1,948 research outputs found

    Frozen Gaussian approximation with surface hopping for mixed quantum-classical dynamics: A mathematical justification of fewest switches surface hopping algorithms

    Full text link
    We develop a surface hopping algorithm based on frozen Gaussian approximation for semiclassical matrix Schr\"odinger equations, in the spirit of Tully's fewest switches surface hopping method. The algorithm is asymptotically derived from the Schr\"odinger equation with rigorous approximation error analysis. The resulting algorithm can be viewed as a path integral stochastic representation of the semiclassical matrix Schr\"odinger equations. Our results provide mathematical understanding to and shed new light on the important class of surface hopping methods in theoretical and computational chemistry.Comment: 35 page

    Real-Time Description of the Electronic Dynamics for a Molecule close to a Plasmonic Nanoparticle

    Full text link
    The optical properties of molecules close to plasmonic nanostructures greatly differ from their isolated molecule counterparts. To theoretically investigate such systems in a Quantum Chemistry perspective, one has to take into account that the plasmonic nanostructure (e.g., a metal nanoparticle - NP) is often too large to be treated atomistically. Therefore, a multiscale description, where the molecule is treated by an ab initio approach and the metal NP by a lower level description, is needed. Here we present an extension of one such multiscale model [Corni, S.; Tomasi, J. {\it J. Chem. Phys.} {\bf 2001}, {\it 114}, 3739] originally inspired by the Polarizable Continuum Model, to a real-time description of the electronic dynamics of the molecule and of the NP. In particular, we adopt a Time-Dependent Configuration Interaction (TD CI) approach for the molecule, the metal NP is described as a continuous dielectric of complex shape characterized by a Drude-Lorentz dielectric function and the molecule- NP electromagnetic coupling is treated by an equation-of-motion (EOM) extension of the quasi-static Boundary Element Method (BEM). The model includes the effects of both the mutual molecule- NP time-dependent polarization and the modification of the probing electromagnetic field due to the plasmonic resonances of the NP. Finally, such an approach is applied to the investigation of the light absorption of a model chromophore, LiCN, in the presence of a metal NP of complex shape.Comment: This is the final peer-reviewed manuscript accepted for publication of an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes. Link to the original article: http://pubs.acs.org/doi/abs/10.1021/acs.jpcc.6b1108

    RichMol: A general variational approach for rovibrational molecular dynamics in external electric fields

    Get PDF
    A general variational approach for computing the rovibrational dynamics of polyatomic molecules in the presence of external electric fields is presented. Highly accurate, full-dimensional variational calculations provide a basis of field-free rovibrational states for evaluating the rovibrational matrix elements of high-rank Cartesian tensor operators, and for solving the time-dependent Schr\"odinger equation. The effect of the external electric field is treated as a multipole moment expansion truncated at the second hyperpolarizability interaction term. Our fully numerical and computationally efficient method has been implemented in a new program, RichMol, which can simulate the effects of multiple external fields of arbitrary strength, polarization, pulse shape and duration. Illustrative calculations of two-color orientation and rotational excitation with an optical centrifuge of NH3_3 are discussed

    Coherent state-based approaches to quantum dynamics: application to thermalization in finite systems

    Get PDF
    We investigate thermalization in finite quantum systems using coherent state-based approaches to solve the time-dependent Schr\'odinger equation. Earlier, a lot of work has been done in the quantum realm, to study thermalization in spin systems, but not for the case of continuous systems. Here, we focus on continuous systems. We study the zero temperature thermalization i.e., we consider the ground states of the bath oscillators (environment). In order to study the quantum dynamics of a system under investigation, we require numerical methods to solve the time-dependent Schr\'odinger equation. We describe different numerical methods like the split-operator fast fourier transform, coupled coherent states, static grid of coherent states, semiclassical Herman-Kluk propagator and the linearized semiclassical initial value representation to study the quantum dynamics. We also give a comprehensive comparison of the most widely used coherent state based methods. Starting from the fully variational coherent states method, after a first approximation, the coupled coherent states method can be derived, whereas an additional approximation leads to the semiclassical Herman-Kluk method. We numerically compare the different methods with another one, based on a static rectangular grid of coherent states, by applying all of them to the revival dynamics in a one-dimensional Morse oscillator, with a special focus on the number of basis states (for the coupled coherent states and Herman-Kluk methods the number of classical trajectories) needed for convergence. We also extend the Husimi (coherent state) based version of linearized semiclassical theories for the calculation of correlation functions to the case of survival probabilities. This is a case that could be dealt with before only by use of the Wigner version of linearized semiclassical theory. Numerical comparisons of the Husimi and the Wigner case with full quantum results as well as with full semiclassical ones is given for the revival dynamics in a Morse oscillator with and without coupling to an additional harmonic degree of freedom. From this, we see the quantum to classical transition of the system dynamics due to the coupling to the environment (bath harmonic oscillator), which then can lead ultimately to our final goal of thermalization for long-time dynamics. In regard to thermalization in quantum systems, we address the following questions--- is it enough to increase the interaction strength between the different degrees of freedom in order to fully develop chaos which is the classical prerequisite for thermalization, or if, in addition, the number of those degrees of freedom has to be increased (possibly all the way to the thermodynamic limit) in order to observe thermalization. We study the ``toppling pencil'' model, i.e., an excited initial state on top of the barrier of a symmetric quartic double well to investigate thermalization. We apply the method of coupled coherent states to study the long-time dynamics of this system. We investigate if the coupling of the central quartic double well to a finite, environmental bath of harmonic oscillators in their ground states will let the central system evolve towards its uncoupled ground state. This amounts to thermalization i.e., a cooling down to the bath ``temperature'' (strictly only defined in the thermodynamic limit) of the central system. It is shown that thermalization can be achieved in finite quantum system with continuous variables using coherent state-based methods to solve the time-dependent Schr\'odinger equation. Also, here we witness thermalization by coupling the system to a bath of only few oscillators (less than ten), which until now has been seen for more than ten to twenty bath oscillators

    A new Gaussian MCTDH program: implementation and validation on the levels of the water and glycine molecules

    Get PDF
    We report the main features of a new general implementation of the Gaussian Multi-Configuration Time-Dependent Hartree model. The code allows effective computations of time-dependent phenomena, including calculation of vibronic spectra (in one or more electronic states), relative state populations, etc. Moreover, by expressing the Dirac-Frenkel variational principle in terms of an effective Hamiltonian, we are able to provide a new reliable estimate of the representation error. After validating the code on simple one-dimensional systems, we analyze the harmonic and anharmonic vibrational spectra of water and glycine showing that reliable and converged energy levels can be obtained with reasonable computing resources. The data obtained on water and glycine are compared with results of previous calculations using the vibrational second-order perturbation theory method. Additional features and perspectives are also shortly discussed

    Implementation and Application of the Core Polarization Potential Ansatz in Quantum Chemical Systems

    Get PDF
    Modern quantum chemical simulations are computationally demanding and one approach to reduce these demands is the pseudopotential ansatz. This ansatz, however, approximates the interaction of the valence and core electrons in a way that neglects the polarizability of the atomic core. While the core polarization potential (CPP) ansatz addresses this neglected polarization, exhaustive studies of its influence in molecular simulations are still scarce. Here, we present a customized implementation of the CPP ansatz to establish an entry point for such studies in the Quantum Objects Library, a program package of the Institute for Theoretical Chemistry (University of Cologne). We successfully tested the implementation in atomic and molecular systems, both on the Hartree-Fock and the electron-correlation level. Additionally, we investigated the influence of CPPs in two systems - Hg2 and HgF4 - employing scalar-relativistic small-core pseudopotentials for mercury. For this, we developed a new approach for generating CPPs relying purely on ab initio data. The influence of the generated CPPs on the molecular properties of the investigated systems was small and requires a more detailed nvestigation
    • …
    corecore