-Message .. 39

5.2.2 Slot Monitoring of PDO Messages ... 40

5.2.3 Synchronization (SYNC) Slot Delay .. 42

5.2.4 Bus Load Measurement .. 44

5.2.5 Heartbeat Monitoring ... 45

5.2.6 CANopen Emergency Message Handling .. 46

5.3 Offline Data Analysis .. 49

5.3.1 Generation of SYNCgap and SystemConfig File ... 50

5.3.2 SYNCgap and SystemConfig File .. 51

5.3.3 Watchdog problem ... 52

5.4 Embedded Platform ... 53

5.5 IsoMon Payload Analysis .. 54

5.6 Summary ... 55

vii

6. Results ... 57

6.1 Results Criteria .. 57

6.2 Logging and Monitoring Results ... 57

6.2.2 Monitoring PDO Messages .. 59

6.2.3 Using Configuration Files .. 62

6.3 SYNC and Emergency Messages Monitoring ... 63

6.4 Summary ... 64

7. Future Work .. 65

Bibliography .. 67

Appendix A ... 69

Appendix B ... 73

Appendix C ... 76

vii i

List of Abbreviations

Abbreviations Full form

AF Acceptance Filtering

AMP Arbitration on Message Priority

ACK Acknowledgment

CAN Controller Area Network

CiA CAN in Automation

COB-ID COB Identifier

COB Communication Object

CRC Cyclic Redundancy Check

CSMA Carrier-Sense Multiple Access

CSMA/CD Carrier-Sense Multiple Access / Collision

Detection

DLC Data Length Count

DBH Deep Blue Hybrid

DBHS Deep Blue Hybrid System

ER Error Register

ECU Electronic control unit

EEC Emergency Error Code

EMCY Emergency

HB Heartbeat

IDE Identifier Extension

ISO International Standardization Organization

LLC Logic Link Control

MAC Medium Access Control

MSB Most Significant Bit/Byte

NMT Network Management

ix

OD Object Dictionary

OSI Open Systems Interconnection

PDO Process Data Object

RPDO Receive Process Data Object

RTR Remote Transfer Request

SDO Service Data Object

SSDO Server SDO

SYNC Synchronization Object

TPDO Transmit Process Data Object

UART Universal Asynchronous

Receiver/Transmitter

x

List of Figures

Figure 1. OSI 7 layer communication system model [5] ... 4

Figure 2 Layered ISO 11898 Standard architecture [8] .. 5

Figure 3. Standard CAN 11 bit Identifier [7] .. 6

Figure 4. Extend CAN with 29 Bit Identifier [7] .. 7

Figure 5. CANopen device model [13] ... 10

Figure 6. Event driven PDO Transfer [4] .. 14

Figure 7. SDO client and SDO server communication ... 15

Figure 8.SDO communication [4] ... 16

Figure 9. Network management states .. 17

Figure 10. Time stamp data frame.[19] ... 19

Figure 11.Deep blue hybrid system structure [16] .. 21

Figure 12. Connection Box of DBHS [16] .. 22

Figure 13.Deep blue hybrid system Connection box [16] ... 23

Figure 14.CANopen standards vs Torqeedo implementation[16] ... 27

Figure 15.Flow chart of Bus balancing algorithm[16] .. 28

Figure 16.Example of Bus balancing algorithm[16] ... 30

Figure 17: Methods of data input .. 34

Figure 18. SYNC Message .. 39

Figure 19. SYNC window and SYNC message .. 41

Figure 20. SYNC slot stating delay ... 43

Figure 21.Heartbeat monitoring.[9] ... 45

Figure 22. Structure of EMCY message.. 47

Figure 23. Emergency object state transitions ... 48

Figure 24.Node guard time Vs Life time.[9] ... 52

Figure 25. Screenshot: IsoMon PDO list ... 54

Figure 26. Nodes Heard beats and time intervals respectively .. 58

Figure 27. (Screenshot) Logged data with late\early heartbeat messages ... 59

xi

List of Tables

Table 1. Object Dictionary domain and their ranges [9] ... 11

Table 2. Mandatory object dictionary entries [11] .. 12

Table 3. sub index data types .. 14

Table 4. Control bits for NMT startup [9] ... 18

Table 5. PCAN Basic Vs kvaser V2 .. 38

Table 6.TPDO and RPDO of network node .. 40

Table 7. Sync gap and transmission recurrence. ... 41

Table 8.CAN frame bits .. 44

Table 9. NMT states .. 46

Table 10. Emergency error code values .. 47

Table 11.Error code values .. 47

Table 12. EMCY Message data bytes ... 48

Table 13. Iso Monitor possible values ... 55

xii

Code Listings

Listing 1: Node Battery Sync Gaps ... 42

Listing 2: Logger sample data ... 49

Listing 3: System configuration of Node Battery .. 50

Listing 4: Sync Gap of Node Battery .. 50

Listing 5:Sample logger data ... 51

Listing 6: Watchdog Values of 2nd Byte of Heatbeat data ... 53

Listing 7: Errorlog data ... 59

Listing 8:Sample Logger data ... 60

Listing 9:Logger data to check Sync ... 61

Listing 10: ErrorLog file with missing SYNC error message ... 61

Listing 11: SyncGap.conf .. 62

Listing 12: logger data to check Sync timing .. 63

1

Chapter 1

1. Introduction

Communication is an exchange of information between two or more Objects. There are

several methods and means for exchanging this information. Humans can exchange

information by variant different means. Now in our world machines are continuously

replacing human due to several reasons. And their role in today’s industry is increasing day

by day. There are many jobs in today’s fast growing industry that only machine can do

precisely, accurately with speed. We know that while working humans need to communicate

and exchange information with other coworker’s while working at workplace. The question

comes in our mind that when we replace humans with machines than how this exchange of

information between machines would be possible? In communication among two people, one

participant is transmitter and second is receiver. For exchange of information among

machines we must keep in mind that both participants of communication can understand each

other. So there had to be common standards. One option to make exchange of information

among machines is communication protocol.

Communications protocol is a set of rules for data exchange, which allows two or more

entities of a communication network to exchange information over a communication

channel.[1] These are standard that defines the syntax, semantics and synchronization of

communication and possible error recovery methods. Protocols may be implemented by

hardware, software, or a combination of both. If you want to design your own protocol

according to your specific requirements you can do this, just following some basic procedural

principles. Your communication protocol needs to be easy to interact if some IT person wants

to implement it or use it. Further it should be reliable for detecting errors and resilient which

means less network failure.

1.1. Motivation

In past three decades automotive industry has been in the transition from simple point to point

wiring to highly complex network topologies and communication bus systems. This is

because the customer is demanding more and more sophisticated features in the vehicle to

make it more convenient for traveling. And on the other hand there is a high competition in

2

market among all manufacturers. In these three decades all the previous standards upgraded

and many new standards introduced. In these new standards there are few standards used to

reduce the complexity of inter component communication in any system. In 1980 Robert

Bosch Gmbh introduced the CAN (Control Area Network) also known as CAN bus. CAN-bus

gradually make place in the automotive industry and nowadays CAN-bus is going to be used

in variant industries e.g. in Aerospace, in Medical field, in Industrial control and similar.

Today each vehicle has around 100 ECUs and this trend is gradually growing with time

because of the addition of new features. [20] According to OSI communication system model

CAN covers the Data link layer and Physical layer out of 7 OSI communication model layers.

CANopen is a higher level communication protocol which covers the top 5 layers. It is

developer by CiA (CAN in Automation). CANopen standardized communication between

devices and Application of different manufacturers [4]. To analyze the performance of the

protocol we need a protocol analyzer to check the performance of the CANopen protocol.

Protocol analyzer increases efficiency and improves the performance of the network. There

are several open source CANopen protocol analyzers e.g. CANFestival.

1.2 Overview

This thesis is structured as follows; the first chapter gives a brief introduction, motivation,

objectives. The second chapter provides the basic knowledge to understand the work, which I

will explain in coming chapters. It contains basic information of CAN bus and what CAN and

CANopen protocol is and why we need these?. In last part of chapter 2 there is a brief over

view of deep blue Hybrid system. The third chapter is all about “State of the Art”. First, we

will take the overview of CAN bus analyzer. Later on we will introduce problem and our

approach to solve this problem. Later on I will introduce some commonly known open source

solutions. The 4
th

 Chapter is Concept which introduces readers with the problem for which we

are looking for solution. To understand the problem readers must know basics about the

system. I will introduce the. The Fifth Chapter starts the Implementation of our concept phase

outcome. Actually our implementation is in Three Phases. I will overview all of them one by

one. Phase_1 is Online Monitoring tool. Second phase is Offline Analysis and Phase 3 is

embedded platform. Second last chapter tells the reads what is the outcome of our

implementation and there would be a cross check of our results and expected results. Last

chapter is the guidance for future work how we can make our system more result oriented and

3

detect protocol violations in minimum time frame and reasons behind these violations which

leads to failures more quickly.

For the sake of readers comfort and make it easy to read following modifications are adopted.

Content of the chapters is divided into 3 levels at most. The names of tools, files and folders

are in italic. Full forms of the abbreviations are in separate table in the beginning of the

document. And first usage of all the abbreviations is written with its full form in brackets ()

e.g. PDO (Process Data Object). All the quotations inside the document would be in

“quotation marks”.

1.3 Objective

Main objective of this master thesis is to design and develop a logging and monitoring tool for

our deep blue hybrid system CANopen network. This tool will help us to play back our

logged communication data to debug network. We are using customized CANopen protocol

as per our project requirements. The very basic requirements are to analyze network data

communication and keep an eye on CAN bus utilization. Our goal is to be able to calculate

the payload of all the devices of the network. Payload analysis of each node helps us for

finding errors/problems in network and monitoring the behavior of each node while

communication with other nodes of the network.

Lastly it is important for to evaluate logging and monitoring tool on Linux based embedded

platform as well. Evaluation of tool on embedded platform is valuable for future work to

expand the tool efficiency.

4

Chapter 2

2. Basics

This chapter describes the basics which help the readers to understand the concept and

implementation of the project. This chapter will give readers the good insight and basic

understanding of CAN bus and CANopen Protocol. In the first part of this chapter our focus

would be CAN-bus. In the last part of introductory chapter, High-level protocol CANopen

working and key objects of protocol will be discussed.

2.1 CAN Introduction

CAN is an ISO (International Standardization Organization) standardized serial

communication bus firstly introduced in early 1980’s by a German company Robert

Bosch GmbH specifically for automotive applications. But nowadays it is being used

in various industries. It is being used by industrial control, medical equipment and

electric boats. CAN is a most common communication channel. As embedded

components communication channel, its cost efficient, highly reliable and also has

high data transmission rate [6]. The primary goal of introducing CAN bus was to

replace complex wiring system inside the vehicle with single CAN bus. Bus was

standardized by ISO in 1993 as ISO 11898-1.

Figure 1. OSI 7 layer communication system model [5]

5

CAN bus cover the last two layers of the OSI (Open Systems Interconnection) 7

layer Model. Last two layers are physical layer and Data Link layer. Physical layer

defines how bits are encoded into signals to transmit over network from one node to

other [23]. Physical layer consists of three sub layers:

 Physical Signaling

 Physical Medium attachment

 Medium dependent Interface

Figure 2 Layered ISO 11898 Standard architecture [8]

Data-Link layer consist of two sub layers:

 Logic Link control

 Medium access control

Logic Link Control (LLC) do message filtering and recovery management. On the

other hand, Medium Access Control (MAC) is responsible for bit stuffing which

means the insertion of one or more bits into a data packet. After five consecutive

identical bits, one extra bit is inserted into the message and this bit has a compliment

of the previous five consecutive bits. The receiver of the message also knows how to

detect extra inserted bit from the message. MAC also guarantee that message with

6

higher priority (low identifier) will be transmitted first all the low priority messages

need to wait until the bus is free after finishing the transmission.

CAN bus describe how data is transferred between all the nodes connected to the

network [7]. Its communication is broadcast based all nodes can transfer and receive

messages. When the master node transmits the message, all the nodes read the

message and decide either it needs to accept it or not. This method of filtering is called

Acceptance Filtering (AF) [6].

2.1.1 CAN Frame Format

CAN communication is Carrier-Sense Multiple Access / Collision Detection

(CSMA/CA). CSMA/CD is a modified form of Carrier-Sense Multiple Access

(CSMA). Each node on the bus waits for some time before transmitting frame to avoid

collisions. Collision can be resolved through bit-wise arbitration called Arbitration on

Message Priority (AMP). Message with higher priority wins the access of the channel

[7]. CAN bus have two standard formats:

 Standard CAN with 11 bit identifier

 Extended CAN with 29 bit identifier

The Standard CAN has 11 bit identifier which would be unique within the network

and determine the priority of the message. Node on the Bus with lower identifier has

higher priority and node with higher identifier has lower priority to access the CAN

bus.

Figure 3. Standard CAN 11 bit Identifier [7]

Structure of the CAN standard frame (CAN 2.0 A) is given in the figure 3 above.

Message frame always starts with 1 bit SOF (Start Of Frame). SOF bit would always

be dominant and indicates the start of the frame. It always synchronizes all the nodes

on the bus. There is 11 bit identifier after SOF bit. Followed by identifier bits there is

7

one bit RTR bit (Remote Transmission Request). RTR bit has to be dominant in data

frame otherwise recessive. IDE (ID Extension) identifies a standard frame or message.

R0 is reserved bit. 4 bit DLC (Data Length Code) contains the information about the

data section of the frame. Value of DLC would be between 0 and 8, because data

section of CAN frame contain maximum 8 bytes of data. The next one after DLC is

actual data field which could vary from 0 to 8 Byte. One CAN message frame contain

maximum 8 bytes of data. After data section next is 15 bit (Cyclic Redundancy Check)

CRC. CRC is used for the checking of the transmitted data. The receiving bit

overwrite the ACK (Acknowledgments) bit with dominant to make sure to the sender

message received successfully otherwise transmitter retransmit the message frame.

There is a 3 bits space between two CAN message frames called IFS (Inter frame

space).

The message identifier of Extended CAN (CAN 2.0 B) is 29 bit long. This is divided

further into two parts. 11 standard identifier and 18 bits extended frame identifier [6].

IDE bit is used to determine the priority of the message when multiple notes try to get

access of the bus and transmit their messages frames. Priority of 11 bit identifier is

higher than the 29 Bit Identifier. 1 Bit IDE would be 1 in case of extended frame and 0

when frame is with 11 bit identifier.

Figure 4. Extend CAN with 29 Bit Identifier [7]

 2.1.2 Standard CAN Vs Extended CAN Frame Format

Standard CAN allow 2048 different messages on the other hand extended frame

allowed message are 536870912 messages. Standard CAN 2.0 and Extended CAN

with 29 bit identifier both exist in the same CAN. During bus arbitration Standard

CAN message has higher priority over 29 bit extended frame. Extended frame CAN

always has more latency than standard frame. It also need 20% extra bandwidth

comparatively to the bandwidth required for standard CAN. Overall reliability of

message decreases because in CAN 2.0B (Extended frame) CRC need to check extra

18 bits in each message.

8

2.2. CANopen at Glance

CANopen is high-level communication protocol which is based on CAN protocol.

CANopen is “open” in three different ways. The first and foremost important is it does

not require any payment or any license fees to use. So it is open for everyone. The

second feature of CANopen is that it can easily be customized as per your application

requirements because it has a small set of functionality which is mandatory and a huge

set of functionality is optional. So implementing own application specific functionality

after configuring the mandatory functionality is easy. [9] CANopen data transmission

follows the “Little Endian” rule this means lowest value byte always transmitted first

and high value data byte transmitted in the end.

If talking about OSI communication model, CAN protocol works on first two layers of

the mode, Physical layer and Data link layer. [4] CANopen covers all the top five

layers. Their names are as following:

 Network layer

 Transport layer

 Session layer

 Presentation layer

 Application layer

2.2.1 Advantages of CANopen Protocol

There are many technical advantages which offered by CANopen protocol to make

CAN network more resilient and flexible. Some of these technical advantages given

below [3]:

 Configuration flexibility

 Prioritization of messages

 System wide data consistency

 Multi cast reception

 Error detection & error signaling

9

CANopen has some very confusing or even sometimes conflicting technical terms.

These interrelated terms can confuse someone easily especially if readers have their

first interaction with CANopen. First term is “identifier” All the IDs referred to as

identifiers there are different kind of IDs in CANopen: [9]

 Node ID

 Object Dictionary index

 COB ID

Node ID is used to identify each node in the network. Object Dictionary index is used

to identify specific object in the device object dictionary. COB ID is used to identify

each CAN message on the network.

Second confusing term of CANopen is “Object” which also has variant meanings

within CANopen. Object could be Process Data Object, Connection Object, Service

Data Object or object of object dictionary. Detail explanation of these topics will be

coming chapters.

2.3 CANopen Communication Model

There are 3 different possible communication models in CANopen. Each

communication objects of CANopen use one of these 3 communication relationships:

[11].

 Client/Server Relationship

 Master/Slave Relationship

 Producer/Consumer Relationship

2.3.1 Client/Server Relationship

Client/server relationship is always need two participants. One of them is a client, who

requests some data and second participant is server to perform the requested operation.

One device in the network can be client and server simultaneously. SDO follow this

relationship. SDO client request for required information and SDO server respond to

SDO client with the requested piece of data.

10

2.3.2 Master/Slave Relationship

In CANopen network there is one master node and all the others are slaves. This

master slave relationship could be one to one but mostly one to many (one master

many slaves). Master node controls the slave nodes.

2.2.3 Producer/Consumer Relationship

This relationship is also one to one or one to many. Producer node pushes the data

over the network and there could be one or many receivers of this data. The entire

CANopen communication objects except SDO and NMT follow producer consumer

relationship model.

2.4 CANopen Device Model

CANopen is divided into three main parts:

 Communication interface

 Object Dictionary

 Application process

The communication interface provide the services of transfer and receive

communication objects over the CAN bus. Object dictionary contain configuration and

process data in tabular form. Object dictionary is also the interface to the application

process. Application process comprises device functionality according to the

requirements of interaction with external process environment. [12]

Figure 5. CANopen device model [13]

11

2.4.1 Object Dictionary

The Object Dictionary (OD) is a table which contains all the data and their meanings,

this data could be process data or configuration data. This is the mandatory

functionality of CANopen. All the nodes must implement their own Object Dictionary.

OD holds the functionality of the CANopen node and any other node of the network

node can write and read the functionality of the node into its object dictionary. Object

dictionary contain data in table structure. All information of node is in the OD entry

and all the entries have their identification number called index. The index is 16 bit is

size. Maximum numbers of entries in OD are 65,536 (2
16

). Each index of the object

dictionary has 8 bit sub-index.

Index Range Index Description

0000h Reserved

0001h - 0FFFh Data Types

1000h – 1FFFh Communication Entries

2000h – 5FFFh Manufacturer Specific

6000h – 9FFFh Device profile

A000h - FFFFh Reserved

Table 1. Object Dictionary domain and their ranges [9]

There are maximum 256(2
8
) Sub entries of each OD entry. All the entries of OD must

have minimum one sub index because the entries contain only one value have one sub

index at 00h. All the indexes in the object dictionary are divided into 6 sections. All

the sections have their index ranges as mentioned in Table 1.

Node can read the object dictionary entries of the other node in the network. With this

method one node of the network can get the data of one node by accessing its object

dictionary entries. Object Dictionary can store pre-defined and manufacturer specific

data types.

12

Index Object Type Entry Name Data Type Action

1000h Variable Device Type UNSIGNED32 RO

1001h Variable Error register UNSIGNED8 RO

1017h Variable Producer HB time UNSIGNED16 RW

1018h Structure Identity Object IDENTITY RO

Table 2. Mandatory object dictionary entries [11]

2.5 CANopen Communication Objects

CANopen have several communication objects. These communication objects play the

key role while implementing the desired behavior of network. [14]. Key

communication objects of CANopen are as following:

 Process data object

 Service data Object

 Network management

 Timestamp

 Emergency messages

 Synchronization Object

2.5.1 Process Data Object

Most of CANopen application SDO is not enough to exchange the real data; It need

some method with less overhead to access data. PDO gives the fast way to share the

process critical data without any additional protocol overhead. Both producer and

consumer know how to interpret the data of PDO. Because of this COB-ID is enough

to recognize the PDO [10]. Basic principle of data transmission is “Broadcasting”

means one node produce and all the other nodes can consume. This data could be like

input from Weather sensor. Which send the weather information after a specific period

13

of time. PDO consist of one CAN frame with maximum 8 Bytes of payload data. PDO

have two type of parameters first one is PDO communication parameters and the

second one is PDO mapping parameters. PDO mapping tells us which individual

variable (process variable) are going to transmit and how data is arranged which data

type and length they have. PDO data is stored into the object dictionary. There are two

types of PDOs:

 Transfer Process Data Object

 Receive Process Data Object

Transfer Process Data Object (TPDO) is the data which is coming from the data

producer. Receive Process Data Object (RPDO) is the data coming to the data receiver

in other words called data consumer. Parameters of PDO are also of two types. Either

they would be configuration parameters or mapping parameters. Mapping parameter

tells which object will be transmitted with which PDO and configuration parameters

specify the type of PDO transmission. There are several methods to initiate the PDO

transfer. These methods are given below:

 Even driven PDO transmission

 Time driven PDO transmission

 Remote request transmission

 SYNC transmission

PDO transmission after a specific period of time is called synchronous data

transmission. In event driven, PDO transmission is linked with the event. When the

particular event occurred or specific condition satisfied, for example when object

value altered, than PDO transmission occurred. In Remote request transmission

method PDO transmission can be initiated from consumer node with RTR bit of

message frame. The Fourth method of PDO triggering is linked with the SYNC object.

PDOs are only transmitted when a synchronous object is received. In this method,

PDO transmission is synchronous in the whole network.

14

Figure 6. Event driven PDO Transfer [4]

The basic principle of PDO mapping is illustrated in the figure 6 above. The entire

process variables are in the object dictionary as OD entries and the mapping of each

process variable of a PDO. In example above there are two objects. First object is from

PDO producer index 2345 sub-index 67 to the PDO consumer of index 5432 sub-

index 10. Second object is from object index 6000 sub-index 01 to the consumer index

6200 sub-index 02.

Sub-Index Contents Data type

0 Largest sub index BYTE

1 COB-ID DWORD

2 Type BYTE

3 Inhibit time WORD

5 Event timer WORD

Table 3. sub index data types

15

2.5.2 Service Data Object

Device configuration Objects commonly known as Service Data Object (SDO). They

are mostly used for the direct access of the devices on the network. SDO can write and

read the object dictionary entries. CANopen always make sure that each device of the

network must have a server. That can perform the read and write operations on the

object dictionary of the device. SDO use the client server communication. Device

whose object dictionary is accessed is called SDO server and the device which access

the object dictionary of the SDO server is called SDO client. Communication is

always initiated by the SDO client. There is always a peer to peer communication

between network devices. Where one node is acting as a SDO server and second one is

SDO client.

Figure 7. SDO client and SDO server communication

Data transfer is carried out with acknowledgment service which always takes two

CAN messages per transfer. First CAN message would be SDO request transmitted

from SDO client to the network. Than network targeted node (SDO Server) respond

with requested object with CAN message.[10] Data of any length can be transmitted if

data is more than 8 bytes it would be divided into segments and one segment per CAN

message frames that’s why theoretically SDO has ability to transfer unlimited data.

“SDO download” service starts when SDO client request the SDO server to download

data from object dictionary. “Initiate SDO download request” message is used to start

the SDO download. Message contains full address of object address in form of index

16

and sub-index to download from object dictionary. Server responds with “initiate SDO

download response” to SDO client as confirmation.

Figure 8.SDO communication [4]

Communication is always started by CANopen master node which would be SDO

client. Master node starts the communication and will send the request to the network

which is called SDO request. As it is illustrated in figure 8 above CANopen master

transmit SDO request with specific ID (e.g: ID. 603h). CANopen reserve range of

indexes for each type of communication. For SDO request index range is

0x600h+Node ID and similarly SDO response index range is 0x580+Node ID. When

CANopen master transmits SDO request all the nodes on the network get this message

but only the node which is specified in ID will respond with CAN-ID 0x580+Node ID

the data requested form CANopen master. SDO server understand this is SDO request

(0x600) the data field of the message contain the index and sub index of the object

tells which information SDO client is looking for. SDO server copies the requested

data into the data field and response with CAN-ID (0x583). SDO client (CANopen

master) will identify the response with the Node ID attached in the CAN-ID (SDO

Response + Node ID).[4]

17

2.5.3 Network Management

Network management commonly known as NMT state machine has the ability to

change the state of all slave devices of the network. CANopen can change the state of

the slave devices remotely. In simple words NMT state machine defines the

communication behavior of CANopen network nodes. Each slave node of the network

would always be in one of the following four states:

 Initialization state

 Pre Operational state

 Operational state

 Stopped state

Figure 9. Network management states

The device is set into the “initialization” state after the power ON or reset of the

hardware. This state is further divided into three sub states. Initializing, Reset

Application, and reset communication. In Initializing the device starts and initializes

its basic parameters. After initialization node transmit boot-up message. [10] Second

sub class “Reset Application” all the object dictionary entries from index 2000h to

9FFFh set to default values. During third subclass communication parameters are set

to default values. After finishing the initialization state (successfully sending boot up

message) the device automatically entered into the pre-operational state.

“Preoperational” state is mainly used for network device configuration. Each device

can perform certain actions in specific NMT states. For instance PDOs can only be

transmitted in the operational state not in pre-operational state because PDO contain

18

process data. SDO communication is possible in pre-operational state because SDO

contain configuration data. Only heartbeat messages are transmitted in “Stopped”

state. There is no SDO and PDO transmission is last state.[14]

NMT startup

NMT startup contains 32 bits data which control the MNT node response. This NMT

node could be NMT slave or NMT master. Value and description of each bit of

UNSIGNED32 is given in table below.

Bit Description

0 If 0 it means node is not an NMT Master

If 1 it means node is NMT Master

1 If 0 means start only assigned nodes

If 1 means start all nodes

2 If 0 means automatically enter into operational state

If 1 it means node will not go for operational state

3 If 0 NMT master node will start nodes automatically

If 1 NMT will not start nodes automatically

4 If 0 then reset only the node which fails to respond in HB request

If 1 means reset all nodes if one node fails to respond HB request

5 -

6 If 0 then reset only one node which did not respond on HB call

If 1 then reset all node if any one did not respond on HB call

7-31 Always zero

Table 4. Control bits for NMT startup [9]

2.5.4 Timestamp

Timestamp object provides time reference to the network. And push model is used for

the transmission. Timestamp is mapped to one CAN frame with 6 bytes data length.

These 6 bytes are divided into two parts, 4 byte contain number of milliseconds since

midnight. 2 byte contains present day since January 1, 1984. [19]

19

Figure 10. Time stamp data frame.[19]

2.5.5 Emergency Messages

Emergency message can be generated and transmitted in any state of the state

machine. Emergency message is generated when any internal error with in the device

is detected or in could be a logical error for example wrong address within the object

dictionary. There are many reasons which can trigger EMCY message. There is

always only one error message per error frame. EMCY message is divided into three

parts. Error code, Error register and Manufacturer specific error

2.5.6 Synchronization Object

SYNC message is periodically transmitted from SYNC producer and received by

device. Time difference between two consecutive SYNC messages is known as

communication cycle period. This communication cycle period is defined in the object

dictionary (index 1006h). This communication cycle period is divided into

synchronous transmission and asynchronous transmission. All synchronous

communication occurred in synchronous part of communication cycle. This is the

section used to transmit process data updates. Asynchronous communication goes in

asynchronous section. Half of the SYNC messages communication cycle period is

used for synchronous communication and second half for asynchronous

communication. Data length of SYNC message is zero it does not contain any data. In

some standards it contains 1 byte SYNC counter value. Identifier of SYNC message is

0x80h.

2.6 Protocol Analyzer

The Protocol analyzer is a program to analyze the data over the communication

channel. It shows us what actually is happening over the communication channel.

20

Responsibilities of Protocol analyzer are as following: [22]

 It provide detail information for all the recent communication over the network

 Determine the load over the communication channel

 Easily identify the packets source and packet destination

 Can look for the specific data over the communication channel.

 Display all the data information in the form of statistics one can easily

understand

2.7 Payload Analysis

Word “Payload” refers to the carrying capacity of any subject, this could be a vehicle,

carrying weight or data cable carrying data packet. In IT, payload is the data carried

from sender to end user by any transmission unit. Without payloads data transmission

units (either data packets or messages) are just like sending empty envelops, without

mail inside.

2.8 Deep Blue Hybrid system

In deep blue hybrid system, connection box contains Box Control Unit (BCU), System

Control Unit(SCU) upto 5 Device control units (DCU) and Throttle control Unit

(TCU). Each BCU can go to the autonomous driving mode without communication. It

is necessary to allow an operation within 5 Sec before SCU would be available. After

system booting SCU take the control of the entire system. There are multiple TCU in

different positions of the boat. Each TCU includes two controllers that operate

separately and independently both have UART(Universal Asynchronous Receiver

Transmitter) connection.

Display is connected using Ethernet to SCU only. There could be one or more display

boxes as per requirements. TCU are connected with the CAN bus of the BCU. This

CAN bus is different from the CAN bus used between BCU and DCU. CAN bus is

used to connect all DCUs ,BCU and SCU. This CAN is named Box-CAN. In this

CAN bus BCU is the master. All the DCUs are also sharing Box-CAN to respond to

21

BCU with the data requested from BCU or SCU. SCU in this network is connected as

backup master. All DCU get the data from the devices they are connected and transfer

updated process data to BCU using bus they are sharing with BCU and SCU. TCU is

also connected with SCU using other dedecated bus named Throttle-CAN.

Figure 11.Deep blue hybrid system structure [16]

In some midsize boats it is possible that they don’t have only one control stations.

There could be multiple control station. One TCU in each control station. In system

there are 2 drive trains 2 boxes where drives and batteries are connected. In emergency

drive there is not need of SCU. TCU is directly connected with BCU of the connection

box with CAN bus.

3D Joystick module is not implemented yet. According to our DBHS structure design

it need to be connected directly with SCU using NMEA CAN bus. This CAN is shared

among 3D joystick and fuel tank sensor. Main intention was to separate the system if

there is problem in one, system still can drive the boat. If power supply of TCU is

22

from Box-1 only and due to some reason Box-1 fails than driver cant drive the boat.

That was the reason to have multiple throttle controls installed with all connection

boxes independently.

2.9 System Connection Box

In Deep blue hybrid system each connection box consist of 4 different types of control

units as mentioned above. Each DCU has minimum 1 and maximum 16 devices units.

ID allocation of each device is deterministic. First ID of each DCU index is reserved

for DCU itself. Which is used as DCU base-ID. First node connected with DCU would

get ID, DCU Base-ID + 1. All the DCUs of connection box and BCU are sharing the

CAN bus named “BoxCAN” as communication channel. SCU is also connected with

BoxCAN. Here SCU is a silent listener of the communication for initial 5 to 7 seconds

meanwhile all the nodes get ready. After this SCU take the charge. BCU is connected

with Throttel Control Unit (TCU) through separate CAN called “ThrottleCAN”.

Number of throttle could be vary between 1 to 4. There could be more than one

connection boxes in one DBH System. All the connection boxes are connected through

SCU. SCU of each connection box is connected through Ethernet with other

connection boxes of the system.

Figure 12. Connection Box of DBHS [16]

23

Figure 13.Deep blue hybrid system Connection box [16]

2.10 Summary

To sum up the basics of “logging and monitoring tool” it is clear that the role of

Protocol analyzer is must to make network more efficient and reliable. Protocol

analyzer is used to capture and analyze data over a communication channel. This

communication channel could be simple networking cable or wireless link. CANopen

is a standardized protocol for distributed automated systems. All CANopen objects use

index and sub-index as an address pointer to a data location in the Object dictionary.

All the data (communication data or Process data) stored in these object dictionary

24

locations. Communication objects of protocol use different communication model to

transfer and receive data within the network. SDO and PDO are two methods of

reading and writing data over objects. SDO objects carry mostly configuration data

because of this SDO transfer starts in pre operational state of the nodes whereas PDO

can be transferred in operational state of the node only.

25

Chapter 3

3. State of the art

Torqeedo is developing a complex hybrid propulsion system for boats with high flexibility in

the system structure. This flexibility needs a complex and flexible communication between

the numerous components. For this communication a CAN network with CANopen protocol

(with proprietary additions) is designed. The reliability of the system is dependent on correct

communication with strict timing requirements. To be able to support distributed software

over the network the content/meaning of each CAN-message is auto generated by a tool with

database access. Manually debugging/monitoring of the communication bus with off the shelf

tools is hard and time consuming process.

3.1 CAN Bus Analyzers

CAN bus analyzer is a tool which is used for communication analysis and logging data

over a communication channel. Bus analyzer helps engineers in debugging process.

Filtering data as per requirements is easy with CAN bus analyzer. Bus analyzer is

normally designed for one or few dedicated protocols. Sometimes Bus analyzer is

interchanged with another term “Logic analyzer”. I think they are totally different both

with their own features and specifications. Logic analyzer is more generic analyzer

and has less speed than Bus analyzer. Bus analyzer has limited capacity of logging

data.

3.2 Data Transmission

CAN bus data transmission is without any central master node which control all the

communication. Individual nodes of network get access of the CAN Bus for read or

write. Node broadcast its message over Bus which all the other nodes can receive.

Getting the access of the CAN bus for any node in the network is procedural. When

any node of the network is ready to transmit its message over bus it will check the

availability of the Bus. If the bus is idle node can transmit message otherwise needs to

wait for the Bus to be idle. After getting bus access Node transmit message over Bus.

Data frame transmit on Bus don’t have any information about transmitter or receiver

26

but has arbitration ID which is unique for each data frame. If more than one node tries

to transmit data frame over the bus, Node with highest priority (lowest arbitration rate)

will get the access of the bus. Nodes with lowest Arbitration ID must wait until bus

will be available after transmitting high priority data frames. [18]

3.2.1 CANopen Data Transmission

The primary reason of implementing CANopen protocol is transmission of data.

Mainly this data is process data, for this purpose, object dictionary entries has been

used. Goal of transmitting data using CANopen is to avoid protocol overhead of data

transmission. Process data is transmitted according to producer consumer principle.

This will be explained in following section of this chapter below.

3.2.2 Flexible Transmission

All the real process data is transmitted only when node is in “Operational” state. On

the other hand transmission of configuration is possible in pre-operational state and

initialization state of the node. CANopen standards use only SYNC start counter to

identify the SYNC (Synchronization) slot of any PDO (Process Data Object) or SDO

(Service Data Object). SYNC message period (20 milliseconds in current

implementation) is basically divided into two sections (Asynchronous data

transmission period, Synchronous data transmission period). Process data is

transmitted in Synchronous period and configuration data is transmitted in

Asynchronous period. E.g. to transmit TPDO-1 of Device A in the 9
th

 sync slot of

SYNC window .Reason behind this this single transmission is that CANopen is using

sync start only to transmit PDO. In CANopen standard TPDO-1 can be transmitted

only once in SYNC overflow period. In Torqeedo CANopen implementation, two

parameters (SYNC start and Sync Gap) have been used to transmit TPDO or RPDO.

Now network node can transmit each TPDO/RPDO multiple times in one SYNC

overflow period. Minimum once per SYNC overflow period and maximum 200

(current SYNC overflow) times in one sync window. Data transmitted with PDO is

one which transmitted regularly during communication. To get data after short time

period just decrease the Sync gap of that TPDO. In the Figure 11 below it’s depicted

that if TPDO/RPDO has SYNC gap of 50 and sync overflow is 200 SYNC. This PDO

will be transmitted four times in one SYNC overflow period.

27

 () ()

 ()

Figure 14.CANopen standards vs Torqeedo implementation[16]

3.3 Bus Balancing Algorithm

Balancing the CANopen objects equally on CAN bus is one of complicated task,

which is achieved through especially developed algorithm. This algorithm distributes

all the PDOs equally among SYNC slots (SYNC 01 - SYNC 200). Otherwise all the

PDOs rush to transmit in the initial few SYNCs of the SYNC window. When turn on

DBHS connection box, all the devices connected with network get boot up starts some

configuration messages (SDO) to network master, meanwhile BCU sort the PDOs of

all the devices connected with the network. BCU sort the PDOs with respect to their

SYNC gap. All PDOs with SYNC gap 1 would have higher priority than rests. Steps

of Bus balancing algorithm is as following:

Step-1: Sort all ready to transmit PDOs with respect to their transmit intervals (SYNC

gaps). BCU will do this sorting.

Step 2: Initialize array containing all SYNC slots. Length of array would be equal to

the Sync overflow period.

Step 3: Check that number of elements in array should not be more than SYNC

overflows value.

28

Step 4: Size of array should not be greater than maximum number of frames

transmitted in one SYNC slot.

Step 5: Get the emptiest Sync slot and transmit PDO from top of the sorted stack.

SYNC slot number should be less than SYNC gap of the PDO.

Figure 15.Flow chart of Bus balancing algorithm[16]

29

Step 6: In case there is no more place in any SYNC slot to transmit PDO of sorted

stack.

Step 7: Next slot number to transmit this PDO again would be current slot Number +

Sync gap. If sum will be greater than Sync overflow counter go to Next PDO of sorted

list otherwise add PDO into the SYNC slot.

Step 8: If current TPDO was the last TPDO of sorted list than end the bus balancing

algorithm.

Step 9: If there is no more possibility to transfer TPDO.It will also go to end the

algorithm,

In the figure given below, there is a list of PDOs to be transmitted on CAN, All PDOs

are in the stack. All the devices connected with the network put their ready to transmit

data in form of PDOs, in this stack. Step 2 is responsibility of BCU, to sort all the

PDOs (in stack) with respect to their SYNC gaps. Minimum SYNC gap among 2 same

PDOs is 1 (200 times in one SYNC window) and maximum is 200 (only once in one

SYNC window). End of the step 2 sorted stacks of PDOs has been prepared. Now next

step is to transmit these PDO on the CAN bus. PDOs with the SYNC gap of 1 would

be on the top of the sorted stack and transmitted first. Followed by PDOs with the gap

of 2 and have modulus divided by sync gap is 0. While sync counter is 1 (P5 and P11)

transmitted in first sync. Sequence of PDOs in initial three SYNCs is shown under

step 3 of figure 16 given below.

While placing the PDO from sorted stack to transmission bus, check for the emptiest

SYNC slot where SYNC number is less than Sync gap of the PDO to be transmitted.

For example PDO-4 with the sync gap of 5 will be scheduled in one of the emptiest

SYNC of initial 5 SYNC slots. Same for all the remaining PDOs remained in stack. In

the end of this balancing, resultant CAN bus would be much balanced where all PDOs

distributed relatively more balanced on the bus than without using any scheduling

mechanism.

30

Figure 16.Example of Bus balancing algorithm[16]

31

3.4 Off the Shelf Solutions

Now a days there are many off the shelf and open source CANopen solutions in the

market. They are ready to use and sometimes they are even at quite affordable prices

as well. But on the contrary, they also have some disadvantages for example, for off

the shelf software there is no source code access. Sometimes they have functionality

which is not required for your project in this case you have extra code in your project.

For open source project, they are mostly generic not developed for the specific project

because of this sometimes 70% code is not required but user can’t remove it. This

code can create problems for other parts of the source code in future. Following are the

some of the commercial and open source off the shelf solutions.

3.4.1 PCAN

PCAN is the commercial project of PEAK Systems. There are many versions of

PCAN which include Software and hardware. From simple monitoring of CAN bus

tool “PCAN View” to PCAN-Explorer 4. PCAN-Explorer is a tool for monitoring data

traffic on a CAN network. [15] For details about PEAK system products visit

company website

3.4.2 CANalyzer

Developed by Vector for development and analyzing of data traffic over CANopen

network. [16]. CANalyzer offers devices graphical representation and project specific

representation in the trace window. It also monitor the individual message sequence.

The configuration of CANopen devices is also easy. Feature which make CANalyzer

unique is its ability to adjust user project specific requirements by inserting graphical

blocks. [6]

3.4.3 CANFestival

CANfestival is open source framework made in 2001 which provides an ANSI-C

platform independent CANopen stack, that can be built as master of slave nodes. [17]

Its run-time code is licensed under General Public License(GPL) and Licensed

General Public License (LGPL) license. CANFestival GUI is developed in Qt. It also

32

 provide some very useful features:

 Simulation mode

 Separate thread for GUI and handling CAN messages

 Value on the CANopen network could be in Hexadecimal, decimal or binary

format.

 Its easy to load and unload device drivers.

3.5 Summary

To sum up the State of the art, it is evident; that our implementation of data

transmission on CAN bus using CANopen protocol is bit changed from CANopen

standard implementation. Using SYNC start and SYNC gap to identify the SYNC slot

of the data add more flexibility in communication hence it allows to transmit

important data with minimum transfer interval of 20 milliseconds (Sync slot time

period) and maximum 4 Sec. Without some special bus balancing mechanism it is very

challenging to distribute all PDOs equally on the bus. Whenever CANopen master

start working. After configuration of all the nodes try to transmit their PDOs in first

available SYNC slot. Result will be too much rush in the initial some SYNC slots.

This makes bus unbalance. Bus balancing algorithm does balance distribution of data

frames over the CAN Bus.

33

Chapter 4

4.Concept

Theme of this chapter is to get the overview of Deep Blue Hybrid System (DBHS) and

proposed monitoring tool. Current implementation of communication channel is complex and

error prone. New monitoring tool will make this complex communication network more

efficient and will reduce debugging time. Than later on there would be an overview of

Torqeedo DBHS connection box. Readers will get the inside view of DBHS connection box.

System components their roles, and communication scheme would be highlighted. In the end

readers will get the overview of all off the shelf solutions many of them are free to use and

open source as well.

4.1 Problem Definition

Torqeedo is looking for a data logging and monitoring tool for deep blue hybrid

system to track inter connection box communication errors more efficiently and reduce

debugging time. CAN Bus load has to be calculated to check how much resource has

been used. Analyze the payload of each device connected with communication

network is also in requirement list. Data logging and monitoring could be Online

monitoring or offline monitoring. Online means doing realtime analyses while

logging. Off line analysis is to use already logged file and do analyses process. Goal

of this research work is to develop a monitoring tool to log errors and protocol

violations in error file. There are many off the shelf products. All these solutions are as

per CANopen standards and in DBH system CANopen standards has been not

followed exactly. They has been altered as per requirments. Many OD entries are

modified.

4.2 Methods of data Analyses

There are 4 possible methods to provide input to the analyzing module. First method is

to read from control box using PCAN USB. In this method, data stream from SCU

will go through all monitoring steps, in the end logged into data logger file. Second

method is to use previously logged data as input. There are two different formats of

CANdump files.

34

 SCU file format

 BusMaster file format

Difference is in time format and data sequence. Third method is stream from SCU

directly. Fourth method of input is to parse SCU format file to data analysis

function.

Figure 17: Methods of data input

4.3 Proposed Solution

Developing a logging and monitoring tool as per implementations of CANopen

protocol in DBHS is the way to go. Proposed solution is divided into three steps. First

requirement is to develop one basic online logging and monitoring application to log

data from communication channel and check for timing violations while logging. Bus

load and payload calculations of each node is also part of our application, last step

would be to execute developed application on embedded platform. For this purpose Qt

frame work is used for application development because it is platform independent.

4.4 Connection Box Units

There are three types of modules inside the connection box of DBH system. BCU,

SCU and DCU. TCU is not installed inside the connection Box, but connected with

BCU using Throttle CAN. All the modules installed inside the connection box have

their certain responsibilities. BCU and DCU are sharing CAN bus named “Box_CAN”

35

to transmit their data frames. Key units of all connection box units is given below in

detail.

4.4.1 Box Control Unit (BCU)

BCU is the master of Box-CAN which manage all device control units of the

connection box. Each connection box has one BCU and 1 upto 5 device control units.

BCU, SCU and all DCUs of connection box are sharing the common CAN called

“Box-CAN”. It sends process data requests to all DCU to get process and

configuration data. All the safety functions are also managed by box controller. e.g.

Turn OFF the generator if SOC is greater then certain limit. It also sets the throttle and

handles station requests (box with lowest ID is master).

Data transmission from BCU to TCU

 Box state information and active station information

 TCU power enable signal

4.4.2 System Control Unit (SCU)

SCU calculates system wide power and state information to manage system energy

distribution strategy. It is possible to be more than one connection boxes connected in

serial Ethernet. It also handles master SCU selection . System control handles system

configuration and to set system wide parameters. Data transmitted from SCU to BCU

is mostly basic system information. e.g. Active station , Throttle current state. SCU

can also request BCU for any specific device state.

4.4.3 Device Control Unit (DCU)

Each connection box has 5 device control units. Upto 15 devices can be connected

with each DCU in the connection box. These device control units abstracts

information from devices. Handling device parameters is also done by DCU. Periodice

data transmitted from DCU to box control unit is key feature of DCU.

Data transmission from DCU to BCU:

 Module state information

 Data requested from BCU

36

4.5 Summary

This chapter explains the basic concept of proposed solution for making network

debugging easier and efficient. It is evident to use protocol analyzer to capture

problems in the complex network. There are multiple reasons of developing CANopen

analyzer tool for capturing protocol violations. Most important is CANopen

implementation in the project DBH system. There are several modifications made in

protocol configuration and object dictionary entries as per project requirements. For

data analysis tool there are 4 possible ways to analyze CAN bus communication. In

offline analysis there would be two possible file formats, monitoring tool need to

debug.

37

 Chapter 5

 5. Implementation

In this chapter implementation of proposed data logging and monitoring tool will be

explained. Implementation of data logging and monitoring tool is divided into three

phases:

1. Basic PC based online Monitoring tool

2. Offline data analysis

3. Embedded platform

 5.1 Tools and Technologies

Following are the main tools and technologies that have been used for the

development process of data logger and monitoring tool:

 QtCreator as IDE

 PCAN USB adapter (system interface)

 C++

 MS Access database

Qt is cross-platform framework used widely in embedded development world. It

makes project OS independent with some libraries like STL and many more. On the

other hand Qt is also open source developed under QT group, Nokia. PEAK PCAN

USB adapter is used as data logging hardware tool.

 5.2 PC Based Online Monitoring Tool

The first phase of this data logging and monitoring tool is to develop a PC based tool

to log data and analyze data. To log data from CAN-based network to PC, An adapter

is required which can connect PC with the CANopen network to log data traffic on

PC. There are several adapters for this purpose with different features. Thesis priority

is the one, which has most efficient time stamp feature. Requirements of project are

38

strict with the timing behavior of network nodes. There were two options initially,

either to use “PCAN_USB adapter” or “Kvaser leaf light V2”. Key features of

“PCAN_USB adapter” and “Kvaser leaf light V2” are in the table 5 below. [16][17]

PCAN_USB adapter Kvaser leaf light V2

Compatible with all USB 1.1, USB 2.0

and USB 3.0.

High speed USB interface.

Bit rates range is from 5 Kbits/s to 1

Mbit/s.

Bit rates range is in between 40 Kbit/s to

1 Mbit\s.

Time resolution is 42 microseconds Time resolution is 42 microseconds

Compliant with CAN specifications

2.0A and 2.0B

Compliant with CAN specifications

2.0A and 2.0B

Connection with D-Sub is also possible D-Sub connector support

Power supply with USB Power supply with USB is also possible.

24000 messages per second Send /Receive 8000 message per second

Operates in temperature range -40 °C to

85 °C

Temperature range is -20 °C to 75 °C.

Table 5. PCAN Basic Vs kvaser V2

PEAK CAN adapter was closer to thesis requirements because of its minimum time

stamp period. Phase-I of implementation is to develop PC based logging and

monitoring tool. PCAN_USB adapter has been used for logging data from DBHS

Connection Box to PC. The first phase has following tasks:

1. PCAN USB adapter configuration

2. Timing of CANopen SYNC-Message

3. Monitoring of SYNC-Window

4. Bus Load Measurement

39

5. Period/Sync Slot monitoring of PDO Messages

6. Period/Timeout monitoring of Heartbeat Messages

7. EMCY Message logging

8. Error triggering conditions

 5.2.1 Timing of CANopen SYNC-Message

SYNC-Message is periodically transmission of synchronous object from SYNC

producer to SYNC consumer. SYNC object provides the mechanism for network

synchronization. Period of transferring SYNC-Message is defined in object dictionary

index 1006h. As per CANopen standards it is conditional to set communication cycle

period. In DBHS (Deep Blue Hybrid System), communication cycle is 20

milliseconds. There is option to add jitter, which is adjustable as per requirements.

Default Jitter allowed for SYNC message is 1 millisecond (ms). So any SYNC

message with time period of 20 ± 1 ms is considers within the period. Jitter of SYNC

slot varies between maximum 2 ms and minimum 0.5 ms from our logging tool. Any

SYNC message out of time period ± jitter window would violate allowed time of

CANopen protocol configurations. Monitoring tool needs to log these errors as SYNC

timing violations. Each SYNC message is divided into two sub-windows:

 Synchronous communication window

 Asynchronous communication window

Figure 18. SYNC Message

All the synchronous communication occurs in first half window SYNC slot (e.g PDO)

and asynchronous communication occurs in last half of our SYNC slot.

40

 5.2.2 Slot Monitoring of PDO Messages

PDO gives the fastest way to share the process critical data without any additional

protocol overhead. CANopen has four transmit PDO and four receive PDOs. All the

PDOs need one COB-ID. Following table 6 contain all TPDOs and RPDOs.

PDO number Transmission Type COB-ID(s) hEX

TPDO-1 Transmit PDO 0x180 + Node ID

RPDO-1 Receive PDO 0x200 + Node ID

TPDO-2 Transmit PDO 0x280 + Node ID

RPDO-2 Receive PDO 0x300 + Node ID

TPDO-3 Transmit PDO 0x380 + Node ID

RPDO-3 Receive PDO 0x400 + Node ID

TPDO-4 Transmit PDO 0x480 + Node ID

RPDO-4 Receive PDO 0x500 + Node ID

Table 6.TPDO and RPDO of network node

Maximum there are 127 nodes in the network. Therefore Node ID of any node of

network would be between 1 and 127. Two type of data to be transmitted; either it

could be synchronous or asynchronous data. All the PDOs would be transmitted in the

synchronous communication period of SYNC message and SDOs are in asynchronous

communication period. If there is a node in the network which produces the update

data in every 20 ms. Sync gap of this node is 1. Data would be transmitting 200 times

in one sync overflow period of 200 syncs. Similarly as sync gap would increase

transmission frequency of data will be decreased. As given in following table.

41

Message Interval(Sync Gap) Transmission(Frequency per Sync

window)

1 200 times

2 100 times

20 10 times

50 4 times

100 2 times

Table 7. Sync gap and transmission recurrence.

Figure 19. SYNC window and SYNC message

While monitoring the PDO messages, make sure that all the PDOs are whether they

are TPDOs or RPDOs, need to be in Synchronous communication portion of SYNC

slot (initial 10 milliseconds). Sync gaps of all process data objects (TPDO and RPDO)

are in SyncGap.conf file. This file is generated from database using template file.

Every node on the network can transfer max 4 TPDOs and receive max 4 RPDOs. All

information of each node for example, total TPDOs, RPDOs with respected gaps are

in the Syncgap.conf file. ID numbers of all devices are defined in systemconfig file.

Example of syncGap.conf file is given below.

42

Battery_TPDO__GAP1_5__GAP2_200__GAP3_50__GAP4_0

Battery_RPDO__GAP1_5__GAP2_0__GAP3_0__GAP4_0

Listing 1: Node Battery Sync Gaps

Configuration given is listing-1 depicts that the device “Battery” has 3 TPDOs.

TPDO-1 with gap of 5 Sync messages, TPDO-2 with gap 200 and TPDO-3 with gap

50. Zero gap means this PDO is not going to be used by the device. On the other hand,

device “Battery” has only one RPDO with sync gap of 5. Data section of SYNC

message contain only 1 byte SYNC counter, which always starts from 1, when

connection box gets started , sync counter starts from 1. Supposedly the first

occurrence of any TPDO and RPDO of any node/device is correct and after this,

calculating the sync gap with the occurrence of the previous TPDO or RPDO. To

verify the gap of TPDO/RPDO, current sync gap has to be compared with the

expected gap in syncGap.conf. If current sync gap is greater or less than what is

defined in syncgap file, Monitoring tool log it in error log file.

There are two possibilities of Transmit Process Data Object (TPDO)/ Transmit

Process Data Object (RPDO) missing their sync message slot. Either message frame

arrived one sync message late or either it is missing. e.g. Sync gap of network node

“Battery” TPDO-3 is 50. If producer transmits TPDO-3 after 51 sync messages, its

means TPDO-3 is one SYNC late. If it is transferred after 100 sync messages which

mean one TPDO is missing in between. Reasons behind this missing SYNC message

could be that the device state maybe changed from operational to pre-operational or

back to Initialization state (Node restarted). Network node can’t transmit or receive

PDO in pre operational state. In this situation nodes will wait to come back to the

operational state and to resume TPDO/RPDO service.

5.2.3 Synchronization (SYNC) Slot Delay

BCU is real time unit which reads from the CAN bus and stack the PDO for SCU.

SCU assumed to be real time too. There is a probability that SCU can make some

delay while handling real time data. When SCU made some delay for starting SYNC

all the data to be transmitted within this SYNC slot would keep waiting in stack. In

current implementation we can adjust maximum jitter of 2 milliseconds. Greater than 2

milliseconds would be considered error SYNC late start. This error can leads to data

43

objects (PDOs and SDOs) to miss their deadlines. In figure-19 given below, Sync-3

starts on timestamp 49 rather than 41(Expected starting time stamp). There are only 2

milliseconds to transmit Synchronous data (PDOs) of Sync-3 slot. When SYNC starts

on time, there are 10 milliseconds to transmit process data accordingly 10 ms for

configuration data (SDO).

This jitter zone between SYNC-2 and SYNC-3 (41 to 48) belongs to none of the

SYNCs. Any transmission of data (possibly SDO of SYNC-2) in this time period

would be out of Asynchronous section. PDOs of SYNC-3 can’t use this period

because they are dependent on the start of SYNC-3.

In implementation, there was no way to make sure either the first SYNC slot is on time

or not. For every new SYNC slot afterword, first SYNC is benchmark. Expected start

time of SYNC calculated as following.

Equation 1: SYNC time period

If this gap is greater than 20+Jitter or less than 20-jitter, it means new arrived SYNC

slot is late. Normally jitter should not be more than 1 millisecond. In offline analysis 2

milliseconds is also acceptable.

Figure 20. SYNC slot stating delay

44

 5.2.4 Bus Load Measurement

Bus load measurement is the calculation of the amount of time bus is being used over

a time interval.[16] The first principle of CAN bus load measurement is, all messages

meet their deadlines. To make sure this utilization of the CAN bus would not be more

than 100%. If utilization would be more than 100% it means definitely some messages

would miss their deadline.

Bus being used means transmission phase. Logically bus utilization can be 100% but

to be on the safe side it is recommended and also as per industry standard to keep

utilization of CAN bus under 45%. Above 60% utilization can cause problems (e.g

frames missing the deadline).

CAN frames CAN 2:0 B CAN 2.0A

SOF 1 1

ARB 32 12

CTRL 6 6

DATA 64 64

CRC 16 16

ACK 2 2

EOF 7 7

IFS 3 3

TOTAL 131 111

OVERHEAD BITS 67 47

DATA 64 64

Table 8.CAN frame bits

45

To calculate the total load on CAN bus, Total number of CAN messages over a

specific period of time need to be calculated. In Deep Blue Hybrid System (DBHS)

there is a sync period of 20 ms. Data transfer rate is 500 Kbits/sec. First calculate the

total number of messages transferred in sync period.

There are two types of CAN messages on the bus either CAN standard frame with 11-

bit identifier (from DCU and BCU) and CAN extended frame with 29-bit identifier

(from SCU). Data carried by CAN standard frame and CAN extended frames are same

(Maximum 8 Bytes) number of overhead bits are different. Detail of frame bits is

given in the table 8.

 5.2.5 Heartbeat Monitoring

There are multiple methods to make sure that all the nodes connected with network are

functional. The Heartbeat (HB) message is one of them. This is a cyclic transmitted

message that informs the HB consumers about the availability of the node. The cycle

time of HB message is defined in object dictionary object 1017h. HB message is not

mandatory to transmit. Value in object dictionary index 1017h can be 0. The value 0

means this method is disabled. [10] Current cycle time of DBHS, HB producer is 500

milliseconds. All the nodes connected with network transmit its communication state

after 500 milliseconds to network master. Allowed HB jitter is ±20 milliseconds. HB

message arrival time should not be greater than 520 and less than 480 milliseconds. If

any HB message is transmitted later than 520 or earlier than 480 milliseconds,

monitoring tool logs this as HB error.

Figure 21.Heartbeat monitoring.[9]

46

During implementation, there was no source to verify about the first HB time from the

producer either this messages is on time or not. Assume that the first HB of producer

node is always on time. Use this as criterion to check the heartbeat timing of upcoming

heartbeats. Equation to calculate the HB time of node is given in Equation-2.

Equation 2: HB time period

HB message also carries the current NMT state of the node in 1 byte CAN frame. In

figure 18 two slave nodes transmitting Heartbeat messages over a specific period of

time (In current implementation it is 500 milliseconds defined in OD index 1017h, sub

index 00h [UNSIGNED 16]). Possible NMT states of the node in the network are in

the following Table 9.

State State values

Boot loader 0x00 07

Boot up 0x00

Pre-Operational 0x7F

Operational 0x05

Stopped 0x04

Table 9. NMT states

 5.2.6 CANopen Emergency Message Handling

Emergency message is triggered when any internal error occurs in CANopen device.

This message is sent to other nodes of the network. Node that produces this emergency

message is called emergency message producer and nodes that receive this message

are called emergency message receiver. There could be multiple receivers of the same

emergency message but there should be only one emergency producer for each

emergency object. Emergency message data frame has three parts as depicted in figure

19 below.

47

Figure 22. Structure of EMCY message

Nodes of the CANopen network supporting Emergency messages will always be in

“Error occurred state” or “Error free state”. Emergency error flow chart is given

below in figure 20.[12]

When system has been started, after initialization system enters into the Error Free

State because no error is detected yet so no emergency message is transmitted.

CANopen device enters into error state when device detects an internal error (e.g:

weather sensor is not transmitting current temperature) and EEC is set to 0x00FF.

Emergency Error Code (EEC) Description

00FFh Generic Error

0000h No Error\Reset error

Table 10. Emergency error code values

Error register (ER) Description

00h No Error

21h Generic Error

Table 11.Error code values

48

Last 5 bytes of EMCY message are Manufacturer Specific Error Function (MSEF).

These 5 bytes are subdivided as given in following table. [12]

EMCY data frame Bytes Description

Byte-3 Lower byte of error code

Byte-4 High byte of error code

Byte-5 Error counter

Byte-6 Not used in current implementations

Byte-7 Not used in current implementations

Table 12. EMCY Message data bytes

Figure 23. Emergency object state transitions

If error code (value of byte 3 and 4) are set twice in a row it will be logged as “Double

set” error. Similarly, if same error code resets twice will be “Double reset”. Error

counter is used to count the number of times same error occurred. The value of error

counter is increased with each occurrence of corresponding error. Maximum value of

counter is (FF)16 if counter reached its maximum value it will remain FF after this.

49

 5.3 Offline Data Analysis

In first phase of thesis task was to develop a PC based tool to log CAN bus

communication and log the errors and timing violations in a separate file. SYNC gap of

all devices are defined in a file syncGap.conf. To make sure all the nodes transmit their

PDO with the sync gap mentioned in the sync file.

As per first phase there was no source to cross check the number of SYNC gaps

between the occurrence of two TPDO or RPDO. So I was assuming that the first SYNC

gap between two PDOs (TPDO or RPDO) is correct. There is a possibility that the first

occurrence of Process Data Object (PDO) is wrong (PDO missed the expected SYNC

slot). If first occurrence of PDO is wrong, it will lead to bundle of errors (missing

SYNC slot) but in reality they was only first PDO missing the SYNC slot. E.g, Node

GenSet TPDO-1 (Node ID 65) SYNC gap is 5 which means if first occurrence would be

in SYNC slot 1 next would be Sync 6, 11, 16 and so on. If first occurrence of TPDO-1

missed the SYNC slot due to some technical problem then it would be difficult to catch

this error. Sample log data is given below.

1) 13:40:22:805:000, Rx, 1, 0x080, 01,SYNC 01

2) 13:40:22:806:000, Rx, 8, 0x1C1, 00 00 00 00

7D 00 7D 00, TPDO1 Node 65

3) 13:40:22:825:000, Rx, 1, 0x080, 02,SYNC 01

4) 13:40:22:845:000, Rx, 1, 0x080, 03,SYNC 03

5) 13:40:22:865:000, Rx, 1, 0x080, 04,SYNC 04

6) 13:40:22:885:000, Rx, 1, 0x080, 05,SYNC 05

7) 13:40:22:905:000, Rx, 1, 0x080, 06,SYNC 06

8) 13:40:22:906:000, Rx, 8, 0x1C1, 00 00 00 00

7D 00 7D 00, TPDO1 Node 65

9) 13:40:22:925:000, Rx, 1, 0x080, 07,SYNC 07

10) 13:40:22:945:000, Rx, 1, 0x080, 08,SYNC 08

11) 13:40:22:965:000, Rx, 1, 0x080, 09,SYNC 09

Listing 2: Logger sample data

SYNC gap of node 0x1C1 (GenSet TPDO 1) is 5 sync. There is no option to cross

check whether this gap is correct or not. To make sure this gap is correct, use the

50

configuration file in Offline analysis phase. Which contain all the nodes their IDs and

respective SYNC gaps of TPDOs and RPDOs.

In first phase there was no configuration file. Sync slot difference between first 2

occurrences between two PDOs (TPDO or RPDO) is the sync gap. To overcome this

problem, “SyncGap.conf” and “SystemConfig.conf” file used in second phase.

 5.3.1 Generation of SYNCgap and SystemConfig File

System configuration file (SystemConfig.conf) contains the category of the component,

component name, component Identification number, IP and reference. File format is

defined in the DB. Super admin can easily change the format of the file. And can

generate new configuration file. From “SystemConfig.conf” it is easy to get the name

of the component. This Component name, served as foreign key in second file

“SyncGap.conf” to get the number of TPDO, RPDOs and their sync gaps.

 CAT::Battery.COMP::JCI.ID::97.IP::3.REF::3_5

Listing 3: System configuration of Node Battery

In example data of file “SystemConfig.conf” given above, Component name is JCI,

component lies in “Battery” category, component ID is 97(Component ID is primary

key of file “SystemConfig.conf”) , IP is 3 and reference is 3_5.

“SyncGap.conf” file contain the information, how much TPDO and RPDO each device

has and their respective synchronization gap.

 Battery_TPDO__GAP1_5__GAP2_200__GAP3_50__GAP4_0

 Battery_RPDO__GAP1_5__GAP2_0__GAP3_0__GAP4_0

Listing 4: Sync Gap of Node Battery

Lines given above are from the file SyncGap.conf , depicts that Node “Battery” has 3

TPDOs and 1 RPDO. First TPDO with the SYNC gap of 5 (TPDO 1 will be

transmitted after 5 Sync. In DBHS configuration, sync window contains 200 sync slots

it means TPDO 1 will be transmitted 40 times in each sync window). Second TPDO of

51

node battery will be transmitted with sync gap of 200(once per sync window). TPDO

3 of node battery will be transmitted with the sync gap of 50(4 times in each sync

Window). Example of Node battery TPDO1 is given below.

1) 10:04:56:152:000, Rx, 1, 0x080, 01, SYNC 01

2) 10:04:56:155:000, Rx, 8, 0x1E1, 02 99 00 7D 54

0E 52 0E, TPDO1 Node 97

3) 10:04:56:172:000, Rx, 1, 0x080, 02, SYNC 02

4) 10:04:56:192:000, Rx, 1, 0x080, 03, SYNC 03

5) 10:04:56:212:000, Rx, 1, 0x080, 04, SYNC 04

6) 10:04:56:232:000, Rx, 1, 0x080, 05, SYNC 05

7) 10:04:56:252:000, Rx, 1, 0x080, 06, SYNC 06

8) 10:04:56:254:000, Rx, 8, 0x1E1, 02 99 00 7D 54

0E 52 0E, TPDO1 Node 97

Listing 5:Sample logger data

First occurrence of TPDO1 of node battery occurred in sync slot 01. Sync Gap of

TPDO1 is 5. Next occurrence of node “Battery” TPDO1 will be in Sync slot 06, if

second occurrence of node “Battery” transmitted late monitoring application can now

catch this delays with the use of configuration files from SCU. On the other hand node

“Battery” has only one RPDO. RPDO 1 with sync gap of 5 sync.

 5.3.2 SYNCgap and SystemConfig File

In CANopen communication network SCU is working as secondary master after

system boots up. The duration between start or restart of the system and system boot

up (initial 5 to 7 seconds) SCU is master because BCU is not configured yet. SCU

configures all the devices configure with the network and cross verify these devices

with “SystemConfig” file.

If devices configured in “SystemConfig” file are different than in the actual network.

SCU will generate some errors “Unknown devices connected with network”. System

admin compulsorily generates new “SystemConfig” file after configuring new nodes in

the network. To generate new configuration file super admin need to reset the SCU on

“factory reset” state. SCU will generate new configuration files with updated

52

information of all the devices connected to the network. After updating the

configuration files now SCU start logging data in dump file.

 5.3.3 Watchdog problem

There are two different mechanisms of watchdog. In our implementation Heartbeats

monitoring is used to detect Watchdog:

 Node Guarding

 Heartbeat monitoring

Node Guarding

Network is polling each device to check the health after the configured period of time.

NMT master sends the request to all NMT slaves to send their current communication

state to NMT master within defined life time. If slave nodes will not respond to master

node with current communication state in data section, NMT slave would be

considered dead node of the network. On the other hand NMT slaves also check

whether they are receiving request from NMT master within “node life time” or not. If

there are no sign of life from NMT master node, NMT slaves considered master node

is not alive anymore.

 Figure 24.Node guard time Vs Life time.[9]

53

Heartbeat Monitoring

Each device gives an operational sign to the network manager or to the other devices

of the network with their current communication state (pre operational, operational or

stopped). As per CANopen standards Heartbeat data section contain only 1 byte data

which is the NMT state of the node.

if ((hex($1) & 0x01) == 0x01){$interpret .= " PORST";}

if ((hex($1) & 0x02) == 0x02){$interpret .= " SWD";}

if ((hex($1) & 0x04) == 0x04){$interpret .= " PV";}

if ((hex($1) & 0x08) == 0x08){$interpret .= " CPU_SYS";}

if ((hex($1) & 0x10) == 0x10){$interpret .= "

CPU_LOCKUP";}

if ((hex($1) & 0x20) == 0x20){$interpret .= " WDT";}

if ((hex($1) & 0x40) == 0x40){$interpret .= " RESERVED";}

if ((hex($1) & 0x80) == 0x80){$interpret .= "

PARITY_ERR";}

Listing 6: Watchdog Values of 2nd Byte of Heatbeat data

In DBH system implementation, HB DLC is extended to 2 bytes. 2
nd

 byte contains some

information of BCU failure. 2
nd

 byte contains one of the values given in the list below.

There could be more than one reasons of rebooting the BCU. If data section of

Heartbeat message (0x700+Node ID) contains 2 bytes data it means BCU is interrupted

and getting restarting so timing check of all objects after BCU rebooting has to be done

in separate data logging file.

 5.4 Embedded Platform

Third phase is to go for embedded platform and enable to execute monitoring tool on

Linux based SCU. In Embedded online monitoring CAN data has been passed as

standard input to analysis thread. In analysis thread all the objects of CANopen will be

monitored. Any protocol violation has to be logged as error in error log file. Default

allowed jitter for nodes heartbeat is 20 ms.

54

 5.5 IsoMon Payload Analysis

Node “Isolation monitor” of CANopen network carries 5 bytes of data in message data

section while sending data to master (TPDO) or responses from master (RPDO). In

TPDO 5 bytes of IsoMon CAN message carry three pieces of information. These are

as follows:

 Resistance(2 bytes)

 Voltage(2 bytes)

 Status(1 byte)

When IsoMonitor receive any CAN message. Data section of CAN message frame

must contain 5 bytes of information:

 Command

 Warning Level

 Error Level

 Figure 25. Screenshot: IsoMon PDO list

Screenshot above is the resultant screen of Offline analysis of logged data. Graph in

right depicts the payload of node “IsoMonitor”. Top left window of screenshot display

summary of file analysis.

55

In Isolation monitor “Resistance” should be between 1 and 65535000 Ohm. Minimum

voltage of “IsoMonitor” is 0 and maximum should not be more than 1000. Graph of

node “IsoMonitor” Resistance vs time is shown in figure 22 above. Possible state

values of device are in table below.

IsoMon state State value

0x0 Reset

0x10 Self-check

0x20 Running with invalid value

0x30 Running with valid value

0x40 Device error

Table 13. Iso Monitor possible values

 5.6 Summary

Overall implementation of my research works has been divided into three phases

(online PC based monitoring tool development, Offline data analysis, embedded

platform). First task was to select system logging hardware to log communication

channel data into windows based tool. After hardware selection of PEAK CAN adapter

next step was configuration of PCAN adopter. After successfully configuration and

logging data next step was to start data analysis. All the objects like SYNC, Heartbeats,

SDOs and PDO. Logging all the errors and timing violations from any component over

the network into logError.txt file. Second phase of thesis was to develop offline data

analysis. In 2
nd

 phase task was to be able to analyze already logged data independently.

While logging data using dedicated hardware like PCAN logger is accurate. When read

from already logged dump files, it’s easy to analyze because here I can check the same

data with different configurations. E.g. analyze one dump files with SYNC jitter 1

millisecond and 2 milliseconds or even more. There are different formats of input files

accordingly different timestamp accuracy. PCAN give accuracy in microseconds

however while logging with SCU timestamp is in milliseconds.

56

System configuration files were integrated to verify objects timing behavior. In last

phase, tasks were to calculate the payload analysis of one sample node of the network

and execute logging and monitoring tool on SCU platform. This phase enable our

connection box SCU to do real time data logging and analysis.

57

Chapter 6

6. Results

In this chapter of thesis I am going to explain the end results of implementation phases which

we explained in chapter 5(Implementation). As I already mentioned that our implementation

is in three different phases (PC based monitoring tool development, Offline analysis and

embedded platform).

6.1 Results Criteria

The results criteria of each phase are different. End results criterion of success is based

on expected results. We will check how much of our expected results are satisfied with

our results achieved after implementation. This thesis is the starting point to develop a

logging and monitoring tool for DBH system. There is much work to do further to

increase efficiency. These future tasks and suggestion will be explained in coming

chapter “Future work”.

The result success criterion is based on the desired features of the thesis mentioned in

thesis tasks. These desired characteristics of the thesis are given below:

1. Reduce debugging time

2. Log inter network communication

3. Log protocol violations

4. Flexible jitter testing

5. Payload of nodes

6. Bus load measurement

7. Scale down system complexity

6.2 Logging and Monitoring Results

First phase of desired, logging and monitoring tool was “ PC based monitoring tool

development”. The expected end result of this phase was to have a logging tool that

58

can log CAN bus data using external hardware, PCAN USB adapter and monitor

following CANopen objects:

 Monitoring SYNC slot Jitter

 Monitoring of Heartbeat messages and Jitter

 Analysis of PDOs and SDOs

 Emergency messages

6.2.1 Monitoring of HB Messages and Jitter

All the nodes in the network must inform the master node about their current status.

As per first phase implementation time interval for all nodes to report to the master

node of the network is 500 milliseconds. Allowed Jitter is ± 20 milliseconds. Node of

the network sending “Node status” to the master node before 480 milliseconds or after

520 milliseconds will be considered network node is not alive anymore. The analyses

tool must log this as an error that in the error log file. Example HB log file and error

log file is given below.

Figure 26. Nodes Heard beats and time intervals respectively

59

Figure 27. (Screenshot) Logged data with late\early heartbeat messages

Our monitoring tool detects this error and logs it into the ErrorLog.txt file. Content of

loggerError.txt file is given below in listing 7.

0x709 5:50:47:193:000 [Node ID]=9 TcuNode_HeartBeat

late/earlier [Time gap: 529] [Allowed Jitter: +/- 20]

0x708 5:50:47:193:000 [Node ID]=8 ScuNode_HeartBeat

late/earlier [Time gap: 475] [Allowed Jitter: +/- 20]

Listing 7: Errorlog data

Node-ID 9 has HB time gap 529 which is more than 520. It has been logged into the

error file. Similarly Node-ID 8 also logged in the error file because node has HB time

gap is 475 less than 480.

6.2.2 Monitoring PDO Messages

There are two kind of Process data objects (PDO) in CANopen either they could be

TPDO or RPDO. All the nodes in the network can transmit maximum 4 TPDO and

they can receive 4 RPDO. Each PDO (RPDO or TPDO) must be transmitted /received

after a specific SYNC gaps defined in syncGap.txt. In first phase of thesis idea was to

assume that first gap between two PDOs would be considered correct and all the PDOs

60

in afterword would be compared with the difference between first two PDOs of any

network node.

10:04:56:012:000, Rx, 1, 0x080, 79,

10:04:56:014:000, Rx, 8, 0x1A1, 04 21 4E E8 03 00

7D 3C,

10:04:56:032:000, Rx, 1, 0x080, 7A,

7D 07,

10:04:56:034:000, Rx, 8, 0x1A1, 04 21 4E E8 03 00

7D 3C,

10:04:56:052:000, Rx, 1, 0x080, 7B,

7D 07,

10:04:56:074:000, Rx, 8, 0x1D1, 00 F8 2F 02 03 00

7D 00,,

10:04:56:072:000, Rx, 1, 0x080, 7C,

7D 07,

10:04:56:034:000, Rx, 8, 0x1A1, 04 21 4E E8 03 00

7D 3C,

Listing 8: Sample Logger data to check PDO sync slot

In the log data given above node 0x1A1 (TPDO-1 of Node-33) transmitted in SYNC

79 and second transmission of 0x1A1 is in SYNC 7A. This log data depicts that the

sync gap of TPDO-1 of Node-33 is 1. In future, if log file has sync gap of TPDO-1

Node-33 greater or less than 1. The tool must log this as timing violation of node.

Example log file and error file is given below.

10:04:56:012:000, Rx, 1, 0x080, 79,

10:04:56:014:000, Rx, 8, 0x1D1, 00 F8 2F 02 03

00 7D 00, TPDO1 Node 81

10:04:56:014:000, Rx, 8, 0x1C1, 00 00 00 00 7D

00 7D 00, TPDO1 Node 65

10:04:56:032:000, Rx, 1, 0x080, 7A,

10:04:56:034:000, Rx, 8, 0x1D1, 00 F8 2F 02 03

00 7D 00, TPDO1 Node 81

10:04:56:052:000, Rx, 1, 0x080, 7B,

61

10:04:56:054:000, Rx, 8, 0x1D1, 00 F8 2F 02 03

00 7D 00, TPDO1 Node 81

10:04:56:072:000, Rx, 1, 0x080, 7C,

10:04:56:074:000, Rx, 8, 0x1D1, 00 F8 2F 02 03

00 7D 00, TPDO1 Node 81

10:04:56:092:000, Rx, 1, 0x080, 7D,

10:04:56:094:000, Rx, 8, 0x1A1, 04 21 4E E8 03

00 7D 3C, TPDO1 Node 33

10:04:56:092:000, Rx, 1, 0x080, 7E,

10:04:56:094:000, Rx, 8, 0x1D1, 00 F8 2F 02 03

00 7D 00, TPDO1 Node 81

10:04:56:092:000, Rx, 1, 0x080, 7F,

10:04:56:094:000, Rx, 8, 0x1D1, 00 F8 2F 02 03

00 7D 00, TPDO1 Node 81

10:04:56:094:000, Rx, 8, 0x1C1, 00 00 00 00 7D

00 7D 00, TPDO1 Node 65

Listing 9: Logger data to check Sync

0x1D1 5:50:44:759:000 [Node ID]=81 GenSet_TPDO_1

late/earlier [Current SYNC Gap: 2] [Expected SYNC gap:1]

0x1C1 5:50:44:760:000 [Node ID]=65 AcCharger_TPDO_1

late/earlier [Current SYNC Gap: 6] [Expected SYNC gap:5]

Listing 10: ErrorLog file with missing SYNC error message

It’s clear from the error log file window monitoring tool detects TPDO-1 of the Node-

ID 81 is missing 1 SYNC slot. Expected SYNC gap was 1 but in SYNC slot “7E”

TPDO 1 of node “GenSet” is missing. Similarly TPDO 1 of node 65 (“AcCharger”) is

also missing the expected SYNC slot. Expected gap was 5 but current gap is 6. This is

the expected behavior of monitoring tool to detect all the nodes missing their

respective sync slots.

62

6.2.3 Using Configuration Files

System admin can generate configuration file from database which contain all the

required information about the nodes e.g. ID, Sync gap, number of PDO and SDO.

Monitoring tool can verify the SYNC gaps of each node from configuration files. If

current gap of node (TPDO or RPDO) is more than what is defined in the

syncGap.conf file, our logging and the monitoring tool log it as an error. Sync gap of

all the nodes are given in below:

DcDc_TPDO__GAP1_5__GAP2_0__GAP3_0__GAP4_0

DcDc_RPDO__GAP1_5__GAP2_0__GAP3_0__GAP4_0

GenSet_TPDO__GAP1_1__GAP2_5__GAP3_0__GAP4_0

GenSet_RPDO__GAP1_5__GAP2_0__GAP3_0__GAP4_0

Drive_TPDO__GAP1_1__GAP2_50__GAP3_0__GAP4_0

Drive_RPDO__GAP1_1__GAP2_5__GAP3_0__GAP4_0

Battery_TPDO__GAP1_5__GAP2_200__GAP3_50__GAP4_0

Battery_RPDO__GAP1_5__GAP2_0__GAP3_0__GAP4_0

BoxConnection_TPDO__GAP1_0__GAP2_0__GAP3_0__GAP4_0

BoxConnection_RPDO__GAP1_0__GAP2_0__GAP3_0__GAP4_0

Dcu_TPDO__GAP1_5__GAP2_20__GAP3_200__GAP4_0

Dcu_RPDO__GAP1_10__GAP2_0__GAP3_0__GAP4_0

DriveRotation_TPDO__GAP1_0__GAP2_0__GAP3_0__GAP4_0

DriveRotation_RPDO__GAP1_0__GAP2_0__GAP3_0__GAP4_0

AcCharger_TPDO__GAP1_5__GAP2_5__GAP3_50__GAP4_0

AcCharger_RPDO__GAP1_5__GAP2_0__GAP3_0__GAP4_0

DcAc_TPDO__GAP1_0__GAP2_0__GAP3_0__GAP4_0

DcAc_RPDO__GAP1_0__GAP2_0__GAP3_0__GAP4_0

IsoMon_TPDO__GAP1_50__GAP2_0__GAP3_0__GAP4_0

IsoMon_RPDO__GAP1_20__GAP2_0__GAP3_0__GAP4_0

Bcu_TPDO__GAP1_5__GAP2_5__GAP3_0__GAP4_0

Bcu_RPDO__GAP1_5__GAP2_0__GAP3_0__GAP4_0

Listing 11: SyncGap.conf

63

This is the required behavior of tool. “SyncGap.conf” file make it easy to check, which

node in the network is missing assigned Sync slot. Sometimes one node in the network

create problem for rest of the nodes in the network which leads to the system failure.

6.3 SYNC and Emergency Messages Monitoring

SYNC period of each slot is 20 milliseconds (10 milliseconds for the synchronous

communication and 10 milliseconds for the Asynchronous communication) with the

allowed jitter could vary in-between 0.5 to 2 milliseconds. If any sync slot take time

more or less than allowed (SYNC period ± Jitter). It will be logged as SYNC error in

“LoggerError.txt” file. Example of SYNC log file and error file is given below.

10:04:56:052:000, Rx, 1, 0x080, 7B, SYNC 7B

10:04:56:053:000, Rx, 2, 0x281, 2D 00,

10:04:56:054:000, Rx, 5, 0x2D1, 64 5A 43 6E 52,

10:04:56:065:000, Rx, 2, 0x709, 05 B5,

10:04:56:072:000, Rx, 1, 0x080, 7C, SYNC 7C

10:04:56:073:000, Rx, 5, 0x241, 00 00 7D 00 7

 10:04:56:073:000, Rx, 5, 0x251, 02 02 03 00 7D,

10:04:56:074:000, Rx, 5, 0x2D1, 64 5A 43 6E 52,

10:04:56:092:000, Rx, 1, 0x080, 7D, SYNC 7D

10:04:56:093:000, Rx, 3, 0x220, 00 00 00,

10:04:56:093:000, Rx, 7, 0x221, 02 20 4E 65 04 A5 A5,

10:04:56:094:000, Rx, 5, 0x2D1, 64 5A 43 6E 52,

10:04:56:112:000, Rx, 1, 0x080, 7E, SYNC 7E

10:04:56:113:000, Rx, 5, 0x251, 02 02 03 00 7D,

10:04:56:113:000, Rx, 6, 0x181, 00 04 02 03 03 0D

10:04:56:115:000, Rx, 5, 0x2D1, 64 5A 43 6E

10:04:56:132:000, Rx, 1, 0x080, 7F, SYNC 7F

10:04:56:133:000, Rx, 5, 0x251, 02 02 03 00

10:04:56:135:000, Rx, 5, 0x2D1, 64 5A 43 6E 52,

10:04:56:144:000, Rx, 1, 0x701, 05,

10:04:56:154:000, Rx, 1, 0x080, 80, SYNC 80

Listing 12: logger data to check Sync timing (BusMaster file format)

64

The time difference between Sync 7F and Sync 80 is 22. CANopen Protocol was

expecting sync after 21 milliseconds (SYNC period + Jitter). The monitoring tool

detects and logs these errors into error file. Before this tool it was time consuming

process to make sure none of the sync is exceeding from the allowed period (Sync

period ± Jitter).

6.4 Summary

Over all this logging and the monitoring tool increase our system efficiency to detect

errors and hidden protocol timing violations. Debugging time also reduced from hours

to seconds. Before this analysis tool it was very difficult and time consuming process

to detect the errors and timing misbehavior. Now with newly developed analyzer we

can easily log data and errors with flexibility. There is an option to play back

previously logged data anytime with different configurations. This analyzer tool also

tells about the status of the node while error occurred and what is the possible reason

of error either it was timing violations or some data frames lost. Node payload analysis

graph tells the parameters inside the specific node. Check the NMT state of all the

other devices connected with network during occurrence of error.

65

Chapter 7

7. Future Work

Logging and monitoring tools help the development team to analyze node

communications and their timing behavior which are connected with the CAN

network. If there are some irregularities and protocol violations or node is not alive

anymore, analysis tool can easily log these violations in error log file. There are many

3
rd

 party tools to monitor and analyze data over a CAN bus but using off the shelf

analyzer has some disadvantages like security and relatively extra source to carry. To

overcome all these disadvantages the solution on the table was to go for developing

our own logging and monitoring tool. In the future we can go for XMC4500

microcontroller so our monitoring tool can log inter nodes communication directly on

micro SD card. This MC card has an option to configure 64 GB SD card.

In Online data analysis that detects the first occurrences of any node PDO nodes

communication is correct or not. Currently our sorting algorithm is serving our

purpose. To increase system efficiency this must be solved. One proposed solution is

to move the data frame into adjacent SYNC frames. Checking the data frame with

adjacent frame reduces the possibility of first SYNC missing error.

In our current implementation we are calculating the payload of only one node of the

network “IsoMonitor”. Next steps would be to calculate the payload of all nodes of the

network separately. We will be able to playback the log file in offline analysis with

payload analysis of each node of the network. This is significant for debugging our

network.

During data logging, either using SCU or PCAN USB we don’t know anything about

the expected arrival time of first sync slot. There is no method currently to check

whether the occurrence of the first SYNC is correct or not. One of the possible

solutions is to use stacking sync slot time period to take the mode of first 10 sync slot

time period and select the one which is repeated maximum number of times. Addition

of fast playback simulation would also cut off debugging time. In normal simulation,

analyses of 2 hours logged data of connection box will take two hours to play it back.

66

In offline analysis, monitoring tool input is a previously logged data file. CPU is

capable of reading much faster than reading from CAN bus. CAN communication

sync slots are not fully filled with process data. In most of the sync slots, synchronous

section is free 50% to 60% or even more. Mostly process data of sync slot get

transmitted in initial 3 milliseconds out of 10 milliseconds.

67

Bibliography

[1] Marco Di Natale.Haibo Zeng, Paolo Giusto. Arkadeb Ghosal . (2012).Understanding and

Using the Control Area Network Communication Protocol. Springer-Verlag. NY. ISBN 978-

1-4614-0314-2

[2] Wilfried Voss. (2005). A Comprehensive Guide to Control Area Network.Copperhill

Technologies Corporation. Amherst, MA. ISBN 0-976511-6-0-6.

[3] Mohammad Farsi, Manuel Bernardo, Martins Barbosa. (1999). CANopen Implimentation:

Application to industrial network. Research Studies Press. London. ISBN 978-0863802478.

[4] National Instruments. (2016).The Basics of CANopen National instrument, [Online]

Available at: http://www.ni.com/white-paper/14162/en/ [Accessed: 01.05.2016]

[5] Wolfhard Lawrenz. (2013). CAN system engineering. from theory to practical

application, second edition. Springer-Verlag. London. ISBN 978-1-4471-5613-0.

[6] Miloˇs Gajdoˇ, (2008), CAN bus Communication Protocol Support and Monitoring.

[7] Steve Corrigan. (2016). Application Report. Introduction to Controller Area Network

(CAN). Available at: http://www.ti.com/lit/an/sloa101a/sloa101a.pdf [Accessed: 19.06.2016]

[8] Prof. Alejandro Masrur. (2013). Software Platform for Automotive Systems. Lecture notes

distributed in class at The University of technology Chemnitz.

[9] Olaf Pfeiffer , Andrew Ayre , Christian Keydel.(2008) Embedded Networking with CAN

and CANopen. Copperhill Technologies Corporation, Greenfield, MA. ISBN 978-0-9765116-

2-5.

[10] canopensolutions.com, (2016) Object Dictionary and Electronic Data Sheet, [Online],

Available at: http://www.canopensolutions.com/english/about_canopen/communication.shtml

[Accessed: 20.06.2016]

[11] Matej Kubicka. (2011). CANopen implementation.

[12] CAN in Automation,(2011) 301 CANopen application layer and communication profile.

Version 4.2.0, Available at: http://www.can-cia.org/standardization/specifications/

[13] CAN EDS (2011). Introduction to CANopen ESA.

68

[14] can-cia.org, CANopen knowledge, [Online] Available at: http://www.can-cia.org/can-

knowledge/canopen/canopen/ [Accessed: 12.05.2016]

 [15] Peak-system.com, [Online], CAN interface for USB, User manual. Available at:

http://www.peak-system.com/PCAN-USB.199.0.html?&L=1 [Accessed: 23.04.2016]

[16] Torqeedo Gmbh, Internal documents

[17] Kvaser, Kvaser leaf Light V2 user’s guide. [Online]. Available at:

https://www.kvaser.com/ products/kvaser-leaf-light-hs-v2/ [Accessed: 12.03.2016]

[18] National Instruments, [Online] Available at :http://www.ni.com/white-paper/2732/

en/#toc7 [Accessed: 12.03.2016]

[19] AMC, CANopen Communication Manual [Online]. Available at: http://www.a-m-

c.com/download/sw/dw5-4-2/AMCCANopenManual5-4.pdf [Accessed: 12.6.2016]

[20] Prof. Alejandro Masrur. Software Platform automotive systems, lecture notes distributed

in class at The University of technology Chemnitz.

[21] Searchnetworking.com, Network analyzer vs packet analyzer, [Online] Available at:

http://searchnetworking.techtarget.com/definition/network-analyzer [Accessed: 01.05.2016]

[22] R. Bosch. (1991). CAN specification, [Online]. Version 2.0. Stuttgart.

[23] Marco Di Natale. (2008). Understanding and using the Controller Area Network.

Springer-Verlag. NY. ISBN 978-1-4614-0314-2.

69

Appendix A

Emergency Error Code Classes

Error code Description

00xxh Error reset or no error

10xxh Generic error

20xxh Current

21xxh CANopen device input side

22xxh Current inside the CANopen device

23xxh CANopen device output side

30xxh Voltage

31xxh Mains voltage

32xxh Voltage inside the CANopen device

33xxh Output voltage

40xxh Temperature

41xxh Ambient temperature

42xxh CANopen device temperature

50xxh CANopen device hardware

60xxh CANopen device software

61xxh Internal software

62xxh User software

63xxh Data set

70xxh Additional modules

70

80xxh Monitoring

81xxh Communication

82xxh Protocol error

90xxh External error

F0xxh Additional functions

FFxxh CANopen device specific

Object Dictionary Entries

Index Name Type Access

1000h Device Type UNSIGNED32 RO

1001h Error register UNSIGNED8 RO

1002h Manufacturer Status

Register

UNSIGNED32 RO

1003h Pre-defined Error Field UNSIGNED32 RO

1004h Reserved - -

1005h SYNC COB ID UNSIGNED32 RW

1006h Communication Cycle

Period

UNSIGNED32 RW

1007h Synchronous Window

Length

UNSIGNED32 RW

1008h Manufacturer Device

Name

VISIBLE_STRING RO

1009h Manufacturer Hardware

Version

VISIBLE_STRING RO

71

100Ah Manufacturer Software VISIBLE_STRING RO

100Bh Reserved - -

100Ch Guard Time UNSIGNED16 RW

100Dh Life time factor UNSIGNED8 RW

100Eh Reserved - RW

100Fh Reserved - RW

1010h Store parameters UNSIGNED32 RW

1011h Restore default

parameters

UNSIGNED32 RW

1012h Time COB ID UNSIGNED32 RW

1013h High Resolution Time

Stamp

UNSIGNED32 RW

1014h Emergency COB ID UNSIGNED32 RW

1015h Emergency Inhibit Time UNSIGNED16 RW

1016h Consumer Heartbeat

Time

UNSIGNED32 RW

1017h Producer Heartbeat Time UNSIGNED16 RW

1018h Identity IDENTITY RW

1019h Reserved - -

1020h Verify Configuration UNSIGNED32 RW

1021h Store EDS DOMAIN RW

1022h Storage format UNSIGNED32 RW

1023h OS command DEBUGGER_PAR (0025h) RW

1024h OS command Mode UNSIGNED8 RW

72

1025h OS debugger interface DEBUGGER_PAR (0024h) RW

1026h OS prompt UNSIGNED8 RW

1027h Module list UNSIGNED16 RW

1028h Emergency consumer UNSIGNED32 RW

1029h Error behavior UNSIGNED8 RW

102Ah – 11FFh Reserved - -

1200h 1st SDO Server

Parameters

SDO_PARAMETER

(0022h)

RO

1201h – 127Fh - SDO_PARAMETER

(0022h)

RW

1280h - SDO_PARAMETER

(0022h)

RW

1281h – 12FFh Additional SDO client

parameters

SDO_PARAMETER

(0022h)

RW

1300h – 13FFh Reserved - -

1400h 1st Receive PDO

Parameter

PDO_COMMUNICATION_

PARAMETER (0020h)

RW

1401h 2nd Receive PDO

Parameter

PDO_COMMUNICATION_

PARAMETER (0020h)

RW

1402h 3rd Receive PDO

Parameter

PDO_COMMUNICATION_

PARAMETER (0020h)

RW

1403h 4th Receive PDO

Parameter

PDO_COMMUNICATION_

PARAMETER (0020h)

RW

73

Appendix B

Data log file PCAN USB

14:12:58:847:000, Rx, 2, 0x701, 00 07 , Bootloader Heartbeat

Node 1 Bootup PORST SWD PV

14:12:59:214:000, Rx, 1, 0x080, 02 , SYNC 0x02

14:12:59:225:000, Rx, 1, 0x701, 00 , Heartbeat Node 1 Bootup

14:12:59:234:000, Rx, 1, 0x080, 03 , SYNC 0x03

14:12:59:245:000, Rx, 8, 0x081, 00 FF 21 00 01 01 00 00 , EMCY Node 1

14:12:59:254:000, Rx, 1, 0x080, 04 , SYNC 0x04

14:12:59:259:000, Rx, 2, 0x730, 00 07 , Bootloader Heartbeat

Node 48 Bootup PORST SWD PV

14:12:59:259:000, Rx, 2, 0x760, 00 07 , Bootloader Heartbeat

Node 96 Bootup PORST SWD PV

14:12:59:259:000, Rx, 2, 0x740, 00 07 , Bootloader Heartbeat

Node 64 Bootup PORST SWD PV

14:12:59:260:000, Rx, 2, 0x750, 00 07 , Bootloader Heartbeat

Node 80 Bootup PORST SWD PV

14:12:59:263:000, Rx, 2, 0x720, 00 07 , Bootloader Heartbeat

Node 32 Bootup PORST SWD PV

14:12:59:266:000, Rx, 2, 0x710, 00 07 , Bootloader Heartbeat

Node 16 Bootup PORST SWD PV

14:12:59:274:000, Rx, 1, 0x080, 05 , SYNC 0x05

14:12:59:294:000, Rx, 1, 0x080, 06 , SYNC 0x06

14:12:59:314:000, Rx, 1, 0x080, 07 , SYNC 0x07

74

14:12:59:334:000, Rx, 1, 0x080, 08 , SYNC 0x08

14:12:59:354:000, Rx, 1, 0x080, 09 , SYNC 0x09

14:12:59:374:000, Rx, 1, 0x080, 0A , SYNC 0x0A

14:12:59:394:000, Rx, 1, 0x080, 0B , SYNC 0x0B

14:12:59:414:000, Rx, 1, 0x080, 0C , SYNC 0x0C

14:12:59:434:000, Rx, 1, 0x080, 0D , SYNC 0x0D

14:12:59:454:000, Rx, 1, 0x080, 0E , SYNC 0x0E

14:12:59:474:000, Rx, 1, 0x080, 0F , SYNC 0x0F

14:12:59:494:000, Rx, 1, 0x080, 10 , SYNC 0x10

14:12:59:514:000, Rx, 1, 0x080, 11 , SYNC 0x11

14:12:59:534:000, Rx, 1, 0x080, 12 , SYNC 0x12

14:12:59:554:000, Rx, 1, 0x080, 13 , SYNC 0x13

14:12:59:574:000, Rx, 1, 0x080, 14 , SYNC 0x14

14:12:59:594:000, Rx, 1, 0x080, 15 , SYNC 0x15

14:12:59:614:000, Rx, 1, 0x080, 16 , SYNC 0x16

14:12:59:617:000, Rx, 1, 0x730, 00 , Heartbeat Node 48 Bootup

14:12:59:617:000, Rx, 1, 0x760, 00 , Heartbeat Node 96 Bootup

14:12:59:617:000, Rx, 1, 0x740, 00 , Heartbeat Node 64 Bootup

14:12:59:617:000, Rx, 8, 0x0B0, 00 FF 21 00 20 01 00 00 , EMCY Node 48

14:12:59:617:000, Rx, 8, 0x0B0, 00 FF 21 01 70 01 00 00 , EMCY Node 48

14:12:59:618:000, Rx, 8, 0x0C0, 00 FF 21 00 20 01 00 00 , EMCY Node 64

14:12:59:618:000, Rx, 8, 0x0E0, 00 FF 21 00 20 01 00 00 , EMCY Node 96

14:12:59:618:000, Rx, 8, 0x0E0, 00 FF 21 00 10 01 00 00 , EMCY Node 96

14:12:59:618:000, Rx, 1, 0x750, 00 , Heartbeat Node 80 Bootup

75

14:12:59:619:000, Rx, 8, 0x0D0, 00 FF 21 00 20 01 00 00 , EMCY Node 80

14:12:59:619:000, Rx, 1, 0x731, 00 , Heartbeat Node 49 Bootup

14:12:59:621:000, Rx, 1, 0x720, 00 , Heartbeat Node 32 Bootup

14:12:59:621:000, Rx, 8, 0x0A0, 00 FF 21 00 20 01 00 00 , EMCY Node 32

14:12:59:625:000, Rx, 1, 0x710, 00 , Heartbeat Node 16 Bootup

14:12:59:634:000, Rx, 1, 0x080, 17 , SYNC 0x17

14:12:59:654:000, Rx, 1, 0x080, 18 , SYNC 0x18

14:12:59:674:000, Rx, 1, 0x080, 19 , SYNC 0x19

14:12:59:694:000, Rx, 1, 0x080, 1A , SYNC 0x1A

14:12:59:714:000, Rx, 1, 0x080, 1B , SYNC 0x1B

14:12:59:725:000, Rx, 1, 0x701, 7F , Heartbeat Node 1 PreOp

14:12:59:726:000, Rx, 8, 0x601, 40 00 10 01 00 00 00 00 , SDO Request to

Node 1

14:12:59:726:000, Rx, 8, 0x601, 40 00 10 02 00 00 00 00 , SDO Request to

Node 1

14:12:59:727:000, Rx, 8, 0x601, 40 00 10 03 00 00 00 00 , SDO Request to

Node 1

14:12:59:728:000, Rx, 8, 0x581, 4B 00 10 01 0A 00 00 00 , SDO Response from

Node 1

14:12:59:728:000, Rx, 8, 0x581, 43 00 10 02 28 00 00 00 , SDO Response from

Node 1

14:12:59:728:000, Rx, 8, 0x581, 43 00 10 03 00 00 04 00 , SDO Response from

Node 1

14:12:59:734:000, Rx, 1, 0x080, 1C , SYNC 0x1C

14:12:59:754:000, Rx, 1, 0x080, 1D , SYNC 0x1D

76

Appendix C

Data Logged by SCU

8 0372: <0x080> [1] ac

8 0372: <0x251> [7] 02 20 4e 65 04 a5 a5

8 0372: <0x261> [1] 01

8 0373: <0x1d1> [8] 04 21 4e e8 03 00 7d 31

8 0384: <0x740> [1] 7f

8 0384: <0x730> [1] 7f

8 0384: <0x731> [1] 7f

8 0384: <0x720> [1] 7f

8 0384: <0x750> [1] 7f

8 0384: <0x760> [1] 7f

8 0392: <0x080> [1] ad

8 0392: <0x251> [7] 02 20 4e 65 04 a5 a5

8 0393: <0x1d1> [8] 04 20 4e e8 03 00 7d 31

8 0393: <0x1e3> [8] 02 8c 05 7d 27 0e 24 0e

8 0404: <0x710> [1] 05

8 0412: <0x080> [1] ae

8 0412: <0x251> [7] 02 20 4e 65 04 a5 a5

8 0412: <0x351> [2] a5 a5

8 0413: <0x263> [1] 01

8 0413: <0x1d1> [8] 04 21 4e e8 03 00 7d 31

8 0432: <0x080> [1] af

77

8 0432: <0x251> [7] 02 20 4e 65 04 a5 a5

8 0433: <0x1d1> [8] 04 22 4e e8 03 00 7d 31

8 0452: <0x080> [1] b0

8 0452: <0x251> [7] 02 20 4e 65 04 a5 a5

8 0453: <0x1d1> [8] 04 21 4e e8 03 00 7d 31

8 0453: <0x1e1> [8] 02 8d e2 7c 29 0e 23 0e

8 0472: <0x080> [1] b1

8 0472: <0x251> [7] 02 20 4e 65 04 a5 a5

8 0472: <0x261> [1] 01

8 0473: <0x1d1> [8] 04 20 4e e8 03 00 7d 31

8 0483: <0x701> [1] 7f

8 0492: <0x080> [1] b2

8 0492: <0x251> [7] 02 20 4e 65 04 a5 a5

8 0493: <0x1d1> [8] 04 22 4e e8 03 00 7d 31

8 0493: <0x1e3> [8] 02 8c 05 7d 27 0e 24 0e

8 0512: <0x080> [1] b3

8 0512: <0x251> [7] 02 20 4e 65 04 a5 a5

8 0513: <0x351> [2] a5 a5

8 0513: <0x263> [1] 01

8 0513: <0x1d1> [8] 04 21 4e e8 03 00 7d 31

8 0532: <0x080> [1] b4

8 0532: <0x251> [7] 02 20 4e 65 04 a5 a5

8 0533: <0x1d1> [8] 04 22 4e e8 03 00 7d 31

8 0544: <0x761> [1] 05

78

8 0544: <0x762> [1] 7f

8 0552: <0x080> [1] b5

8 0552: <0x251> [7] 02 20 4e 65 04 a5 a5

8 0553: <0x1d1> [8] 04 20 4e e8 03 00 7d 31

8 0553: <0x1e1> [8] 02 8d e2 7c 29 0e 23 0e

8 0572: <0x080> [1] b6

8 0572: <0x251> [7] 02 20 4e 65 04 a5 a5

8 0572: <0x261> [1] 01

8 0573: <0x1d1> [8] 04 21 4e e8 03 00 7d 31

8 0592: <0x080> [1] b7

8 0592: <0x251> [7] 02 20 4e 65 04 a5 a5

8 0593: <0x1d1> [8] 04 20 4e e8 03 00 7d 31

8 0593: <0x1e3> [8] 02 8c 05 7d 27 0e 24 0e

8 0603: <0x741> [1] 7f

8 0604: <0x751> [1] 05

8 0612: <0x080> [1] b8

8 0612: <0x251> [7] 02 20 4e 65 04 a5 a5

8 0612: <0x351> [2] a5 a5

8 0612: <0x263> [1] 01

8 0613: <0x1d1> [8] 04 20 4e e8 03 00 7d 31

8 0632: <0x080> [1] b9

8 0632: <0x251> [7] 02 20 4e 65 04 a5 a5

8 0633: <0x1d1> [8] 04 20 4e e8 03 00 7d 31

