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Abstract

We investigate thermalization in finite quantum systems using coherent state-based approaches to

solve the time-dependent Schrödinger equation. Earlier, a lot of work has been done in the quantum

realm, to study thermalization in spin systems, but not for the case of continuous systems. Here,

we focus on continuous systems. We study the zero temperature thermalization i.e., we consider the

ground states of the bath oscillators (environment).

In order to study the quantum dynamics of a system under investigation, we require numerical

methods to solve the time-dependent Schrödinger equation. We describe different numerical methods

like the split-operator fast fourier transform, coupled coherent states, static grid of coherent states,

semiclassical Herman-Kluk propagator and the linearized semiclassical initial value representation to

study the quantum dynamics. We also give a comprehensive comparison of the most widely used

coherent state based methods. Starting from the fully variational coherent states method, after

a first approximation, the coupled coherent states method can be derived, whereas an additional

approximation leads to the semiclassical Herman-Kluk method. We numerically compare the different

methods with another one, based on a static rectangular grid of coherent states, by applying all of

them to the revival dynamics in a one-dimensional Morse oscillator, with a special focus on the number

of basis states (for the coupled coherent states and Herman-Kluk methods the number of classical

trajectories) needed for convergence.

We also extend the Husimi (coherent state) based version of linearized semiclassical theories for

the calculation of correlation functions to the case of survival probabilities. This is a case that could

be dealt with before only by use of the Wigner version of linearized semiclassical theory. Numerical

comparisons of the Husimi and the Wigner case with full quantum results as well as with full semi-

classical ones is given for the revival dynamics in a Morse oscillator with and without coupling to an

additional harmonic degree of freedom. From this, we see the quantum to classical transition of the

system dynamics due to the coupling to the environment (bath harmonic oscillator), which then can

lead ultimately to our final goal of thermalization for long-time dynamics. In regard to thermaliza-

tion in quantum systems, we address the following questions— is it enough to increase the interaction

strength between the different degrees of freedom in order to fully develop chaos which is the classical

prerequisite for thermalization, or if, in addition, the number of those degrees of freedom has to be

increased (possibly all the way to the thermodynamic limit) in order to observe thermalization.

We study the “toppling pencil” model, i.e., an excited initial state on top of the barrier of a symmetric

quartic double well to investigate thermalization. We apply the method of coupled coherent states

to study the long-time dynamics of this system. We investigate if the coupling of the central quartic

double well to a finite, environmental bath of harmonic oscillators in their ground states will let the

central system evolve towards its uncoupled ground state. This amounts to thermalization i.e., a

cooling down to the bath “temperature” (strictly only defined in the thermodynamic limit) of the

central system. It is shown that thermalization can be achieved in finite quantum system with

continuous variables using coherent state-based methods to solve the time-dependent Schrödinger

equation. Also, here we witness thermalization by coupling the system to a bath of only few oscillators

(less than ten), which until now has been seen for more than ten to twenty bath oscillators.
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1. Introduction

In this introductory chapter, I would like to first lay out the motivation to study “thermalization” in

quantum systems. I would also provide the foundation and background of the research to be presented

in this thesis. Later on, the organization of the thesis will be presented.

1.1. Motivation and Background

Thermalization, a widely studied concept in Physics, is the process of physical bodies reaching thermal

equilibrium through mutual interaction. In general, it is the natural tendency of a system towards a

state of equipartition of energy and uniform temperature that maximizes the system’s entropy. The

system under investigation is assumed to be in thermal contact with a bath or reservoir. The concept

of thermalization is used in almost all fields of Physics ranging from atomic to molecular, plasma

physics and solid state system all the way to cosmology. Examples of thermalization include the

achievement of equilibrium in plasma.

Thermalization can be studied in various realms like classical, semiclassical and quantum mechani-

cal. In a conventional quantum Brownian motion setting, a system of interest with a relatively small

number of degrees of freedom interacts with a much larger surrounding that gives rise to diffusive

motion, decoherence and equilibration. Especially equilibration or thermalization, possibly towards a

thermal state, has come in the focus of interest recently, due to some groundbreaking developments

in the so-called canonical typicality [1–4]. In a nutshell, in a bipartite quantum system, consisting of

a system proper and an environment with a high-dimensional Hilbert space, a description of thermal-

ization on the wavefunction level is adequate, because almost every initial pure state will eventually

yield for some observable a very similar outcome, e.g., will lead to a canonical density matrix for

the system. It has been pointed out that entanglement between subsystems is responsible for the

thermalization [4]. More recently these studies have been put to good use in a solid state context,

where numerical methodology has been developed for spin dynamics of Hilbert spaces of dimensions

almost 104 times larger than in existing exact diagonalization studies [5]. It should be mentioned

that the typicality concept has also been established in purely classical context [2]. Furthermore, we

stress that for typicality on the level of states (not only of some observables) the considered quantum

system must be bipartite (e.g. of system bath type) [2].

In the classical realm, first groundbreaking studies of thermalization have been performed by Fermi,

Pasta, Ulam and Tsingou (FPUT) for a chain of a few weakly coupled anharmonic oscillators [6]. Ever

since then, the puzzle of energy exchange between subsystems, eventually leading to equlibration and

thermalization in closed systems with a finite number of degrees of freedom has intrigued researchers

1



2 1.1 Motivation and Background

in the fields of classical [7–16], as well as semiclassical [17, 18] and quantum mechanics [2, 7, 19–

27]. Most of the works on thermalization from the quantum mechanical realm, include spin systems

whereas there hasn’t been much work done on continuous systems except [24], where the authors

study the quantum dynamics of vibrational energy flow in oscillator chains driven by anharmonic

interactions. In this thesis, our focus will be on systems with continuous variables where every single

degree of freedom has an infinitely large Hilbert space, in contrast to spin systems.

In the context of quantum thermalization, an important concept is the eigenstate thermalization

hypothesis (ETH) [28, 29]. Thermalization in classical systems is closely related to the idea of chaos

and ergodicity. The ETH can be regarded, very broadly, as the quantum manifestation of such ergodic

behavior. The principal philosophy underlying the ETH is that instead of explaining the ergodicity of

a thermodynamic system through the mechanism of dynamical chaos, as done in classical mechanics,

one should instead examine the properties of matrix elements of observable quantities in individual

energy eigenstates of the system. The eigenstate thermalization hypothesis states that for an arbitrary

initial state of the system, the expectation value of any observable will ultimately evolve in time to

its value predicted by a microcanonical ensemble, and thereafter will exhibit only small fluctuations

around that value. However, there are also other alternative ways to investigate thermalization in

quantum systems. Here, in contrast to the ETH, we look at the reduced dynamics of a system which

is coupled to a finite heat bath, acting as the environment. The idea here is that the coupling between

the system and bath acts as the mediator in the exchange of energy between the system and the bath

which ultimately leads to thermalization by increasing the bath size up to few degrees of freedom. In

this thesis, it will be shown that the system closely approaches a state of thermal equilibrium with a

bath of only up to five degrees of freedom. Earlier it was claimed in [21] that as little as ten to twenty

harmonic (bath) degrees of freedom are necessary to observe the energy loss to the bath without

backflow on the observed time scales. The observables which we look at to investigate thermalization

are energy expectation values, auto-correlation functions as well as reduced densities calculated using

the quantum method, which is going to be discussed below and also in detail in Chapter 2.

In order to investigate thermalization in quantum systems, we need to study the quantum dynamics

of the underlying system, which can be performed by solving time-dependent Schrödinger equation

(TDSE). At the first sight, it seems to be quite an easy task – as to just take the almost century-

old Schrödinger equation, plug in the potential and solve for Ψ, which is the wavefunction. But

unfortunately analytic solutions exist only for a few simple model systems. As soon as there is

nontrivial coupling between different degrees of freedom of the quantum system, one has to resort to

numerical solutions. Again a full numerical solution of the TDSE is limited to systems with up to five

or six degrees of freedom, because the number of basis states or grid points required for representing

the wavefunction grows exponentially with the dimensionality of the system. Without having the

possibility to find an analytical or numerically exact, full quantum solution to a general system,

alternative descriptions and approximations of some kind have to be introduced in order to make

its dynamics accessible. To date, there is no single method that is ideally suited to describe every

conceivable quantum system; instead the approach has to be chosen according to the properties of the
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particular atomic or molecular system and also according to the specific problem under investigation.

Therefore, over the last decades, a host of different numerical treatments for time-dependent quan-

tum systems have been developed. One very popular approach is the time-dependent density func-

tional theory (TDDFT). In TDDFT, one does not calculate the wavefunction but rather the single-

particle density, from which in principle all time-evolved observables can be found. TDDFT has seen

many successful applications in all areas of quantum dynamics, as exemplified by a recent review

and extensive references therein [30]. Another approach, again with a wide range of applications, is

known as the multi-configurational time-dependent Hartree(-Fock) (MCTDH) [31, 32]. It relies on a

representation of the wavefunction in terms of a combination of single-particle wavefunctions. Using

the Dirac-Frenkel variational principle, equations of motion can be derived for the coefficients as well

as for the expansion functions. In order for the method to work efficiently and avoid exponential

scaling, the Hamiltonian has to be represented in an appropriate product form, which is one of the

main challenges of this methodology. Since its 25 years of introduction, MCTDH has seen several ex-

tensions such as multilayer MCTDH, which allows for the inclusion of hundreds of degrees of freedom.

However, one of the most popular numerically exact method to solve the TDSE is the split-operator

fast Fourier transformation (FFT) which is a grid based method and scales numerically as 𝑁 log𝑁 ,

where 𝑁 is the number of grid points. But due to the exponential scaling of the method with the

increase in the number of degrees of freedom, it can treat systems with no more than five degrees of

freedom. In this thesis, however we have used split-operator FFT as the benchmark to compare our

results from other numerical solutions as it is a numerically exact method in the limit of infinitely

small time steps.

In this thesis, we have widely used the method of coupled coherent states (CCS), introduced by

Shalashilin and Child [33] which is again based on the Dirac-Frenkel variational principle similar

to the MCTDH. In the methods based on the variational principle, the wavefunction is expressed

as an expansion in the coherent state basis, with time-dependent coefficients. The method of CCS

is a first level of approximation to the full variational coherent states (VCS) method, where in the

VCS method the coefficients as well as the coherent state parameters are propagated using the full

variational equations of motion [34]. The approximation made to derive CCS from VCS is to refrain

from the full variational solution of the coherent state parameters but to let those be determined by

the classical equations of motion. One step higher level of approximation than CCS is the method of

static grid of coherent states (SCS), which is not very well suited for treating large numbers of degrees

of freedom.

Here we have also focused on semiclassical dynamics, and in particular semiclassical initial value

representations (SC-IVRs) which is a different route towards describing the time evolution of a quan-

tum system. While TDDFT, MCTDH and other variational methods take a top-down approach –

starting from the full quantum problem and finding approximations such that analytical or numer-

ical calculations become feasible, SC-IVRs go the opposite way, using classical trajectories as the

backbone and adding a complex, action-dependent phase factor in order to allow for interference and

thus incorporate quantum effects. Apart from the possible numerical savings, relying on classical
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trajectories brings about the conceptual advantage of explaining and understanding quantum results

intuitively in terms of classical mechanics. On the other hand, unlike in classical molecular dynamics,

soft quantum effects such as zero-point energy and interference are an inherent part of semiclassical

theories without having to resort to any ad-hoc additions to the equations of motion.

The semiclassical approximation for the time evolution of a quantum system can be derived from

the (exact) path integral formulation of the position space matrix element of the time evolution

operator or propagator, that has been introduced by R. Feynman [35]. The so-called semiclassical

approximation makes a stationary phase approximation to the propagator, assuming that typical

action differences between contributing trajectories of the system are much larger than the reduced

Planck’s constant ~. The resulting propagator is based on boundary value problem and is known as

the Van Vleck-Gutzwiller (VVG) propagator. Alternatively, one can express the exact propagator in

terms of coherent states and replace the resulting coherent state matrix element of the time evolution

operator by its semiclassical approximation, which is found in the same way as before. Evaluating

the integration over final positions in another stationary phase approximation [36] then yields an

expression where only an integration over the initial phase space positions is left. This is referred

to as the initial value representation (IVR). The IVR time evolution operator is widely used in the

form suggested by M. Herman and E. Kluk [37] known as the Herman-Kluk (HK) propagator. Like

any other SC-IVR, the HK propagator contains a phase space integration over initial conditions, and

as before, each trajectory is weighted with a complex phase allowing for interference as well as a

prefactor that depends on the stability of the given trajectory. Ten years after its first appearance,

the HK propagator was shown to be an efficient special case of a more general IVR in a rederivation

by K. Kay [38, 39].

Other semiclassical methods include thawed gaussian wavepacket dynamics (TGWD), semiclassical

hybrid dynamics as well as the linearized semiclassical initial value representation (LSC-IVR). LSC-

IVR, which is also known as classical Wigner dynamics ([40, 41]) and used for the calculation of

correlation functions, serves as a classical comparison to semiclassical results. It was introduced

by Sun, Wang and Miller [42–46]. Another LSC-IVR based on Husimi transforms was introduced

by Antipov, Ye and Ananth [47], known as Husimi LSC-IVR. As an original contribution to the

field of semiclassical mechanics, we extended the Husimi (coherent state) based version of linearized

semiclassical theories for the calculation of correlation functions to the case of survival probabilities.

This is the case that could be dealt with before only by use of the Wigner version of linearized

semiclassical theory.

1.2. Organization of Thesis

In Chapter 2, different methods to solve the TDSE are given. The methods have been classified into

full quantum solutions and semiclassical solutions. In the quantum methods, we discuss in detail the

split-operator FFT, CCS and SCS. We describe the HK propagator, TGWD and LSC-IVR among

the semiclassical methods. In Chapter 3, we provide a numerical comparison of different methods to
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solve the TDSE. We choose a one dimensional Morse oscillator as the model potential to compare

the different numerical methods. At the end of the Chapter 3, we also provide the Hamiltonian

matrix elements of some of the very common potentials like Morse, harmonic, quartic, that are used

in calculating CCS equations of motion in order to study the quantum dynamics.

In Chapter 4, we extend the Husimi (coherent state) based version of linearized semiclassical theories

for the calculation of correlation functions to the case of survival probabilities. We develop a consistent

approach to the linearized survival (or staying) probability, using the so-called HK propagator. The

need to find the correct Husimi version for staying probability lies in the fact that Wigner-Weyl and

Husimi transform version of linearized semiclassical theories lead to the same final formula for the case

of dipole-dipole correlation function, whereas they are quite different in the case of survival probability,

where strictly, the simple Husimi version is not applicable. The newly developed formalism is applied

to the revival dynamics of a Morse oscillator coupled to a harmonic mode in order to see the quantum

to classical transition of the system dynamics.

Finally, in Chapter 5, we investigate the longstanding problem of thermalization of quantum systems

coupled to an environment by focusing on a bistable quartic oscillator interacting with a finite number

of harmonic oscillators. In order to overcome the exponential wall that one usually encounters in grid

based approaches to solve the TDSE of the extended system, methods based on time-dependent

variational principle are best suited. We apply the method of CCS to study the quantum dynamics

of the system under investigation. We investigate the dynamics of an initial wavefunction on the top

of the barrier of the double well.

At the end, Chapter 6 provides the summary and conclusion of this thesis. It also throws light

upon possible future work. The appendix complements this work by additional detailed calculations

and numerical details.





2. Methods to solve the Time-Dependent

Schrödinger Equation

In order to study the system dynamics quantum mechanically, we have two alternative approaches.

One approach is using the density matrix known as the density matrix formulation. The other one is

the wavefunction based method which is used to solve the time-dependent Schrödinger equation. Just

as the Schrödinger equation describes how the pure states evolve in time, the von Neumann equation

(also known as the Liouville-von Neumann equation) describes how a density operator evolves in

time. Density matrices are, e.g., used to define a finite temperature state of the system [48]. However,

the density matrix based approach is enormously costly in terms of memory as because even for

a single degree of freedom, it requires a two-dimensional grid to represent the density matrix in

position representation making it very memory demanding for higher degrees of freedom. In contrast

wavefunction based methods require just a single grid per degree of freedom and if coupled to a bath,

the system develops on short time scale into a “thermal state” [2]. Therefore, in this thesis our focus

will be only on wavefunction based methods. In the following, different ways to solve the TDSE will

be described like the split-operator fast Fourier transformation, which is a numerically exact method

and then the coupled coherent states method based on a first level of approximation to the numerically

exact full variational principle. Then at the end we will also discuss semiclassical propagators like the

Herman-Kluk propagator. We have categorized the methods based on full quantum and semiclassical

approaches.

2.1. Quantum methods

The equation we want to solve is the TDSE. In representation free form, the TDSE is given by

i~|Ψ̇(t)⟩ = Ĥ|Ψ(t)⟩. (2.1)

Here in general, 𝐻̂ is a many-body Hamiltonian, for 𝑓 degrees of freedom, which in the remainder of

this thesis is of the form

𝐻̂ =

𝑓∑︁
𝑖=1

𝑇𝑖 + 𝑉 (2.2)

The explicit expression for the potential energy operator 𝑉 , which contains coupling terms between

the different degrees of freedom will be detailed later. There are various full quantum mechanical

7
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solutions of the TDSE. These can be distinguished by their treatment of discretization of time and

space or the choice of finite basis. The time evolution can be treated in different ways as, e.g., finite

differencing, the Crank-Nicolson method or polynomial methods [49]. Applying an expansion of the

wavefunction in terms of eigenfunctions |𝑚⟩ of the Hamiltonian, according to

|Ψ⟩ =
𝑀𝑓∑︁
𝑚=1

𝑐𝑚|𝑚⟩ (2.3)

the time-evolved wavefunction

|Ψ(𝑡)⟩ =
𝑀𝑓∑︁
𝑚=1

𝑐𝑚|𝑚⟩e−iÊmt/~ (2.4)

is determined by the eigenvalues 𝐸𝑚 of the Hamiltonian. This expression would be exact if the

summation would extend to infinity. The numerical effort of the solution of the eigenvalue problem

of the 𝑀𝑓 ×𝑀𝑓 dimensional Hamiltonian matrix underlying the above approach, however, scales as

𝑀3
𝑓 . If all the degrees of freedom are represented by a basis of identical dimension 𝑀 , this amounts

to 𝑀3𝑓 and thus the eigenfunction approach is not viable, even for the moderate values of 𝑓 and 𝑀 .

If the wavefunction is represented on a position grid, however, with 𝑁 being the number of grid

points per degree of freedom and if the split-operator FFT method is used for the time evolution,

the numerical effort just scales as 𝑁𝑓𝑓 log𝑁 [50]. That’s why we have used split-operator FFT to

compare some of our numerical results obtained using CCS method and also using HK propagator. A

detailed comparison of different numerical propagation schemes for solving the TDSE in the position

representation in one dimension for mixed quantum and molecular dynamics simulations is laid out

in [51].

2.1.1. Split-Operator Method

Let us consider a particle moving in one spatial dimension under a Hamiltonian of usual form

𝐻̂ = 𝑇𝑘(𝑝) + 𝑉 (𝑥) (2.5)

In the split-operator method, we make use of the well-known Zassenhaus formula [52]1

e𝑥̂+𝑦 = e𝑥̂e𝑦e−1/2[𝑥̂,𝑦]e1/3[𝑦,[𝑥̂,𝑦]]+1/6[𝑥̂,[𝑥̂,𝑦]]... (2.6)

in order to approximate the time-evolution operator. For very short but finite time steps Δ𝑡, one then

finds from the Zassenhaus formula that

e−iĤΔt/~ ≈ e−iT̂kΔt/~e−iV̂Δt/~, (2.7)

1The Baker-Campbell-Haussdorff (BCH) formula is the dual relation and reads exp {𝑥̂} exp {𝑦} =
exp {𝑥̂+ 𝑦 + 1/2[𝑥̂, 𝑦] + 1/12([𝑥̂, [𝑥̂, 𝑦]] + [𝑦, [𝑥̂, 𝑦]])}+ ....
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which is accurate up to the first order in Δ𝑡. This approximation is also referred to as the Trotter

product [53]. A more “symmetric” splitting of the Hamiltonian also known as the Strang splitting

according to

e−iĤΔt/~ = e−iV̂Δt/(2~)e−iT̂kΔt/~e−iV̂Δt/(2~) +𝑂(Δ𝑡3) (2.8)

leads to an approximation of higher accuracy. In order to calculate the time-evolved wavefunction, we

need to represent the initial wavefunction at time 𝑡 = 0 on a position space grid 𝑥𝑛 ∈ [𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥], 𝑛 =

1, 2, ..., 𝑁 . The wavefunction propagated for a small time step Δ𝑡 at the grid point 𝑥𝑛 is then given

by

𝜓(𝑥𝑛,Δ𝑡) = ⟨𝑥𝑛|e−iĤΔt/~|𝜓(0)⟩

= ⟨𝑥𝑛|e−iV̂Δt/(2~)e−iT̂kΔt/~e−iV̂Δt/(2~)|𝜓(0)⟩ (2.9)

By inserting unity twice in terms of position states and once in terms of momentum states, the three-

fold integral (for the numerics, the integrations are discretized due to the grid based representation

of the wavefunction)

𝜓(𝑥𝑛,Δ𝑡) =

∫︁
d𝑥′
∫︁

d𝑝′
∫︁

d𝑥′′⟨𝑥𝑛|e−iV̂Δt/(2~)|𝑥′′⟩

⟨𝑥′′|e−iT̂kΔt/~|𝑝′⟩⟨𝑝′|e−iV̂Δt/(2~)|𝑥′⟩⟨𝑥′|𝜓(0)⟩ (2.10)

emerges. The integral over 𝑥′′ can be performed immediately because of the diagonal nature of the

potential in position space and the matrix element of the exponentiated potential operator between

𝑥𝑛 and position state 𝑥′′ can be written in terms of 𝛿 function as

⟨𝑥𝑛|e−iV̂Δt/(2~)|𝑥′′⟩ = e−iV(xn)Δt/(2~)𝛿(𝑥′′ − 𝑥𝑛). (2.11)

Also the second exponentiated potential term simplifies as

⟨𝑝′|e−iV̂Δt/(2~)|𝑥′⟩ = ⟨𝑝′|𝑥′⟩e−iV(x′)Δt/(2~)

=
1√
2𝜋~

e−ip′x′/~e−iV(x′)Δt/(2~) (2.12)

The 𝑥′ integration is a Fourier transformation of the “intermediate wavefunction”

𝜓(𝑥′, 0) = e−iV(x′)Δt/(2~)𝜓(𝑥′, 0) (2.13)
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into momentum space. This then leads to the fact that the exponentiated kinetic energy operator

becomes a multiplicative factor and matrix element of that operator can be expressed as

⟨𝑥′′|e−iT̂kΔt/~|𝑝′⟩ = ⟨𝑥′′|𝑝′⟩e−iTk(p
′)Δt/~

=
1√
2𝜋~

eip
′x′′/~e−iTk(p

′)Δt/~ (2.14)

The 𝑝′ integration transforms the wavefunction back into position space. The algorithm for the

implementation of the split-operator FFT method2 is given below:

1. Use position space to represent the initial wavefunction.

2. Apply the diagonal operator e−iV(x′)Δt/(2~).

3. Perform an FFT into momentum space.

4. Apply the diagonal operator e−iTk(p
′)Δt/~.

5. Perform an inverse FFT back into position space.

6. Apply the diagonal operator e−iV(x′)Δt/(2~).

The main numerical effort goes in performing two Fourier transforms during the propagation over

single time step. However, these can be performed using FFT algorithm [55]. This procedure is

applied for the propagation over a very small time step. For the propagation over a finite time it

will be repeated frequently and if the intermediate values of the wavefunction are not needed the

two half time steps of potential propagation can be combined (apart from the first and the last one).

Furthermore, to propagate the wavefunction over the next time step, we will need its value not only

at 𝑥𝑛 but at all values of 𝑥. This reflects the nonlocal nature of quantum theory. To calculate the new

wavefunction, the old one is needed everywhere. This is in contrast to classical mechanics. Classical

mechanics is a local theory wherein a trajectory only depends on its initial conditions.

A nice review about the details of FFT and a corresponding subroutine is given in [55]. For

implementation of the numerics it is important to note that the grid points 𝑁 has to be a power of

2 i.e., 𝑁 = 2𝑗 . Also the grid points should be equidistant. In the case of split-operator FFT method,

the numerical effort scales as 𝑁 log𝑁 [55]. More details about the numerical implementation is given

in [49]. There are more recent implementations of FFT which do not have the restriction to integer

powers of 2 and which, through adaption to the platform that is used for the calculations can have

considerable advantages in speed (FFTW: fastest Fourier transformation in the West [56]).

2.1.2. Coupled Coherent States Method

To tackle the quantum dynamics under the many-body Hamiltonian, grid based methods are running

into an exponential wall and we will use a variational approach, based on coherent states, that has

2Originally this approach was proposed by Fleck, Morris and Feit for the solution of the Maxwell wave-equation [54].
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been introduced by Shalashilin and Child [33, 57], and was recently reviewed in [34]. In the following

we will introduce the so-called coupled coherent state Ansatz and its working equations, extending

the notation of [34] towards many degrees of freedom.

We set the stage by considering a multidimensional system whose dynamics is governed by the

Hamiltonian

𝐻̂(𝑡) = 𝑇 (p̂) + 𝑉 (x̂, 𝑡), (2.15)

consisting of a kinetic and a potential energy term, depending on momentum, respectively position

(and possibly explicitly on time). For a system of 𝑓 degrees of freedom, an Ansatz for the solution of

the TDSE is given in terms of normalized coherent states (CSs) of multiplicity 𝑀 by

|ΨM

CS
(𝑡)⟩ =

𝑀∑︁
𝑙=1

𝑎𝑙(𝑡)|𝑧𝑙(𝑡)⟩, (2.16)

with time-dependent complex coefficients 𝑎𝑙(𝑡) and time-dependent 𝑓 -dimensional complex displace-

ment vectors

𝑧𝑙(𝑡) =
𝛾1/2𝑞𝑙(𝑡) + i~−1𝛾−1/2𝑝𝑙(𝑡)√

2
, (2.17)

with the phase-space variables 𝑞 = (𝑞1, . . . , 𝑞𝑓 ) and 𝑝 = (𝑝1, . . . , 𝑝𝑓 ) and diagonal matrix 𝛾 with entries

𝛾𝑗 = 𝑚𝑗𝜔𝑗/~, 𝑗 = 1, . . . , 𝑓 , where the indices starting from 1 to 𝑓 denote the different degrees of

freedom. 𝛾 is known as the width parameter matrix. Here 𝑚𝑗 and 𝜔𝑗 denote the mass and frequency

of the 𝑗-th Harmonic oscillator (needed to create the coherent state basis) whose Hamiltonian reads

𝐻̂HO𝑗 = ~𝜔𝑗

(︂
𝑎̂†𝑗 𝑎̂𝑗 +

1

2

)︂
. (2.18)

The 𝑓 -mode CS is given by an 𝑓 -fold tensor product

|𝑧𝑙⟩ =
𝑓⨂︁

𝑗=1

|𝑧𝑙𝑗⟩ (2.19)

of normalized one-dimensional CSs

|𝑧𝑙𝑗⟩ = exp

[︂
−1

2
|𝑧𝑙𝑗 |2

]︂
exp

[︁
𝑧𝑙𝑗 𝑎̂

†
𝑗

]︁
|0𝑗⟩, (2.20)

where 𝑎̂†𝑗 is the creation operator acting on the ground state of a suitably chosen 𝑗-th harmonic

oscillator. In position representation the CSs are Gaussian wavefunctions, also known as “frozen
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Gaussians”. The multidimensional Gaussian wavepacket is given by

⟨𝑥|𝑧𝑙⟩ =

(︂
det𝛾

𝜋𝑓

)︂ 1
4

exp

[︂
− (𝑥− 𝑞𝑙)

T 𝛾

2
(𝑥− 𝑞𝑙) +

i

~
𝑝T
𝑙

(︁
𝑥− 𝑞𝑙

2

)︁]︂
=

𝑓∏︁
𝑗=1

(︁𝛾𝑗
𝜋

)︁ 1
4
exp

[︂
−𝛾𝑗

2
(𝑥𝑗 − 𝑞𝑙𝑗)

2 +
i

~
𝑝𝑙𝑗

(︁
𝑥𝑗 −

𝑞𝑙𝑗
2

)︁]︂
(2.21)

with the Klauder phase convention [58]. The one-dimensional CS |𝑧𝑗⟩ is a (right) eigenfunction

(eigenket) of the one-dimensional annihilation operator

𝑎̂𝑗 =
𝛾
1/2
𝑗 𝑞𝑗 + i~−1𝛾

−1/2
𝑗 𝑝𝑗√

2
, (2.22)

with eigenvalue 𝑧𝑗 [59, 60]

𝑎̂𝑗 |𝑧𝑗⟩ = 𝑧𝑗 |𝑧𝑗⟩. (2.23)

Hence the eigenvalue of the multidimensional annihilation operator is given by

𝑎̂|𝑧⟩ = 𝑧|𝑧⟩. (2.24)

For notational simplicity, in the following, we set ~ = 1. In representation free form, the CSs are

given by the application of the displacement operator (see, e.g., the appendix of [61] for a collection

of its properties) to the ground state, via

|𝑧𝑙⟩ = 𝐷̂(𝑧𝑙)|0⟩ ≡ exp
[︁
𝑧𝑙𝑎̂

† − 𝑧*
𝑙 𝑎̂
]︁
|0⟩ = exp

[︂
−1

2
|𝑧𝑙|2

]︂
exp

[︁
𝑧𝑙𝑎̂

†
]︁
|0⟩, (2.25)

where 𝑎̂† is the multidimensional creation operator and for the last equality it has been used that the

application of the annihilation operator to the ground state gives zero.

Furthermore, a finitely spaced grid of CSs forms an over-complete and non-orthogonal basis set

[62], allowing the representation of unity in terms of the double sum (for a heuristic proof, starting

from Eq. (2.16) see, e.g., Exercise 8.81 in [63])

1̂ =
∑︁
𝑘,𝑙

|𝑧𝑘⟩(Ω−1)𝑘𝑙⟨𝑧𝑙|, (2.26)

with the overlap matrix Ω with elements

Ω𝑘𝑙 = ⟨𝑧𝑘|𝑧𝑙⟩, (2.27)

if the requirement

𝑧𝑙𝑗 = 𝛽(𝑚𝑗 + i𝑛𝑗), (2.28)
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with 𝑘 = (𝑚𝑗 , 𝑛𝑗) where 𝑚𝑗 , 𝑛𝑗 are integers and 0 < 𝛽 ≤
√
𝜋, for the spacing of the grid points

is met [62, 64], see also Chapter 10.5.1 in [63]. We call this criterion the Perelomov-Bargmann-

Butera-Girardello-Klauder (PBBGK) criterion, whereas the special case 𝛽 =
√
𝜋 has the name of von

Neumann attached to it [65, 66]. Physically, it means that the cells in (𝑝, 𝑞) phase space that are

spanned by the grid points must have an area less or equal to 2𝜋 in the present units (Planck cell).

Thus completeness holds for a phase-space lattice of coherent states if and only if the density of states

per Planck unit cell is equal to or greater than one. A corresponding graphical illustration is given in

Fig. 2.1. The 𝑧-grid does not necessarily have to be square but may also be rectangular, as long as the

Planck cell criterion is not surpassed [62]. This fact is corroborated by our numerical experience. The

completeness relation (2.26) had been postulated by von Neumann [65], and a mathematical proof

has been given independently by Perelomov [64] and Bargmann et al. [62].

Figure 2.1.: Overcompleteness of CS: if the area of the phase-space region shaded in red is at most
𝜋 (i.e. a Planck unit cell), the CS corresponding to the lattice form an overcomplete set.

The overlap of two 𝑓 -dimensional CSs [59] is given by

⟨𝑧𝑘|𝑧𝑙⟩ = exp

[︂
−1

2
(|𝑧𝑘|2 + |𝑧𝑙|2) + 𝑧*

𝑘 · 𝑧𝑙
]︂

=

𝑓∏︁
𝑗=1

⟨𝑧𝑘𝑗 |𝑧𝑙𝑗⟩

=

𝑓∏︁
𝑗=1

exp

[︂
−1

2
(|𝑧𝑘𝑗 |2 + |𝑧𝑙𝑗 |2) + 𝑧*𝑘𝑗𝑧𝑙𝑗

]︂

= exp

[︂
−(𝑞𝑙 − 𝑞𝑘)

T𝛾

4
(𝑞𝑙 − 𝑞𝑘)− (𝑝𝑙 − 𝑝𝑘)

T𝛾
−1

4
(𝑝𝑙 − 𝑝𝑘) +

i

2
(𝑝𝑙 · 𝑞𝑘 − 𝑞𝑙 · 𝑝𝑘)

]︂
(2.29)
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which has a different phase compared to the expression to be used below for the HK propagator [67]

and is a product of the corresponding single-mode overlaps. The absolute value of the overlap of

two one-dimensional CSs as a function of 𝑞𝑘 and 𝑝𝑘 is plotted in Fig. 2.2. It reveals that, although

two arbitrary CSs have non-vanishing overlap, the overlap decreases exponentially with the distance

between the CSs.

Figure 2.2.: Absolute value of the overlap ⟨𝑧𝑘|𝑧𝑙⟩ of two one-dimensional CSs for fixed (𝑞𝑙, 𝑝𝑙) =
(1, 1) as a function of 𝑞𝑘 and 𝑝𝑘 with width parameter 𝛾 = 1.

In order to derive the CCS method from the numerically exact solution of the TDSE, we first

discuss the numerically exact solution of the TDSE by varying, without any approximation, both

𝑎𝑘(𝑡) as well as 𝑧𝑘(𝑡). This way, the partial differential TDSE is transformed into a set of coupled,

nonlinear ordinary differential equations. The time-evolution of the coefficients and the displacements

is governed by the Dirac-Frenkel variational principle [68–71]

⟨𝛿ΨM

CS
|i𝜕𝑡 − 𝐻̂|ΨM

CS
⟩ = 0, (2.30)

where the variation reads

⟨𝛿ΨM

CS
| =

𝑀∑︁
𝑘=1

⟨𝑧𝑘|
{︂
𝛿𝑎*𝑘 + 𝑎*𝑘

[︂(︂
−1

2
𝑧𝑘 + 𝑎̂

)︂
· 𝛿𝑧*

𝑘 − 1

2
𝑧*
𝑘 · 𝛿𝑧𝑘

]︂}︂
. (2.31)

The variation with respect to the displacements is most easily calculated from Eq. (2.20). All appear-
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ing variations are mutually independent. Thus the equations of motion read

⟨𝑧𝑘|i𝜕𝑡 − 𝐻̂|ΨM

CS
⟩ = 0, (2.32)

𝑎*𝑘⟨𝑧𝑘|𝑎̂
(︁
i𝜕𝑡 − 𝐻̂

)︁
|ΨM

CS
⟩ = 0, (2.33)

where Eq. (2.32) was obtained from the variations of the coefficients, Eq. (2.33) was obtained from

the variations of the displacements, where the first equation was used to simplify the second one.

By insertion of the explicit expression for the time-derivative of the Ansatz wavefunction

𝜕𝑡|ΨM

CS
⟩ =

𝑀∑︁
𝑙=1

{︂
𝑎̇𝑙 + 𝑎𝑙

[︂
−1

2
(𝑧𝑙 · 𝑧̇*

𝑙 + 𝑧̇𝑙 · 𝑧*
𝑙 ) + 𝑧̇𝑙 · 𝑎̂†

]︂}︂
|𝑧𝑙⟩, (2.34)

the equations of motion (2.32, 2.33) then read

i

𝑀∑︁
𝑙=1

⟨𝑧𝑘|𝑧𝑙⟩
[︁
𝑋𝑙 + 𝑎𝑙 (𝑧

*
𝑘 · 𝑧̇𝑙)

]︁
= ⟨𝑧𝑘|𝐻̂|ΨM

CS
⟩, (2.35)

i𝑎*𝑘

𝑀∑︁
𝑙=1

⟨𝑧𝑘|𝑧𝑙⟩
[︁
𝑧𝑙 {𝑋𝑙 + 𝑎𝑙 (𝑧

*
𝑘 · 𝑧̇𝑙)}+ 𝑎𝑙𝑧̇𝑙

]︁
= 𝑎*𝑘⟨𝑧𝑘|𝑎̂𝐻̂|ΨM

CS
⟩, (2.36)

where the definition

𝑋𝑙 := 𝑎̇𝑙 + 𝑎𝑙

[︂
−1

2
(𝑧𝑙 · 𝑧̇*

𝑙 + 𝑧̇𝑙 · 𝑧*
𝑙 )

]︂
(2.37)

was used. The above differential equations (2.35, 2.36) are the full variational equations of motion.

We call this method the Variational Coherent States (VCS) method. We note that the system of

coupled, highly nonlinear differential equations (2.35, 2.36) is identical to the one given in (34) and

(36) of [57]. The equivalence of Eq. (2.35) and Eq. (34) of [57] is obvious, whereas one needs the

identity

⟨𝑧𝑘|𝑎̂𝐻̂|ΨM

CS
⟩ =

𝑀∑︁
𝑙=1

𝑎𝑙⟨𝑧𝑘|𝑎̂𝐻̂|𝑧𝑙⟩ =
𝑀∑︁
𝑙=1

𝑎𝑙⟨𝑧𝑘|
{︁
𝐻̂𝑎̂+ [𝑎̂, 𝐻̂]

}︁
|𝑧𝑙⟩

=

𝑀∑︁
𝑙=1

𝑎𝑙⟨𝑧𝑘|

(︃
𝐻̂ord𝑎̂+

𝜕𝐻̂ord

𝜕𝑎̂†

)︃
|𝑧𝑙⟩

=

𝑀∑︁
𝑙=1

𝑎𝑙

(︂
𝑧𝑙𝐻ord +

𝜕𝐻ord

𝜕𝑧*
𝑘

)︂
⟨𝑧𝑘|𝑧𝑙⟩, (2.38)

with the normally ordered Hamiltonian, where all powers of 𝑎̂† precede those of 𝑎̂ [59], whose matrix

elements are given by [57]

⟨𝑧𝑘|𝐻̂ord|𝑧𝑙⟩ = 𝐻ord(𝑧
*
𝑘, 𝑧𝑙)⟨𝑧𝑘|𝑧𝑙⟩, (2.39)

in order to see the second equivalence. In the second equality of Eq. (2.38), we have used the relation
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for a normally ordered Hamiltonian (2.39),

[︁
𝑎̂, 𝐻̂

]︁
=
𝜕𝐻̂ord

𝜕𝑎̂† (2.40)

where also the left-hand side is normally ordered. This can most easily be argued by principle of

mathematical induction, by letting 𝐻̂ =
(︀
𝑎̂†)︀𝑛 without loss of generality. The proof is given in

Appendix A.

In Appendix B, we look at the dynamics under a 1D harmonic oscillator Hamiltonian. It turns

out that if the frequencies of the harmonic oscillator whose dynamics is to be studied and of the one

which is used for the construction of the basis are identical, uncoupled equations of motion

i𝑎̇𝑙 =
𝜔

2
𝑎𝑙 (2.41)

i𝑧̇𝑙 = 𝜔𝑧𝑙 (2.42)

do hold.

In the case that the Ansatz (2.16) is restricted to a single term, i.e.,𝑀 = 1, the equations of motion

(2.35, 2.36) reduce to (see also [57])

i𝑎̇ = 𝑎

[︂
𝐻ord(𝑧

*, 𝑧)− i

2
(𝑧̇ · 𝑧* − 𝑧 · 𝑧̇*)

]︂
, (2.43)

i𝑧̇ =
𝜕𝐻ord

𝜕𝑧* , (2.44)

the second of which is the complexified Hamilton’s equation and generically can only be solved nu-

merically. The first one is easily solvable formally and we get

𝑎(𝑡) = 𝑎(0) exp{i𝑆(𝑡)}, (2.45)

with the action-like expression

𝑆(𝑡) =

∫︁ 𝑡

0
d𝑡′
[︂
i

2
(𝑧̇ · 𝑧* − 𝑧 · 𝑧̇*)−𝐻ord

]︂
=

∫︁ 𝑡

0
d𝑡′
[︂(︂

𝑝 · 𝑞̇ − 𝑞 · 𝑝̇
2

)︂
−𝐻ord

]︂
. (2.46)

The single trajectory solution thus gained is the single frozen Gaussian method, in contrast to Heller’s

multiple frozen Gaussians [72], which we will discuss later in this chapter. The idea of the CCS

method now is to propagate all the coherent state parameters 𝑧𝑙(𝑡) in the Ansatz (2.16) according to

the classical equation and to keep the fully variational equations of motion for the coefficients 𝑎𝑙(𝑡)

[57]. By straightforward insertion of Eq. (2.44) equipped with index 𝑙 into Eq. (2.35), we get the

linear CCS differential equations for the coefficients

i

𝑀∑︁
𝑙=1

⟨𝑧𝑘(𝑡)|𝑧𝑙(𝑡)⟩𝑎̇𝑙(𝑡) =
𝑀∑︁
𝑙=1

𝐻̃𝑘𝑙(𝑡)𝑎𝑙(𝑡), (2.47)
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with the time-dependent matrix elements (even in the case of an autonomous Hamiltonian)

𝐻̃𝑘𝑙(𝑡) = ⟨𝑧𝑘(𝑡)|𝑧𝑙(𝑡)⟩

[︃
𝐻ord(𝑧

*
𝑘, 𝑧𝑙)−

1

2

(︂
𝑧𝑙(𝑡) ·

𝜕𝐻ord(𝑧
*
𝑙 , 𝑧𝑙)

𝜕𝑧𝑙
−
𝜕𝐻ord(𝑧

*
𝑙 , 𝑧𝑙)

𝜕𝑧*
𝑙

· 𝑧*
𝑙 (𝑡)

)︂
− 𝑧*

𝑘(𝑡) ·
𝜕𝐻ord(𝑧

*
𝑙 , 𝑧𝑙)

𝜕𝑧*
𝑙

]︃
, (2.48)

where we have used that 𝐻*
ord(𝑧

*
𝑙 , 𝑧𝑙) = 𝐻ord(𝑧𝑙, 𝑧

*
𝑙 ) = 𝐻ord(𝑧

*
𝑙 , 𝑧𝑙). The above equations (2.44, 2.47)

together with (2.48) are the CCS equations of motion. The special case of the harmonic oscillator is

treated explicitely in Appendix B. In the general case, due to the fact that the numerical effort of

matrix inversion scales cubically with the number of basis functions, we do not resolve the LHS of

(2.47) for the vector of coefficients by using the inverse overlap matrix at every time-step but solve the

equations with a non-trivial state-dependent mass matrix which is here given by the overlap matrix.

To minimize the coupling between the equations, usually, the coefficients are written as

𝑎𝑙(𝑡) = 𝑑𝑙(𝑡) exp{i𝑆𝑙(𝑡)}, (2.49)

with the action-like expression (2.46) and equation (2.47) is then rewritten for the slowly varying

pre-exponential factor 𝑑𝑙(𝑡). We note that the matrix corresponding to H̃ that emerges after the

transformation (2.49) is traceless. Herein, however, we refrain from doing so and refer the interested

reader to [57] and [73].

A few remarks concerning the usage of classical equations for the coherent state parameters seem in

order. Because classical trajectories move independently and never cross in phase space, the problems

encountered by coherent state parameters coalescing that had hampered their application for a long

time [74] is relieved. This, however, comes at the price of leaving the full variational realm, because in

numerical applications one has to start with a finite swarm of coherent states localized in a physically

relevant region of phase space initially. Because their centers move classically, there may be situations

(tunneling!) in which the CSs will not reach relevant regions at later stages, however. Furthermore,

also runaway trajectories as in the Henon-Heiles (HH) potential may be an issue in CCS calculations

[75]. A way to circumvent these issues would be to use quantum trajectories, calculated from Bohmian

mechanics, as has been proposed in the Quantum Trajectories Gaussian Bases method [76].

2.1.3. Static grid of coherent states

For anharmonic systems, also a static grid of CSs can be used [33]. To make the connection between

our present case and the one of Shalashilin and Child clear, we briefly review their approach.

The representation free form of the TDSE, i.e., Eq. (2.1) is used as the starting point. Projecting

on a coherent state on both sides and inserting unity in the form

1̂ =

∫︁
d2𝑓𝑧′

𝜋
|𝑧′⟩⟨𝑧′|, (2.50)
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on the right-hand side (RHS) leads to the integro-differential equation

i𝜕𝑡Ψ(𝑧, 𝑡) =

∫︁
d2𝑓𝑧′

𝜋
⟨𝑧|𝐻̂|𝑧′⟩Ψ(𝑧′, 𝑡), (2.51)

with Ψ(𝑧, 𝑡) = ⟨𝑧|Ψ(𝑡)⟩. In contrast to standard derivations of the TDSE in position or momentum

space, where the Hamilton matrix element is proportional to a 𝛿-function, here an integral remains.

This integral appearing on the RHS can now be discretized in principle but one has to be careful

and use Eq. (2.26) for the representation of the unit operator from the start. Then one ends up with

the system of coupled ordinary differential equations

i ˙̄𝑎𝑘(𝑡) =
∑︁
𝑙,𝑗

⟨𝑧𝑘|𝐻̂|𝑧𝑙⟩(Ω−1)𝑙𝑗 𝑎̄𝑗(𝑡), (2.52)

with the scalar products

𝑎̄𝑗(𝑡) = ⟨𝑧𝑗 |Ψ(𝑡)⟩. (2.53)

In a straightforward discretization of the integral in Eq. (2.51), without the use of (2.26), no inversion

of the overlap matrix would be necessary. This is, however, only a good approximation for very dense

grids of CSs (also termed tight frame [33, 77, 78]), something one wants to avoid in doing numerics (for

a large number of degrees of freedom), however. In order not to disturb the flow of the presentation,

we give the equations of motion for single degree of freedom for the tight frame case in Appendix C.

The equality of the reviewed approach with our Eq. (2.35) in the static case is now obvious. First

of all, using our Ansatz (2.16), we get (sub- and superscripts of the wavefunction dropped)

𝑎̄𝑘(𝑡) = ⟨𝑧𝑘|Ψ(𝑡)⟩ =
𝑀∑︁
𝑙=1

⟨𝑧𝑘|𝑧𝑙⟩𝑎𝑙(𝑡) =
𝑀∑︁
𝑙=1

Ω𝑘𝑙𝑎𝑙(𝑡) (2.54)

for the relation between the coefficients {𝑎𝑙} and the scalar products {𝑎̄𝑘}. The reverse relation is

𝑎𝑙(𝑡) =
𝑀∑︁
𝑗=1

(Ω−1)𝑙𝑗 𝑎̄𝑗(𝑡), (2.55)

which, together with the resolution of unity in Eq. (2.26) can be used to verify the Ansatz (2.16).

The two sets would be identical in the case of an orthonormal basis. The distinction between them is

of utmost importance in the later parts of this presentation.

Secondly, in the present case of static CSs, all time derivatives of the coherent state parameters are

zero and therefore Eq. (2.35) (as well as Eq. (2.47)) simplify to

i
𝑀∑︁
𝑙=1

⟨𝑧𝑘|𝑧𝑙⟩𝑎̇𝑙(𝑡) =
𝑀∑︁
𝑙=1

⟨𝑧𝑘|𝐻̂|𝑧𝑙⟩𝑎𝑙(𝑡), (2.56)
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which is equivalent to Eq. (2.52). The case of the harmonic oscillator is again treated in Appendix B.

Because the overlap matrix appearing above is time-independent in the present case, for numerical

purposes it is appropriate to rewrite the present equation in explicit (matrix) form (vector a contains

all 𝑀 coefficients 𝑎𝑙) as

i ȧ(𝑡) = Ω−1Ha(𝑡). (2.57)

If, in addition to the inverse overlap matrix, also the Hamilton matrix is time-independent, this linear

system of differential equations can, e.g., be solved by matrix exponentiation. In passing, we note that

the overlap matrix on the RHS of the equation above does not cancel out, because in the definition

of the Hamilton matrix elements (2.39), the multiplication is to be performed element-wise!

Finally, it is worthwhile to mention that the SCS method seems to be especially suited for imaginary

time propagation [79].

2.2. Semiclassical methods

Equation (2.1) can be solved exactly analytically only for a few very simple model systems [49].

The split-operator FFT method provides a straightforward numerical solution to the TDSE of high

accuracy. Since the number of grid points that are needed to desribe the wavefunction |Ψ(𝑡)⟩ increases
exponentially with the number of degrees of freedom of the system, a full numerical solution of the

TDSE is limited up to five or six degrees of freedom i.e., no bigger than the hydrogen molecule [80].

In order to describe the time evolution of large many-body systems, there exists a huge variety of

approximate methods like the MCTDH method [31, 32, 81] as well as the TDDFT [82]. Neverthe-

less, in both approaches approximations have to be made. In the former method, one has to make

assumptions for the potential, while the latter method is based on an effective, so-called Kohn-Sham

potential, which consists of some external, a Coulomb and an exchange-correlation potential. The

exchange-correlation potential is unknown and thus has to be approximated. Here we will focus on

methods that are based on semiclassical approximations to the full quantum propagator. Besides

the capability of semiclassical methods to treat large quantum systems, they can also help to gain a

better understanding of quantum dynamics in terms of classical mechanics, as the underlying physics

is based on classically propagated trajectories. However, in contrast to purely classical methods,

these classical trajectories carry phase information and thus can interfere with each other. Hence,

semiclassical methods contain so-called soft quantum effects like interference. However, there are also

attempts to approach hard quantum effects like tunneling via multiple-spawning of trajectories [83] or

propagation in imaginary time [84]. However, we will focus on real time propagation without trajec-

tory spawning since no tunneling problems are considered here. In this section, we will describe some

well-established semiclassical initial value methods that are widely used for numerical computations.

We will briefly touch the differences between boundary value problem based propagators such as the

VVG and initial value representations like the HK propagator.
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2.2.1. Herman-Kluk Propagator

The time-evolved wavefunction for an 𝑓 -dimensional system subject to Hamiltonian 𝐻̂(𝑡) in position

representation can be expressed as:

Ψ(x, 𝑡) =

∫︁
d𝑓𝑥′𝐾(x, 𝑡;x′, 0)Ψ(x′, 0) (2.58)

where the propagator

𝐾(x, 𝑡;x′, 0) = ⟨x|e−
i
~ 𝐻̂(𝑡)|x′⟩ (2.59)

is the matrix element of the time-evolution operator in position representation. In order for Ψ(x, 𝑡)

to be the exact solution of the TDSE (2.1), the propagator has to take the form of a functional

integral over all paths leading from initial position x(0) = (𝑥1(0), · · · , 𝑥𝑓 (0))T to final position x(𝑡) =

(𝑥1(𝑡), · · · , 𝑥𝑓 (𝑡))T

𝐾(x, 𝑡;x′, 0) =

∫︁ x(𝑡)=x

x(0)=x′
d[x] exp

{︂
i
S[x]

~

}︂
(2.60)

as shown by Feynman [35]. Assuming that the action functional 𝑆[x] of the classical path is much larger

than ~, the rapidly oscillating integrand in (2.60) can be evaluated in stationary phase approximation

around this classical path. Van Vleck [85] first found a semiclassical approximation of the quantum

mechanical propagator and later on it was generalized and modified by Gutzwiller [86]

𝐾𝑉 𝑉 𝐺(x, 𝑡;x′, 0) =

(︂
1

2𝜋i~

)︂− 𝑓
2 ∑︁

𝑗

[︂
det

(︂
𝜕2𝑆𝑗
𝜕x𝜕x′

)︂]︂ 1
2

exp

{︂
i

~
𝑆𝑗 [x,x

′, 𝑡]− i𝜋
𝜈j
2

}︂
(2.61)

where the sum runs over all classical paths (trajectories) going from x′ to x in time from 0 to 𝑡.

𝑆𝑗 [x,x
′, 𝑡] is the classical action and 𝜈𝑗 is the so-called Maslov index which counts the number of

caustics of every trajectory. A typical derivation of the Van Vleck-Gutzwiller propagator is based on

the expansion of the action functional in the exponent of the Feynman path integral up to the second

order in stationary phase approximation [87]. There are, however two things that make it difficult to

evaluate this expression. First is the root search in order to solve the boundary value problem that is

increasingly hard to solve as the number of degrees of freedom gets bigger. Second, since the action

derivative fulfills

𝜕2𝑆𝑗
𝜕x𝜕x′

= −𝜕p
′

𝜕x
, (2.62)

this expression becomes singular at points where 𝜕x/𝜕p′ = 0. Fortunately, both issues can be resolved

elegantly by expressing the original propagator from Eq. (2.58) in terms of coherent states by inserting

unity twice. Then one can use the semiclassical expression for the coherent state propagator and finally

evaluate the integration over final positions in another stationary phase approximation [36] to arrive
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at the Herman-Kluk propagator [37]

𝐾𝐻𝐾(x, 𝑡;x′, 0) =

∫︁
d𝑓𝑝d𝑓𝑞

(2𝜋~)𝑓
⟨x|z (p𝑡,q𝑡)⟩𝑅 (p,q, 𝑡) e

i
~𝑆(p,q,𝑡)⟨z (p,q) |x′⟩. (2.63)

This expression now only depends on initial phase space points making it an initial value representation

of the propagator instead of the boundary value problem encountered earlier. Here the phase space

integration is performed over initial conditions which serve as the starting points for trajectories

that are propagated in time numerically via symplectic integration discussed in Appendix D. These

classical trajectories are represented as Gaussian wavepackets (GWPs) which are coherent states in

position representation given as

⟨x|z (p𝑡,q𝑡)⟩ =
(︂
det𝛾

𝜋𝑓

)︂ 1
4

exp

{︂
− (x− q𝑡)

T 𝛾

2
(x− q𝑡) +

i

~
pT
𝑡 (x− q𝑡)

}︂
(2.64)

As the width parameters of the GWPs remain fixed throughout the propagation, it is also referred to

as “Frozen Gaussians”, originally discussed in the present context by Heller [72]. The classical action

no longer depends on path from initial to final position, but only depends on the initial conditions

and therefore becomes

𝑆 (p,q, 𝑡) =

∫︁ 𝑡

0
𝐿d𝑡′ =

∫︁ 𝑡

0
[p𝑡′ · q̇𝑡′ −𝐻] d𝑡′ (2.65)

where 𝐿 is the classical Lagrangian of the system. The HK determinantal prefactor, which ensures

the appropriate normalization of the final expression for the HK propagator is given by

𝑅 (p,q, 𝑡) =
1

2𝑓/2

(︃
det

{︂
m11 + 𝛾m22𝛾

−1 − i~𝛾m21 −
1

i~
m12𝛾

−1

}︂)︃ 1
2

, (2.66)

where m11,m12,m21 andm22 are the elements of the so-called monodromy (or stability) matrix M

[49],

M =

(︃
m11 m12

m21 m22

)︃
=

(︃
𝜕p𝑡
𝜕pᵀ

𝜕p𝑡
𝜕qᵀ

𝜕q𝑡
𝜕pᵀ

𝜕q𝑡
𝜕qᵀ

)︃
. (2.67)

This stability matrix M describes the time-evolution of the dependence of a classical trajectory on

its initial conditions and can be obtained by solving linearized Hamilton equations as reviewed in

Appendix D. A wavefunction propagated with the HK propagator can be regarded as a sum of Gaus-

sians centered around the final points of classically propagated trajectories. Each of these Gaussians

are weighted by the overlap of the initial wavefunction and Gaussians centered at the corresponding

initial phase space points.
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Figure 2.3.: Sketch of HK semiclassical propagation from [88]; Red: initial wavepacket |Ψ𝑖⟩, Black:
coherent states at initial phase space points, Blue: coherent states at final phase space points forming
the final wavefunction |Ψ(𝑡)⟩.

The HK propagator is related to the original VVG propagator via stationary phase approxiamtion

[89]. Moreover, the HK method is more accurate and a uniform semiclassical method [90] i.e., it

becomes exact as ~ → 0 uniformly. This goes along with the advantage that HK method does not

exhibit singularities at caustics as is the case for VVG propagator. The problem of counting these

caustics in order to obtain the right Maslov index in the VVG propagator is replaced by ensuring

the continuity of the determinantal prefactor 𝑅 (p,q, 𝑡) by switching between both Riemann surfaces

of the square root function appropriately while propagating each trajectory [38]. The propagated

wavefunction Ψ(x, 𝑡) can be expressed as

Ψ(x, 𝑡) =

∫︁
d𝑓𝑝d𝑓𝑞

(2𝜋~)𝑓
⟨x|z (p𝑡,q𝑡)⟩𝑅 (p,q, 𝑡) e

i
~𝑆(p,q,𝑡)⟨z (p,q) |Ψ𝛼 (0)⟩ (2.68)

where the initial wavefunction |Ψ𝛼 (0)⟩ is centered at (p𝛼,q𝛼) and has the same width parameters

as the propagator wavepackets. The necessary numerical phase space integration can be done very

efficiently using the Box Muller algorithm [55] in order to sample the initial phase space points

weighted with the overlap ⟨z (p,q) |Ψ𝛼 (0)⟩ which emerges after a Gaussian integration as

⟨z (p,q) |Ψ𝛼 (0)⟩ = exp

(︂
− 1

4
(q− q𝛼)

ᵀ 𝛾 (q− q𝛼)−
1

4~2
(p− p𝛼)

ᵀ 𝛾−1 (p− p𝛼)

+
i

2~
(q− q𝛼)

ᵀ (p+ p𝛼)

)︂
. (2.69)

Finally we would like to mention that the HK propagator conserves unitarity in the semiclassical limit

[91].

2.2.2. Thawed Gaussian Wavepacket Dynamics

The multi-trajectory HK approach can become computationally enormously costly in situation where

classical chaos prevails [92], and therefore there is another semiclassical method known as Thawed

Gaussian Wavepacket Dynamics which is based on the propagation of only a single-trajectory and

hence involving a smaller computational effort. This single-trajectory approach was introduced by
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Heller [93, 94] and can be directly derived from the HK wavefunction. Recalling that the expres-

sion for a propagated wavefunction in Eq. (2.68) contains a phase space integration which can also

be performed approximately analytically, one can derive Heller’s TGWD from HK. Let the initial

wavefunction Ψ𝛼 (x, 0) is centered around (p𝛼,q𝛼) with width parameter matrix 𝛾𝛼. The overlap of

Ψ𝛼 (x, 0) with the coherent state centered around (p,q) in Eq. (2.68) reads

⟨z (p,q) |Ψ𝛼 (0)⟩ =
∫︁

d𝑓𝑥′⟨z (p,q) |x′⟩⟨x′|Ψ𝛼 (0)⟩

= 4𝑓/4
(det(𝛾𝛾𝛼))

1
4√︀

det(𝛾 + 𝛾𝛼)
exp

(︂
− 𝛾𝛾𝛼

2
(𝛾 + 𝛾𝛼)

−1 (q− q𝛼)
2

− 1

2~2
(𝛾 + 𝛾𝛼)

−1 (p− p𝛼)
2 +

i

~
(𝛾 + 𝛾𝛼)

−1 (q− q𝛼) (𝛾𝛼p+ 𝛾p𝛼)

)︂
= exp

(︂
− 1

4
(q− q𝛼)

ᵀ 𝛾 (q− q𝛼)−
1

4~2
(p− p𝛼)

ᵀ 𝛾−1 (p− p𝛼)

+
i

2~
(q− q𝛼)

ᵀ (p+ p𝛼)

)︂
. (2.70)

In the last equality of the above equation we assume that both Gaussians have the same width

parameter matrix i.e., 𝛾 = 𝛾𝛼. The more general case can also be dealt with analytically but leads

to a less transparent final result. In order to derive TGWD from the HK propagator as applied to an

initial Gaussian wavepacket, a second order expansion of the exponent together with a zeroth order

expansion of the prefactor around the center (p𝛼,q𝛼) is made. This is explicitly shown in appendix

C of [67]. There in the Gaussian expansion approximation, the action is expanded up to a second

order around the initial center (p𝛼,q𝛼) of the wavepacket to be propagated while keeping first order

expansions for the final momentum and position (p𝑡,q𝑡). After performing the Gaussian integration

analytically, one gets a wavefunction in terms of a single trajectory

Ψ𝛼(x, 𝑡) =

(︂
det𝛾

𝜋𝑓

)︂ 1
4

(det(m22 + i~m21𝛾))
− 1

2 exp

(︂
−
(︀
x− q𝛼,𝑡

)︀T
𝛾𝑡

(︀
x− q𝛼,𝑡

)︀
+

i

~
pT
𝛼,𝑡

(︀
x− q𝛼,𝑡

)︀
+

i

~
𝑆 (p𝛼,q𝛼, 𝑡)

)︂
(2.71)

where p𝛼,𝑡 = p(p𝛼,q𝛼, 𝑡) and q𝛼,𝑡 = q(p𝛼,q𝛼, 𝑡). 𝛾𝑡 is the time-dependent 𝑓 × 𝑓 inverse width

parameter matrix given as

𝛾𝑡 = 𝛾

(︂
m11 +

1

i~𝛾
m12

)︂
(m22 + i~𝛾m21) (2.72)

In contrast to the HK expression (2.68), this expression is given in terms of just one single trajectory

with initial conditions according to the center of the initial Gaussian. The Gaussian form of the

wavepacket is retained throughout the propagation, only the position and the width change in time.

This is the reason why the more simple single Gaussian method is called the “thawed” Gaussian

wavepacket dynamics, whereas the more complex, multiple Gaussian HK method is referred to as the
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“frozen” Gaussian wavepacket dynamics of Heller [72]. TGWD is exact for potentials that are at most

quadratic [93]. However, due to the additional approximation which was applied to obtain Eq. (2.71),

TGWD is obviously less accurate than HK approximation applied to an initial Gaussian wavepacket.

2.2.3. Linearized Semiclassical Initial Value Representation

Before leaving the discussion of the different methods to solve the TDSE, it is worthwhile to mention

recent progress on the calculation of correlation functions. In this final subsection on semiclassical

methods, we will present one last HK-based method that will serve as a classical comparison to

semiclassical results, the so-called Linearized Semiclassical Initial Value Representation introduced by

Sun, Wang and Miller [42–46] (also known as classical Wigner dynamics [40, 41]). The general time

correlation function of two arbitrary operators 𝐴 and 𝐵̂ is of the form

𝐶𝐴𝐵 (𝑡) = Tr
[︁
𝐴𝐵̂(𝑡)

]︁
= Tr

[︁
𝐴e

i
~ 𝐻̂𝑡𝐵̂e−

i
~ 𝐻̂𝑡
]︁

(2.73)

where the operator 𝐴 represents the initial state, whereas the Heisenberg time-evolved operator

𝐵̂(𝑡) := e
i
~ 𝐻̂𝑡𝐵̂e−

i
~ 𝐻̂𝑡 (2.74)

defines the measure of interest. By using a form of the semiclassical evolution operator different from

the HK expression [45], expanding the exponent to second order and integrating over the difference

variables of the forward and backward trajectories, one obtains an expression for the LSC-IVR of the

time correlation function [42]

𝐶𝑊
𝐴𝐵 (𝑡) =

∫︁
d𝑓𝑝d𝑓𝑞

(2𝜋~)𝑓
𝐴𝑊 (p,q)𝐵𝑊 (p𝑡,q𝑡) , (2.75)

where 𝐴𝑊 (p,q) and 𝐵𝑊 (p𝑡,q𝑡) are the Wigner-Weyl transforms of operators 𝐴 and 𝐵̂ and (p𝑡,q𝑡)

are classically time-evolved phase space points (trajectories). The Wigner-Weyl transform 𝐴𝑊 (p,q)

is defined as

𝐴𝑊 (p,q) =

∫︁
d𝑓Δ𝑞e−ipΔq~

⟨
q+

Δq

2

⃒⃒⃒⃒
𝐴

⃒⃒⃒⃒
q− Δq

2

⟩
. (2.76)

Since the Wigner transforms are real functions, the expression for the time correlation function in Eq.

(2.75) does not contain any phases and thus no interference terms. Hence, this method is known as

the classical Wigner method.

There is another semiclassical work by Antipov, Ye and Ananth [47], which we will be discussed in

detail in Chapter 4, based on Husimi transforms as

𝐴𝐻 (p,q) = ⟨z(p,q)|𝐴|z(p,q)⟩. (2.77)

The corresponding linearized version of the correlation function for a large class of relevant operators
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is then given as

𝐶𝐻
𝐴𝐵 (𝑡) =

∫︁
d𝑓𝑝d𝑓𝑞

(2𝜋~)𝑓
𝐴𝐻 (p,q)𝐵𝐻 (p𝑡,q𝑡) , (2.78)

whereas in general, if to be determined semiclassically, a double phase space integral (double HK)

has to be dealt with. In Chap. 4, we discuss a slightly corrected Husimi version of the linearized

semiclassical initial value representation for the survival probability where

𝐴 = 𝐵̂ = |Ψ𝛼⟩⟨Ψ𝛼|, (2.79)

are both projection operators. These linearized versions do not contain complex-valued exponen-

tials any more. More quantum are so-called forward-backward semiclassical approximations to the

correlation functions, developed by Makri, Miller and coworkers [95, 96].





3. Comparison of different numerical methods

In this chapter, we will numerically compare the different methods to solve the TDSE which we already

discussed in the previous chapter. Here we take a pure one-dimensional Morse oscillator as our model

potential to make the numerical case study. This is a nonlinear model system used frequently to

describe the anharmonic oscillations in a diatomic molecule and has been investigated using CSs by

Heather and Metiu [97, 98] as well as by Shalashilin and Child [33] and using HK methodology, among

others, by Wang and Heller [99], who have focused on the interference nature of wavefunction revivals.

But before that, we will discuss some of the model potentials that have been studied earlier using CSs.

In the very last section of this chapter, we will provide discussion about some of the very common

potentials and their hamiltonian matrix elements that is used in calculating CCS equations of motion

in order to study the quantum dynamics.

3.1. Model potentials and observables

An analytically given potential that has been dealt with using CSs early on is the 1D Brickmann-

Russegger potential [100, 101], which is a linear combination of a Morse and a harmonic potential. In

this case, for the same number of trajectories, HK results are much better converged than the other

four semiclassical results1 considered in [38]. Early applications of the HK method to the nonlinear HH

model [102] have been given by Walton and Manalopoulos [103] and to the Porter-Karplus potential

for the hydrogen exchange reaction [104] by Frank Grossmann and his coworkers [105, 106]. Later on,

the Secrest-Johnson scattering potential [107] has again been used by Grossmann in a HK application

[67] and the HH-problem has been treated with CCS by Shalashilin and Child [108] and with variable

multi-configurational gaussian (vMCG) method by Worth and Burghardt [109]. Also double-well

tunneling has been studied with CCS [108]. For this and also other tunneling problems, a single

bare HK propagation in general is not sufficient. As shown by Mandelshtam and Ovchinnikov, the

calculation of a correlation function matrix is necessary to extract tunneling splittings from a HK

calculation [110]. Tanaka has used a folding Hamiltonian to inspect the boundary between so-called

deep and shallow tunneling [111] in a HK approach and Moix and Pollak have studied the dynamics

in a modified corrugated Morse potential in 2D using different methods, among them the HK method

[112].

Electronic motion has been successfully tackled using the HK propagator for the hydrogen problem

[113, 114] and soft-core as well as short-range variants thereof [115, 116]. Furthermore, Helium [117]

1which are smoothed van Vleck, Fourier transform of the momentum space propagator, a combination of both, as well
as the thawed Gaussian approximation propagator

27
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and the Coulomb repulsion have been treated semiclassically using HK [118, 119] as well as frozen

Gaussians [120]. For fermionic many-particle systems, also CCS calculations have been published

[121, 122]. It turns out that the Coulomb singularity is smoothed naturally by considering a classical

dynamics with the ordered Hamiltonian of Eq. (2.39).

In addition, the single site Bose-Hubbard model [123] and the chaotic dynamics in different coupled

quartic oscillator systems [92, 124, 125], even with coupling to an external driving field [126] and,

more recently, the coserf-map [127] have been studied with the HK propagator. Frozen Gaussians

have been used to study pump-probe spectroscopy [128] and, furthermore, combined electron-nuclear

(non-adiabatic) dynamics has been tackled with the HK propagator [95, 129, 130], as well as with

ab initio multiple spawning [131, 132], CCS [133] and different variants of vMCG [134, 135], to list

only a few examples. Also (standard) thawed Gaussians have shown their potential in a study of

the decay of electronic coherences in polyatomic systems [136], whereas off-center thawed Gaussians

showed unexpected long-time accuracy for the stadium billard [137, 138].

The number of more complex models and systems whose quantum dynamics have been investigated

using CSs is so large that we refer to some original papers [89, 95, 133, 139, 140]. For a lot of degrees

of freedom, as it is the case if a molecular vibration is coupled to phonons in a surrounding host,

the combination of HK with more crude semiclassical methods seems to be promising [17, 141–143].

A closely related approach to VCS, the multi Davydov-Ansatz, is frequently employed in spin-boson

type of problems [144, 145].

3.1.1. The Morse oscillator and its Hamiltonian matrix

The Hamilton function for the Morse potential, in case of unit mass, is given by

𝐻 = 𝑇 + 𝑉𝑀 =
𝑝2

2
+ 𝑉𝑀 . (3.1)

In Figure 3.1 a pictorial representation of the Morse potential

𝑉𝑀 = 𝐷(1− e−𝛼x)2, (3.2)

where

𝑥 = 𝑅−𝑅0 (3.3)

is given. 𝐷 is the dissociation energy, which depicts the binding energy of a diatomic molecule (with

equilibrium distance 𝑅0 and internuclear separation 𝑅). 𝛼 is the range parameter which controls the

width of the potential. The larger the constant 𝛼, the less harmonic is the potential.
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Figure 3.1.: Morse potential 𝑉𝑀 with dissociation energy 𝐷, equilibrium distance 𝑅0, internuclear
separation 𝑅 and range parameter 𝛼.

Using the correspondence principle, we then replace position as well as momentum by the corre-

sponding operators and then the Hamiltonian looks like

𝐻̂ =
𝑝2

2
+𝐷(1− e−𝛼x̂)2 (3.4)

To make progress, position and momentum operators are expressed via creation and annihilation

operators of the harmonic oscillator in Eq. (2.18) (𝜔 = 𝛾 in the present units and ~ = 1), via

𝑥̂ =
1√
2𝛾

(𝑎̂† + 𝑎̂), 𝑝 = i

√︂
𝛾

2
(𝑎̂† − 𝑎̂). (3.5)

Using the fundamental commutation relation

[𝑎̂, 𝑎̂†] = 1̂, (3.6)

the normal ordered form of the kinetic energy operator is found to be

𝑇ord(𝑎̂
†, 𝑎̂) =

1

2
𝑝2 = −𝛾

4
(𝑎̂† − 𝑎̂)2 = −𝛾

4

[︁
(𝑎̂†)2 − 2𝑎̂†𝑎̂− 1 + 𝑎̂2

]︁
(3.7)
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and the normal ordered form of the potential energy is

𝑉ord(𝑎̂
†, 𝑎̂) = 𝐷

(︁
1− 2e𝛼

2
1/2e−𝛼1𝑎̂†e−𝛼1𝑎̂ + e2𝛼

2
1e−2𝛼1𝑎̂†e−2𝛼1𝑎̂

)︁
, (3.8)

where the abbreviation 𝛼1 = 𝛼/
√
2𝛾 as well as the Zassenhaus formula [49] have been used. We note

that the final expression cannot be written in terms of a single square any more.

Now the matrix elements of the Hamilton operator between CSs can be calculated from Eq. (2.39)

with Eq. (2.29) for the overlap and with

𝐻ord(𝑧
*
𝑘, 𝑧𝑙) = −𝛾

4
[(𝑧*𝑘 − 𝑧𝑙)

2 − 1]

+ 𝐷
(︁
1− 2e𝛼

2
1/2e−𝛼1(𝑧*𝑘+𝑧𝑙) + e2𝛼

2
1e−2𝛼1(𝑧*𝑘+𝑧𝑙)

)︁
. (3.9)

This expression is needed in the CCS and SCS approaches. It could also have been derived using the

differential calculus employed in Theorem II on page 142 of [59]. There one replaces 𝑎̂ by 𝑧 + 𝜕/𝜕𝑧*

and 𝑎̂† by 𝑧* and applies the expression to the unit operator to arrive at the matrix elements of the

normal form of an operator.

A collection of 𝑉ord for the Morse case just discussed and the harmonic and quartic case is given in

Section 3.3.

3.1.2. Classical equations of motion for a single CS

Also the derivatives appearing in Eq. (2.38) can now be evaluated explicitly, yielding

𝜕𝑇ord
𝜕𝑎̂†

= −𝛾
2
(𝑎̂† − 𝑎̂), (3.10)

𝜕𝑉ord
𝜕𝑎̂†

= 2𝐷𝛼1

[︁
e𝛼

2
1/2e−𝛼1𝑎̂†e−𝛼1𝑎̂ − e2𝛼

2
1e−2𝛼1𝑎̂†e−2𝛼1𝑎̂

]︁
. (3.11)

The equation of motion that is following in the case of 𝑀 = 1 is the one that is used in the CCS

method (but again for many CSs) and reads

i𝑧̇ =
𝜕𝐻ord(𝑧

*, 𝑧)

𝜕𝑧*

= −𝛾
2
(𝑧* − 𝑧) + 2𝐷𝛼1

[︁
e𝛼

2
1/2e−𝛼1(𝑧*+𝑧) − e2𝛼

2
1e−2𝛼1(𝑧*+𝑧)

]︁
. (3.12)

Using the definition (2.17) of the complex displacement, the real and imaginary part can be disentan-

gled and we get modified Hamilton’s equations

𝑞 = 𝑝, (3.13)

𝑝̇ = −2𝐷𝛼
(︁
e𝛼

2/4𝛾e−𝛼𝑞 − e𝛼
2/𝛾e−2𝛼𝑞

)︁
, (3.14)

where the last equation is slightly different from the purely classical equation of motion

𝑝̇ = −2𝐷𝛼
(︀
e−𝛼𝑞 − e−2𝛼𝑞

)︀
, (3.15)
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that one gets by evaluating the Hamilton matrix element in between position states instead of coherent

states. That latter equation is used in the HK case.

3.1.3. Potential parameters, time scales, initial state, and observables

For the following numerical results we used the parameters also used by Wang and Heller in their

revival study [99]. There the potential parameters were

𝐷 = 150, 𝛼 = 0.288, (3.16)

leading to

𝜔M =
√
2𝐷𝛼 ≈ 5 (3.17)

for the frequency of (harmonic) oscillations around the minimum of the potential (to be distinguished

from the harmonic oscillator frequency 𝜔 = 𝛾 that appears in the coherent state basis!). The corre-

sponding classical period is given by

𝑇cl = 2𝜋/𝜔M = 2𝜋/(
√
2𝐷𝛼) ≈ 2𝜋/5. (3.18)

In most calculations using one of the methods discussed so far, Gaussian wavepackets with the same

width parameter as the coherent state are used as initial states. This is due to the fact that molecular

ground states are very close to Gaussian, but it is not a principle restriction of the methods. Other

initial states (e.g., also Gaussians with different width parameters than the coherent states) can be

expanded in terms of the CSs, resulting in the fact that more than a single 𝑎-coefficient is nonzero

initially for the CCS and SCS cases. The initial wavepacket used in the following 1D study is given

by

Ψ(𝑥, 0) =
(︁𝛾
𝜋

)︁1/4
exp

{︁
−𝛾
2
(𝑥− 𝑞𝛼)

2 + i𝑝𝛼(𝑥− 𝑞𝛼)
}︁

(3.19)

and is localized on the soft side of the potential around 𝑞𝛼 = 3.5, with zero initial momentum and with

initial width parameter 𝛾 = 4, that we choose to be identical to the harmonic oscillator’s frequency,

that defines the coherent states. The phase convention for the Gaussian is irrelevant in the present

case of 𝑝𝛼 = 0. Furthermore, the classical energy at the phase space center of the wavepacket is

𝐸𝛼 = 𝐻(𝑝𝛼, 𝑞𝛼) ≈ 60.5. For the oscillation period of a particle with this specific energy, one finds the

local period 𝑇loc = 2𝜋/𝜔loc ≈ 1.63, where the local frequency 𝜔loc = 𝜔M

√︀
1− 𝐸𝛼/𝐷 was used [146].

Quantities to be monitored during the dynamics can be expectation values of position and momen-

tum and their respective variances or the kinetic or potential energy. It is most appropriate to use

Eq. (2.16) for the wavefunction to express expectation values in the form

⟨𝐴⟩(𝑡) = ⟨Ψ(𝑡)|𝐴|Ψ(𝑡)⟩ =
∑︁
𝑘,𝑙

𝑎*𝑘(𝑡)⟨𝑧𝑘(𝑡)|𝑧𝑙(𝑡)⟩𝐴ord(𝑧
*
𝑘, 𝑧𝑙)𝑎𝑙(𝑡), (3.20)
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with the ordered form of the operator written in terms of creation and annihilation operators (see,

e.g., Eq. (2.39) for the Hamiltonian).

Especially in the HK case, which needs a sizeable number of trajectories for convergence, the double

sum appearing in the expectation values makes these objects hard to calculate. Therefore, the quantity

of interest in the following section is the autocorrelation function

𝑐(𝑡) = ⟨Ψ(0)|Ψ(𝑡)⟩ =
∑︁
𝑙

𝑎𝑙(𝑡)⟨Ψ(0)|𝑧𝑙(𝑡)⟩ =
𝑀∑︁

𝑘,𝑙=1

𝑎*𝑘(0)⟨𝑧𝑘(0)|𝑧𝑙(𝑡)⟩𝑎𝑙(𝑡) (3.21)

that will be followed up to the first full revival time,

𝑇rev = 2𝜋/𝛼2 (3.22)

which, in the present case, is close to 60 times the classical period of the Morse oscillator. The absolute

value squared of 𝑐(𝑡) is the survival probability.

Before turning to the numerical calculation of the autocorrelation, we briefly review the solution of

the dynamical problem by using the solution of the time-independent Schrödinger equation (TISE)

for the Morse oscillator given in Appendix E. For the time-evolution of the autocorrelation of the

initial state from above one can then write

⟨Ψ(0)|Ψ(𝑡)⟩ =
∑︁
𝑛

|𝑑𝑛|2e−i𝐸𝑛𝑡, (3.23)

with the energies 𝐸𝑛 and overlaps 𝑑𝑛 given by equation (E.6), respectively (E.7) in Appendix E.

We now compare the results for the analytical autocorrelation gained in such a way with another

calculation that uses a purely Gaussian overlap centered around 𝑛0 = 14 (see the red curve in Fig.

E.1) and “artificial” energies that are also centered around the same value, according to

𝐸𝑛 = 𝜔M (𝑛− 14)− 𝛼2

2
(𝑛− 14)2 , (3.24)

similar to the procedure in [147]. We stress that these energies are different from the Morse ones given

in Appendix E. The results are displayed in Fig. 3.2. We can see that the two results both display

fractional and full revivals at similar times but for the “artificial” solution based on energies centered

around 𝑛0 = 14, the overlap shows a faster initial oscillation with the classical period, whereas the

Morse solution oscillates with the local period, as expected from the motion of a classical particle

starting with a large initial excitation.
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Figure 3.2.: Comparison of two different analytical autocorrelation time series (absolute value is
displayed). The faster oscillating (dotted orange) curve uses artificial eigenvalues, whereas the slower
oscillating (solid blue) curve uses the true Morse eigenvalues.

Before continuing with the numerical result, we stress that, in the case based on the energies from

(3.24), the sum in (3.23) can be performed analytically using the Poisson sum formula according to

𝑐(𝑡) =
+∞∑︁

𝑛=−∞
e−

𝑛2

𝛿𝑛2 e−iEnt

=
+∞∑︁

𝑘=−∞

∫︁
d𝜂e2𝜋ik𝜂e−

𝜂2

𝛿𝑛2 e
−i

(︁
𝜔M𝜂−𝛼2

2
𝜂2

)︁
t

=

√
2𝜋√︀
𝛼̃(𝑡)

+∞∑︁
𝑘=−∞

e−(𝜔M𝑡−2𝑘𝜋)2/2𝛼̃(𝑡) (3.25)

with 𝛼̃(𝑡) = −i𝛼2t + 2
𝛿n2

. Using the definition of time scales in (3.18) and (3.22), we get

𝑐(𝑡) =
1√︀
𝛼(𝑡)

+∞∑︁
𝑘=−∞

e−𝜋[𝑡/𝑇cl−𝑘2]/𝛼(𝑡) (3.26)

with 𝛼(𝑡) = i t
Trev

+ 1
𝜋𝛿n2

. Looking at times 𝑡 = 𝑇𝑟𝑒𝑣, we get 𝛼(𝑡) = i + 1
𝜋𝛿n2

and |𝛼(𝑡)| ≈ 1 and thus

𝑐(𝑡 ≈ 𝑇𝑟𝑒𝑣) ∝
+∞∑︁

𝑘=−∞
e−i𝜋[t/Tcl−k]2e−[𝑡/𝑇𝑐𝑙−𝑘2]/𝛿𝑛2

(3.27)

The second term limits the sum to 𝑘 ≈ 𝑘0 = nint
(︁
𝑇𝑟𝑒𝑣
𝑇𝑐𝑙

)︁
and for 𝑡 =

(︀
𝑘0 +

1
2

)︀
𝑇𝑐𝑙 and with 𝑘 = 𝑘−𝑘0,



34 3.2 Numerical Case Study

we find

𝑐(𝑡 ≈ 𝑇𝑟𝑒𝑣) ∝
∑︁
𝑘

ei𝜋[k̃+
1
2 ]

2

= · · · ei𝜋/4 + ei𝜋/4 + ei𝜋/4 · · · (3.28)

which is a sum of equal terms, explaining the appearance of revivals.

3.2. Numerical Case Study

After the introduction of the model and its parameters, the methods from chapter 2 like the CCS,

SCS and HK will first be discussed with respect to the complexity of the underlying equations as well

as the initial choice of the coherent state parameters and, apart from TGWD, will be applied to the

revival dynamics. In Table 3.1, we compare the nature of the ordinary differential equations to be

solved. For increasing degree of approximation, the equations become less coupled and less nonlinear.

A related table can be found in [57].

Where appropriate and known to us, we will also discuss the scaling of the numerical effort of the

methods with respect to the number of basis function (i.e., on the degrees of freedom). We start with

the method with the highest degree of approximation. Not taking into account any variant of TGWD

in this section, this is the HK method.

3.2.1. HK results and FFT benchmark

Our benchmark here and in all other cases will be a numerically exact solution of the TDSE on a

position space grid using the split-operator fast Fourier transform (FFT) technique discussed in 2.1.1,

where one switches between position and momentum grid to ease propagation. For converged results,

we used a grid of 128 points extending from 𝑥min = −5 to 𝑥max = 10 and time-steps of Δ𝑡 = 0.01.

The FFT results in Fig. 3.3 coincide with the analytical ones from the previous section and display

an initial oscillation with the local period. Then the oscillation becomes twice faster and fractional

revivals can be observed whereas around the full revival the local period sets in again.

The necessary numerical phase space integration for the HK method can be made very efficiently

Methods 𝑎𝑖(𝑡) 𝑧𝑖(𝑡)

VCS Nonlinear, coupled to all 𝑧𝑖 and 𝑎𝑗 Nonlinear, coupled to all 𝑎𝑖 and 𝑧𝑗
CCS Linear, time-dependent coeff., coupled Nonlinear, uncoupled
SCS Linear, constant coeff., coupled Stationary
HK Linear, uncoupled Nonlinear, uncoupled
TGWD n/a One nonlinear equation

Table 3.1.: Nature of ordinary differential equations for the different methods in the case of a generic
(non harmonic oscillator), time-independent Hamiltonian. “Uncoupled” indicates that equations of
motion with different index do not talk to each other (no “inter-coupling”). In the HK case the
equations of motion for a specific 𝑎𝑖 is, however, coupled to the 𝑧𝑖 with the same index (“intra-
coupling”)
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using the Box-Muller algorithm [148] based on pseudo-random numbers [55], as proposed in [101] and

[38] and calculated the time-evolved wavefunction

|Ψ𝛼(𝑡)⟩ =
2

𝑀

𝑀∑︁
𝑙=1

𝑏̄𝑙(𝑡)|𝑧𝑙(𝑡)⟩, (3.29)

where 𝑀 is the multiplicity (or the number of propagated trajectories) and where

𝑏̄(𝑡) = 𝑎̄(𝑡)𝐹−1, (3.30)

as well as

𝑎̄(𝑡) = 𝑅 (𝑝, 𝑞, 𝑡) e
i
~𝑆(𝑝,𝑞,𝑡)⟨𝑧 (𝑝, 𝑞) |Ψ𝛼 (0)⟩. (3.31)

Here the sampling function 𝐹 is part of the overlap of the initial Gaussian centered at (𝑝𝛼, 𝑞𝛼) with

the coherent states i.e., ⟨𝑧 (𝑝, 𝑞) |Ψ𝛼 (0)⟩

𝐹 = exp

[︂
−𝛾
4
(𝑞 − 𝑞𝛼)

2 − 1

4𝛾~2
(𝑝− 𝑝𝛼)

2

]︂
= exp

[︀
−𝛼̃|𝑧 − 𝑧𝛼|2

]︀
(3.32)

which is the absolute value (real part) of (2.69) and which corresponds to the special case of com-

pression parameter 𝛼̃ equal to 1/2 in Eq. (8) of [75]2. The trajectories are thus initially close to

the support of the initial wavefunction, centered around (𝑝𝛼, 𝑞𝛼) and at 𝑡 = 0 all the corresponding

coefficients

𝑏̄(0) = exp

[︂
i

2~
(𝑞 − 𝑞𝛼)(𝑝+ 𝑝𝛼)

]︂
(3.33)

were therefore nonzero and had an absolute value of unity. One may ask where the inverse overlap

matrix appears in the HK approach. By implicitly assuming that we can discretize the phase space

integral with a single phase space sum, i.e., by assuming the representation of unity in the form∑︁
𝑙

|𝑧𝑙(0)⟩⟨𝑧𝑙(0)| ∼ 1 (3.34)

also discussed in Appendix C, the coherent states have been used as if they formed a tight frame

[77] and the inverse overlap is not encountered [78]. Hence, we can say that one has used the non-

orthogonal Gaussians “painlessly”. There is a difference between the tight frames used in the HK

case compared to the SCS case which is discussed in the Appendix C. In the HK case we choose

random initial phase space points dense enough to form a tight frame, and perform the Monte Carlo

integration in order to discretize the phase space integral. Whereas in the SCS case we take a fixed

2The phase space integral of the sampling function is 4𝜋~, which together with the factor 1/ (2𝜋~) in (2.68) simplified
for a single degree of freedom gives the factor of 2 in Eq. (3.29)



36 3.2 Numerical Case Study

rectangular grid of initial phase space points, so that the phase space integral is discretized simply by

calculating the total phase space volume. It remains to be tested if the use of the double sum in Eq.

(2.26) is of any advantage in the HK case.

For convergence of the semiclassical results at almost all times shown in Fig. 3.3, we needed around

104 trajectories, which is in the same ballpark as mentioned in [101], where the dynamics was mon-

itored over 12 vibrational periods and where 50000 coherent states were used and it was stated that

the results are still very good for 5000 trajectories but not for only 500. Similar orders of magnitude

have been reported in [38]. The random choice of initial conditions leads to a favorable scaling of the

methodology with the number of degrees of freedom (subexponential), which comes, however, at the

expense of slow convergence [75]. In a MATLAB implementation, we realized that it is favorable to

propagate all trajectories in parallel (not propagating the trajectories individually until the end) as

then the scaling of the numerical effort with the number of trajectories is sublinear!

A more recent mathematical exposition of the errors encountered by Monte Carlo and quasi Monte

Carlo discretization of the phase space integral is given in [149]. Usage of grid based discretization is

possible in 1D but does not present a viable scheme for more degrees of freedom because in the HK

case, the grid has to represent a tight frame [78], which leads to rather densely spaced grids and thus

large numbers of trajectories to be propagated.

For the common propagation of Hamilton’s equations of motion as well as the action and the

stability information, we used symplectic (leap frog) integration [150], see also Appendix D. The time

step used was the same as in the split-operator calculations. Numerical results up to the time of

the first revival (corresponding to about 60(!) (classical) vibrational periods) are shown in Fig. 3.3.

Here we have refrained from normalization of the results, which is frequently performed because the
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Figure 3.3.: Absolute value of the autocorrelation function using the HK method (dotted red line)
with a (sub-)random grid of initial points in phase space, compared to results of a FFT calculation
(solid blue).
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HK propagator is unitary only analytically in the stationary phase approximation [91], but not in

numerical calculations [38]. Still, the HK result very closely follows the fully converged FFT result

and shows the revival, which is in accord with the results presented in [99]. By using 50000 trajectories

also the small discrepancies at low values of |𝑐(𝑡)| at long times visible in Fig. 3.3 can be converged

to the FFT results (not shown). The lack of norm conservation of the HK results can only be cured

by renormalization, however [151].

In a MATLAB implementation [152], it was found that the use of a Halton sequence of random

numbers seems favorable compared to a Sobol sequence, if the options of skip and leap are not used.

With those options comparable results can be gained by the two methods. To make the comparison,

the relative maximum of the absolute value of the autocorrelation at 𝑡 = 75.52, close to the analytical

revival time 𝑇rev ≈ 75.75 and almost identical to 60 times the classical period, defined in Section 3.1,

was looked at. The results are given in Table 3.2. The corresponding result from the FFT calculation

is 0.9990.

skip,leap 0, 0 1000, 10 1000, 100 1000, 1000 1000, 10, 000

Sobol 0.9456 0.9598 0.9741 0.9757 0.9703
Halton 0.9607 0.9802 0.9611 0.9581 0.9600

Table 3.2.: Absolute value of the autocorrelation at 𝑡 = 75.52 for an implementation of HK propaga-
tion with 10000 trajectories and two different choices of quasi random number generators. Skip=1000
leaves out the first 1000 random numbers and leap=100 takes only every 100th entry.

3.2.2. SCS results

Because we are taking into account the inverse overlap and solve Eq. (2.57), a relatively sparse static

grid may be employed. The grid we are using has the extension in 𝑞-direction from 𝑞min + 𝑞𝛼 to

𝑞max = −𝑞min + 𝑞𝛼 with 𝑞min = −3
√
𝜋 and in 𝑝-direction from 𝑝min = −5

√
𝜋 to 𝑝max = −𝑝min. The

number of equally spaced grid points in both directions was 9, leading to a grid with 𝑀 = 81 points

and the PBBGK completeness-criterion for the spacing of the 𝑧-grid was met [62, 64] and the initial

state is a member of the set (an odd number of grid points is necessary to this end). Other workers

have also experimented with randomly distributed static grid points [33, 153] with, at least in the

first reference, less satisfactory results. This might be due to the fact that in [33] a 1D single particle

system was studied, whereas in [153] the system had two degrees of freedom and Monte Carlo methods

perform the better the higher-dimensional the integral.

In implementing the matrix exponential [154] that occurs in Eq. (2.57) one has to first invert the

overlap matrix. This has to be done only once at the very beginning, however, for a static grid of

coherent states and requires regularization in the form of the addition of a unit matrix times a very

small number (10−8, larger values would lead to noisy results at longer times) to the overlap matrix

before inversion. A judicious choice of the small regularization parameter allows a closer approach to

the von Neumann limit of the spacing of grid points. We have not tried to optimize the grid in this

respect, but this might become necessary in high-dimensional applications. The propagation matrix

is then established and used iteratively to advance the wavefunction vector in time. A cutoff of high
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energy basis functions was not necessary for the grid used. Our results are shown in Fig. 3.4. There

is no problem with norm conservation and the revival is displayed completely.
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Figure 3.4.: Absolute value of the autocorrelation function using the SCS method (dotted red line)
with a fixed rectangular grid compared to results of a FFT calculation (solid blue line).

In Fig. 3.5, we display the absolute value of the 𝑎 coefficients at the revival time as a function of

the phase space variables. We see from this figure that the 𝑎 coefficients do not come back to their

initial values but the individual Gaussians interfere in such a way that the position space wavefunction

shows the revival, see also the HK implementation in [99].

Setting up the propagation matrix in SCS was much more time consuming than in the FFT case

(where only vectors have to be set up, due to the locality of the potential and kinetic energy operators

in position and momentum space, respectively!). With the propagation matrix set up, the total

program execution time up to the first revival was less than one second on a modern laptop computer

in a MATLAB implementation in both cases, SCS and FFT, though. Comparing to the studies in

[33], we used very similar grids but we also note that we did not use second order differencing for time

propagation but used matrix exponentiation and subsequently iterative propagation via multiplication

of a vector by a matrix. Our procedure also conserves the norm and is very stable, as long as the

overlap matrix is regularized by adding a small unit matrix. We note in passing that solving the

differential equation for the coefficients with an adaptive step-size Runge-Kutta method results in an

order of magnitude longer computation times.
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Figure 3.5.: Absolute value of the 𝑎 coefficients at the numerical revival time 𝑇 = 75.52 for the
static rectangular grid used in the SCS case as a function of the real and imaginary part of 𝑧. The
color of each face depends on the color at one of its four surrounding vertices. Of the four vertices,
the one that comes first in the x-y grid determines the color of the face [152].

Shalashilin and Child have tried to reduce the numerical effort by coupling to nearest or up to next

nearest neighbors only [33]. This could become very relevant for the treatment of larger numbers of

degrees of freedom. Alternatively, the scaling of matrix multiplication with the square of the number

of basis functions 𝑀 could be reduced by employing the sparsity of the propagation matrix. Then a

scaling even more favorable than the highly efficient FFT methodology, that scales with 𝑀 log𝑀 [55]

might be possible. It might also be worthwhile to not calculate the matrix exponential at all but just

its action on the wavefunction vector [155].

In passing, we note that, for the present potential and initial state parameters, we could not get any

reasonable results if the inverse overlap matrix was set proportional to the unit matrix, in contrast

to the parameters used in [33] (see Appendix C). Furthermore, in contrast to the split-operator

FFT approach, the present method allows for very large time steps, as there is no split-operator

approximation involved, similar to the Chebyshev-polynomial method [156]. The drawback, however,

is that time-dependent Hamiltonians cannot be treated in the presented way by using a precompiled

matrix exponential.

3.2.3. CCS results

Now let us turn to moving CS grids, where the grid points are determined using importance sampling

and follow classical equations of motion very similar to the ones that are followed by the HK trajec-
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tories. We used a set of 121 trajectories, which are a lot less than used in the HK case (the central

trajectory starting at (𝑞𝛼, 𝑝𝛼) has to be present though).

We can draw the trajectories’ initial conditions from the distribution (3.32). For the calculation of

the wavefunction in the case of CCS with importance sampling, we then get

|Ψ𝛼(𝑡)⟩ =
𝑀∑︁
𝑙=1

𝑎𝑙(𝑡)|𝑧𝑙(𝑡)⟩, (3.35)

with the randomly sampled initial conditions for the real and imaginary part of 𝑧𝑙. In contrast to

the HK case (where we had discretized an integral) there is only one single coefficient 𝑎𝑙(0)|𝑙=𝛼 = 1

nonzero initially, however, assuming that the coherent basis states have the same width parameters as

the initial state. In the course of time because of the coupled equations of motion, different trajectories

will start to contribute to the wavefunction by developing nonzero 𝑎 coefficients. Using a different

compression parameter, which was here chosen to be the natural one that was also used in the HK

case, did not improve the results. Furthermore, we stress that by starting from the Ansatz (2.16), we

are not implicitly using a tight frame assumption as done in Eq. (29) in [33], where (in the present

notation) the set {𝑎̄𝑙} is propagated.

Using symplectic integration (leap frog) for the momenta and positions explained in appendix D, we

found that the determination of the trajectories was an order of magnitude faster than if an adaptive

step-size Runge-Kutta method for evolution of the complex-valued 𝑧-variable was used.

After approximately half the revival time the evolved trajectories are displayed in Fig. 3.6 together

with the initial state. The reasons why one should use a random grid are holding true especially for

many particle problems and are detailed in [75]. There also the optimal choice of the compression

parameter 𝛼̃, which we here took to be 1/2, is discussed. In higher-dimensional problems one has the

additional freedom to choose 𝛼̃ differently for the different degrees of freedom. This then leads to the

notion of “pancake sampling”.
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Figure 3.6.: Positions and momenta of the 121 random points used for the CCS calculation at time
𝑡 = 40. Inserted into the plot is a blue ellipse that visualizes the location and extend of the initial
sampling function (real part of Eq. (2.69)), by showing its decay to the value 1/𝑒.

The corresponding correlation function is exactly on top of the FFT result, as can be seen in Fig.

3.7. Due to the coupling between the coherent states and the fact that they are moving, which renders

all overlaps time-dependent and thus also the coherent state matrix elements of the Hamiltonian, the

present scheme in 1D is quite demanding numerically. Although we did not explicitly use matrix

inversion (scaling cubically with the number of basis functions), but solved for the linear system of

equations for the coefficients by using a mass matrix, the program was two orders of magnitude slower

than the FFT calculation.
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Figure 3.7.: Absolute value of the autocorrelation function using the CCS method (dotted red line)
compared to the converged results of a FFT calculation (solid blue line).
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3.3. Different potentials and their Hamiltonian matrix in the CS basis

Here we will collect the expressions for the Hamiltonian matrix of the three potentials considered in

this thesis namely, Morse, harmonic and quartic. The Hamiltonian matrix is needed to calculate the

variational equations of motion as in the VCS, CCS and SCS cases. The kinetic energy operator for

all the three potentials will be the same for unit mass

𝑇 =
𝑝2

2
. (3.36)

Therefore, the normal-ordered form of the kinetic energy operator is given by

𝑇ord(𝑎̂
†, 𝑎̂) = −𝛾

4
(𝑎̂† − 𝑎̂)2 = −𝛾

4

[︁
(𝑎̂†)2 − 2𝑎̂†𝑎̂− 1 + 𝑎̂2

]︁
(3.37)

and the normal-ordered form of the kinetic energy needed to calculate the matrix elements of the

Hamilton operator between the coherent states is thus

𝑇ord(𝑧
*
𝑘, 𝑧𝑙) = −𝛾

4

[︁
(𝑧*𝑘 − 𝑧𝑙)

2 − 1
]︁
. (3.38)

The potential energy operator and the normal-ordered form of the potential energy for all the three

potentials considered in this thesis are given in the following table:

Potentials 𝑉 𝑉ord(𝑧
*
𝑘, 𝑧𝑙)

Morse 𝐷(1− e−𝛼x̂)2 𝐷
(︁
1− 2e𝛼

2
1/2e−𝛼1(𝑧*𝑘+𝑧𝑙) + e2𝛼

2
1e−2𝛼1(𝑧*𝑘+𝑧𝑙)

)︁
Harmonic 1

2𝜔
2𝑥̂2 𝛾

4

[︁
(𝑧*𝑘 + 𝑧𝑙)

2 + 1
]︁

Quartic 𝑎
4 𝑥̂

4 𝑎
16𝛾2

[︁
(𝑧*𝑘 + 𝑧𝑙)

4 + 6 (𝑧*𝑘 + 𝑧𝑙)
2 + 3

]︁
Table 3.3.: Expressions for the normal-ordered form of potential energy in terms of coherent state
parameters for some general potentials.

Here we consider the trivial case for the harmonic potential i.e., the harmonic oscillator frequency

𝜔0 is equal to the frequency 𝜔 of the harmonic oscillator that defines the coherent state basis. The

more general expression for the normal-ordered Hamiltonian of the harmonic oscillator is given in

Appendix B. The calculation of the normal-ordered form of the potential energy for the quartic

oscillator is given in detail in Appendix G. Therefore, the normally ordered Hamiltonian for all the

three potentials are given by

𝐻ord(𝑧
*
𝑘, 𝑧𝑙) = 𝑇ord(𝑧

*
𝑘, 𝑧𝑙) + 𝑉ord(𝑧

*
𝑘, 𝑧𝑙). (3.39)
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In the previous chapter the HK method was shown to be a powerful tool for solving the TDSE. For

many-body systems, the favorable scaling of the Monte Carlo integration is promising. In the case

that time-dependent correlation functions of the form

𝐶𝐴𝐵 (𝑡) = Tr
[︁
𝐴𝐵̂(𝑡)

]︁
= Tr

[︁
𝐴e

i
~ 𝐻̂𝑡𝐵̂e−

i
~ 𝐻̂𝑡
]︁

(4.1)

are sought for, already in 1D two propagators are needed, one forward and one backwards in time,

however. This fact calls for additional approximations, which we will discuss in the present chapter.

Along similar lines, in the chemical physics community, a classical Wigner dynamics was introduced

early on by Heller [157], with a precursor in reaction rate theory by Miller [158]. Historically, the

heuristic introduction of this Wigner method, based on classical trajectories preceded its derivation

from a semiclassical initial value representation of the propagator by Cao and Voth [159] by two

decades. Nowadays, the classical Wigner method in chemical physics is also referred to as linearized

semiclassical initial value representation and is prominently used by the Miller group [45, 95, 160].

Technically, the LSC-IVR method is much easier to apply than the full semiclassical initial value

representation of, e.g., Herman and Kluk [37], as it linearizes the phase difference between interfering

classical trajectories and does not contain any oscillating terms in the integrand (no sign problem).

In addition to the application to (reactive) single surface dynamics, also the application of LSC-IVR

to electronically nonadiabatic processes i.e., those involving transitions between different potential

energy surfaces was shown by Miller and co-authors [42, 161]. Furthermore, LSC-IVRs are close in

spirit to the diagonal approximation that is used to calculate the smooth part of the semiclassical

spectral density in chaotic systems [162].

Whereas in the pioneering works of the Heller as well as the Miller groups, Wigner transforms in

the LSC-IVR are used, a new semiclassical framework, introduced by Antipov, Ye and Ananth [47],

based on Husimi functions, see also [163, 164], can be tuned to reproduce existing quantum-limit and

classical-limit SC approximations to quantum real-time correlation functions. So far, the applicability

of the Husimi LSC-IVR is restricted to correlation functions 𝐶𝐴𝐵(𝑡) = ⟨𝐴𝐵̂(𝑡)⟩ with operators 𝐵̂ that

do not contain exponential terms [47]. In the present chapter, we will extend the usability of the

Husimi based LSC-IVR to the calculation of survival probabilities, that is, we will choose identical

(projection) operators 𝐴 = 𝐵̂ = |Ψ⟩⟨Ψ|, where the involved wavefunctions are Gaussians. We will

discuss, however, also other more common choices for the operators.

In this chapter, we will show comparisons of numerical results for survival probabilities using three

different approaches (Wigner LSC-IVR, Husimi LSC-IVR and full SC-IVR) with the full quantum

43
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mechanical results. The system for which we perform the investigations is again the Morse oscillator

from Chap. 3 and we will especially focus on the revival phenomenon which is present in the full

quantum dynamics. If the Morse oscillator is coupled to a harmonic oscillator (acting as a bath for

the system) the revival phenomenon is expected to vanish also in the full quantum result.

4.1. Theory

In the following, we will introduce the general form of correlation functions that are to be studied and

then we will compare different implementations thereof based on classical trajectories.

4.1.1. General Correlation Functions

The time correlation function of two arbitrary operators 𝐴 and 𝐵̂ with a (Heisenberg) time-evolved

operator 𝐵̂(𝑡) is defined as in Eq. (4.1) where

𝐻̂ =

𝑓∑︁
𝑖=1

𝑝2𝑖
2𝑚𝑖

+ 𝑉 (q) (4.2)

is the Hamiltonian of the system under consideration. This system shall have 2𝑓 degrees of freedom

in phase space, denoted by (p,q).

Dynamic phenomena in complex systems can be described in terms of real-time correlation func-

tions. The general time correlation function has various applications based on the choice of the

arbitrary operators 𝐴 and 𝐵̂. Different possible choices for the operators of the correlation function

are as follows:

∙ 𝐴 = |Ψ𝛼⟩⟨Ψ𝛼|, 𝐵̂ = |Ψ𝛼⟩⟨Ψ𝛼|
|Ψ𝛼⟩⟨Ψ𝛼| is a projection operator on the initial state |Ψ𝛼⟩. This leads to the survival proba-

bility which is equivalent to the absolute value squared of the auto-correlation function. In the

following, we will assume the initial states to be Gaussian wavefunctions.

∙ 𝐴 = 𝑄−1 exp
{︁
−𝛽𝐻̂

}︁
r̂, 𝐵̂ = r̂,

Where 𝑄 is the partition function, 𝛽 = 1/𝑘𝑇 is the inverse temperature and r̂ the position

operator. This is the temperature dependent dipole-dipole correlation function used to study

IR spectra. Semiclassical investigations for this case have been performed in [163, 165, 166] in

the high temperature limit 𝛽 → 0.

∙ 𝐴 = |Ψ𝛼⟩⟨Ψ𝛼|, 𝐵̂ = |r⟩⟨r|
This choice leads to the reduced density. For the case of a Caldeira-Leggett model, the transition

to classicality and the blue shift of the system oscillator have been investigated in [146], see also

[46].

∙ 𝐴 = |Ψ𝛼⟩⟨Ψ𝛼|, 𝐵̂ = 𝑥̂, 𝑥2, ...
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Here 𝑥̂ is the position operator in one dimension. This choice is used to calculate time-dependent

moments of 𝑥̂.

We will be evaluating the dipole-dipole correlation function and the survival probability using both

Wigner LSC-IVR and Husimi LSC-IVR methods in the following subsection.

4.1.2. Comparison between Wigner LSC-IVR and Husimi LSC-IVR

For the following comparison, we restrict the discussion to the case 𝑓 = 1, i.e., a single degree of

freedom. The generalization to arbitrary 𝑓 is straightforward.

In the classical, so-called LSC-IVR employing Wigner functions, the expression for the general

time-correlation function is given by [157, 159]

𝐶𝑊
𝐴𝐵 (𝑡) =

∫︁
d𝑝d𝑞

2𝜋~
𝐴𝑊 (𝑝, 𝑞)𝐵𝑊 (𝑝𝑡, 𝑞𝑡) , (4.3)

where 𝐴𝑊 (𝑝, 𝑞) and 𝐵𝑊 (𝑝𝑡, 𝑞𝑡) are the Wigner-Weyl transforms of operators 𝐴 and 𝐵̂ and (𝑝𝑡, 𝑞𝑡)

are classical trajectories in phase space that evolve from the initial conditions (𝑝, 𝑞) according to

Hamilton’s equations of motion

𝑞𝑡 =
𝜕𝐻

𝜕𝑝𝑡
𝑝̇𝑡 = −𝜕𝐻

𝜕𝑞𝑡
. (4.4)

𝐴𝑊 (𝑝, 𝑞) is defined as:

𝐴𝑊 (𝑝, 𝑞) =

∫︁
dΔ𝑞e−ipΔq

~

⟨
𝑞 +

Δ𝑞

2

⃒⃒⃒⃒
𝐴

⃒⃒⃒⃒
𝑞 − Δ𝑞

2

⟩
. (4.5)

Now in the case of the coherent state based LSC-IVR method employing Husimi functions, the general

time-correlation function is given by [47]

𝐶𝐻
𝐴𝐵 (𝑡) =

∫︁
d𝑝d𝑞

2𝜋~
𝐴𝐻 (𝑝, 𝑞)𝐵𝐻 (𝑝𝑡, 𝑞𝑡) , (4.6)

where 𝐴𝐻 (𝑝, 𝑞) and 𝐵𝐻 (𝑝𝑡, 𝑞𝑡) are the Husimi transforms of the operators 𝐴 and 𝐵̂ defined as [167]

𝐴𝐻 (𝑝, 𝑞) = ⟨𝑧(𝑝, 𝑞)|𝐴|𝑧(𝑝, 𝑞)⟩, (4.7)

where |𝑧(𝑝, 𝑞)⟩ represents a coherent state with width parameter 𝛾, given in position representation

by

⟨𝑥|𝑧(𝑝, 𝑞)⟩ =
(︂
𝛾

𝜋

)︂1/4

e−
𝛾
2
(𝑥−𝑞)2+ i

~𝑝(𝑥−𝑞), (4.8)

with a phase convention slightly different from Klauder’s [58].

We stress that although the Wigner expression is generally valid, the Husimi version of the correla-
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tion function only holds for operators 𝐵̂ that do not contribute to the phase [47]. In passing, we note

that a proof that any operator is determined by its expectation in all coherent states is given in [168].

Now we will examine two cases with the help of both LSC-IVR methods (Wigner and Husimi).

Firstly this will be the dipole-dipole correlation function and secondly the survival probability.

The Dipole-Dipole Correlation Function

For the case of the dipole-dipole correlation function, we choose the operators 𝐴 and 𝐵̂ as: 𝐴 =

exp
{︁
−𝛽𝐻̂

}︁
𝑞/𝑄 and 𝐵̂ = 𝑞. Here

𝜌 = exp
{︁
−𝛽𝐻̂

}︁
/𝑄 (4.9)

is the canonical density-operator. Therefore, the Wigner-Weyl transform [169] is given by (we are

neglecting the partition function 𝑄 in the following)

𝐴𝑊 (𝑝, 𝑞) =

∫︁
dΔ𝑞e−i 𝑝Δ𝑞

~ ⟨𝑞 + Δ𝑞

2
| exp

{︁
−𝛽𝐻̂

}︁
𝑞|𝑞 − Δ𝑞

2
⟩ (4.10)

and the canonical density-operator matrix element is

𝜌 (𝑦, 𝑧) = ⟨𝑦|e−𝛽𝐻̂ |𝑧⟩. (4.11)

Because we are investigating the classical limit of correlation functions, a high temperature limit seems

justified. For high temperatures, i.e, for small 𝛽, a short time approximation to the “imaginary time

propagator” e−𝛽𝐻̂ is possible [170] and it leads to the expression

𝜌 (𝑦, 𝑧) ≈
√︂

𝑚

2𝜋𝛽~2
e
− 𝑚

2𝛽~2 (𝑦−𝑧)2

e−𝛽𝑉 ( 𝑦+𝑧
2 ) (4.12)

for the position matrix element of the canonical density-operator. Applying the short-time approx-

imation to the canonical density-operator and neglecting an additive term proportional to 𝛽, the

Wigner-Weyl transform thus becomes

𝐴𝑊 (𝑝, 𝑞) ≈
∫︁

dΔ𝑞e−ipΔq
~ 𝜌

(︂
𝑞 +

Δ𝑞

2
, 𝑞 − Δ𝑞

2

)︂
𝑞

=

∫︁
dΔ𝑞e−ipΔq

~

√︂
𝑚

2𝜋𝛽~2
e
− 𝑚

2𝛽~2Δ𝑞2
e−𝛽𝑉 (𝑞)𝑞

= 𝑞e−𝛽𝑉 (𝑞)

√︂
𝑚

2𝜋𝛽~2

∫︁
dΔ𝑞 exp

{︂
− 𝑚

2𝛽~2
Δ𝑞2 − i

pΔq

~

}︂
= 𝑞e−𝛽𝑉 (𝑞)

√︂
𝑚

2𝜋𝛽~2

√︂
2𝜋𝛽~2
𝑚

e−
𝛽𝑝2

2𝑚

= 𝑞e−𝛽𝐻 . (4.13)
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Similarly, it can be shown that

𝐵𝑊 (𝑝𝑡, 𝑞𝑡) = 𝑞𝑡. (4.14)

Hence, the dipole-dipole correlation function comes out to be

𝐶𝑊
𝐴𝐵 (𝑡) =

∫︁
d𝑝d𝑞

2𝜋~
𝑞e−𝛽𝐻𝑞𝑡, (4.15)

see also [171].

Now, we will calculate the dipole-dipole correlation function using coherent states. The Husimi

transform of operator 𝐴 is given by

𝐴𝐻 (𝑝, 𝑞) = ⟨𝑧(𝑝, 𝑞)|e−𝛽𝐻̂𝑞|𝑧(𝑝, 𝑞)⟩.

≈
∫︁

d𝑥

∫︁
d𝑥′⟨𝑧(𝑝, 𝑞)|𝑥′⟩⟨𝑥′|e−𝛽𝐻̂ |𝑥⟩⟨𝑥|𝑧(𝑝, 𝑞)⟩𝑞, (4.16)

where we used a stationary phase argument that allows to treat the operator 𝑞 like a constant [163].

Again applying the short-time approximation to the canonical density-operator and substituting the

explicit expressions for ⟨𝑧(𝑝, 𝑞)|𝑥′⟩ and ⟨𝑥|𝑧(𝑝, 𝑞)⟩ we get,

𝐴𝐻 (𝑝, 𝑞) ≈
∫︁

d𝑥

∫︁
d𝑥′𝑞

(︂
𝛾

𝜋

)︂ 1
2

exp

{︂
−𝛾
2

(︀
𝑥′ − 𝑞

)︀2 − ip

~
(︀
𝑥′ − 𝑞

)︀}︂
√︂

𝑚

2𝜋𝛽~2
exp

{︂
− 𝑚

2𝛽~2
(︀
𝑥′ − 𝑥

)︀2 − 𝛽𝑉

(︂
𝑥′ + 𝑥

2

)︂}︂
exp

{︂
−𝛾
2
(𝑥− 𝑞)2 +

ip

~
(𝑥− 𝑞)

}︂
= 𝑞

(︂
𝛾

𝜋

)︂ 1
2
√︂

𝑚

2𝜋𝛽~2

∫︁
d𝑥

∫︁
d𝑥′ exp

(︂
− 𝑥′2

(︂
𝛾

2
+

𝑚

2𝛽~2

)︂
+ 𝑥′

(︂
𝛾𝑞 − ip

~

)︂
− 𝑥2

(︂
𝛾

2
+

𝑚

2𝛽~2

)︂
+ 𝑥

(︂
𝛾𝑞 +

ip

~

)︂
+

𝑚

𝛽~2
𝑥′𝑥− 𝛾𝑞2

)︂
e
−𝛽𝑉

(︁
𝑥′+𝑥

2

)︁
. (4.17)

Now, we approximate the potential 𝑉
(︁
𝑥′+𝑥
2

)︁
by its value at 𝑥 = 𝑥′ = 𝑞 [163], which is constant and

hence can be taken out of the integral. Therefore, we have

𝐴𝐻 (𝑝, 𝑞) ≈ 𝑞

(︂
𝛾

𝜋

)︂ 1
2
√︂

𝑚

2𝜋𝛽~2
e−𝛽𝑉 (𝑞)

∫︁
d𝑥

∫︁
d𝑥′ exp

(︂
− 𝑥′2

(︂
𝛾

2
+

𝑚

2𝛽~2

)︂
+ 𝑥′

(︂
𝛾𝑞 − ip

~

)︂
− 𝑥2

(︂
𝛾

2
+

𝑚

2𝛽~2

)︂
+ 𝑥

(︂
𝛾𝑞 +

ip

~

)︂
+

𝑚

𝛽~2
𝑥′𝑥− 𝛾𝑞2

)︂
. (4.18)

The total exponent 𝐸 inside the integral can now be written in the form

𝐸 = −
(︀
𝑥′, 𝑥

)︀
A

(︃
𝑥′

𝑥

)︃
+ bᵀ

(︃
𝑥′

𝑥

)︃
+ 𝑐, (4.19)
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with matrix A, vector b and scalar 𝑐. For the matrix we find

A =

(︃
𝛾
2 + 𝑚

2𝛽~2 − 𝑚
2𝛽~2

− 𝑚
2𝛽~2

𝛾
2 + 𝑚

2𝛽~2

)︃
(4.20)

and for the vector

b =

(︃
𝛾𝑞 − i

~𝑝

𝛾𝑞 + i
~𝑝

)︃
(4.21)

and finally the scalar is given by

𝑐 = −𝛾𝑞2. (4.22)

The value of the Gaussian integral in terms of the quantities just defined is∫︁
d𝑥

∫︁
d𝑥′ exp {𝐸} =

√︂
𝜋2

detA
exp

{︂
bᵀA−1b

4
+ 𝑐

}︂
, (4.23)

where

bᵀA−1b =
1

detA

(︀
𝑏21𝑎22 + 𝑏22𝑎11 − 2𝑏1𝑏2𝑎12

)︀
(4.24)

and

detA = 𝑎11𝑎22 − 𝑎212 =
𝛾2

4
+

𝑚𝛾

2𝛽~2
. (4.25)

Applying the short-time approximation 𝛽 → 0 to the expression of bᵀA−1b and also to detA, we

arrive at the final result for the Husimi transform

𝐴𝐻 (𝑝, 𝑞) ≈ 𝑞

(︂
𝛾

𝜋

)︂ 1
2
√︂

𝑚

2𝜋𝛽~2
e−𝛽𝑉 (𝑞)

√︃
𝜋2

𝑚𝛾
2𝛽~2

exp

(︂
𝛾𝑞2 − 𝛽

𝑝2

2𝑚
− 𝛾𝑞2

)︂
.

= 𝑞e−𝛽𝐻 , (4.26)

independent of the coherent state width parameter 𝛾. Similarly,

𝐵𝐻 (𝑝𝑡, 𝑞𝑡) = 𝑞𝑡. (4.27)

The dipole-dipole correlation function comes out to be

𝐶𝐻
𝐴𝐵 (𝑡) =

∫︁
d𝑝d𝑞

2𝜋~
𝑞e−𝛽𝐻𝑞𝑡. (4.28)

Hence, we can conclude that the expressions for the Wigner-Weyl (4.15) and Husimi (4.28) versions
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for the dipole-dipole correlation function case in the high temperature limit coincide.

The Survival Probability

For the case of the survival probability, the operators 𝐴 and 𝐵̂ are projection operators; i.e., 𝐴 = 𝐵̂ =

|Ψ𝛼⟩⟨Ψ𝛼|, and it is assumed that the wavefunctions ⟨𝑥|Ψ𝛼⟩ in position space are Gaussians. Let us

first derive the survival probability using Wigner LSC-IVR. For the Wigner-Weyl transform, we get

𝐴𝑊 (𝑝, 𝑞) =

∫︁
dΔ𝑞e−ipΔq

~ ⟨𝑞 + Δ𝑞

2
|𝐴|𝑞 − Δ𝑞

2
⟩

=

∫︁
dΔ𝑞e−ipΔq

~ ⟨𝑞 + Δ𝑞

2
|Ψ𝛼⟩⟨Ψ𝛼|𝑞 −

Δ𝑞

2
⟩

=

∫︁
dΔ𝑞e−ipΔq

~ Ψ𝛼

(︂
𝑞 +

Δ𝑞

2

)︂
Ψ*

𝛼

(︂
𝑞 − Δ𝑞

2

)︂
=

∫︁
dΔ𝑞e−ipΔq

~

(︁𝛾
𝜋

)︁ 1
4
exp

{︃
−𝛾
2

(︂
𝑞 +

Δ𝑞

2
− 𝑞𝛼

)︂2

+
i

~
𝑝𝛼

(︂
𝑞 +

Δ𝑞

2
− 𝑞𝛼

)︂}︃
(︁𝛾
𝜋

)︁ 1
4
exp

{︃
−𝛾
2

(︂
𝑞 − Δ𝑞

2
− 𝑞𝛼

)︂2

− i

~
𝑝𝛼

(︂
𝑞 − Δ𝑞

2
− 𝑞𝛼

)︂}︃

=
(︁𝛾
𝜋

)︁ 1
2

∫︁
dΔ𝑞e−ipΔq

~ exp

{︃
−𝛾

[︃
(𝑞 − 𝑞𝛼)

2 +

(︂
Δ𝑞

2

)︂2
]︃
+

i

~
𝑝𝛼Δ𝑞

}︃

=
(︁𝛾
𝜋

)︁ 1
2

∫︁
dΔ𝑞 exp

{︂
−𝛾
4
Δ𝑞2 − i

~
Δ𝑞 (𝑝− 𝑝𝛼)− 𝛾 (𝑞 − 𝑞𝛼)

2

}︂
. (4.29)

Defining 𝑎 = 𝛾
4 , 𝑏 = − i

~ (𝑝− 𝑝𝛼) and 𝑐 = −𝛾 (𝑞 − 𝑞𝛼)
2, we can use the 1D version of the Gaussian

integral (4.23) and the Wigner-Weyl transform becomes

𝐴𝑊 (𝑝, 𝑞) = 2 exp

{︂
−𝛾 (𝑞 − 𝑞𝛼)

2 − 1

𝛾~2
(𝑝− 𝑝𝛼)

2

}︂
(4.30)

and, similarly,

𝐵𝑊 (𝑝𝑡, 𝑞𝑡) = 2 exp

{︂
−𝛾 (𝑞𝑡 − 𝑞𝛼)

2 − 1

𝛾~2
(𝑝𝑡 − 𝑝𝛼)

2

}︂
. (4.31)

Therefore, the survival probability becomes

𝐶𝑊
𝐴𝐵 (𝑡) =

∫︁
d𝑝d𝑞

2𝜋~
𝐴𝑊 (𝑝, 𝑞)𝐵𝑊 (𝑝𝑡, 𝑞𝑡)

= 2

∫︁
d𝑝d𝑞

𝜋~
exp

(︂
− 𝛾

[︁
(𝑞 − 𝑞𝛼)

2 + (𝑞𝑡 − 𝑞𝛼)
2
]︁
− 1

𝛾~2
[︁
(𝑝− 𝑝𝛼)

2 + (𝑝𝑡 − 𝑝𝛼)
2
]︁)︂

.

(4.32)

Now let us try to get a first guess at the survival probability using the Husimi LSC-IVR method.

We stress that the Husimi version for the correlation is not applicable to the present case [47] but
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we will get a partial answer by using it anyways. Operators 𝐴 and 𝐵̂ are again projection operators.

Their Husimi transforms are thus given by

𝐴𝐻 (𝑝, 𝑞) = |⟨𝑧(𝑝, 𝑞)|Ψ𝛼⟩|2. (4.33)

Now,

⟨𝑥|𝑧(𝑝, 𝑞)⟩ =
(︂
𝛾

𝜋

)︂ 1
4

exp

{︂
−𝛾
2
(𝑥− 𝑞)2 +

i

~
𝑝 (𝑥− 𝑞)

}︂
, (4.34)

⟨𝑥|Ψ𝛼⟩ =
(︁𝛾
𝜋

)︁ 1
4
exp

{︂
−𝛾
2
(𝑥− 𝑞𝛼)

2 +
i

~
𝑝𝛼 (𝑥− 𝑞𝛼)

}︂
, (4.35)

where Ψ𝛼 is a Gaussian centered around (𝑝𝛼, 𝑞𝛼) with the width parameter 𝛾. Therefore,

⟨𝑧(𝑝, 𝑞)|Ψ𝛼⟩ =
∫︁

d𝑥

(︂
𝛾𝛾

𝜋2

)︂ 1
4

exp

{︂
−𝛾
2
(𝑥− 𝑞)2 − 𝛾

2
(𝑥− 𝑞𝛼)

2 − i

~
[𝑝 (𝑥− 𝑞)− 𝑝𝛼 (𝑥− 𝑞𝛼)]

}︂
.

(4.36)

To simplify matters, we consider 𝛾 = 𝛾 and get

⟨𝑧(𝑝, 𝑞)|Ψ𝛼⟩ = exp

{︂
−𝛾
4
(𝑞 − 𝑞𝛼)

2 − 1

4𝛾~2
(𝑝− 𝑝𝛼)

2 +
i

2~
(𝑞 − 𝑞𝛼) (𝑝+ 𝑝𝛼)

}︂
(4.37)

for the overlap. Similarly,

⟨Ψ𝛼|𝑧(𝑝, 𝑞)⟩ = exp

{︂
−𝛾
4
(𝑞 − 𝑞𝛼)

2 − 1

4𝛾~2
(𝑝− 𝑝𝛼)

2 − i

2~
(𝑞 − 𝑞𝛼) (𝑝+ 𝑝𝛼)

}︂
. (4.38)

Therefore, the Husimi transforms are given by

𝐴𝐻 (𝑝, 𝑞) = exp

{︂
−𝛾
2
(𝑞 − 𝑞𝛼)

2 − 1

2𝛾~2
(𝑝− 𝑝𝛼)

2

}︂
(4.39)

and

𝐵𝐻 (𝑝𝑡, 𝑞𝑡) = exp

{︂
−𝛾
2
(𝑞𝑡 − 𝑞𝛼)

2 − 1

2𝛾~2
(𝑝𝑡 − 𝑝𝛼)

2

}︂
. (4.40)

Hence, the survival probability follows to be

𝐶𝐻
𝐴𝐵 (𝑡) =

∫︁
d𝑝d𝑞

2𝜋~
exp

(︂
− 𝛾

2
(𝑞 − 𝑞𝛼)

2 − 1

2𝛾~2
(𝑝− 𝑝𝛼)

2 − 𝛾

2
(𝑞𝑡 − 𝑞𝛼)

2 − 1

2𝛾~2
(𝑝𝑡 − 𝑝𝛼)

2

)︂
.

(4.41)

If we compare the Wigner-Weyl transforms and the Husimi transforms, we see that both expressions

are quite different. In the Husimi transform (4.39), there is the factor of 1
2 multiplied to the terms in

the exponential, which is not present in the Wigner-Weyl transform (4.30). In addition, in the Wigner-
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Weyl transform we have an additional factor of 2 multiplied with the exponential term. Hence, the

two expressions for the transforms are different and we find that 𝐴𝐻 =
√︁

𝐴𝑤
2 . Also, the final Husimi

result (4.41) does not give unity at initial time as a simple Gaussian integration shows. We note

in passing that if we had considered the width parameters of the coherent state (𝛾) and that of the

Gaussian initial state (𝛾) to be different would not have resolved matters.

We are therefore led to introduce a new approach of calculating the linearized semiclassical survival

probability starting from the Herman-Kluk (HK) propagator.

4.2. Quasiclassical Staying Probability Using the HK Propagator

Here we develop a consistent approach to the linearized survival (or staying) probability, using the HK

propagator. We follow the path used by Cao and Voth as well as by Miller and his co-workers to derive

the Wigner LSC-IVR i.e, making a sum and difference coordinate transformation of the integration

variables. Let us consider an initial Gaussian wavefunction for 𝑓 degrees of freedom, centered at

(p𝛼,q𝛼), given by

Ψ𝛼 (x, 0) =

(︂
det𝛾

𝜋𝑓

)︂ 1
4

exp

{︂
− (x− q𝛼)

T 𝛾

2
(x− q𝛼) +

i

~
pT
𝛼 (x− q𝛼)

}︂
, (4.42)

where we have defined (column) vectors and a matrix via

x =

⎛⎜⎜⎜⎜⎝
𝑥1

.

.

𝑥𝑓

⎞⎟⎟⎟⎟⎠ 𝛾 =

⎛⎜⎜⎜⎜⎜⎝
𝛾1 0 0 0

0
. . . 0 0

0 0
. . . 0

0 0 0 𝛾𝑓

⎞⎟⎟⎟⎟⎟⎠ q𝛼 =

⎛⎜⎜⎜⎜⎝
𝑞1𝛼

.

.

𝑞𝑓𝛼

⎞⎟⎟⎟⎟⎠ p𝛼 =

⎛⎜⎜⎜⎜⎝
𝑝1𝛼

.

.

𝑝𝑓𝛼

⎞⎟⎟⎟⎟⎠ .

Subscripts denote the 𝑓 degrees of freedom. Later, subscript 1 denotes the Morse oscillator coordinate

and the other subscript(s) correspond to the harmonic oscillator(s) acting as the bath for the system.

We stress that the HK propagator to be used below is based on real classical trajectories and there-

fore can account for interference effects but for the inclusion of tunneling effects also non-classical

trajectories would be needed.

The auto-correlation function is given by

𝑐 (𝑡) = ⟨Ψ𝛼 (0) |Ψ𝛼 (𝑡)⟩. (4.43)

Using the HK propagator [37] to evolve the wavefunction in time, this is given by

𝑐 (𝑡) =

∫︁
d𝑓𝑝d𝑓𝑞

(2𝜋~)𝑓
⟨Ψ𝛼 (0) |z (p𝑡,q𝑡)⟩𝑅 (p,q, 𝑡) e

i
~𝑆(p,q,𝑡)⟨z (p,q) |Ψ𝛼 (0)⟩, (4.44)
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with the classical trajectories (p𝑡,q𝑡) and the classical action

𝑆 (p,q, 𝑡) =

∫︁ 𝑡

0
[p𝑡′ · q̇𝑡′ −𝐻] d𝑡′, (4.45)

as well as the prefactor

𝑅 (p,q, 𝑡) =
1

2𝑓/2

(︃
det

{︂
m11 + 𝛾m22𝛾

−1 − i~𝛾m21 −
1

i~
m12𝛾

−1

}︂)︃ 1
2

, (4.46)

where m11,m12,m21 andm22 are the elements of the so-called monodromy (or stability) matrix M

[49],

M =

(︃
m11 m12

m21 m22

)︃
=

(︃
𝜕p̃𝑡
𝜕p̃ᵀ

𝜕p̃𝑡
𝜕q̃ᵀ

𝜕q̃𝑡
𝜕p̃ᵀ

𝜕q̃𝑡
𝜕q̃ᵀ

)︃
. (4.47)

explained in detail in Appendix D. The width parameter matrix of the coherent state |z (p,q)⟩ is 𝛾̃,
but here for simplicity we will consider the width parameters for the Gaussian initial state and the

ones for the coherent state appearing in the HK propagator to be equal.

In the following, we look for a quantity with a classical analog, therefore we consider the “probability

to stay”

𝑃 (𝑡) = |⟨Ψ𝛼 (0) |Ψ𝛼 (𝑡)⟩|2 = |𝑐 (𝑡) |2, (4.48)

which is given as the double phase space integral

𝑃 (𝑡) =

∫︁
d𝑓𝑝d𝑓𝑞

(2𝜋~)𝑓

∫︁
d𝑓𝑝′d𝑓𝑞′

(2𝜋~)𝑓
⟨Ψ𝛼 (0) |z (p𝑡,q𝑡)⟩𝑅 (p,q, 𝑡) e

i
~𝑆(p,q,𝑡)⟨z (p,q) |Ψ𝛼 (0)⟩

⟨z
(︀
p′
𝑡,q

′
𝑡

)︀
|Ψ𝛼 (0)⟩𝑅* (︀p′,q′, 𝑡

)︀
e−

i
~𝑆(p

′,q′,𝑡)⟨Ψ𝛼 (0) |z
(︀
p′,q′

)︀
⟩, (4.49)

sometimes referred to as double HK expression. To make progress with the integration, we introduce

the sum and difference variables

q̃ =
q+ q′

2
Δq = q− q′ (4.50)

p̃ =
p+ p′

2
Δp = p− p′, (4.51)

with the reverse transformation

q = q̃+
Δq

2
q′ = q̃− Δq

2
(4.52)

p = p̃+
Δp

2
p′ = p̃− Δp

2
. (4.53)
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For 1 dimension, the Jacobians are:

𝐽
(︀
𝑞, 𝑞′

)︀
=
⃒⃒⃒
𝜕(𝑞,Δ𝑞)
𝜕(𝑞,𝑞′)

⃒⃒⃒
=

⃒⃒⃒⃒
⃒12 1

2

1 −1

⃒⃒⃒⃒
⃒ = −1

𝐽
(︀
𝑝, 𝑝′

)︀
=
⃒⃒⃒
𝜕(𝑝,Δ𝑝)
𝜕(𝑝,𝑝′)

⃒⃒⃒
=

⃒⃒⃒⃒
⃒12 1

2

1 −1

⃒⃒⃒⃒
⃒ = −1

Now, for 2 dimensions, the Jacobians look like this:

𝐽
(︀
q,q′

)︀
=

⃒⃒⃒⃒
⃒ 𝜕q̃
𝜕qᵀ

𝜕q̃
𝜕q′ᵀ

𝜕Δq
𝜕qᵀ

𝜕Δq
𝜕q′ᵀ

⃒⃒⃒⃒
⃒ =

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
1
2 0 1

2 0

0 1
2 0 1

2

1 0 −1 0

0 1 0 −1

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒ = 1

Similarly,

𝐽
(︀
p,p′)︀ = ⃒⃒⃒⃒⃒ 𝜕p̃

𝜕pᵀ
𝜕p̃
𝜕p′ᵀ

𝜕Δp
𝜕pᵀ

𝜕Δp
𝜕p′ᵀ

⃒⃒⃒⃒
⃒ =

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
1
2 0 1

2 0

0 1
2 0 1

2

1 0 −1 0

0 1 0 −1

⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒ = 1

Again, for 3 dimensions, the Jacobians are:

𝐽
(︀
q,q′

)︀
= −1

𝐽
(︀
p,p′)︀ = −1

So for an odd number of degrees of freedom, the Jacobians for positions as well as momenta are always

−1 and for an even number they are +1, such that their product, appearing in the double phase space

integral, is always unity, which means that for general 𝑓 , the Jacobian for the variable transformation

in the double phase space integral is always unity.

We now expand the trajectories around q̃𝑡 (p̃, q̃), p̃𝑡 (p̃, q̃) up to the first order. Using the reverse

transformation in (4.52,4.53) this leads to

q𝑡 = q̃𝑡 +
𝜕q̃𝑡
𝜕q̃ᵀ

(q− q̃) +
𝜕q̃𝑡
𝜕p̃ᵀ (p− p̃) = q̃𝑡 +m22

Δq

2
+m21

Δp

2
= q̃𝑡 +

𝛿q𝑡
2
, (4.54)

q′𝑡 = q̃𝑡 +
𝜕q̃𝑡
𝜕q̃ᵀ

(︀
q′ − q̃

)︀
+
𝜕q̃𝑡
𝜕p̃ᵀ

(︀
p′ − p̃

)︀
= q̃𝑡 −m22

Δq

2
−m21

Δp

2
= q̃𝑡 −

𝛿q𝑡
2
, (4.55)

p𝑡 = p̃𝑡 +
𝜕p̃𝑡

𝜕p̃ᵀ (p− p̃) +
𝜕p̃𝑡

𝜕q̃ᵀ
(q− q̃) = p̃𝑡 +m11

Δp

2
+m12

Δq

2
= p̃𝑡 +

𝛿p𝑡

2
, (4.56)

p′
𝑡 = p̃𝑡 +

𝜕p̃𝑡

𝜕p̃ᵀ

(︀
p′ − p̃

)︀
+
𝜕p̃𝑡

𝜕q̃ᵀ
(︀
q′ − q̃

)︀
= p̃𝑡 −m11

Δp

2
−m12

Δq

2
= p̃𝑡 −

𝛿p𝑡

2
. (4.57)
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Then we expand the action up to the first order around 𝑆, as the second order difference vanishes.

This yields

𝑆 (q𝑡 (p,q) ,q) = 𝑆 (q̃𝑡 (p̃, q̃) , q̃) +
𝜕𝑆

𝜕p̃ᵀ (p− p̃) +
𝜕𝑆

𝜕q̃ᵀ
(q− q̃)

= 𝑆 +
𝜕𝑆

𝜕p̃ᵀ
Δp

2
+
𝜕𝑆

𝜕q̃ᵀ
Δq

2
(4.58)

and an analogous formula for 𝑆′ (which denotes the action depending on the primed variables). From

classical mechanics we have

𝜕𝑆

𝜕p̃ᵀ =
𝜕𝑆

𝜕q̃ᵀ𝑡

𝜕q̃𝑡
𝜕p̃ᵀ = p̃

ᵀ
𝑡m21, (4.59)

𝜕𝑆

𝜕q̃ᵀ
=

𝜕𝑆

𝜕q̃ᵀ𝑡

𝜕q̃𝑡
𝜕q̃ᵀ

+
𝜕𝑆

𝜕q̃ᵀ
= p̃

ᵀ
𝑡m22 − p̃ᵀ (4.60)

for the first derivatives and therefore the action difference becomes

𝑆 − 𝑆′ = 𝑆 + p̃
ᵀ
𝑡m21

Δp

2
+ p̃𝑡

ᵀm22
Δq

2
− p̃ᵀΔq

2

−
(︂
𝑆 − p̃

ᵀ
𝑡m21

Δp

2
− p̃

ᵀ
𝑡m22

Δq

2
+ p̃ᵀΔq

2

)︂
= p̃

ᵀ
𝑡m21Δp+ p̃

ᵀ
𝑡m22Δq− p̃ᵀΔq

= p̃
ᵀ
𝑡 𝛿q𝑡 − p̃ᵀΔq. (4.61)

The prefactor in zeroth order is given by

𝑅 (p,q, 𝑡)𝑅* (︀p′,q′, 𝑡
)︀
= |𝑅 (p̃, q̃, 𝑡) |2

=
1

2𝑓

(︃
det

{︂
m11 + 𝛾m22𝛾

−1 + i~𝛾m21 +
1

i~
m12𝛾

−1

}︂

det

{︂
m11 + 𝛾m22𝛾

−1 − i~𝛾m21 −
1

i~
m12𝛾

−1

}︂)︃ 1
2

. (4.62)

Collecting terms, the total expression for the staying probability is

𝑃 𝑐𝑙 (𝑡) =

∫︁
d𝑓𝑝d𝑓𝑞

(2𝜋~)𝑓

∫︁
d𝑓Δ𝑝d𝑓Δ𝑞

(2𝜋~)𝑓
|𝑅 (p̃, q̃, 𝑡) |2 exp {𝐸}, (4.63)
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where the exponent E has still to be defined. From

⟨𝑧 (p,q) |Ψ𝛼⟩⟨Ψ𝛼|𝑧
(︀
p′,q′

)︀
⟩ = exp

(︂
− 1

4

[︀
(q− q𝛼)

ᵀ 𝛾 (q− q𝛼) +
(︀
q′ − q𝛼

)︀ᵀ
𝛾
(︀
q′ − q𝛼

)︀]︀
− 1

4~2
[︀
(p− p𝛼)

ᵀ 𝛾−1 (p− p𝛼) +
(︀
p′ − p𝛼

)︀ᵀ
𝛾−1

(︀
p′ − p𝛼

)︀]︀
+

i

2~
[︀
(q− q𝛼)

ᵀ (p+ p𝛼)−
(︀
q′ − q𝛼

)︀ᵀ (︀
p′ + p𝛼

)︀]︀)︂
(4.64)

using (4.52,4.53), we find the contributions

(q− q𝛼)
ᵀ 𝛾 (q− q𝛼) +

(︀
q′ − q𝛼

)︀ᵀ
𝛾
(︀
q′ − q𝛼

)︀
= 2 (q̃− q𝛼)

ᵀ 𝛾 (q̃− q𝛼) + 2

(︂
Δq

2

)︂ᵀ

𝛾

(︂
Δq

2

)︂
(4.65)

as well as

(p− p𝛼)
ᵀ 𝛾−1 (p− p𝛼) +

(︀
p′ − p𝛼

)︀ᵀ
𝛾−1

(︀
p′ − p𝛼

)︀
= 2 (p̃− p𝛼)

ᵀ 𝛾−1 (p̃− p𝛼)

+ 2

(︂
Δp

2

)︂ᵀ

𝛾−1

(︂
Δp

2

)︂
(4.66)

and

(q− q𝛼)
ᵀ (p+ p𝛼)−

(︀
q′ − q𝛼

)︀ᵀ (︀
p′ + p𝛼

)︀
= Δqᵀ (p̃+ p𝛼) + (q̃− q𝛼)

ᵀΔp. (4.67)

The total exponent (including the action difference) thus is

𝐸 =
i

2~
[Δqᵀ (p𝛼 − p̃) + (q̃− q𝛼)

ᵀΔp]− i

2~
[𝛿q𝑡

ᵀ (p𝛼 − p̃𝑡) + (q̃𝑡 − q𝛼)
ᵀ 𝛿p𝑡]

− 1

2

[︂
(q̃− q𝛼)

ᵀ 𝛾 (q̃− q𝛼) +

(︂
Δq

2

)︂ᵀ

𝛾

(︂
Δq

2

)︂
+ (q̃𝑡 − q𝛼)

ᵀ 𝛾 (q̃𝑡 − q𝛼) +

(︂
𝛿q𝑡
2

)︂ᵀ

𝛾

(︂
𝛿q𝑡
2

)︂]︂
− 1

2~2

(︂
(p̃− p𝛼)

ᵀ 𝛾−1 (p̃− p𝛼) +

(︂
Δp

2

)︂ᵀ

𝛾−1

(︂
Δp

2

)︂
+ (p̃𝑡 − p𝛼)

ᵀ 𝛾−1 (p̃𝑡 − p𝛼) +

(︂
𝛿p𝑡

2

)︂ᵀ

𝛾−1

(︂
𝛿p𝑡

2

)︂)︂
. (4.68)

Remembering the defining equations of the stability matrix (see Appendix D)

𝛿p𝑡 =m11Δp+m12Δq, (4.69)

𝛿q𝑡 =m22Δq+m21Δp, (4.70)

we can now do the Δp and Δq integrations as they are simple Gaussian integrations. To this end,
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we write the exponent in the form

𝐸 = −
(︀
ΔqT,ΔpT

)︀
A

(︃
Δq

Δp

)︃
+ bT

(︃
Δq

Δp

)︃
+ 𝑐, (4.71)

where

A =

⎛⎝1
2

(︁
𝛾
4 +

mT
22𝛾m22

4

)︁
+ 1

2~2
mT

12𝛾
−1m12

4
1
2
mT

22𝛾m21

4 + 1
2~2

mT
12𝛾

−1m11

4

1
2
mT

21𝛾m22

4 + 1
2~2

mT
11𝛾

−1m12

4
1

2~2

(︁
𝛾−1

4 +
mT

11𝛾
−1m11

4

)︁
+ 1

2
mT

21𝛾m21

4

⎞⎠ (4.72)

is a 2𝑓 × 2𝑓 matrix and

b = − i

2~

(︃
(p̃− p𝛼)−mT

22 (p̃𝑡 − p𝛼) +mT
12 (q̃𝑡 − q𝛼)

− (q̃− q𝛼)−mT
21 (p̃𝑡 − p𝛼) +mT

11 (q̃𝑡 − q𝛼)

)︃
(4.73)

is a 2𝑓 element column vector, whereas

𝑐 = −1

2

[︁
(q̃− q𝛼)

T 𝛾 (q̃− q𝛼) + (q̃𝑡 − q𝛼)
T 𝛾 (q̃𝑡 − q𝛼)

]︁
− 1

2~2
[︁
(p̃− p𝛼)

T 𝛾−1 (p̃− p𝛼) + (p̃𝑡 − p𝛼)
T 𝛾−1 (p̃𝑡 − p𝛼)

]︁
(4.74)

is a constant term. Hence the Gaussian integration gives

∫︁
d𝑓Δ𝑝d𝑓Δ𝑞

(2𝜋~)𝑓
exp {𝐸} =

1

(2𝜋~)𝑓

√︂
𝜋2𝑓

detA
exp

{︂
bTA−1b

4
+ 𝑐

}︂
. (4.75)

The exact analytic calculation of detA using the method of factorization, as shown in the Appendix

F.1, following the lines of Herman’s 1986 paper [172], finally gives

detA =

(︂
1

8~

)︂2𝑓

det

{︂
m11 + 𝛾m22𝛾

−1 + i~𝛾m21 +
1

i~
m12𝛾

−1

}︂
det

{︂
m11 + 𝛾m22𝛾

−1 − i~𝛾m21 −
1

i~
m12𝛾

−1

}︂
. (4.76)

This cancels the HK-prefactor absolute square.

|𝑅 (p̃, q̃, 𝑡) |2 1

(2𝜋~)𝑓

√︂
𝜋2𝑓

detA
= 2𝑓 . (4.77)

Therefore, the remaining integral over p̃ and q̃ is:

𝑃 𝑐𝑙 (𝑡) = 𝐶𝐻
𝐴𝐵(𝑡) = 2𝑓

∫︁
d𝑓𝑝d𝑓𝑞

(2𝜋~)𝑓
exp

{︂
bTA−1b

4
+ 𝑐

}︂
. (4.78)

Before evaluating this expression numerically some remarks are in order:
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∙ The result is a linearized semiclassical result and we therefore can call it an LSC-IVR result.

∙ Because it is based on Gaussian basis functions it is the correct Husimi version in the case of

the survival (or staying) probability, 𝐴 = 𝐵̂ = |Ψ𝛼⟩⟨Ψ𝛼|.

∙ In contrast to a straightforward application of (4.41), in addition to the Husimi exponent 𝑐,

there is a term bᵀA−1b
4 in the exponent that contains stability information, similar in spirit to

the semiclassical hybrid dynamics, where part of the degrees of freedom are treated using the

thawed Gaussian approximation [67].

∙ Furthermore also an overall factor of 2𝑓 appears naturally, ensuring normalization at the initial

time 𝑡 = 0.

4.3. Numerical Results

For the following numerical investigations, we again consider a Morse oscillator as our system of

interest. The potential is given by Eq. (3.2) of section 3.1.1, the mass of the system is chosen to be

unity. The values of the dimensionless potential parameters that we use here are again: 𝐷 = 150 and

𝛼 = 0.288, leading to 𝜔 = 4.988 for the frequency of (harmonic) oscillations around the minimum.

We choose the value for the phase-space center of the Gaussian wavefunction |Ψ𝛼⟩ to be 𝑞𝛼 = 3.5 and

𝑝𝛼 = 0 and we take the width parameter of the Gaussian as 𝛾 = 4.

We note that Hamilton’s equations are solved with the classical Hamiltonian in all cases. Using

instead the Hamiltonian matrix element between coherent states that is sometimes used for the Husimi

case would lead to almost identical results for the potential parameters considered here. The phase

space coordinates, as well as the stability matrix elements are then determined numerically by using

a symplectic leap frog method [49].

The quantity of interest in the following is the survival probability 𝑃 (𝑡) that will be followed up to

the first full revival time, 𝑇rev = 2𝜋/𝛼2 which, in the present case, is around 60 times the classical

period of the Morse oscillator, given by 𝑇cl = 2𝜋/𝜔 = 2𝜋/(
√
2𝐷𝛼) ≈ 2𝜋/5.

The number of trajectories used for the full HK as well as for the LSC-IVR results was 104. The

time step chosen in all dynamical calculations was Δ𝑡 = 2𝜋/(100× 𝜔) = 𝑇cl/100.

4.3.1. Uncoupled Case

In Figure 4.1, we compare the full numerical solution to the time-dependent Schrödinger equation

(TDSE) with the corresponding semiclassical HK result. Analogously to Fig. 3.3, where the absolute

value squared is plotted, it can be seen that the two results coincide very nicely, although the HK

result due to the loss of norm is not coming back to unity fully at the revival time, which is around

𝑡 = 75. The fact that the semiclassical HK propagator can reproduce the interference based revival

in a Morse oscillator has been investigated in detail by Wang and Heller [99].
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Figure 4.1.: Survival probability for the 1D Morse oscillator up to first full revival time using a
split-operator method with fast Fourier transform (FFT) to solve the time-dependent Schrödinger
equation (TDSE) (full blue line) and full Herman-Kluk (HK) result (dashed red line).

In Figure 4.2, we now compare several LSC-IVR results. The Wigner and Husimi results differ as

well as does the Husimi without the additional exponential term. For short times all three results are

identical. For times when all three results have decayed to small values, differences become visible.

The new Husimi and the Wigner result are very close, though. The revival visible in the full quantum

result is not displayed in any of the linearized approaches, though.
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Figure 4.2.: Survival probability for the 1D Morse oscillator using Wigner (full blue curve) and
Husimi linearized semiclassical initial value representation (LSC-IVR) (dotted yellow curve) as well

as Husimi version without the term bᵀA−1b
4 but with an additional factor of two (dashed orange

curve).
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4.3.2. Coupling to a Harmonic Bath Degree of Freedom

Now we proceed and ask the question what happens to the revival dynamics, if we couple the Morse

oscillator to a very heavy harmonic oscillator of mass 𝑚𝑦 = 20 such that the total Hamiltonian reads

𝐻 =
𝑝2𝑥
2

+
𝑝2𝑦
2𝑚𝑦

+ 𝑉𝑀 (𝑥) +
1

2
𝑚𝑦𝜔

2
𝑦𝑦

2 + 𝜆𝑥𝑦, (4.79)

with 𝜔𝑦 = 1.17 and the initial width parameter for the ground state wavepacket in the harmonic

degree 𝛾𝑦 = 𝑚𝑦𝜔𝑦. The very heavy oscillator shall mimic the interaction with a many degree of

freedom bath with smaller masses, i.e., a “condensed phase” environment, see also [47].
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Figure 4.3.: Survival probability for the Morse oscillator coupled to a harmonic degree of freedom
with coupling strength 𝜆 = 1, up to first full revival time (in the uncoupled case) using Wigner (full
blue line) and Husimi LSC-IVR (dotted yellow curve) as well as Husimi version without the term
bᵀA−1b

4 (dashed orange curve).

First, we look at a moderate coupling strength of 𝜆 = 1. The corresponding results from the

Wigner and the Husimi approach as well as the Husimi without the bᵀA−1b
4 term in the exponent are

contrasted in Figure 4.3. It can be seen that the additional term brings the Husimi result closer to

the Wigner one, rather similar to the uncoupled case. At longer times there is just a small amplitude

wiggling in the signal due to the coupling.

In Figure 4.4, we turn to a higher coupling strength of 𝜆 = 9 and first compare the full solution to the

TDSE with the corresponding semiclassical HK result. It can be seen that, as in the uncoupled case,

the two results again coincide very nicely, even the small oscillations are reproduced until around

𝑡 = 75. The revival is not visible any more, due to the strong coupling to the harmonic degree,

however.
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Figure 4.4.: Survival probability for the Morse oscillator coupled to a harmonic degree of freedom
with coupling strength 𝜆 = 9, up to first full revival time (in the uncoupled case) using split operator
FFT to solve the TDSE (full blue line) and full HK result (dashed red line).

In Figure 4.5, the results from the LSC-IVR calculations (Wigner as well as Husimi) in the strong

coupling case are displayed. It can be seen that both also show no revivals, as to be expected.

For the very strong coupling the underlying classical dynamics becomes strongly chaotic and the

numerical inversion of theAmatrix turns singular at certain times for a lot of the 10000 trajectories we

propagated. In order to circumvent this singularity problem, we treated the problematic trajectories

without the additional term in the exponent from the time on, when the inversion is problematic.
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Figure 4.5.: Survival probability for the Morse oscillator coupled to a harmonic degree of freedom
with 𝜆 = 9, up to first full revival time (in the uncoupled case) using Wigner LSC-IVR (full blue
line) and Husimi LSC-IVR (dotted red line).



5. Thermalization

With the methodological experience laid out in Chapters 3 and 4, we are now able to tackle the

problem which is at the heart of this thesis. This is the puzzle of energy exchange between subsystems.

Ever since the pioneering works of Fermi, Pasta, Ulam and Tsingou (FPUT) [6], the puzzle of energy

exchange between subsystems, eventually leading to equilibration and thermalization in closed systems

with a finite number of degrees of freedom has intrigued researchers in the fields of classical [7–15], as

well as semiclassical [17, 18] and quantum mechanics [2, 7, 19–27].

In classical systems the prerequisite for thermalization seems to be the (hard) chaoticity of the

underlying dynamics [8, 9]; this fact being one possible reason that by investigating a weakly anhar-

monic system, FPUT did not succeed in finding thermalization but were surprised by a dynamics

that showed pronounced revivals [173]. For dynamical chaos to appear, the phase space has to be

at least three dimensional. The question therefore arises if it is enough to increase the interaction

strength between the different degrees of freedom in order to fully develop chaos, or if, in addition, the

number of those degrees of freedom has to be increased (possibly all the way to the thermodynamic

limit) in order to observe thermalization. In two more recent contributions from the realm of classical

mechanics it has been shown by solving Newton’s equations for coupled harmonic oscillator systems,

comprising a few hundreds [11] up to a few thousand degrees of freedom [14] that, for a suitably cho-

sen initial configuration, a (large enough) subsystem may indeed reach thermal equilibrium, without

coupling to an (external) thermostat and even without nonlinear interactions (i. e. without chaos).

In the light of these results, another possible reason that FPUT saw no signs of thermalization is the

closeness of their model to the noninteracting case [14].

Although semiclassical approaches may be helpful to tackle such problems [143], this large number

of degrees of freedom seems elusive if one is interested in a full quantum description of the process.

From this perspective it comes as a relief that also small numbers of degrees of freedom (below ten)

can lead to thermalization in long-time dynamics of quantum systems, as shown long ago for spin

systems [19] and discussed more recently in the seminal book by Gemmer, Michel and Mahler [2] and

the article by Reimann [23]. For a more recent reference on spin systems realized in graphene quantum

dots, see [174] and for energy exchange in quantum systems with continuous degrees of freedom, see

[21]. There it is claimed that as little as ten to twenty harmonic degrees of freedom are necessary to

observe energy loss to the bath without backflow on the observed time scales. In addition, in [20], the

thermalization of eight valence electrons inside a small sodium cluster has been investigated quantum

mechnically. Furthermore, whereas in [19] it was argued that both integrable as well nonintegrable

systems exhibit statistical behavior for long times, in [22] it was pointed out that, in a Bose-Hubbard

dynamics, thermalization is only observed if the system starts from a chaotic region of phase space

61
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but not if the system is launched from a quasi-integrable region.

In the present chapter, we will investigate the toppling pencil model, studied recently by Dittrich

and Pena Martínez (DPM) [15]. In their classical mechanics study, they focused on a particle on

top of the barrier in a quartic double well that is coupled to a small (from just one single up to

the order of ten and higher) number of harmonic oscillators. It is well known that the transition

from integrable to chaotic motion sets in first around the separatrix of the double well’s phase space,

when the interaction strength with an external sinusoidal field is tuned higher [175]. In the light of

the findings in [22], this makes an initial condition starting on top of the double well’s barrier an

ideal candidate to search for (quick [23]) thermalization under the interaction with a relatively small

number of harmonic degrees of freedom, although the interaction with a sinusoidal field is a crude

approximation to the interaction with harmonic degrees of freedom, whose dynamics is influenced by

“back action” of the system.

In contrast to DPM, in the following, we will investigate the system dynamics fully quantum

mechanically, making use of the method of coupled coherent states, introduced by Shalashilin and

Child [33]. By being based on an expansion of the total wavefunction in terms of coherent states

(Gaussians), whose initial positions in phase space are chosen randomly, the exponential wall that

one usually experiences in grid based approaches to the quantum dynamics can be overcome or at

least be pushed to rather larger numbers of degrees of freedom. For a recent review of the CCS and

related methods, we refer to [34]. The main focus of the present work is on the question of how many

bath degrees will be needed to ensure thermalization and how strong the interaction has to be and

how the speed of thermalization depends on the coupling and/or the number of degrees of freedom.

The toppling pencil model setup seems to be ideally suited to answer all those questions. Earlier

the phenomenon of tunneling was investigated for a symmetric double-well potential perturbed by a

monochromatic driving force using the Floquet formalism and the concept of quasienergies [176]. In

contrast to [176], we investigate here thermalization for the symmetric quartic double-well potential.

5.1. Quartic Double Well coupled to a Finite Heat Bath

Our model system of interest is a double well, which is bilinearly coupled to a finite number 𝑓 of

harmonic oscillators [15]. A quartic double-well is a bistable system with two symmetry related

minima. It has many physical realizations, one of the most prominent of which is the ammonia

molecule, first discussed in the quantum (tunneling) context by Hund as early as 1927 [177]. A

solid state realization of a non quartic but symmetric double-well potential is given by a suitably

parametrized rf-SQUID, where the role of the coordinate is played by the flux through the ring [178].

More recently bistable potentials have been discussed in cold atom physics in connection with Bose-

Einstein condensation [179]. In the following, we first discuss the bare quartic bistable system before

coupling it to a finite heat bath.
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5.1.1. Quartic Double Well

The potential of a symmetric quartic oscillator double well with a parabolic barrier around its relative

maximum can be written as

𝑉𝑆(𝑥) = −𝑎
2
𝑥2 +

𝑏

4
𝑥4, 𝑎, 𝑏 ∈ R+. (5.1)

It has quadratic minima at 𝑥± = ±
√︀

𝑎
𝑏 and a quadratic maximum at 𝑥0 = 0 of relative height

𝐸𝐵 = 𝑎2

4𝑏 . The Hamiltonian of the quartic double well is then given by

𝐻𝑆(𝑝𝑥, 𝑥) =
𝑝2𝑥
2𝑚𝑥

+ 𝑉𝑆(𝑥). (5.2)

Its classical dynamics consists of harmonic oscillations with the frequency 𝜔 =
√︁

2𝑎
𝑚𝑥

close to the

minima at 𝑥±. These oscillations become increasingly anharmonic as the energy rises towards the top

of the barrier. The phase space portrait of the dynamics contains the prototypical separatrix, shaped

like the number eight, as well as a hyperbolic fixed point at 𝑝𝑥 = 0, 𝑥 = 0 on that separatrix and two

elliptic fixed points at 𝑝𝑥 = 0, 𝑥 = 𝑥± [180]. If the available energy is higher than the barrier, in the

case of the NH3 molecule, the corresponding motion is referred to as umbrella motion.

For an understanding of the corresponding quantum dynamics, we first calculate the energy spec-

trum of the quartic double well potential, using a finite difference representation of the Laplacian to

solve the TISE

𝐻̂𝑆𝜑𝑛(𝑥) ≡
[︂
− ~2

2𝑚𝑥
Δ+ 𝑉𝑆(𝑥)

]︂
𝜑𝑛(𝑥) = 𝐸𝑛𝜑𝑛(𝑥). (5.3)

The first few eigenvalues for the parameters 𝑚𝑥 = 1 and 𝑎 = 2, 𝑏 = 1 and in units, where ~ = 1 are

gathered in Table 5.1. In the numerical work to be shown later, we will use a Gaussian of the form

Ψ(𝑥, 0) =
(︁𝛾𝑥
𝜋

)︁1/4
e−

𝛾𝑥
2
𝑥2

(5.4)

that is located at the top of the barrier as the initial state. Together with the potential and its first

eigenstate it is shown in Figure 5.1. The base lines for the two wavefunctions are at their corresponding

energy expectation values, which in the case of the Gaussian is 𝐸𝐺 = 𝛾𝑥/4−1/(2𝛾𝑥)+3/(16𝛾2𝑥), leading

to 𝐸𝐺 = 0.3 for a width parameter of 𝛾𝑥 = 2. Although both, initial position as well as momentum

𝑛 = 1 𝑛 = 2 𝑛 = 3 𝑛 = 4 𝑛 = 5

𝐸𝑛 -0.300 0.046 1.23 2.46 3.94

|𝑐𝑛|2 0.654 0 0.323 0 0.0225

Table 5.1.: Eigenvalues 𝐸𝑛 and squared overlap |𝑐𝑛|2 := |⟨𝜑𝑛|Ψ(0)⟩|2 of eigenstates with the initial
Gaussian of Eq. (5.4) for 𝛾𝑥 = 2 of the bare quartic double well with 𝑎 = 2, 𝑏 = 1. The grid
extension for the finite difference calculation was 𝑥 ∈ [−4, 4] and 256 grid points were sufficient to
achieve convergence to within the number of digits given.



64 5.1 Quartic Double Well coupled to a Finite Heat Bath

expectations are zero, due to its finite width, there is a finite energy content in the wavepacket. This

initial state is the motivation for the naming “toppling pencil”; a pencil balanced tip down on a flat

surface, prone to fall over [15].

Figure 5.1.: Quartic double well potential with parameters 𝑎 = 2, 𝑏 = 1 (solid blue line), leading
to minima at 𝑥± = ±

√
2. Absolute value squared of the initial Gaussian sitting at the top of the

barrier with initial energy 𝐸𝐺 = 0.3 (dashed red line) and absolute value squared of the ground
state wavefunction of the quartic double well with ground state energy 𝐸1 = −0.30 (dotted yellow
line) are overlaid.

For symmetry reasons, it is obvious that the symmetric initial Gaussian does have zero overlap

with the eigenfunctions of odd parity (see Table 5.1). Like the odd ones, also almost all higher even

eigenstates (from the fifth eigenstate on) are not taking part in the dynamics. The dynamics of the

Gaussian in the bare potential will then be an oscillation with the frequency corresponding to the

difference of the first and the third eigenvalue see above. We stress that this is not the usual tunneling

scenario, where a Gaussian is sitting in one of the two wells initially and is then moving to the other

well and back with a (usually very small) frequency given by the difference 𝐸2 −𝐸1 of the two lowest

eigenvalues. Here we focus on the symmetric initial condition, however, and have chosen the potential

parameters such that just the eigenstates with eigenvalues 𝐸1 and 𝐸3 are appreciably populated.
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5.1.2. Coupling to a Finite Heat Bath

Coupling a double well to a harmonic oscillator heat bath with infinitely many degrees of freedom

with continuous spectral density will lead to decoherence and dissipation in the dynamics. In the case

that only the two lowest states of the bistable system play a role, the tunneling rate will be severely

influenced by the system bath coupling [181]. A lot of work has been done on that so-called spin-boson

model in the 80s of the last century, as documented by the impressive review by Leggett et al [182].

More recently, this model has been studied deeply by different numerical methods, with a focus on

correctly mimicking infinite baths by either a discretization in frequency of the harmonic oscillator

spectral density or by a correct description of the bath correlation function in the time domain [144].

Furthermore, also the influence of a sinusoidal driving on the tunneling effect in a two-level system

has been studied, yielding surprising localization effects [183, 184].

Here we are not restricting ourselves to the spin-boson case but will consider the total Hamiltonian

to be that of the full bistable system coupled to an environment with a large but finite number of

degrees of freedom, given by

𝐻(R, r) = 𝐻𝑆(R) +𝐻𝐸(r) +𝐻𝑆𝐸(R, r) (5.5)

where R = (𝑝𝑥, 𝑥) denotes the phase-space vector of the central system of interest, whereas r =

(𝑝1, 𝑝2, ..., 𝑝𝑓 , 𝑦1, 𝑦2, ..., 𝑦𝑓 ) denotes the 2𝑓 -dimensional phase space vector of all the environmental

degrees of freedom. The dynamics of the bare central system of interest (index S) is governed by the

Hamiltonian of the quartic double well given in Eq. (5.2). The environment (index E) consists of 𝑓

harmonic oscillators, whose Hamiltonian is given by

𝐻𝐸(r) =

𝑓∑︁
𝑛=1

(︂
𝑝2𝑛
2𝑚

+
𝑚𝜔2

𝑛

2
𝑦2𝑛

)︂
. (5.6)

The choice of a discrete set of frequencies 𝜔𝑛, 𝑛 = 1, ..., 𝑓 will be discussed below in the numerical

results section. As each oscillator should exert a force on the system, hence their interaction can be

modeled as the position-position coupling

𝐻𝑆𝐸(R, r) = −𝑥
𝑓∑︁

𝑛=1

𝑔𝑛𝑦𝑛 (5.7)

with coupling constant 𝑔𝑛 = 𝑔√
𝑓
, which is renormalized by

√
𝑓 in order to make the results for different

number of oscillators comparable. Using linear response theory, this scaling has been derived in [12].

The bilinear coupling does not break the invariance of the total Hamiltonian under a parity trans-

formation (spatial reflection) 𝑃 : (R, r) → (−R,−r). However, it drives the two bistable minima

apart from 𝑥± = ±
√︀

𝑎
𝑏 to 𝑥± = ±

√︁
1
𝑏 (𝑎+

∑︀𝑓
𝑛=1

𝑔2𝑛
𝑚𝜔2

𝑛
), an effect which is not intended by the cou-

pling to the environment [15, 185], see Fig 5.2a for a quartic double well coupled to a single harmonic

(bath) degree of freedom. This driving apart can, however, be compensated by including the so-called
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counter term proportional to the square of the system coordinate in the potential of the total Hamil-

tonian (system plus bath) to complete the squares with respect to the dependence on the oscillator

coordinates, which is shown below in Fig 5.2b for a single environmental (bath) oscillator. One thus

replaces the total potential by [15, 185, 186]

𝑉𝑆 + 𝑉𝐸 +𝐻𝑆𝐸 + 𝑉𝐶 = 𝑉𝑆(𝑥) +

𝑓∑︁
𝑛=1

𝑚𝜔2
𝑛

2
𝑦2𝑛 − 𝑥

𝑓∑︁
𝑛=1

𝑔𝑛𝑦𝑛 + 𝑥2
𝑓∑︁

𝑛=1

𝑔2𝑛
2𝑚𝜔2

𝑛

= 𝑉𝑆(𝑥) +

𝑓∑︁
𝑛=1

𝑚𝜔2
𝑛

2

(︂
𝑦𝑛 − 𝑔𝑛

𝑚𝜔2
𝑛

𝑥

)︂2

. (5.8)

The counter term

𝑉𝐶 = 𝑥2
𝑓∑︁

𝑛=1

𝑔2𝑛
2𝑚𝜔2

𝑛

(5.9)

now renormalizes the factor 𝑎 in front of the quadratic term in the system coordinate according to

𝑎 → 𝑎−
∑︀𝑓

𝑛=1
𝑔2𝑛

𝑚𝜔2
𝑛
[187], thus exactly undoing the renormalization (shift of the minima) mentioned

above and the minima are at their uncoupled positions, see also Fig. 2 of [15]. In the section on the

numerical results, we will display the time evolution of the counter term 𝑉𝐶 . Even more importantly,

we will start the bath in its ground state (in the thermodynamic limit 𝑓 → ∞ this would correspond

to zero temperature) and will focus on the evolution of the system dynamics away from the excited

state on top of the barrier. To this end we will need a numerical method that allows us to treat a

multitude of degrees of freedom quantum mechanically. The method of our choice is the CCS method

that was reviewed in section 2.1.2.

Figure 5.2.: Contour plots of the potential (5.8) for a single bath degree of freedom with phase-
space coordinates (𝑦, 𝑝𝑦). Quartic double well potential parameters 𝑎 = 𝑏 = 0.15; harmonic oscillator
parameters 𝑚 = 1, 𝜔 = 0.4 and coupling 𝑔 = 0.06. Panel (a) includes the bilinear coupling term but
excluding the counter term (5.9); whereas panel (b) includes both coupling and the counter term.
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5.2. Long-time dynamics of the coupled system

In the following, we will present numerical results for the time-evolution of the composite system

using the CCS method to solve the time-dependent Schrödinger equation. In addition, for up to a

total of 4 degrees of freedom, i.e., 𝑓 = 3, we also corroborated our results by using the split-operator

FFT technique for quantum propagation [50]1. Our focus will be on the question if the coupling to

the environmental degrees of freedom, which are all starting in their ground states

Ψ(𝑦𝑛, 0) =
(︁𝛾𝑛
𝜋

)︁1/4
exp

{︁
−𝛾𝑛

2
𝑦2𝑛

}︁
, (5.10)

will eventually lead to a “thermalization” of the quartic degree towards its ground state (which is

depicted in Fig. 5.1 as the dotted yellow line). We stress that previous treatements of the double well

dynamics using CCS [188] have focussed on the description of quantum tunneling, where the initial

state is made up of an equal weight superposition of the two lowest energy eigenstates, whereas herein,

the initial states consists mostly of state one and state three (see Table 5.1).

In the following, the potential parameters for the double well are 𝑎 = 2 and 𝑏 = 1 and the mass

𝑚𝑥 is set equal to unity. The choice of frequencies of the environmental degrees of freedom will be

detailed below. All masses of the oscillators are taken to be equal and given by 𝑚 = 0.1.

In order to make use of the CCS method to solve quantum dynamics of this composite system of

(𝑓 + 1) degrees of freedom as in the previous section 5.1, we represent the (𝑓 + 1)-mode CS by a

(𝑓 + 1)-fold tensor product given as

|𝑧𝑙⟩ =
𝑓⨂︁

𝑗=0

|𝑧𝑙𝑗⟩ (5.11)

of normalized one-dimensional CS |𝑧𝑙𝑗⟩. Here the zeroth degree of freedom denotes the system of

interest, which in the present case is the double well with phase-space coordinates (𝑥, 𝑝𝑥), whereas

the remaining 1 to 𝑓 represents the bath degrees of freedom. The Appendix G contains details of the

implementation of the CCS method, including a derivation for the normally ordered Hamiltonian of

the composite system along with the classical equations of motion.

1We note that the number of grid points in the 𝑥 direction needed for convergence was just 32 (for the grid extension
𝑥 ∈ [−4, 4]) and thus much less than in the finite difference approach in 5.1.1. Furthermore, the number of grid points
we took for the harmonic degrees varied between 128 for the low frequency oscillators and 64 for the high frequency
ones. The time-step for propagation was Δ𝑡 = 0.01.
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5.2.1. Different numerical measures

As a first measure of the possible deviation of the time-evolved wavefunction away from the initial

state, we use the autocorrelation function, defined in 1D as

𝑐(𝑡) = ⟨ΨM

CS
(0)|ΨM

CS
(𝑡)⟩ =

𝑀∑︁
𝑙=1

𝑎𝑙(𝑡)⟨ΨM

CS
(0)|𝑧𝑙(𝑡)⟩

=
∑︁
𝑘,𝑙

𝑎*𝑘(0)⟨𝑧𝑘(0)|𝑧𝑙(𝑡)⟩𝑎𝑙(𝑡). (5.12)

For a multitude of degrees of freedom, an analogous quantity could be defined by just replacing the

scalars 𝑧𝑘, 𝑧𝑙 by the corresponding vectors 𝑧𝑘, 𝑧𝑙, which would, however, not serve our purpose. Our

goal is to find an autocorrelation measure, irrespective of the dynamics of the environment. Therefore,

we first define the probability density of the system degree of freedom, by integrating the absolute

value squared of the full wavefunction over all 𝑓 environmental degrees of freedom

𝜌𝑆(𝑥, 𝑡) =

∫︁
d𝑦1 . . . d𝑦𝑓 |ΨM

CS
(𝑥, 𝑦1, . . . , 𝑦𝑓 , 𝑡)|2 (5.13)

to arrive at the probability density of the quartic degree of freedom. The explicit expression for

the probability density 𝜌𝑆(𝑥, 𝑡) in terms of the time-dependent complex coefficients 𝑎𝑙(𝑡) and time-

dependent (𝑓 +1)-dimensional complex displacement vectors 𝑧𝑙(𝑡) is given in Appendix H. This then

allows to calculate the quantity

𝑐𝑆(𝑡) =

∫︁
d𝑥Ψ(𝑥, 0)

√︀
𝜌𝑆(𝑥, 𝑡), (5.14)

which (if the initial state is real (and positive) as herein) has no phase anymore and is thus the

analogue of the absolute value of the correlation function of Eq. (5.12). For the pure quartic (1D)

case and the initial state we use, the time evolution of the quantities defined Eq. (5.12) and Eq. (5.14)

is similar but not idential. The oscillation period is identical though.

This can be seen explicitly by looking at the time-evolved initial state (5.4), which to a large degree

is given by (~ is set to unity)

|Ψ(𝑡)⟩ =
∑︁
𝑛

𝑐𝑛|𝑛⟩e−iEnt ≈ 𝑐1|1⟩e−iE1t + 𝑐3|3⟩e−iE3t. (5.15)

The autocorrelation thus is

𝑐(𝑡) ≈ |𝑐1|2e−iE1t + |𝑐3|2e−iE3t (5.16)
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and its absolute value is given by

|𝑐(𝑡)| =
√︀
𝑐*(𝑡)𝑐(𝑡)

=
{︀
|𝑐1|4 + |𝑐3|4 + 2|𝑐1|2|𝑐3|2 cos(𝐸3 − 𝐸1)𝑡

}︀ 1
2 (5.17)

Using the values of the 𝑐𝑛 coefficients gathered in Table 5.1, it can be corroborated that |𝑐(𝑡)| varies
between unity and 0.33, as can be seen in the numerical results to be presented below.

For the density, which appears in the alternative measure, we find (assuming real-valued eigenfunc-

tions)

𝜌(𝑥, 𝑡) = |Ψ(𝑥, 𝑡)|2 = |𝑐1|2𝜌21(𝑥) + |𝑐3|2𝜌23(𝑥) + 2|𝑐1||𝑐3| cos(𝐸3 − 𝐸1)𝑡, (5.18)

leading to the same oscillation frequency of |𝑐𝑆(𝑡)| as the one observed in |𝑐(𝑡)|.
An even more stringent measure to decide if the time evolved state is approaching the ground state

is the energy expectation value, defined by

⟨𝐸⟩(𝑡) = ⟨ΨM

CS
(𝑡)|𝐻̂ord|ΨM

CS
(𝑡)⟩

=
∑︁
𝑘,𝑙

𝑎*𝑘(𝑡)𝐻ord(𝑧
*
𝑘, 𝑧𝑙)⟨𝑧𝑘(𝑡)|𝑧𝑙(𝑡)⟩𝑎𝑙(𝑡). (5.19)

The different terms in the total Hamiltonian can be disentangled and their respective contribution

to the total energy can be looked at separately. The conservation of the total energy will also serve

as a convergence check for the CCS method [74]. In passing, we note that the norm of the total

wavefunction was well conserved in all the numerical calculations that we present. This is in contrast

to the semiclassical Herman-Kluk case, where often a normalization of the results has to be performed.

This is not necessary for CCS.

5.2.2. Numerical results

First, we consider the autocorrelation of the initial state at the top of the barrier in the uncoupled

1D case in Fig. 5.3. For the CCS calculations, a multiplicity of 𝑀 = 299 was enough to converge

the result to the converged split operator FFT result. Because the initial state mainly contains

only two eigenstates (see Table 5.1), the local spectrum [49], i. e., the Fourier transform of the

autocorrelation contains just two major peaks. From the figure, it can be seen that the absoulte

value of the autocorrelation correspondingly oscillates back and forth between unity and around 0.3

with a period of around 𝑇 = 2𝜋/(𝐸3 − 𝐸1) ≈ 4 in the dimensionless units used. This fact has been

corroborated in the previous subsection, see Eq. (5.17).

The initial state that will be used in the propagation of the coupled system is the (direct) product

of the Gaussian on top of the barrier of the double well, given in Eq. (5.4), times the ground state

Gaussians of Eq. (5.10) which amounts to zero temperature of the environment as shown in Appendix

I. Before showing the alteration of the results by the coupling of the double well to several oscillators,
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Figure 5.3.: Absolute value of the autocorrelation for the 1D system (double well only) from a
CCS calculation (solid blue line) and from a split-operator FFT calculation (dashed red line). The
two curves coincide to within line thickness.
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we have to elaborate on the choice of frequencies of those oscillators, however. This choice will be

crucial for the energy flow between the double well and the environment. We again follow the work

of DPM [15] and choose the frequencies from the (normalized) density

𝜌f(𝜔) =
1

𝜔co
exp

{︂
− 𝜔

𝜔co

}︂
, (5.20)

with a parameter 𝜔co to be fixed below, according to∫︁ 𝜔𝑘

0
d𝜔𝜌f(𝜔)

!
=

𝑘

𝑓co
. (5.21)

This leads to the explicit expression

𝜔𝑘 = −𝜔co ln

(︂
1− 𝑘

𝑓co

)︂
𝑘 = 1, ..., 𝑓 (5.22)

for the frequencies and we here choose the second parameter 𝑓co > 𝑓 , such that extremely high

frequencies which would not exchange energy with the system (not shown) are not considered. Other

frequency distributions have been used in [144] as well as in [189], while the present one has been

found favorable also in MCTDH calculations [190]. Now one could choose the coupling strength

between system and environment according to a specific (continuous) spectral distribution, which is

usually taken as Ohmic or sub- or super-Ohmic. Here, however, we again adhere to DPM and take

equal coupling strengths 𝑔 = 0.1 for all oscillators, just suitably normalized by the total number of

environmental degrees of freedom (see remark after Eq. (5.7)) to make the results for different values

of 𝑓 comparable. In Table 5.2, we give the parameters that were used in Eq. (5.22) for the calculation

of the discretized frequencies for different values of 𝑓 . We note in passing that for the number of

oscillators that we will use, and for the present frequencies and couplings there is no transition to

monostability of the combination of the bare potential plus the counter term, mentioned in [187]. In

the following several different quantities will be looked at for increasing numbers of environmental

degrees of freedom.

To start with, for the system’s “autocorrelation” 𝑐𝑆(𝑡) defined in Eq. (5.14), we found the results

displayed in Fig. 5.4. For the 3D results (𝑓 = 2) we used 799 trajectories, whereas for the 4D case

(𝑓 = 3) we used 2999 trajectories. From Fig. 5.4 and by comparison to the 1D case displayed in

Fig. 5.3, it can be seen that by the coupling to the environmental degrees of freedom, the oscillation

frequency is only marginally increased (as to be expected by comparison to Rabi oscillations in a

two level system) but the oscillation amplitude becomes decisively smaller. Furthermore, a damping

𝑓 2 3 4 5

𝜔co 4 4 4 4

𝑓co 10 12 14 16

Table 5.2.: Parameters needed for the calculation of the discretized bath frequencies according to
Eq. (5.22) for different values of 𝑓 .
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of the oscillations for long times can be observed, which becomes more prominent, the higher the

number of environmental degrees of freedom. This observation is in line with the expectation that

the time-evolved state moves towards the ground state for large times 𝑡→ ∞. Then√︀
𝜌(𝑥, 𝑡)

𝑡→∞
≈ 𝜌1(𝑥) (5.23)

and we get

𝑐𝑆(∞) =

∫︁ +∞

−∞
d𝑥Ψ(𝑥, 0)

√︀
𝜌(𝑥,∞)

≈
∫︁ +∞

−∞
d𝑥 (𝑐1𝜌1(𝑥) + 𝑐3𝜌3(𝑥)) 𝜌1(𝑥)

=𝑐1 ≈ 0.8 (5.24)

The expected value of 0.8 for 𝑐𝑆(∞) is close to the long-time average of the numerical result displayed

in Fig. 5.4.

The most important measure to decide about the propagated density’s possible evolution towards

Figure 5.4.: Absolute value of the autocorrelation-like quantity defined in Eq. (5.14) from a CCS
calculation for different numbers of environmental oscillators: 𝑓 = 2 (solid blue) and 𝑓 = 3 (dashed
red)
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the ground state is the energy expectation value. In Fig. 5.5 the energy expectations for all the five

degrees of freedom in the case of 𝑓 = 4 as well as the coupling and the counter term are displayed

for times up to 𝑡 = 300, whereby panel (a) contains the total energy, the double well energy as well

as the coupling and the counter term and panel (b) contains all the different oscillator energies. The

total energy is conserved very well, although a small tendency towards an energy drift is visible (panel

(a)). For the presented results we have used a multiplicity of 𝑀 = 5999 and we did not increase this

number because the convergence is becoming exceedingly slow with the number of trajectories and the

presented calculation took already several days on a modern computer cluster using several cores. As

displayed in panel (b), the different oscillators clearly show an increase in their energy, away from their

ground state value and the 𝜔1 oscillator even overtakes the 𝜔2 oscillator in terms of energy at certain

times. We stress that the oscillators’ energies never fall below their ground state energies as it should

be [191]. Furthermore, the oscillator with the highest frequency is still showing appreciable variations

in its energy. If even higher frequencies would have been chosen, the energy transfer would start to

diminish, however (not shown). We stress that the environment, by consisting of a finite number of

degrees of freedom, does heat up, in contrast to the case of infinitely many environmental oscillators

described by a continuous spectral density [192]. As shown in panel (a), the counter term shows

high frequency oscillations with a period similar to the total double well energy and the interaction

energy is large and negative. Most importantly, the total double well energy shows a clear tendency

to decrease below its initial value of 0.3. In addition, for large times, the amplitude of oscillation of

the double well energy around its average value is rather small and we do not observe any revival in

the relatively long time span that we display.

This last finding led us to investigate the long-time average value of the double well energy expec-

Figure 5.5.: Different energy expectation values for the case 𝑓 = 4: (a) Total energy (dashed-
dotted), counter term (dashed), double well (solid), coupling term (dotted), (b) kinetic plus potential
energy of the different harmonic degrees of freedom: 𝜔1 = 0.29 (solid), 𝜔2 = 0.61 (dotted), 𝜔3 = 0.96
(dashed) 𝜔4 = 1.34 (dashed-dotted)).
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tation

⟨𝐸⟩ = 1

𝑇tot

∫︁ 𝑇tot

0
d𝑡⟨𝐸⟩(𝑡) (5.25)

as a function of the number of environmental oscillators for the relatively long total time of 𝑇tot = 300.

As shown in Fig. 5.6, the average energy of the double well oscillator indeed decreases as a function of

the number of environmental oscillators, indicating a clear trend towards the ground state energy. In

[193], a video of the time evolution of the probability density 𝜌𝑆(𝑥, 𝑡) of the double well is given. This

video shows that for long times, the time-evolved density, due to the coupling (in the presented case

to three harmonic degrees of freedom) approaches the (static) ground state density (also displayed in

the movie) to a substantial degree.

Finally, it is worthwhile to mention that we have tried different values for the coupling strength 𝑔

and found (not shown) that larger values lead to too much initial energy from the counter term (the

coupling itself has zero expectation value at 𝑡 = 0) and thus eventually in the system, whereas smaller

values of 𝑔, due to the small coupling decrease the flow away from the quartic into the harmonic

degrees of freedom. So the value 𝑔 = 0.1 that we used was close to optimal if the cooling of the

quartic degree of freedom is to be achieved.

Figure 5.6.: Long-time average energy of the double well as a function of the total number of
degrees of freedom (degree of freedom).
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The main objective of this work was to investigate thermalization in finite quantum systems where the

system of interest has a continuous variable, using coherent state-based approaches to solve the TDSE.

The objective is achieved and it has been shown that quantum mechanics may lead to thermalization

even if the number of degrees of freedom is relatively small, which is not the case in classical mechanics.

Earlier there has been quite a lot of work done in the quantum realm to study thermalization in

spin systems, but not much is known in the case of continuous systems. Here we studied the zero

temperature thermalization i.e., we considered the ground states of the bath oscillators (environment).

In order to study the quantum dynamics of the system under investigation, we first explained

different methods to solve the TDSE in Chapter 2. We used the method of split-operator FFT as a

benchmark to compare our numerical results obtained from other methods like the CCS, SCS and the

semiclassical HK propagator. We studied the case of a one dimensional Morse oscillator to look into

its revival dynamics in Chapter 3. We also discussed about other model potentials that have been

studied using CSs. We also provided a discussion about three very common potentials namely, Morse,

harmonic and quartic and their Hamiltonian matrix elements that are used in calculating the CCS

equations of motion in order to study the quantum dynamics. A comprehensive comparison of all the

methods studied in this thesis has been given in [34], although Shalashilin and coworkers have done

a lot of ground breaking work in a similar spirit [57, 73, 108]. The first of the given references also

contains an alternative method, called coupled coherent state trajectories, that we have not touched

in this thesis.

As a conclusion from Chapter 3, decisive for the understanding of the differences between the

methods is the notion of tight frames that is used implicitly in HK and can be used explicitly, e.g., in

the static grid case, as shown in Appendix C, but is almost never used in the fully variational VCS

(not discussed herein, but in [194]) as well as CCS, with the exception of [33]. The use of the tight

frame assumption in the HK case reflects itself in the fact that all initial values of 𝑎̄𝑙(𝑡) are nonzero

initially. In the other trajectory based method, CCS, usually only a single coefficient 𝑎𝑙(𝑡)|𝑙=𝛼 is

nonzero initially and all the others acquire nonzero values eventually during the course of coupled

propagation. The fact that 𝑎̄𝑙 and 𝑎𝑙 have to be distinguished is necessary due to the nonorthogonality

of the CS basis functions. If a phase space integral is discretized by a single phase space sum, then,

in the present context, one has used the tight frame assumption.

Starting the exposition of the numerical results for the Morse oscillator with the most approximate

HK method, as usual, we have used the tight frame assumption, that allows to avoid using the

inverse overlap. A densely sampled random grid of 10000 points in phase space is then required for

converged results until the revival time. Because the initial points are chosen randomly, the method

75
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can well be applied also to large systems (not shown here). Especially promising for high-dimensional

applications is the parallel propagation of all trajectories together with their stabilities and actions

as this scales sublinearly with the number of trajectories. The combination of HK with more crude

semiclassical methods like TGWD in the semiclassical hybrid dynamics is favorably applied to system-

bath Hamiltonians [67]. The biggest argument in favor of HK is that, by its being based on classical

dynamical information, it allows for an intuitive understanding of quantum effects [115, 125].

In the SCS case in 1D, also regular grids (with 81 points) can be used but the tight frame assumption

was not a viable option here (but worked for the case considered by Shalashilin and Child [33], as

discussed in Appendix C) and inversion of the (regularized) overlap matrix had to be done. While it

is advantageous to invert the overlap matrix Ω for the SCS method where it is time-independent and

the propagator for time-independent Hamiltonians reads exp
[︀
−𝑖Ω−1H𝑡

]︀
, it is of no obvious benefit in

the SCS and in the VCS method. Computation of Ω−1 and subsequent application to the right-hand

side scales worse and is more unstable than direct solution of the linear system with a non-unit “mass

matrix”. In higher dimensional systems, favorably, random static grids are used [153]. In CCS 121

random points were needed for convergence and the direct solution of the linear algebra problem with

a non-diagonal mass matrix has been employed.

Some statements regarding extensions of the CS formalism and possible future work are worthwhile.

Firstly, throughout most of the Chapters 2 and 3, we have used CS with a fixed width parameter 𝛾,

with the single exception of TGWD. By applying the squeezing operator in addition to the displace-

ment operator, also multiple variable width Gaussians (see Section 2.2.2) could be employed as basis

functions. This has already been suggested in the HK case [195, 196]. A numerical study uncovered

limited success if no further measures are taken [197], however. Also the Davydov-Ansatz has been

generalized to include squeezing [61] and further studies are necessary in the other cases. Unpublished

work cited in [140], however, points to difficulties for anharmonic systems. Furthermore, generalized

coherent states can be used to describe spin systems and particle indistinguishability [198]. A version

of CCS for indistinguishable bosons has been published recently [199].

Secondly, most important for the future will be the applicability of the proposed methods to systems

with a multitude of degrees of freedom. This has actually already been achieved for the vMCG/VCS

case, which is analogous to the multi Davydov-Ansatz in case a bosonic system is coupled to a spin

system which is described by its orthogonal basis states [145, 200]. Also for continuous degrees of

freedom which are coupled to harmonic baths (see [201] for a recent linearized semiclassical calcula-

tion), or for Henon-Heiles systems with an increasing number of degrees of freedom, vMCG without

overlap inversion as well as the CCS method are promising workhorses [139]. An alternative method

using symmetrized CSs has a very favorable scaling for large systems and was applied for eigenvalue

calculations similar in spirit as the work by Davis and Heller [202]. Furthermore, also the dynamics

of Bose-Einstein condensates has been tackled with variational Gaussians, see e.g. [203]. Finally, as a

conclusion from the Chapters 2 and 3, the Boltzmann operator can be considered as a time-evolution

operator in imaginary “time”, whose role is played by inverse temperature. Although some efforts

using CSs for imaginary time propagation [79, 204] have been made, a lot of work remains to be done.
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In Chapter 4, we extended the Husimi (coherent state) based version of LSC-IVRs for the calculation

of correlation functions to the case of survival probabilities. This is a case that could be dealt with

before only by use of the Wigner version of linearized semiclassical theory. We highlighted that the

Wigner-Weyl and Husimi transform version of linearized semiclassical theories can lead to the same

final formula in the case of the dipole-dipole correlation, whereas they are quite different in the case

of survival probability, where strictly the simple Husimi version is not applicable. This fact then

established the goal to find the correct Husimi-like version of the LSC-IVR. This goal was achieved by

the straightforward linearization of the double HK expression for the survival (or staying probability).

In the course of the derivation, we also slightly generalized a seminal calculation by Herman (appendix

of [172]) to the case of width parameter matrices that are not proportional to the unit matrix.

The CS formalism was then applied to the revival dynamics of a Morse oscillator. However, the

revival being purely a quantum interference phenomenon, could, apart from the numerically converged

quantum results, only be observed in the full HK results. Both LSC-IVR variants show a monotonically

decaying envelope and no revival because there is no interference. Coupling the Morse oscillator

with a heavy bath oscillator leads to the absence of the revival in the full quantum calculations

also. In this case the LSC-IVR results are predicting the correct behavior to a large degree and

full quantum calculations are not necessary, as the system dynamics has undergone a quantum to

classical transition due to the coupling to the environment, similar to the findings predicted using

the semiclassical hybrid dynamics [146]. As a future prospect, it might be worthwhile to look at an

even more general correlation function i.e., the so-called out of time order correlators [205] in the

(linearized) semiclassical IVR approach.

In Chapter 4, we saw the quantum to classical transition of the system dynamics due to the coupling

to the environment (bath harmonic oscillator). This transition can lead ultimately to our final goal of

thermalization for long-time dynamics, which is the subject of our study in Chapter 5. The questions

then arise are: if it is enough to increase the interaction strength between the different degrees of

freedom in order to fully develop chaos which is the classical prerequisite for thermalization, or if,

in addition, the number of those degrees of freedom has to be increased (possibly all the way to the

thermodynamic limit) in order to observe thermalization. All these questions have been answered for

the case of finite quantum systems in Chapter 5, where we investigated thermalization by considering

the toppling pencil model [15], i.e., an excited initial state on top of the barrier of a symmetric

quartic double well. We investigated if the coupling of the central quartic double well to a finite,

environmental bath of harmonic oscillators in their ground states will let the central system evolve

towards its uncoupled ground state. This amounts to thermalization i.e., a cooling down to the bath

“temperature” (strictly only defined in the thermodynamic limit) of the central system.

By solving the time-dependent Schrödinger equation using the CCS methodology (and also split-

operator FFT for small numbers of degrees of freedom), we showed that, indeed, the coupling even-

tually excites those environmental oscillators and for the relatively long times investigated, there is

no appreciable back flow of energy to the system of interest, such that the central degree of freedom

(here quartic double well) looses an appreciable amount of energy, monitored by its long-time average,
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which we found to be a monotonously decaying function of the number of environmental degrees of

freedom. For the largest number 𝑓 = 5 of bath oscillators that we investigated the long-time average

of the double well energy decreases from its uncoupled value of 0.3 to −0.125. This tendency of

driving the double well towards lower energy via the environmental coupling was corroborated by an

autocorrelation function-like measure, which showed a long-time behavior in accord with the estimate

assuming a transition to the ground state of the quartic degree of freedom. In the light of these results

it is worthwhile to note that the variational approach to solve the TDSE is based on a Lagrangian,

see, e.g., [57] and the wavefunction parameters can be viewed as classical generalized coordinates.

There are usually many more of them than in the pure classcial approach where there is only a pair

of position and momentum variables per degree of freedom.

We have thus been successful in adding a further example to the list of continuous variable systems

of interest with (in principle) infinite dimensional Hilbert space that are coupled to a finite bath and

show signs of energetic equilibration. Up to now, the focus in the literature was mainly on spin-chain

systems [2, 19, 174]. The bath, by consisting of a finite number of degrees of freedom, also has a

finite heat capacity, in contrast to treatments in terms of reduced density matrices that hinge on

continuous spectral densities of the oscillator bath [192, 206]. By (hypothetically) going to the limit

of very large 𝑓 , due to the scaling of the coupling by the inverse of the square root of 𝑓 , the coupling

to the individual oscillators will be diminished and thus also the energy flow, such that the oscillators

will stay close to their initial state, which was here one of zero temperature (all oscillators in their

ground states). Due to limited computer resources the explicit fully quantum treatment of all degrees

of freedom will be difficult to accomplish in these cases though. Other possible methods to try in the

future could be MCTDH [32], matrix product state [24] or different types of semiclassical treatments

[34, 67].

Furthermore, so far the dynamics studied does not break the symmetry of the initial state of the

quartic double well, because the Hamiltonian as well as the initial state of the bath are symmetric

under the parity transformation. In the classical mechanics study by Dittrich and Pena Martínez [15],

it has been argued that small asymmetries in the initial condition of the bath lead to a preference of

the bistable system to end up in one of the two wells. It will be a worthwhile endeavor to study such

asymmetric initial conditions also in a full quantum time evolution.

Another interesting idea to explore in future concerning thermalization in the “toppling pencil”

model would be to take finite energy initial states for the bath harmonic oscillators, as in the present

study we took zero temperature i.e., the ground states for the environmental oscillators. It would

be worthwhile then to see whether we get a canonical distribution for the system energy. Another

possibility to explore, would be to take different values for the double well parameters 𝑎 and 𝑏, so

that the initial state of the double well has overlap with a much larger set of eigenstates. It would

then answer the question if thermalization is more effective with a larger density of system states, or

does it only depend on the density of bath states.

On a concluding note, it has been shown in this thesis that thermalization is achieved in finite

quantum system with continuous variables using coherent state-based methods to solve the TDSE.
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The most important achievement is to witness thermalization by coupling the system to a bath of

only few oscillators (less than 10), which has been seen for more than ten to twenty bath oscillators

until now [21]. I sincerely hope that the work presented in this thesis will provide strong motivation

to future exploration in the topic of thermalization in finite quantum systems.
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A. Proof of the relation
[︁
𝑎̂, 𝐻̂

]︁
= 𝜕𝐻̂ord

𝜕𝑎̂† by mathematical induction

Without loss of generality, we assume a normally ordered Hamiltonian of the form 𝐻̂ =
(︀
𝑎̂†)︀𝑛, then

the proposition becomes

[︁
𝑎̂,
(︁
𝑎̂†
)︁𝑛]︁

=
𝜕
(︀
𝑎̂†)︀𝑛
𝜕𝑎̂† , ∀𝑛 ∈ N (A.1)

For 𝑛 = 1,

[︁
𝑎̂, 𝑎̂†

]︁
= 1̂ =

𝜕𝑎̂†

𝜕𝑎̂† (A.2)

So the proposition (A.1) is true for 𝑛 = 1. Let us assume that (A.1) is true for any arbitrary 𝑘, i.e.,[︁
𝑎̂,
(︀
𝑎̂†)︀𝑘]︁ = 𝜕(𝑎̂†)

𝑘

𝜕𝑎̂† . We need to show that (A.1) is true for (𝑘 + 1) also. Therefore, now we have[︂
𝑎̂,
(︁
𝑎̂†
)︁(𝑘+1)

]︂
=

[︂
𝑎̂,
(︁
𝑎̂†
)︁𝑘

𝑎̂†
]︂

=

[︂
𝑎̂,
(︁
𝑎̂†
)︁𝑘]︂

𝑎̂† +
(︁
𝑎̂†
)︁𝑘 [︁

𝑎̂, 𝑎̂†
]︁

=
𝜕
(︀
𝑎̂†)︀𝑘
𝜕𝑎̂† 𝑎̂† +

(︁
𝑎̂†
)︁𝑘
.1̂

= 𝑘
(︁
𝑎̂†
)︁𝑘

+
(︁
𝑎̂†
)︁𝑘

= (𝑘 + 1)
(︁
𝑎̂†
)︁𝑘

=
𝜕
(︀
𝑎̂†)︀(𝑘+1)

𝜕𝑎̂† (A.3)

The proposition (A.1) is also true for (𝑘 + 1). Hence, from the principle of mathematical induction,

the statement (A.1) is true for all natural numbers 𝑛.
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B. One dimensional Harmonic oscillator in the SCS, CCS and VCS

case

It is very instructive to have a look at the unit mass harmonic oscillator case with Hamiltonian

𝐻̂ =
𝑝2

2
+

1

2
𝜔2
0𝑥̂

2, (B.1)

to gain some understanding of the dynamics of the variational parameters. As can be seen below,

matters becomes trivial in the case of harmonic oscillator frequency 𝜔0 identical to 𝜔 (and thus to 𝛾

in the present system of units), i.e., to the one of the underlying harmonic oscillator that defines the

coherent state basis. Therefore we study the general case.

The ordered Hamiltonian is then given by

𝐻ord(𝑧
*
𝑘, 𝑧𝑙) = −𝛾

4
[(𝑧*𝑘 − 𝑧𝑙)

2 − 1] +
𝜔2
0

4𝛾
[(𝑧*𝑘 + 𝑧𝑙)

2 + 1], (B.2)

boiling down to the standard

𝐻ord(𝑧
*
𝑘, 𝑧𝑙) = 𝜔

(︂
𝑧*𝑘𝑧𝑙 +

1

2

)︂
(B.3)

in the trivial case. For momentum in units of
√
𝜔0 and position in units 1/

√
𝜔0, curves of equal

energy in units of 𝜔0 are circles in phase space. A squeezed state, i. e., a coherent state of a harmonic

oscillator with a different frequency 𝜔 will then “breathe” in position space in the course of time. This

is visualized by the phase space dynamics of the corresponding Wigner function [168], displayed in

Fig. B.1.

For didactic reasons, firstly, we start with the simple SCS equations. There, the CSs do not move

and the linear equation of motion for the coefficients repeated here for convenience is

i

𝑀∑︁
𝑙=1

⟨𝑧𝑘|𝑧𝑙⟩𝑎̇𝑙(𝑡) =
𝑀∑︁
𝑙=1

⟨𝑧𝑘|𝐻̂|𝑧𝑙⟩𝑎𝑙(𝑡), (B.4)

which shows that due to

⟨𝑧𝑘|𝐻̂|𝑧𝑙⟩ = 𝐻ord(𝑧
*
𝑘, 𝑧𝑙)⟨𝑧𝑘|𝑧𝑙⟩, (B.5)

even in the trivial case, the equations of motion are coupled as they have to allow for the motion of

an “excitation” through the CS grid, due to the fact that the Gaussians themselves are immobile.

Secondly, the CCS case will be looked at. The RHS of the equations of motion for the Gaussian’s

parameters (2.44) is

𝜕𝐻

𝜕𝑧*
= −𝛾

2
(𝑧* − 𝑧) +

𝜔2
0

2𝛾
(𝑧* + 𝑧). (B.6)
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p
t

q
t

Figure B.1.: Phase space representation of the Wigner function of a squeezed state, i.e., a coherent
state of an oscillator with 𝜔 > 𝜔0 (represented by an ellipse in the scaled phase space coordinates
of the 𝜔0 oscillator), with initial position and momentum 𝑞𝛼 = 0, 𝑝𝛼 = const and its dynamics of
circling around the line of constant energy (which is a circle centered at the origin).

The solution of the equations of motion is identical to the purely classical solution and is independent

of the employed basis function width parameter. It is given in terms of position and momentum as

𝑞(𝑡) = 𝑞(0) cos(𝜔0𝑡) +
𝑝(0)

𝜔0
sin(𝜔0𝑡) (B.7)

𝑝(𝑡) = 𝑝(0) cos(𝜔0𝑡)− 𝜔0𝑞(0) sin(𝜔0𝑡) (B.8)

simplifying to

𝑧(𝑡) = 𝑧(0) exp{−i𝜔𝑡} (B.9)

in the trivial case. In any case the linear classical equations of motion for the complex CS parameters

are uncoupled.

The equation of motion for the coefficients (2.47) contains the “tilde Hamiltonian”, which becomes

𝐻̃𝑘𝑙(𝑡) = ⟨𝑧𝑘(𝑡)|𝑧𝑙(𝑡)⟩

{︃(︂
−𝛾
4
+
𝜔2
0

4𝛾

)︂
[(𝑧*𝑘)

2 + (𝑧*𝑙 )
2] +

(︂
𝛾

2
− 𝜔2

0

2𝛾

)︂
𝑧*𝑘𝑧

*
𝑙 +

𝛾

4
+
𝜔2
0

4𝛾

}︃
, (B.10)

for the harmonic oscillator, boiling down to

𝐻̃𝑘𝑙(𝑡) = ⟨𝑧𝑘(𝑡)|𝑧𝑙(𝑡)⟩
𝜔

2
(B.11)
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in the trivial case. From this we see that in the trivial case, the equations for the amplitudes are

uncoupled and linear, because it is just the overlap matrix (times a constant) multiplying the vector

of coefficients as well as its time-derivative. In the general case, on the RHS of (2.47) the matrix is not

just proportional to the overlap matrix and thus the equations become coupled even for the harmonic

oscillator. Assuming we start with a single coefficient being nonzero initially this is necessary to

describe the “breathing” of the Gaussian wavefunction in addition to its center motion.

Thirdly, in the VCS case, the equations cannot be simplified easily and we just consider the trivial

case. By guessing that (i) the equations of the CS parameters are uncoupled and read

i𝑧̇𝑙 = 𝜔𝑧𝑙, (B.12)

and that (ii) the equations for the coefficients reduce to

i𝑎̇𝑙 =
𝜔

2
𝑎𝑙 (B.13)

as in CCS, Eqs. (2.35) and (2.36) can be shown to hold. So there is no difference between VCS and

CCS in the trivial case for the harmonic oscillator.
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C. SCS in the tight frame case

In this appendix, we briefly review the tight frame equations of motion in the SCS case. One should

be able to work with non-orthogonal basis functions “painlessly”, in case they are dense enough [77].

Then the representation of unity is given by an expression that resembles the one for orthogonal basis

functions

1̂ = 𝑁−1
𝑀∑︁
𝑙=1

|𝑧𝑙⟩⟨𝑧𝑙|, (C.1)

where 𝑁−1 = Δ𝑞Δ𝑝
2𝜋 = 𝑉/(2𝜋𝑀), with the covered phase space volume 𝑉 [78] and, in contrast to

Eq. (2.26), no inverse overlap matrix appears in this straightforward discretization of (2.50). This

expression may now be used on the RHS of the TDSE (2.1) and after taking the scalar product with

⟨𝑧𝑘| one gets

i ˙̄𝑎𝑘(𝑡) = 𝑁−1
∑︁
𝑙

⟨𝑧𝑘|𝐻̂|𝑧𝑙⟩𝑎̄𝑙(𝑡), (C.2)

which can again, in principle, be solved numerically, e.g., by matrix exponentiation, with the initial

conditions

𝑎̄𝑙(0) = ⟨𝑧𝑙|Ψ(0)⟩, (C.3)

which is different from the initial conditions for the 𝑎𝑙 coefficients in Eq. (2.16) but similar to the ones

used in the HK method.

For the Morse potential with the parameters used in [33], reasonable agreement with the FFT

results over several oscillation periods for the autocorrelation function using the regular 15x11 grid

with Δ𝑞Δ𝑝/2 = (1.2)2/2 proposed there, although this grid is much more sparse than the one with

Δ𝑞 = 1/
√
2𝛾,Δ𝑝 =

√︀
𝛾/2 proposed in [78]. The use of the equations with the inverse overlap allows

even sparser grids, however (81 points were enough for the potential and initial state parameters from

[33]).

We note that we have not been able to converge the tight frame SCS calculations for the potential

and initial state parameters used in the main text, however. It remains to be tested if refinements

along the lines of [207], where an iterative scheme to calculate the identity operator (that does not

involve inversion of the overlap matrix but instead matrix multiplications, see Eq. (18) in [207]) is

proposed is faster than directly using the inverse overlap according to our Eq. (2.52).
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D. Stability matrix and symplectic integration

The underlying dynamics of semiclassical methods is classical. Consequently, we need to solve the

Hamilton’s equations of motion

ṗ = −𝜕𝐻
𝜕q

(D.1)

q̇ =
𝜕𝐻

𝜕p
(D.2)

Numerically, this can be carried out using symplectic integrators [49]. It ensures the preservation of

the volume of a propagated region in phase space, which is also known as the Liouville’s theorem.

The trajectories are then propagated via the symplectic integrator scheme according to

p(𝑗) = p(𝑗−1) − 𝑏𝑗Δ𝑡
𝜕𝐻

𝜕q

⃒⃒⃒⃒
q(𝑗−1)

, 𝑗 = 1, 2, · · · ,𝑚 (D.3)

q(𝑗) = q(𝑗−1) + 𝑎𝑗Δ𝑡
𝜕𝐻

𝜕p

⃒⃒⃒⃒
p(𝑗)

, 𝑗 = 1, 2, · · · ,𝑚 (D.4)

for one time step with step size Δ𝑡. The index 𝑗 denotes the number of iterations. The specific order

and scheme of symplectic integration is characterized by the coefficients 𝑎𝑗 and 𝑏𝑗 , which also set the

number of intermediate steps per full time step. Here we have used the second order leapfrog (or

position Verlet), where 𝑎1/2 = 0.5 and 𝑏1 = 0 and 𝑏2 = 1. The coefficients for different symplectic

integration schemes are given in [49].

The central ingredient of the prefactor of the semiclassical Herman-Kluk propagator is the stability

(or monodromy) matrix.

M =

(︃
m11 m12

m21 m22

)︃
=

(︃
𝜕p𝑡
𝜕pᵀ

𝜕p𝑡
𝜕qᵀ

𝜕q𝑡
𝜕pᵀ

𝜕q𝑡
𝜕qᵀ

)︃
. (D.5)

This matrix determines the time-evolution of small deviations in the initial conditions of a specific

trajectory according to(︃
𝛿p𝑡

𝛿q𝑡

)︃
= M

(︃
𝛿p

𝛿q

)︃
(D.6)

where 𝛿p𝑡 = p̃𝑡 − p𝑡 and 𝛿q𝑡 = q̃𝑡 − q𝑡. This is represented pictorially for one spatial dimension in

Fig. D.1. The area that is spanned by the deviation vectors is not changing in the course of time.

The linear differential equation of first order for the stability matrix thus reads

d

d𝑡
M = −JHM, (D.7)
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𝑝

𝑞 𝑞 + 𝛿𝑞

𝑝

𝑝+ 𝛿𝑝

𝑞

𝛿𝑝𝑡

𝛿𝑞𝑡

(𝑝𝑡, 𝑞𝑡)

(𝑝𝑡, 𝑞𝑡)

Figure D.1.: Variation of initial conditions in phase space for one degree of freedom. The shaded

area is constant in time (Liouville’s theorem), adapted from [93].

with the skew-symmetric matrix

J =

(︃
0 1

−1 0

)︃
, (D.8)

and the Hessian of the Hamiltonian i.e., the matrix of second derivatives with respect to the position

and momenta

H =

(︃
𝜕2𝐻

𝜕p𝜕pT
𝜕2𝐻

𝜕p𝜕qT

𝜕2𝐻
𝜕q𝜕pT

𝜕2𝐻
𝜕q𝜕qT

)︃
(D.9)

From the definition of M in Eq. (D.5), one gets the simple initial condition for the monodromy matrix

as

M(0) =

(︃
m11(0) m12(0)

m21(0) m22(0)

)︃
=

(︃
1 0

0 1

)︃
(D.10)

Using the equation of motion (D.7), it can be shown that

d

d𝑡
MTJM = 0, (D.11)

which ultimately, using the initial condition for M, leads to

MTJM = [M(0)]TJM(0) = J (D.12)

for all times, i.e., M is a symplectic matrix. Using the symplectic relation (D.12), we can write out
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the relations in terms of the elements of the monodromy matrix more explicitly as

mT
22m11 −mT

12m21 = 1 ∀𝑡, (D.13)

mT
11m21 −mT

21m11 = 0 ∀𝑡, (D.14)

mT
22m12 −mT

12m22 = 0 ∀𝑡. (D.15)

Another property of a symplectic matrix is that if a matrix is symplectic, then its transpose is also

symplectic i.e., MT is also symplectic. Therefore, if we substitute MT in (D.12), we get

(MT)TJMT = MJMT = J (D.16)

from where it follows that

m22m
T
11 −m12m

T
21 = 1 ∀𝑡, (D.17)

m11m
T
21 −m21m

T
11 = 0 ∀𝑡, (D.18)

m22m
T
12 −m12m

T
22 = 0 ∀𝑡. (D.19)

The above relations show that the determinant of the stability matrix is unity for all times. This

is equivalent to the conservation of phase space volume mentioned previously. Monitoring the de-

terminant of M thus provides an effective tool for checking the stability of a numerical calculation.

It should also be mentioned that the matrix element m21, up to a sign, is the inverse of the second

derivative of the action appearing in the prefactor of the VVG propagator.

m21 = −
(︂

𝜕2𝑆

𝜕q𝑡𝜕q
T

)︂−1

(D.20)

Because of the symplectic nature of the monodromy matrix, we can apply the following symplectic

integration scheme to the elements of the monodromy matrix

m
(𝑗)
11 =m

(𝑗−1)
11 − 𝑏𝑗Δ𝑡

𝜕2𝐻

𝜕q𝜕qT

⃒⃒⃒⃒
q(𝑗−1)

m
(𝑗−1)
21 (D.21)

m
(𝑗)
12 =m

(𝑗−1)
12 − 𝑏𝑗Δ𝑡

𝜕2𝐻

𝜕q𝜕qT

⃒⃒⃒⃒
q(𝑗−1)

m
(𝑗−1)
22 (D.22)

m
(𝑗)
21 =m

(𝑗−1)
21 + 𝑎𝑗Δ𝑡

𝜕2𝐻

𝜕p𝜕pT

⃒⃒⃒⃒
p(𝑗)

m
(𝑗−1)
11 (D.23)

m
(𝑗)
22 =m

(𝑗−1)
22 + 𝑎𝑗Δ𝑡

𝜕2𝐻

𝜕p𝜕pT

⃒⃒⃒⃒
p(𝑗)

m
(𝑗−1)
12 . (D.24)
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E. Eigenstates and eigenvalues of the Morse oscillator

In this appendix the solution of the TISE for the Morse oscillator Hamiltonian in Eq. (3.1) is given

without proof and the overlap of the eigenstates with a Gaussian wavepacket is shown.

In his calculation of matrix elements of powers of the position operator between Morse oscillator

eigenstates, 𝜙𝑛, Gallas [208] used the definitions

𝑘 =
2𝜔M

𝛼2
, (E.1)

𝑧 = 𝑘 exp {−𝛼𝑥} , (E.2)

𝑏 = 𝑘 − 2𝑛− 1, (E.3)

and 𝑁𝑛 =
(︁

𝛼𝑏𝑛!
Γ(𝑘−𝑛)

)︁1/2
in

𝜙𝑛(𝑥) = 𝑁𝑛e
−𝑧/2𝑧𝑏/2𝐿𝑏

𝑛(𝑧). (E.4)

The generalized Laguerre polynomials 𝐿𝑏
𝑛(𝑧) can be constructed according to

𝐿𝑏
𝑛(𝑧) =

1

𝑛!e−𝑧𝑧𝑏
d𝑛

d𝑧𝑛

(︁
e−𝑧𝑧𝑛+𝑏

)︁
, (E.5)

and 𝜔M is the Morse oscillator frequency from Eq. (3.17).

The corresponding eigenvalues of the Morse oscillator in Eq. (3.1) then are

𝐸𝑛 = 𝜔M

(︂
𝑛+

1

2

)︂
− 𝛼2

2

(︂
𝑛+

1

2

)︂2

, 0 ≤ 𝑛 ≤ Int

(︂
𝜔M

𝛼2
− 1

2

)︂
, (E.6)

leading to a discrete bound state spectrum with decreasing energy distances up to the dissociation

threshold 𝐷 [49]. For the initial Gaussian wavefunction given Eq. (3.19) and the Morse potential

parameters from Sec. 3.1.3, the overlap with the eigenstates, which is given by

𝑑𝑛 = ⟨𝜙𝑛|Ψ(0)⟩, (E.7)

can be determined, e.g., using MATLAB [152]. It has a functional dependence on the quantum number

that is close to a Gaussian proportional to exp{−(𝑛− 𝑛0)
2/(2𝛿𝑛2)} as can be seen in Fig. E.1.
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Figure E.1.: Overlap of the Gaussian initial state from Eq. (3.19) with the Morse eigenstates
according to Eq. (E.7) (blue dots), compared to a Gaussian function centered around 𝑛0 = 14 with
width parameter 𝛿𝑛 = 3 (red stars)
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F. Calculation and Proof of Factorization of detA

F.1. Calculation of detA

In this Appendix we analytically simplify detA for the matrix A in Eq. (4.72) of the main text from

the determinant of a 2𝑓 × 2𝑓 matrix to the product of determinants of two 𝑓 × 𝑓 matrices, so that it

cancels out with the HK-prefactor absolute square. We do so, by going along the lines of the appendix

of Herman’s paper [172]. Our detA can be written as

detA =

(︂
1

8

)︂2𝑓

det

(︃
𝛾 +m

ᵀ
22𝛾m22 +

1
~2m

ᵀ
12𝛾

−1m12 m
ᵀ
22𝛾m21 +

1
~2m

ᵀ
12𝛾

−1m11

m
ᵀ
21𝛾m22 +

1
~2m

ᵀ
11𝛾

−1m12
𝛾−1

~2 + 1
~2m

ᵀ
11𝛾

−1m11 +m
ᵀ
21𝛾m21

)︃

=

(︂
1

8

)︂2𝑓

det

(︃
L+ 𝛾I M+ i

~I

Mᵀ + i
~I

𝛾−1

~2 +N

)︃
. (F.1)

The 𝑓 × 𝑓 matrices L, M and N are given by

L = X
ᵀ
+𝛾X−, (F.2)

M = X
ᵀ
+𝛾P−, (F.3)

N = P
ᵀ
+𝛾P− (F.4)

and the matrices X± and P± are defined as

X± =m22 ±
i

~
𝛾−1m12, (F.5)

P± =m21 ±
i

~
𝛾−1m11. (F.6)

These matrices obey Pᵀ
+𝛾P− = P

ᵀ
−𝛾P+, X

ᵀ
+𝛾X− = X

ᵀ
−𝛾X+ and Pᵀ

+𝛾X− −P
ᵀ
−𝛾X+ = X

ᵀ
−𝛾P+ −

X
ᵀ
+𝛾P− =

(︀
2i
~
)︀
I, which follow from the properties of the Lagrange bracket [209] and the fact that

the transformation (p̃, q̃) → (p̃𝑡, q̃𝑡) is canonical.

Therefore, detA can be written as

detA =

(︂
1

8

)︂2𝑓
⃒⃒⃒⃒
⃒ L+ 𝛾I M+ i

~I

Mᵀ + i
~I

𝛾−1

~2 +N

⃒⃒⃒⃒
⃒

=

(︂
1

8

)︂2𝑓
⃒⃒⃒⃒
⃒Xᵀ

+𝛾X− + 𝛾I X
ᵀ
+𝛾P− + i

~I

P
ᵀ
−𝛾X+ + i

~I
𝛾−1

~2 +P
ᵀ
+𝛾P−

⃒⃒⃒⃒
⃒ . (F.7)
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As shown in Appendix F.2, the determinant on the right-hand side of the above equation can be

expressed as the product of three determinants, 𝐹 , 𝐺, and det (𝛾), where

𝐹 =

⃒⃒⃒⃒
⃒12Xᵀ

+
1
2X

ᵀ
−

1
2P

ᵀ
+

1
2P

ᵀ
−

⃒⃒⃒⃒
⃒ (F.8)

𝐺 =

⃒⃒⃒⃒
⃒𝛾X−𝛾

−1 + i~𝛾P− − i
~
(︀
𝛾X−𝛾

−1 + i~𝛾P−
)︀

𝛾X+𝛾
−1 − i~𝛾P+

i
~
(︀
𝛾X+𝛾

−1 − i~𝛾P+

)︀ ⃒⃒⃒⃒⃒ . (F.9)

We multiply the transpose of the matrix corresponding to the determinant 𝐹 from the left by the

product matrix

Y =

(︃
I −Pᵀ

+𝛾P−

0 I

)︃(︃
P

ᵀ
−𝛾 0

0 P−1
−

)︃
, (F.10)

whose determinant is det (𝛾) and from the right by det
(︀
𝛾−1

)︀
, such that the determinant 𝐹 is un-

changed. Thus we get

𝐹 =

⃒⃒⃒⃒
⃒12Xᵀ

+
1
2X

ᵀ
−

1
2P

ᵀ
+

1
2P

ᵀ
−

⃒⃒⃒⃒
⃒

=

⃒⃒⃒⃒
⃒I −Pᵀ

+𝛾P−

0 I

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒Pᵀ

−𝛾 0

0 P−1
−

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒12X+

1
2P+

1
2X−

1
2P−

⃒⃒⃒⃒
⃒ det (︀𝛾−1

)︀
=

⃒⃒⃒⃒
⃒I −Pᵀ

+𝛾P−

0 I

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒12Pᵀ

−𝛾X+
1
2P

ᵀ
−𝛾P+

1
2P

−1
− X−

1
2P

−1
− P−

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒𝛾−1 0

0 1

⃒⃒⃒⃒
⃒

=

⃒⃒⃒⃒
⃒12
(︀
P

ᵀ
−𝛾X+ −P

ᵀ
+𝛾X−

)︀
0

1
2P

−1
− X−

1
2

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒𝛾−1 0

0 1

⃒⃒⃒⃒
⃒

=

⃒⃒⃒⃒
⃒ − i

~ 0
1
2P

−1
− X−

1
2

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒𝛾−1 0

0 1

⃒⃒⃒⃒
⃒

=

(︂
− i

2~

)︂𝑓

det
(︀
𝛾−1

)︀
. (F.11)

Now, multiplying the first column in the determinant of G by i
~ and adding it to the second column

we get

𝐺 =

⃒⃒⃒⃒
⃒𝛾X−𝛾

−1 + i~𝛾P− 0

𝛾X+𝛾
−1 − i~𝛾P+

2i
~
(︀
𝛾X+𝛾

−1 − i~𝛾P+

)︀⃒⃒⃒⃒⃒
=

(︂
2i

~

)︂𝑓

det
(︀
𝛾X−𝛾

−1 + i~𝛾P−
)︀
det
(︀
𝛾X+𝛾

−1 − i~𝛾P+

)︀
(F.12)
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and

det
(︀
𝛾X−𝛾

−1 + i~𝛾P−
)︀
= det

{︂
m11 + 𝛾m22𝛾

−1 + i~𝛾m21 +
1

i~
m12𝛾

−1

}︂
, (F.13)

det
(︀
𝛾X+𝛾

−1 − i~𝛾P+

)︀
= det

{︂
m11 + 𝛾m22𝛾

−1 − i~𝛾m21 −
1

i~
m12𝛾

−1

}︂
. (F.14)

Therefore,

𝐺 =

(︂
2i

~

)︂𝑓

det

{︂
m11 + 𝛾m22𝛾

−1 + i~𝛾m21 +
1

i~
m12𝛾

−1

}︂
(F.15)

det

{︂
m11 + 𝛾m22𝛾

−1 − i~𝛾m21 −
1

i~
m12𝛾

−1

}︂
(F.16)

Hence detA is expressed by determinants of 𝑓 × 𝑓 matrices, according to

detA =

(︂
1

8~

)︂2𝑓

det

{︂
m11 + 𝛾m22𝛾

−1 + i~𝛾m21 +
1

i~
m12𝛾

−1

}︂
det

{︂
m11 + 𝛾m22𝛾

−1 − i~𝛾m21 −
1

i~
m12𝛾

−1

}︂
. (F.17)

In the paper by Herman [172], the width parameter matrix was taken as 𝛾 times identity matrix, i.e.,

the width parameters for all degrees of freedom was chosen to be the same and equal to 𝛾. While, here

in this appendix the width parameter matrix can even be taken as a general symmetric and invertible

matrix, i.e., the width parameters for all degrees of freedom don’t necessarily need to be equal.

F.2. Proof of Factorization of detA

For reasons of completeness, here we briefly sketch the factorization of detA, i.e., we prove

detA =

(︂
1

8

)︂2𝑓
⃒⃒⃒⃒
⃒Xᵀ

+𝛾X− + 𝛾I X
ᵀ
+𝛾P− + i

~I

P
ᵀ
−𝛾X+ + i

~I
𝛾−1

~2 +P
ᵀ
+𝛾P−

⃒⃒⃒⃒
⃒ (F.18)

=

(︂
1

8

)︂2𝑓

𝐹𝐺 det (𝛾) , (F.19)

with 𝐹 and 𝐺 given in (F.8,F.9). Thus,

𝐹𝐺 =

⃒⃒⃒⃒
⃒12Xᵀ

+
1
2X

ᵀ
−

1
2P

ᵀ
+

1
2P

ᵀ
−

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒𝛾X−𝛾

−1 + i~𝛾P− − i
~
(︀
𝛾X−𝛾

−1 + i~𝛾P−
)︀

𝛾X+𝛾
−1 − i~𝛾P+

i
~
(︀
𝛾X+𝛾

−1 − i~𝛾P+

)︀ ⃒⃒⃒⃒⃒
=

⃒⃒⃒⃒
⃒f11 f12

f21 f22

⃒⃒⃒⃒
⃒ , (F.20)
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with the block matrices

f11 =
1

2

(︀
X

ᵀ
+𝛾X− +X

ᵀ
−𝛾X+

)︀
𝛾−1 +

i~
2

(︀
X

ᵀ
+𝛾P− −X

ᵀ
−𝛾P+

)︀
=
(︀
X

ᵀ
+𝛾X− + 𝛾I

)︀
𝛾−1, (F.21)

f12 =
1

2

(︀
X

ᵀ
+𝛾P− +X

ᵀ
−𝛾P+

)︀
+

i

2~
(︀
X

ᵀ
−𝛾X+ −X

ᵀ
+𝛾X−

)︀
𝛾−1

= X
ᵀ
+𝛾P− +

i

~
I, (F.22)

f21 =
1

2

(︀
P

ᵀ
+𝛾X− +P

ᵀ
−𝛾X+

)︀
𝛾−1 +

i~
2

(︀
P

ᵀ
+𝛾P− −P

ᵀ
−𝛾P+

)︀
=

(︂
P

ᵀ
−𝛾X+ +

i

~
I

)︂
𝛾−1, (F.23)

f22 =
1

2

(︀
P

ᵀ
+𝛾P− +P

ᵀ
−𝛾P+

)︀
+

i

2~
(︀
P

ᵀ
+𝛾X+ −P

ᵀ
+𝛾X−

)︀
𝛾−1

=
𝛾−1

~2
+P

ᵀ
+𝛾P−. (F.24)

Therefore,

𝐹𝐺 det (𝛾) =

⃒⃒⃒⃒
⃒
(︀
X

ᵀ
+𝛾X− + 𝛾I

)︀
𝛾−1 X

ᵀ
+𝛾P− + i

~I(︀
P

ᵀ
−𝛾X+ + i

~I
)︀
𝛾−1 𝛾−1

~2 +P
ᵀ
+𝛾P−

⃒⃒⃒⃒
⃒
⃒⃒⃒⃒
⃒𝛾 0

0 1

⃒⃒⃒⃒
⃒

=

⃒⃒⃒⃒
⃒Xᵀ

+𝛾X− + 𝛾I X
ᵀ
+𝛾P− + i

~I

P
ᵀ
−𝛾X+ + i

~I
𝛾−1

~2 +P
ᵀ
+𝛾P−

⃒⃒⃒⃒
⃒ , (F.25)

what we had wished to prove.
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G. Normally ordered Hamiltonian of Quartic double well coupled to

harmonic oscillators and classical equations of motion

The Hamilton operator for the quartic double well potential is given by

𝐻̂𝑆 = 𝑇𝑆 + 𝑉𝑆 =
𝑝2𝑥
2𝑚𝑥

− 𝑎

2
𝑥̂2 +

𝑏

4
𝑥̂4. (G.1)

To make progress, the position and momentum operators are expressed via creation and annihilation

operators, via

𝑥̂ =
1√
2𝛾𝑥

(𝑎̂†𝑥 + 𝑎̂𝑥), 𝑝𝑥 = i~
√︂
𝛾𝑥
2
(𝑎̂†𝑥 − 𝑎̂𝑥). (G.2)

In the following we set ~ = 1. The subscripts to the creation and annihilation operators denote the

respective degree of freedom. Using the fundamental commutation relation

[𝑎̂𝑥, 𝑎̂
†
𝑥] = 1̂, (G.3)

the normal ordered form of the kinetic energy operator is found to be

𝑇𝑆(𝑎̂
†
𝑥, 𝑎̂𝑥) =

𝑝2𝑥
2𝑚𝑥

= − 𝛾𝑥
4𝑚𝑥

(𝑎̂†𝑥 − 𝑎̂𝑥)
2 = − 𝛾𝑥

4𝑚𝑥

[︁
(𝑎̂†𝑥)

2 − 2𝑎̂†𝑥𝑎̂𝑥 − 1 + 𝑎̂2𝑥

]︁
(G.4)

and thus

𝑇𝑆(𝑧
*
𝑘𝑥, 𝑧𝑙𝑥) = − 𝛾𝑥

4𝑚𝑥

[︁
(𝑧*𝑘𝑥 − 𝑧𝑙𝑥)

2 − 1
]︁

(G.5)

follows for the CS matrix elements of the normally ordered kinetic energy operator.

Now, for the potential energy operator 𝑉𝑆 of the system, we have

𝑥̂2 =
1

2𝛾𝑥
(𝑎̂†𝑥 + 𝑎̂𝑥)(𝑎̂

†
𝑥 + 𝑎̂𝑥)

=
1

2𝛾𝑥

[︁
(𝑎̂†𝑥)

2 + 2𝑎̂†𝑥𝑎̂𝑥 + 1 + 𝑎̂2𝑥

]︁
(G.6)

and

𝑥̂4 = 𝑥̂2𝑥̂2 =
1

4𝛾2𝑥

[︁
(𝑎̂†𝑥)

2 + 2𝑎̂†𝑥𝑎̂𝑥 + 1 + 𝑎̂2𝑥

]︁ [︁
(𝑎̂†𝑥)

2 + 2𝑎̂†𝑥𝑎̂𝑥 + 1 + 𝑎̂2𝑥

]︁
=

1

4𝛾2𝑥

(︂
(𝑎̂†𝑥)

4 + 𝑎̂4𝑥 + (𝑎̂†𝑥)
2𝑎̂2𝑥 + 𝑎̂2𝑥(𝑎̂

†
𝑥)

2 + 2(𝑎̂†𝑥)
2 + 2𝑎̂2𝑥 + 2(𝑎̂†𝑥)

3𝑎̂𝑥

+ 2𝑎̂†𝑥𝑎̂
3
𝑥 + 2𝑎̂2𝑥𝑎̂

†
𝑥𝑎̂𝑥 + 2𝑎̂†𝑥𝑎̂𝑥(𝑎̂

†
𝑥)

2 + 4𝑎̂†𝑥𝑎̂𝑥𝑎̂
†
𝑥𝑎̂𝑥 + 4𝑎̂†𝑥𝑎̂𝑥 + 1

)︂
. (G.7)

Using the differential calculus employed in Theorem II on page 142 of [59], the above equation (G.7)
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can be simplified in order to transform all the terms into normal ordered form. To this end one

replaces 𝑎̂ by 𝑧 + 𝜕/𝜕𝑧* and 𝑎̂† by 𝑧* and applies the expression to the unit operator to arrive at the

matrix elements of the normal form of an operator. 𝒩 shall denote the normal ordering operator.

Therefore, e.g., from

𝒩

{︃(︂
𝑧 +

𝜕

𝜕𝑧*

)︂2

(𝑧*)2 · 1

}︃
= 𝒩

{︀
𝑧2(𝑧*)2 + 4𝑧𝑧* + 2

}︀
= (𝑧*)2𝑧2 + 4𝑧*𝑧 + 2, (G.8)

it follows that

𝑎̂2𝑥(𝑎̂
†
𝑥)

2 = (𝑎̂†𝑥)
2𝑎̂2𝑥 + 4𝑎̂†𝑥𝑎̂𝑥 + 2 (G.9)

and similarly

𝑎̂2𝑥𝑎̂
†
𝑥𝑎̂𝑥 = 𝑎̂†𝑥𝑎̂

3
𝑥 + 2𝑎̂2𝑥, (G.10)

𝑎̂†𝑥𝑎̂𝑥

(︁
𝑎̂†𝑥

)︁2
=
(︁
𝑎̂†𝑥

)︁3
𝑎̂𝑥 + 2

(︁
𝑎̂†𝑥

)︁2
, (G.11)

𝑎̂†𝑥𝑎̂𝑥𝑎̂
†
𝑥𝑎̂𝑥 =

(︁
𝑎̂†𝑥

)︁2
𝑎̂2𝑥 + 𝑎̂†𝑥𝑎̂𝑥 (G.12)

for all terms that are not normally ordered already. Hence

𝑥̂4 =
1

4𝛾2𝑥

(︂(︁
𝑎̂†𝑥

)︁4
+ 4

(︁
𝑎̂†𝑥

)︁3
𝑎̂𝑥 + 6

(︁
𝑎̂†𝑥

)︁2
𝑎̂2𝑥 + 4𝑎̂†𝑥𝑎̂

3
𝑥 + 𝑎̂4𝑥

+ 6

[︂(︁
𝑎̂†𝑥

)︁2
+ 2𝑎̂†𝑥𝑎̂𝑥 + 𝑎̂2𝑥

]︂
+ 3

)︂
(G.13)

holds for the normal ordered form of the quartic term in the potential and the CS matrix elements of

the total potential energy for the system are given by

𝑉𝑆(𝑧
*
𝑘𝑥, 𝑧𝑙𝑥) = − 𝑎

4𝛾𝑥

[︁
(𝑧*𝑘𝑥 + 𝑧𝑙𝑥)

2 + 1
]︁
+

𝑏

16𝛾2𝑥

[︁
(𝑧*𝑘𝑥 + 𝑧𝑙𝑥)

4 + 6 (𝑧*𝑘𝑥 + 𝑧𝑙𝑥)
2 + 3

]︁
, (G.14)

leading to the corresponding Hamiltonian

𝐻𝑆(𝑧
*
𝑘𝑥, 𝑧𝑙𝑥) = 𝑇𝑆(𝑧

*
𝑘𝑥, 𝑧𝑙𝑥) + 𝑉𝑆(𝑧

*
𝑘𝑥, 𝑧𝑙𝑥) (G.15)
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with the kinetic energy from Eq. (G.5). Now the environmental Hamilton operator

𝐻̂𝐸 =

𝑓∑︁
𝑛=1

(︂
𝑝2𝑛
2𝑚

+
𝑚𝜔2

𝑛

2
𝑦2𝑛

)︂

=

𝑓∑︁
𝑛=1

− 𝛾𝑛
4𝑚

[︂(︁
𝑎̂†𝑛

)︁2
− 2𝑎̂†𝑛𝑎̂𝑛 − 1 + 𝑎̂2𝑛

]︂
+
𝛾𝑛
4𝑚

[︂(︁
𝑎̂†𝑛

)︁2
+ 2𝑎̂†𝑛𝑎̂𝑛 + 1 + 𝑎̂2𝑛

]︂

=

𝑓∑︁
𝑛=1

𝜔𝑛

(︂
𝑎̂†𝑛𝑎̂𝑛 +

1

2

)︂
(G.16)

is already normal ordered, leading to the matrix elements

𝐻𝐸(𝑧
*
𝑘𝑦1 , ..., 𝑧

*
𝑘𝑦𝑛 , 𝑧𝑙𝑦1 , ..., 𝑧𝑙𝑦𝑛) =

𝑓∑︁
𝑛=1

𝜔𝑛

(︂
𝑧*𝑘𝑦𝑛𝑧𝑙𝑦𝑛 +

1

2

)︂
. (G.17)

The same holds true for the interaction Hamilton operator

𝐻̂𝑆𝐸 = −𝑥̂
𝑓∑︁

𝑛=1

𝑔𝑛𝑦𝑛, (G.18)

leading to

𝐻𝑆𝐸(𝑧
*
𝑘𝑥, 𝑧

*
𝑘𝑦1 , ..., 𝑧

*
𝑘𝑦𝑛 , 𝑧𝑙𝑥, 𝑧𝑙𝑦1 , ..., 𝑧𝑙𝑦𝑛) = −

(𝑧*𝑘𝑥 + 𝑧𝑙𝑥)

2
√
𝛾𝑥

𝑓∑︁
𝑛=1

𝑔𝑛√
𝛾𝑛

(︀
𝑧*𝑘𝑦𝑛 + 𝑧𝑙𝑦𝑛

)︀
. (G.19)

Finally, the counter-term operator

𝑉𝐶 = 𝑥̂2
𝑓∑︁

𝑛=1

𝑔2𝑛
2𝑚𝜔2

𝑛

(G.20)

is just quadratic and leads to

𝑉𝐶(𝑧
*
𝑘𝑥, 𝑧𝑙𝑥) =

[︁
(𝑧*𝑘𝑥 + 𝑧𝑙𝑥)

2 + 1
]︁ 𝑓∑︁
𝑛=1

𝑔2𝑛
4𝑚𝜔2

𝑛𝛾𝑥
. (G.21)

Therefore, the total normal ordered Hamiltonian is given by the sum of all the terms in Eqs.
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(G.15,G.17,G.19,G.21) as

𝐻ord(𝑧
*
𝑘, 𝑧𝑙) = − 𝛾𝑥

4𝑚𝑥

[︁
(𝑧*𝑘𝑥 − 𝑧𝑙𝑥)

2 − 1
]︁
− 𝑎

4𝛾𝑥

[︁
(𝑧*𝑘𝑥 + 𝑧𝑙𝑥)

2 + 1
]︁

+
𝑏

16𝛾2𝑥

[︁
(𝑧*𝑘𝑥 + 𝑧𝑙𝑥)

4 + 6 (𝑧*𝑘𝑥 + 𝑧𝑙𝑥)
2 + 3

]︁
+

𝑓∑︁
𝑛=1

𝜔𝑛

(︂
𝑧*𝑘𝑦𝑛𝑧𝑙𝑦𝑛 +

1

2

)︂

−
(𝑧*𝑘𝑥 + 𝑧𝑙𝑥)

2
√
𝛾𝑥

𝑓∑︁
𝑛=1

𝑔𝑛√
𝛾𝑛

(︀
𝑧*𝑘𝑦𝑛 + 𝑧𝑙𝑦𝑛

)︀
+
[︁
(𝑧*𝑘𝑥 + 𝑧𝑙𝑥)

2 + 1
]︁ 𝑓∑︁
𝑛=1

𝑔2𝑛
4𝑚𝜔2

𝑛𝛾𝑥
. (G.22)

The complexified classical equation of motion for the displacements 𝑧𝑥 of the quartic degree of

freedom is given by

i𝑧̇𝑥 =
𝜕𝐻ord

𝜕𝑧*𝑥
= − 𝛾𝑥

2𝑚𝑥
(𝑧*𝑥 − 𝑧𝑥) +

𝑏

4𝛾2𝑥
(𝑧*𝑥 + 𝑧𝑥)

3 −
𝑓∑︁

𝑛=1

𝑔𝑛
2
√
𝛾𝑥𝛾𝑛

(︀
𝑧*𝑦𝑛 + 𝑧𝑦𝑛

)︀
+

(𝑧*𝑥 + 𝑧𝑥)

2𝛾𝑥

[︃
𝑓∑︁

𝑛=1

𝑔2𝑛
𝑚𝜔2

𝑛

− 𝑎+
3𝑏

2𝛾𝑥

]︃
. (G.23)

The equations of motion for the displacements 𝑧𝑦𝑛 of the harmonic (environmental) degrees of freedom

are

i𝑧̇𝑦𝑛 =
𝜕𝐻ord

𝜕𝑧*𝑦𝑛
= 𝜔𝑛𝑧𝑦𝑛 − 𝑔𝑛

2
√
𝛾𝑥𝛾𝑦𝑛

(𝑧*𝑥 + 𝑧𝑥) . (G.24)

The equations of motion for the coefficients in the CS expansion are given in (2.47).
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H. Analytical expression for the probability density of the quartic

double well

The probability density of the system degree of freedom is given as

𝜌𝑆(𝑥, 𝑡) =

∫︁
d𝑦1 . . . d𝑦𝑓 |ΨM

CS
(𝑥, 𝑦1, . . . , 𝑦𝑓 , 𝑡)|2. (H.1)

Using an Ansatz for the wavefunction given in Eq. (2.16) in terms of coherent states of multiplicity

𝑀 , |ΨM

CS
(𝑥, 𝑦1, . . . , 𝑦𝑓 , 𝑡)|2 can be written for multi-mode coherent states |𝑧𝑙⟩ as

|ΨM

CS
(𝑥, 𝑦1, . . . , 𝑦𝑓 , 𝑡)|2 =⟨ΨM

CS
(𝑡)|𝑥⟩⟨𝑥|ΨM

CS
(𝑡)⟩

=
∑︁
𝑘,𝑙

𝑎*𝑘(𝑡)⟨𝑧𝑘(𝑡)|𝑥⟩⟨𝑥|𝑧𝑙(𝑡)⟩𝑎𝑙(𝑡) (H.2)

where the vector 𝑥 = (𝑥, 𝑦1, . . . , 𝑦𝑓 ). Therefore, after separating out each individual degrees of freedom

the probability density becomes

𝜌𝑆(𝑥, 𝑡) =
∑︁
𝑘,𝑙

𝑎*𝑘(𝑡)⟨𝑧𝑘𝑥(𝑡)|𝑥⟩⟨𝑥|𝑧𝑙𝑥(𝑡)⟩
∫︁

d𝑦1 . . . d𝑦𝑓 ⟨𝑧𝑘𝑦1(𝑡)|𝑦1⟩⟨𝑦1|𝑧𝑙𝑦1(𝑡)⟩ . . .

⟨𝑧𝑘𝑦𝑓 (𝑡)|𝑦𝑓 ⟩⟨𝑦𝑓 |𝑧𝑙𝑦𝑓 (𝑡)⟩𝑎𝑙(𝑡). (H.3)

Now, for any 𝑦 = 𝑦1, . . . , 𝑦𝑓 we have (here ~ is set to unity)∫︁
d𝑦⟨𝑧𝑘𝑦(𝑡)|𝑦⟩⟨𝑦|𝑧𝑙𝑦(𝑡)⟩ =exp

[︂
−𝛾𝑦

4
(𝑞𝑙𝑦 − 𝑞𝑘𝑦)

2 − 1

4𝛾𝑦
(𝑝𝑙𝑦 − 𝑝𝑘𝑦)

2 +
i

2
(𝑝𝑙𝑦𝑞𝑘𝑦 − 𝑞𝑙𝑦𝑝𝑘𝑦)

]︂
=exp

[︂
−1

2
(|𝑧𝑘𝑦|2 + |𝑧𝑙𝑦|2) + 𝑧*𝑘𝑦𝑧𝑙𝑦

]︂
=⟨𝑧𝑘𝑦(𝑡)|𝑧𝑙𝑦(𝑡)⟩ (H.4)

which is nothing but the overlap of two coherent states. Hence, the integral in (H.3) disappears and

we get the simplified expression for 𝜌𝑆(𝑥, 𝑡) as

𝜌𝑆(𝑥, 𝑡) =
∑︁
𝑘,𝑙

𝑎*𝑘(𝑡)⟨𝑧𝑘𝑥(𝑡)|𝑥⟩⟨𝑥|𝑧𝑙𝑥(𝑡)⟩⟨𝑧𝑘𝑦1(𝑡)|𝑧𝑙𝑦1(𝑡)⟩ . . . ⟨𝑧𝑘𝑦𝑓 (𝑡)|𝑧𝑙𝑦𝑓 (𝑡)⟩𝑎𝑙(𝑡) (H.5)

We note that there should be an elementwise multiplication between the overlaps of each individual

degrees of freedom. Now, we are left with obtaining an expression for ⟨𝑧𝑘𝑥(𝑡)|𝑥⟩⟨𝑥|𝑧𝑙𝑥(𝑡)⟩. As we know

⟨𝑥|𝑧𝑙𝑥(𝑡)⟩ =
(︁𝛾𝑥
𝜋

)︁ 1
4
exp

[︁
−𝛾𝑥

2
(𝑥− 𝑞𝑙𝑥)

2 + i𝑝𝑙𝑥

(︁
𝑥− 𝑞𝑙𝑥

2

)︁]︁
, (H.6)
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also

⟨𝑧𝑘𝑥(𝑡)|𝑥⟩ =
(︁𝛾𝑥
𝜋

)︁ 1
4
exp

[︁
−𝛾𝑥

2
(𝑥− 𝑞𝑘𝑥)

2 − i𝑝𝑘𝑥

(︁
𝑥− 𝑞𝑘𝑥

2

)︁]︁
, (H.7)

we need to express (H.6) and (H.7) in terms of displacements 𝑧𝑘𝑥, 𝑧𝑙𝑥. For that, we use the definition

of time-dependent complex displacements given in terms of position and momentum variables

𝑧𝑙𝑥(𝑡) =

√︂
𝛾𝑥
2
𝑞𝑙𝑥(𝑡) +

i√
2𝛾𝑥

𝑝𝑙𝑥(𝑡) (H.8)

Therefore,

⟨𝑧𝑘𝑥(𝑡)|𝑥⟩ =
(︁𝛾𝑥
𝜋

)︁ 1
4
exp

[︃
−
(︂√︂

𝛾𝑥
2
𝑥− Re (𝑧𝑘𝑥)

)︂2

− iIm (𝑧𝑘𝑥)
(︁√︀

2𝛾𝑥 − Re (𝑧𝑘𝑥)
)︁]︃

=
(︁𝛾𝑥
𝜋

)︁ 1
4
exp

(︂
−
{︁𝛾𝑥

2
𝑥2 − 𝑥

√︀
2𝛾𝑥Re (𝑧𝑘𝑥) + (Re (𝑧𝑘𝑥))

2
}︁

− i𝑥
√︀

2𝛾𝑥Im (𝑧𝑘𝑥) + iIm (𝑧𝑘𝑥)Re (𝑧𝑘𝑥)

)︂
=
(︁𝛾𝑥
𝜋

)︁ 1
4
exp

(︂
− 𝛾𝑥

2
𝑥2 + 𝑥

√︀
2𝛾𝑥 {Re (𝑧𝑘𝑥)− iIm (𝑧𝑘𝑥)}

− Re (𝑧𝑘𝑥) {Re (𝑧𝑘𝑥)− iIm (𝑧𝑘𝑥)}
)︂

=
(︁𝛾𝑥
𝜋

)︁ 1
4
exp

[︁
−𝛾𝑥

2
𝑥2 + 𝑥

√︀
2𝛾𝑥𝑧

*
𝑘𝑥 − Re (𝑧𝑘𝑥)𝑧

*
𝑘𝑥

]︁
=
(︁𝛾𝑥
𝜋

)︁ 1
4
exp

[︁
−𝛾𝑥

2
𝑥2 + 𝑧*𝑘𝑥

(︁
𝑥
√︀
2𝛾𝑥 − Re (𝑧𝑘𝑥)

)︁]︁
(H.9)

and

⟨𝑥|𝑧𝑙𝑥(𝑡)⟩ =
(︁𝛾𝑥
𝜋

)︁ 1
4
exp

[︃
−
(︂√︂

𝛾𝑥
2
𝑥− Re (𝑧𝑙𝑥)

)︂2

+ iIm (𝑧𝑙𝑥)
(︁√︀

2𝛾𝑥𝑥− Re (𝑧𝑙𝑥)
)︁]︃

=
(︁𝛾𝑥
𝜋

)︁ 1
4
exp

(︂
−
{︁𝛾𝑥

2
𝑥2 − 𝑥

√︀
2𝛾𝑥Re (𝑧𝑙𝑥) + (Re (𝑧𝑙𝑥))

2
}︁

+ i𝑥
√︀

2𝛾𝑥Im (𝑧𝑙𝑥)− iIm (𝑧𝑙𝑥)Re (𝑧𝑙𝑥)

)︂
=
(︁𝛾𝑥
𝜋

)︁ 1
4
exp

(︂
− 𝛾𝑥

2
𝑥2 + 𝑥

√︀
2𝛾𝑥 {Re (𝑧𝑙𝑥) + iIm (𝑧𝑙𝑥)}

− Re (𝑧𝑙𝑥) {Re (𝑧𝑙𝑥) + iIm (𝑧𝑙𝑥)}
)︂

=
(︁𝛾𝑥
𝜋

)︁ 1
4
exp

[︁
−𝛾𝑥

2
𝑥2 + 𝑥

√︀
2𝛾𝑥𝑧𝑙𝑥 − Re (𝑧𝑙𝑥)𝑧𝑙𝑥

]︁
=
(︁𝛾𝑥
𝜋

)︁ 1
4
exp

[︁
−𝛾𝑥

2
𝑥2 + 𝑧𝑙𝑥

(︁
𝑥
√︀

2𝛾𝑥 − Re (𝑧𝑙𝑥)
)︁]︁
. (H.10)
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Hence, we get

⟨𝑧𝑘𝑥(𝑡)|𝑥⟩⟨𝑥|𝑧𝑙𝑥(𝑡)⟩ =
(︁𝛾𝑥
𝜋

)︁ 1
2
exp

(︂
− 𝛾𝑥𝑥

2 + 𝑥
√︀

2𝛾𝑥 (𝑧
*
𝑘𝑥 + 𝑧𝑙𝑥)

− 𝑧*𝑘𝑥Re (𝑧𝑘𝑥)− 𝑧𝑙𝑥Re (𝑧𝑙𝑥)

)︂
. (H.11)

The correctness of the above relation can be proved by integrating ⟨𝑧𝑘𝑥(𝑡)|𝑥⟩⟨𝑥|𝑧𝑙𝑥(𝑡)⟩ over 𝑥, if the
integration yields the overlap ⟨𝑧𝑘𝑥(𝑡)|𝑧𝑙𝑥(𝑡)⟩, because∫︁

d𝑥|𝑥⟩⟨𝑥| = 1. (H.12)

Therefore,∫︁
d𝑥⟨𝑧𝑘𝑥(𝑡)|𝑥⟩⟨𝑥|𝑧𝑙𝑥(𝑡)⟩ =

(︁𝛾𝑥
𝜋

)︁ 1
2

∫︁
d𝑥 exp

(︂
− 𝛾𝑥𝑥

2 + 𝑥
√︀
2𝛾𝑥 (𝑧

*
𝑘𝑥 + 𝑧𝑙𝑥)

− 𝑧*𝑘𝑥Re (𝑧𝑘𝑥)− 𝑧𝑙𝑥Re (𝑧𝑙𝑥)

)︂
=
(︁𝛾𝑥
𝜋

)︁ 1
2

√︂
𝜋

𝛾𝑥
exp

(︂
1

2
(𝑧*𝑘𝑥 + 𝑧𝑙𝑥)

2 − 𝑧*𝑘𝑥Re (𝑧𝑘𝑥)− 𝑧𝑙𝑥Re (𝑧𝑙𝑥)

)︂
(Since

∫︁
d𝑥 exp

{︀
−𝑎𝑥2 + 𝑏𝑥+ 𝑐

}︀
=

√︂
𝜋

𝑎
exp

{︂
𝑏2

4𝑎
+ 𝑐

}︂
)

= exp

(︂
1

2

{︀
(𝑧*𝑘𝑥)

2 + (𝑧𝑙𝑥)
2
}︀
+ 𝑧*𝑘𝑥𝑧𝑙𝑥 − 𝑧*𝑘𝑥Re (𝑧𝑘𝑥)− 𝑧𝑙𝑥Re (𝑧𝑙𝑥)

)︂
=exp

(︂
− 1

2
𝑧*𝑘𝑥 (2Re (𝑧𝑘𝑥)− 𝑧*𝑘𝑥)−

1

2
𝑧𝑙𝑥 (2Re (𝑧𝑙𝑥)− 𝑧𝑙𝑥) + 𝑧*𝑘𝑥𝑧𝑙𝑥

)︂
=exp

(︂
− 1

2
𝑧*𝑘𝑥𝑧𝑘𝑥 −

1

2
𝑧𝑙𝑥𝑧

*
𝑙𝑥 + 𝑧*𝑘𝑥𝑧𝑙𝑥

)︂
=exp

[︂
−1

2
(|𝑧𝑘𝑥|2 + |𝑧𝑙𝑥|2) + 𝑧*𝑘𝑥𝑧𝑙𝑥

]︂
=⟨𝑧𝑘𝑥(𝑡)|𝑧𝑙𝑥(𝑡)⟩. (H.13)
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I. Ground-state energy of a linear harmonic oscillator refers to the

zero temperature

The canonical density operator 𝜌 in statistical mechanics is defined as:

𝜌 =
e−𝛽𝐻̂

𝑄
(I.1)

where

𝛽 =
1

𝑘𝑇
(I.2)

is the inverse temperature and the partition function

𝑄 = Tr e−𝛽𝐻̂ . (I.3)

The position matrix elements of the canonical density matrix 𝜌 for a linear harmonic oscillator with

the Hamiltonian

𝐻 =
𝑝2

2𝑚
+

1

2
𝑚𝜔2𝑥2 (I.4)

is given by

𝜌(𝑥, 𝑥′;𝛽) =⟨𝑥|𝜌|𝑥′⟩

=
1

𝑄

√︂
𝑚𝜔

2𝜋~ sinh(𝛽~𝜔)

× exp

{︂
−𝑚𝜔

2~ sinh(𝛽~𝜔)

[︂ (︀
𝑥2 + 𝑥′2

)︀
cosh(𝛽~𝜔)− 2𝑥𝑥′

]︂}︂
(I.5)

with the canonical partition function of the harmonic oscillator

𝑄 =
1

2 sinh(𝛽~𝜔2 )
. (I.6)

The expression (I.5) can be derived using Feynman’s path integral formulation, see [210].

Now, for temperature 𝑇 = 0, we get 𝛽 → ∞. In this limit, sinh(𝛽~𝜔) = cosh(𝛽~𝜔) and is much

larger compared to the term 2𝑥𝑥′ and hence we can completely neglect this last term in the bracket
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of the exponent in (I.5). Therefore,

lim
𝛽→∞

𝜌(𝑥, 𝑥′;𝛽) = lim
𝛽→∞

⎯⎸⎸⎷ 4𝑚𝜔 sinh2(𝛽~𝜔2 )

4𝜋~ sinh(𝛽~𝜔2 ) cosh(𝛽~𝜔2 )
× exp

{︂
−𝑚𝜔
2~

(︀
𝑥2 + 𝑥′2

)︀}︂

=
(︁𝑚𝜔
𝜋~

)︁ 1
2
exp

{︂
−𝑚𝜔
2~

(︀
𝑥2 + 𝑥′2

)︀}︂
=⟨𝑥|Ψ(0)⟩⟨Ψ(0)|𝑥′⟩ (I.7)

where the ground-state wavefunction of the harmonic oscillator in position representation is

Ψ(𝑥, 0) = ⟨𝑥|Ψ(0)⟩ =
(︁𝑚𝜔
𝜋~

)︁ 1
4
exp

{︁
−𝑚𝜔

2~
𝑥2
}︁
. (I.8)

Hence, it is proved that the ground-state of a harmonic oscillator refers to zero temperature.
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