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Abstract

Modern quantum chemical simulations are computationally demanding and one
approach to reduce these demands is the pseudopotential ansatz. This ansatz,
however, approximates the interaction of the valence and core electrons in a way
that neglects the polarizability of the atomic core. While the core polarization
potential (CPP) ansatz addresses this neglected polarization, exhaustive studies of
its influence in molecular simulations are still scarce. Here, we present a customized
implementation of the CPP ansatz to establish an entry point for such studies in
the Quantum Objects Library, a program package of the Institute for Theoretical
Chemistry (University of Cologne). We successfully tested the implementation in
atomic and molecular systems, both on the Hartree-Fock and the electron-correlation
level. Additionally, we investigated the influence of CPPs in two systems - Hg2 and
HgF4 - employing scalar-relativistic small-core pseudopotentials for mercury. For this,
we developed a new approach for generating CPPs relying purely on ab initio data.
The influence of the generated CPPs on the molecular properties of the investigated
systems was small and requires a more detailed investigation.
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1 Introduction

Simulating chemical systems is one of the major goals in quantum chemistry. Over
the last decades, the advances in computer technology and in quantum chemi-
cal approaches opened new possibilities for simulating increasingly larger systems.
Computational demands, however, restrict the size of such systems such that ap-
proximations are required to reduce these demands. Especially the simulation of
systems containing heavy atoms is computationally demanding due to the great
number of electrons present in these systems. Additionally, relativistic effects, which
are pronounced in such systems, have to be taken into account, thereby further
increasing the computational demand.

One approach, which both incorporates relativistic effects and reduces the compu-
tational demands for heavy atoms, is the use of effective core potentials (ECPs) [1].
The most widely applied form of the ECP ansatz are pseudopotentials (PPs). In
this ansatz one fundamental consideration is the so-called frozen-core approximation,
in which the inner electrons are excluded from the quantum chemical optimizations
of the wave function. However, such treatment results in a missing description of the
polarizability of the core and thus in a missing core-valence and core-core correla-
tion [1]. To correct for this missing correlation, the core polarization potential (CPP)
ansatz can be employed [2, 3]. This ansatz was employed in simulations of various
systems over the last decades. Such simulations containing main group [4–7] and
transition metal [8, 9] elements and f-elements were reported [10, 11]. For employing
the CPP ansatz in modern quantum chemistry program packages, Schwerdtfeger and
Silberbach proposed a way to solve the multi-center integrals in this ansatz using
Cartesian Gaussian functions [12]. Their work represents the foundation for the only
currently commercially available implementation in the quantum chemistry program
package MOLPRO [13] by Nicklaß [14].

The goal of this work consists of two parts aiming to extend the current knowledge
of the CPP ansatz and its application. First, a custom implementation of CPP ansatz
will be incorporated into the quantum chemistry program package of the University
of Cologne, namely the Quantum Objects Library [15]. This implementation will
be tested in multiple test systems to ensure the correct behaviour both on the
Hartree-Fock and electron-correlation level. Second, the influence of the CPP ansatz
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1 Introduction

in simulations of Hg2 and HgF4 will be investigated. For this, we will generate
CPPs purely relying on ab initio data and employ them to calculate spectroscopic
constants of the investigated systems. The results will be compared to experimental
and theoretical studies to evaluate the influence of the CPPs.
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2 Theory

2.1 Hartree-Fock (HF)
The Hartree-Fock (HF) method is one of the most fundamental wave function-based
methods for simulating many-body systems by approximately solving the Schrödinger
equation [16, 17]. The method uses two major approximations, the Born-Oppenheimer
approximation and an approximated electron-electron interaction [18–20]. The goal
of the Hartree-Fock method is to obtain approximate solutions of the Schrödinger
equation in order to get insights into the properties of different chemical systems.
Moreover it provides a starting point for higher level treatments including electron
correlation. Since we focus exclusively on time-independent properties in this work,
we only have to solve the time-independent form of the Schrödinger equation

Ĥ |Ψ⟩ = E |Ψ⟩ , (2.1)

in which Ĥ is the Hamiltonian, |Ψ⟩ the many-body wave function and E the energy
eigenvalue.

2.1.1 Born-Oppenheimer approximation (adiabatic
approximation)

The Born-Oppenheimer approximation [21] allows for treating the electrons of a
system separately from the nuclei. For this, the electronic Hamiltonian Ĥel in atomic
units (a.u.) is used

Ĥel = −1
2

n∑
i=1

∆i −
n∑

i=1

N∑
A=1

ZA

riA

+
n∑

i<j

1
rij

. (2.2)

In this Hamiltonian the kinetic energy of the nuclei is neglected and the Coulomb
repulsion between the nuclei is considered constant. This constant value is added to
the energy eigenvalue after applying the Hamiltonian, i.e. after solving the electronic
Schrödinger equation. In equation 2.2, the first term represents the kinetic energy of
the electrons, the second term the Coulomb attraction between the electrons and
nuclei and the last term the electron-electron interaction [22].
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2 Theory

2.1.2 Slater determinant

For describing systems with multiple electrons, the wave function is approximated as
a product of one-electron spin orbitals |χ⟩, termed the Hartree product. Due to the
Pauli exclusion principle [23, 24], the wave function has to be antisymmetric with
respect to the exchange of electrons. Since a single Hartree product cannot fulfill this
requirement, an antisymmetrized linear combination of all possible Hartree products,
i.e. a Slater determinant, is used:

|ΦSlater⟩ = 1√
n!

n!∑
k=1

(−1)pkP̂k

n∏
i=1
|χi(i)⟩ , (2.3)

in which P̂k is the permutation operator and n! the number of all possible permutations
of n electrons in n spin orbitals.

2.1.3 Hartree-Fock equation

In the closed-shell Hartree-Fock method, the approximated wave function is described
by a single Slater determinant. The variational principle is used for finding the
minimal energy and thus the optimal wave function by approximately solving the
Schrödinger equation using the electronic Hamiltonian [22]. This principle states
that the variation of an approximated wave function, in this case |ΦSlater⟩, always
leads to an energy which is greater than or equal to the exact ground-state energy
E0:

min
{
⟨ΦSlater|Ĥel|ΦSlater⟩
⟨ΦSlater|ΦSlater⟩

: χi

}
≥ E0 . (2.4)

Varying the spin orbitals χi, which are part of the wave function ΦSlater (eq. 2.3), gives
the optimized energy [22]. The variation principle and the expression of the single
Slater determinant complete the description of the HF method; the energy can now
be calculated by this method. For the evaluation of the integrals ⟨ΦSlater|Ĥel|ΦSlater⟩
and ⟨ΦSlater|ΦSlater⟩, the Slater-Condon rules [25–27] are commonly employed.

For the application of the Slater-Condon rules on the variation principle, the spin
orbitals are required to be orthonormal while varying them. This orthonormality
requirement can be fulfilled using the Lagrange method, which introduces the so-
called Lagrange multiplier [22]. By varying the spin orbitals by an infinitesimal
amount and setting the first variation of the Langrangian to be zero, the following
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2.1 Hartree-Fock (HF)

equations can be derived:

[
ĥ(1) +

n∑
j=1

(
Ĵj(1)− K̂j(1)

)]
|χi(1)⟩ = ϵi |χi(1)⟩ , i = 1, 2, . . . , n . (2.5)

Here, Ĵj(1) is the Coulomb operator and K̂j(1) the exchange operator. The expression
inside the brackets in equation 2.5 is the so-called Fock operator f̂ and equation 2.5
can be expressed as

f̂ |χi⟩ = ϵi |χi⟩ , (2.6)

which is the canonical HF equation. This canonical HF equation is a pseudo-
eigenvalue problem since the Fock operator, which operates on the one-particle space,
is functionally dependent on the spin orbitals. This functional dependence renders the
equation nonlinear such that is has to be solved in an iterative manner. Furthermore,
the HF equation (or the HF equations, for simulating a many-electron system;
eq. 2.6) can be solved exactly only for atoms [22] (and in some special cases for highly
symmetric molecules [28–30]). To solve the HF equations for arbitrary molecules, a
set of basis functions is introduced yielding the Roothaan-Hall equations [31, 32].

2.1.4 Roothaan-Hall equations: restricted Hartree-Fock (RHF)

To derive the Roothaan-Hall equations, the spin orbitals |χ⟩ are restricted, i.e. α and
β spins are constrained to the same spatial function ψ(r)

|χ(x)⟩ =

|ψ(r)α(ω)⟩

|ψ(r)β(ω)⟩
. (2.7)

This restriction of the spin orbitals results in the spatial HF equation

f̂ |ψi⟩ = ϵi |ψi⟩ , (2.8)

with

f̂(1) = ĥ(1) +
n/2∑

i

(
2Ĵi(1)− K̂i(1)

)
. (2.9)

To solve equation (2.8), numerical solutions for molecules can be obtained by in-
troducing a set of K basis functions and performing a linear expansion of the
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2 Theory

form
|ψi⟩ =

K∑
µ=1

cµi |ϕµ⟩ , i = 1, 2, . . . , K , (2.10)

which leads to the HF equation

∑
ν

cνi ⟨ψµ|f̂ |ψν⟩ = ϵi

∑
ν

cνi ⟨ψµ|ψν⟩ . (2.11)

or short, by using matrix notation for the entire set of basis functions,

FC = SCϵ , (2.12)

in which F is the Fock matrix and S the overlap matrix. C is a K ×K matrix of
the expansion coefficients cµi and ϵ the diagonal matrix of the orbital energies ϵi.

These Roothaan equations can only be solved iteratively due to the functional
dependency of the Fock operator. To obtain a usual matrix eigenvalue problem, the
coefficient matrix C can be transformed such, that the overlap matrix S becomes
the unit matrix, resulting in the following equation:

F̃C̃ = C̃ϵ . (2.13)

This eigenvalue problem can be solved for the eigenvectors C̃ and the eigenvalues ϵ

using the self-consistent field (SCF) method [22]. After the SCF procedure converges
the total energy can be expressed as

EHF,tot = EHF +
∑

A<B

ZAZB

RAB

, (2.14)

in which EHF is the energy that can be calculated from the coefficients obtained in
the final SCF iteration. The second term in equation 2.14 is the constant term of
the nuclei repulsion, which is added after the SCF procedure as a consequence of
the Born-Oppenheimer approximation (section 2.1.1). The choice of the basis set is
of great importance, because the more complete the basis set, the more precise the
result of the calculation. Hypothetically, choosing an infinite, i.e. complete, basis
set, allows for obtaining the exact HF solution. At this so-called HF limit, the best
possible HF energy EHF is reached. This energy, however, differs from the exact
energy Eexact, which is obtained when solving the Schrödinger equation exactly. This
deviation is usually about 0.5 % of the state energy, which is not accurate enough
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2.2 Electron correlation methods

for describing chemical phenomena [33]. The “missing” energy, which is the reason
for the high deviation, is often referred to as the correlation energy Ecorr

Ecorr = Eexact − EHF , (2.15)

which is less than or equals to zero since the HF energy represents the upper boundary
to the exact solution [22].

2.2 Electron correlation methods
The major goal of correlated methods is to improve the HF approximation by
retrieving correlation energy. This can be achieved by using more than one Slater
determinant for describing the wave function [22, 34].

2.2.1 Coupled cluster (CC)

The coupled cluster (CC) theory is a widely used wave function-based correlation
method due to its size consistency, which is lacking in other wave function-based
methods. In this ansatz, the exact ground state wave function is described as follows:

|ΨCC⟩ = eT̂ |Φ0⟩ , (2.16)

in which T̂ is the so-called cluster operator and is generally defined as

T̂ = T̂1 + T̂2 + . . .+ T̂n (2.17)

T̂ν = 1
(ν!)2

∑
a1,...,an
i1,...,in

ta1,...,an
i1,...,in

â†
a1 · · · â

†
an
âin · · · âi1 . (2.18)

eT̂ in equation 2.16 is the so-called exponential operator, and â†
an

and âin in equa-
tion 2.18 are the creation and annihilation operators, respectively, known from the
theory of second quantization, while ta1,...,an

i1,...,in
are the so-called amplitudes [35, 36].

The Schrödinger equation is approximated using the CC ansatz by projecting it
onto the reference wave function resulting in the following expression:

ECC = ⟨Φ0|ĤeT̂ |Φ0⟩ , (2.19)

which can be expanded into the following form using spin orbitals, which were
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obtained by a HF calculation:

ECC = EHF +
∑
i<j
a<b

(tab
ij + tai t

b
j − tbitaj )(⟨χiχj|χaχb⟩ − ⟨χiχj|χbχa⟩) . (2.20)

This equation indicates that the correlation energy in the CC ansatz is entirely
determined by the singles and doubles amplitudes and the two-electron molecular
orbital (MO) integrals [36]. To obtain these amplitudes, a similarity transformation
of the Hamiltonian is performed by employing e−T̂ . By projecting onto substi-
tuted determinants, the following amplitude equations for different substitutions are
obtained:

⟨ΦA
I |e−T̂HeT̂ |Φ0⟩ = 0 ,

⟨ΦAB
IJ |e−T̂HeT̂ |Φ0⟩ = 0 ,

⟨ΦABC
IJK |e−T̂HeT̂ |Φ0⟩ = 0 ,

... .

In general, optimizing the parameters is a nonlinear optimization problem of the
following form:

Ω⃗
(
t⃗
)

= 0⃗ , (2.21)

which can be solved using different approaches [37, 38].
The full expansion of n substitutions, however, is computationally too demanding

to be feasible. Usually, the expansion is truncated after the singles and doubles
substitutions, resulting in the coupled cluster singles and doubles (CCSD) method.
For improving the CCSD method, the triples substitutions can be perturbatively
added, resulting in the CCSD(T) method, which is known as the “gold standard”
of quantum chemistry [39]. This method is able to account for more than 99 % of
the correlation energy [40]. Besides the high computational demands, the CCSD(T)
method is a single reference method, rendering it not accurate for simulations
requiring a multi-reference treatment. For multi-reference cases, one of the multitude
of multi-reference CC (MRCC) approaches can be used [40–42].
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2.3 Relativistic effects

2.3 Relativistic effects

2.3.1 The Dirac equation

Relativistic effects significantly influence the chemical properties of heavy elements
and are thus important for understanding the nature of these elements [43–46]. The
most well-known example for the contribution of relativistic effects is gold with its
characteristic color, as well as its nobility, often unusual short bond lengths and
possible trivalency [45, 47, 48]. Furthermore, properties like high oxidation states,
high electron affinities, spin-spin coupling and contraction of bond lengths of heavy
elements can only be explained by relativistic effects [48].

For describing relativistic effects in the most accurate way, the Dirac (D) one-
particle Hamiltonian ĥD with

ĥD(i) = cˆ⃗αi · ˆ⃗pi + (β̂i − I4)c2 +
∑

λ

V̂λ(riλ) , (2.22)

is employed in the following Hamiltonian to solve the Dirac equation within the
Born-Oppenheimer approximation:

Ĥel =
n∑
i

ĥD(i) +
n∑

i<j

ĝ(i, j) +
N∑

λ<µ

ZλZµ

rλµ

. (2.23)

In equation 2.22 the variable c represents the speed of light, ˆ⃗αi a vector of 4×4 Dirac
matrices and β̂i a single 4× 4 Dirac matrix in the “standard representation” [49], I4

a 4× 4 identity matrix and ˆ⃗pi the momentum operator

ˆ⃗pi = −i ˆ⃗∇i with ˆ⃗∇i =
(
∂

∂xi

,
∂

∂yi

,
∂

∂zi

)
. (2.24)

The last term in 2.22 represents the electrostatic potential generated by the λ-th
nucleus as follows:

V̂λ(riλ) = −Zλ

riλ

. (2.25)

The Dirac-Hamiltonian does not only describe the electron but also its counterpart,
the positron. Thus, the relativistic wave function consists of four components, which
are described by a four-component vector, the so-called four-spinor. The upper
bispinor is large for electronic states, while the lower bispinor is large for positronic
states. Due to the focus of quantum chemistry on electrons, the upper and lower
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spinors are often referred to as large and small components, respectively [1].
The simplest way of choosing the two-particle interaction term g(i, j) is the

following:

ĝC(i, j) = 1
rij

, (2.26)

which is the non-relativistic Coulomb (C) interaction, leading to the so-called Dirac-
Coulomb (DC) Hamiltonian. This form of the two-particle interaction term is
sufficient, because the contribution of the one-particle Dirac-Hamiltonian to the
relativistic effects is more dominant than the relativistic corrections to the Coulomb
electron-electron repulsion [50]. For a more accurate description of the two-particle
interaction, the frequency-independent Breit (B) interaction can be added, yielding
the following term:

ĝCB(i, j) = 1
rij

− 1
2rij

[
ˆ⃗αi · ˆ⃗αj + (ˆ⃗αi · ˆ⃗rij)( ˆ⃗αj · ˆ⃗rij)

r2
ij

]
, (2.27)

which accounts for the magnetic interaction of two electrons and the retardation
of this interaction due to the finite velocity of light. Contributions of higher-
order corrections, like the vacuum polarization, are often negligible, because their
contribution to chemical properties is not significant [1]. Importantly, the Dirac-
Hamiltonian is not bound from below, which may lead to a variational collapse
during the energy-minimization. Furthermore, a mixing of electronic and positronic
states can occur, which is known as Brown-Ravenhall continuum dissolution or
Brown-Ravenhall disease [1, 51].

Both the DC- or DCB-Hamiltonian can be applied in methods, in which their
non-relativistic counterparts are used (e.g in the Hartree-Fock equation resulting in
the Dirac-Hartree-Fock (DHF)-equation). While solving this equation is also done
self-consistently, the biggest differences compared to the non-relativistic SCF is due
to the substitution of the one-component, the wave function, by the four-component
vector, the spinor. These spinors should obey the kinetic balance conditions. Hence,
the basis sets become significantly larger and the DHF method more computationally
demanding than its non-relativistic counterpart [52]. Furthermore, the spinors are
not optimized to result in a minimized, but in a stationary energy [49].
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2.4 Effective core potentials

2.4 Effective core potentials
The general idea of effective core potential (ECP) methods is to describe the valence
electrons independent of the atomic nucleus and the core electrons in order to reduce
computational demands. For this, the atomic nucleus and the core electrons are
combined to one potential, which interacts with the valence electrons. Hence, for
describing the valence electrons explicitly, a valence-only (VO) model Hamiltonian
can be written as follows:

Ĥv =
nv∑
i

ĥv(i) +
nv∑
i<j

ĝv(i, j) + V̂cpp + Vcc , (2.28)

in which c and v are abbreviations for core and valence electrons, respectively. nv

is the number of valence electrons, V̂cpp is the core polarization potential (CPP),
which accounts for core-core and core-valence correlations, while Vcc represents the
repulsion of the cores and nuclei in the system. The valence-only model Hamiltonian
of the following form:

ĥv(i) = −1
2

ˆ⃗∇2
i + V̂cv(i) and ĝv(i, j) = 1

rij

, (2.29)

can be used for non-relativistic, scalar-relativistic and quasi-relativistic ECPs [1]. It is
usually assumed that all relativistic effects can be considered by the parameterization
of the effective core potential V̂cv. This assumption holds true, only if the non-
relativistic form of the kinetic energy operator and the Coulomb interaction are
sufficient for describing the system of valence electrons. Additionally, the ECP V̂cv

accounts for all interactions of the valence electrons with the nucleus and the removed
core electrons and ensures the core valence-orthogonality constraints [1].

For creating computationally practical VO schemes, approximations have to be
made. One of these approximations is to assume that the core and valence electrons
can be separated, which is only feasible on an independent-particle level, i.e. on the
Hartree-Fock level. This approximation, however, is not exact on a correlated level of
theory and thus the core-valence correlation is neglected in correlation methods. This
correlation can be taken into account by CPPs, which are widely used, especially for
large-core ECPs [1].

Another approximation made for creating VO schemes is the frozen-core approxima-
tion, in which the core orbitals are frozen for a special state on an independent-particle
level. This means that the atomic cores are assumed to be inert leading to the frozen-
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core (FC) approximation. Choosing the size of the core is a crucial part in this
approximation. Employing a small core results in more accurate but more computa-
tionally demanding results, while large core simulations are more efficient but less
precise. To eliminate the core electrons and core orbitals form the calculation, the
contributions of the valence electrons in the all-electron FC Hamiltonian are replaced
by non-local HF potentials. Finally, the atomic cores are assumed to interact only
by their Coulomb repulsion:

Vcc =
N∑

λ<ν

QλQν

rλν

. (2.30)

If this assumption is violated by the cores overlapping or penetrating each other, Vcc

has to be corrected to account for deviations from the point charge approximation [1].
Since the development of the ECP theory, various schemes for generating ECPs

have been proposed [1, 53–56]. However, only two of these schemes, namely the
pseudopotential (PP) and model potential (MP) approaches, are widely used in
the literature. In both schemes, the VO Hamiltonian is fitted to all-electron (AE)
calculations. The MP approach uses valence orbitals with an identical nodal structure
to that of the AE valence orbitals. In contrast, the PP methods use a simpler nodal
structure by employing a pseudovalence orbital transformation [55], which renders
PP less computationally demanding. While the PP method is less accurate than the
MP method, the accuracy of the PPs is sufficient enough for an accurate description
of molecular systems. The reduced computational demands often render the PPs
superior to the MPs and are thus the most widely used ECPs in the literature [1].
Hence, only PPs will be discussed in the following.

2.4.1 Pseudopotentials

For generating PPs, which are both accurate and reduce the computational demands,
the semilocal PP ansatz is employed [57, 58]. For this, the semilocal PP for a core λ
of the following form is used:

∆V̂ λ
cv(i) ∼= ∆V̂ λ

PP(i) = V λ
L (riλ) +

L−1∑
l=0

[V λ
l (riλ)− V λ

L (riλ)]P̂ λ
l (i) , (2.31)

in which P̂ λ
l (i) is the angular momentum projection operator based on the spherical

harmonics |lm, λ⟩ with respect to the core angular momentum l. The semilocal
PP consists of a sum of local potentials V λ

l (riλ) acting on the angular momentum
symmetries and a common local potential V λ

L (riλ) [1]. In practice, the L of the
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2.4 Effective core potentials

local potential V λ
L (riλ) is chosen such that (L − 1) represents the largest angular

momentum used by the core orbitals [58].
Furthermore, the spin-orbit (SO) interaction is included resulting in a modified

analytic form of the PPs [59]. For this, the PP needs to be dependent on the angular
momentum j of the orbital leading to an lj-dependent semilocal PP. This PP can be
written as follows:

∆V̂ λ
PP(i) = ∆V̂ λ

PP,av(i) + ∆V̂ λ
PP,so(i) , (2.32)

in which V̂ λ
PP,av(i) is a scalar-relativistic PP and ∆V̂ λ

PP,so is the SO PP of the following
form:

∆V̂ λ
PP,so(i) =

L−1∑
l=1

∆V λ
l (riλ)

2l + 1 [lP̂ λ
l,l+1/2(i)− (l + 1)P̂ λ

l,l−1/2(i)] , (2.33)

in which ∆V λ
l is the difference between the corresponding relativistic PPs and P̂ λ

lj(i)
being the lj-dependent projection operator as follows:

P̂ λ
lj(i) =

m=j∑
m=−j

|ljm, λ⟩ ⟨ljm, λ| . (2.34)

For efficient use in combination with Gaussian basis sets, PPs are constructed by
linear combinations of radial Gaussian functions multiplied by the electron core
distance. The PPs are transformed into the following form:

V λ
m =

∑
k

Aλ
kmr

nkm
iλ e−a2

kmr2
i λ . (2.35)

These pseudovalence orbitals and the corresponding PPs, however, are not unique [60].
Two approaches to make them unique are the shape-consistent and the energy-
consistent pseudopotentials [1]. In this work, we only focus on only energy-consistent
pseudopotentials.

Energy-consistent pseudopotentials

The energy-consistent ab initio PP approach is based on the semi-empirical PP
approach, in which the free PP parameters are fitted to experimental data [54]. Due
to various difficulties using experimental data for parametrizing the PP, modern PPs
are fitted to ab initio data, which is justified by the findings of Topp and Hopfield [61].
In their work they state that if the eigenvalues of the ground and excited states agree
for any angular momentum, the logarithmic derivatives of the wave function will also
be correct. Hence, energy-consistent PPs are additionally shape-consistent, i.e. the
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orbital energies and the shape of the valence orbitals in the spatial valence region
agree with the all-electron valence orbitals. Energy-consistent pseudopotentials were
used throughout this work, mainly the Stuttgart-Cologne energy-consistent PPs [62].

The parametrization of energy-consistent ab initio PPs is commonly performed
on two types of relativistic theory. One approach employs the scalar-relativistic
one-component Wood-Boring Hamiltonian for generating the AE reference energies
of multiple electron configurations [63, 64]. The second approach uses the relativistic
four-component Dirac-Coulomb Hamiltonian, with or without the inclusion of the
Breit term [65]. In general, the AE reference and the PP adjustment calculations
are performed on a finite grid within a finite-difference method, which avoids basis
set incompleteness. In both approaches the functional of the following form:

S =
∑

I

wI(EPP
I − EAE

I + ∆Eshift)2 , (2.36)

is minimized. The summation runs over all configurations, LS states and/or J
levels [1]. EAE

I and EPP
I represent the total valence energies, i.e. the energy of

the Ith reference energy subtracted by the core electron energy, for the AE and
the PP calculations, respectively. wI are weighting factors, which represent the
non-relativistic configuration independent from the number of LS states or J levels.
∆Eshift can be used for relaxing the PP and AE total energies and thus allows for a
better fit [1].

2.5 Core polarization
As mentioned above, ECPs are able to reduce computational demands, while in-
corporating relativistic effects into simulations. However, due to the core-valence
separation and the frozen core approximation, the polarization of the core is ne-
glected. For nearly 100 years [66], the core polarization was studied to understand
the influence of the core polarization in quantum chemical calculations and how to
incorporate this phenomenon with little computational effort.

2.5.1 Polarization of the atomic core

Born and Heisenberg were the first to describe the interaction energy of the valence
electron of a system with its core [66]. Using a classical approach, they derived the
following equation for the interaction energy:
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2.5 Core polarization

Epol = − α

2r4 , (2.37)

in which α is the dipole polarizability of the core. Here, a singularity of the expression
occurs in the vicinity of the core. Besides this singularity, they were able to describe
the interaction of one valence electron with a noble gas core (Na, Mg+, Al2+, etc.)
in ionic crystals [66], indicating the importance of the core polarizability in such
systems.

2.5.2 Limitations of effective core potentials

Since the introduction of the effective core potential approach [57], it has become the
method of choice for reducing computational demands in non-relativistic simulations,
while maintaining accuracy [67–69]. However, due to the core-valence separation
and the frozen core approximation [70] it became obvious that for certain chemical
properties an accurate description of the core polarization is needed [6].

The work of Bauschlicher et al. [71] demonstrated how in frozen core AE simulations
the missing contributions of the core polarization can be retrieved. For this, they chose
a MCSCF/MRCI method to reproduce FCI simulations of Be, C, CH+ for various
excitations energies and spectroscopic constants. By comparing both approaches,
they investigated the missing correlation. For this, they separated the missing
correlation energy into two parts, the core-valence and core-core correlation. The
former describes the correlation between valence electrons with core electrons of all
centers, while the latter describes the correlation between core electrons of all centers
with each other. The authors demonstrated that the inclusion of single substitutions,
starting from the core electrons in the valence space, could contribute for the majority
of the core-valence correlation, if the core-core correlation is neglected. The core-core
correlation itself, however, could not be described correctly by this method.

While the contributions of the core polarization can be incorporated into AE
simulations, as shown by Bauschlicher et al., this is not the case for ECP simulations,
because no substitutions out of the core space can be performed. Hence, other
approaches are needed.
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2.5.3 Core polarization in pseudopotential simulations

Core polarization in single-electron systems

The first work to explicitly incorporate core-polarization into PP simulation was
performed for the potential energy curves for Li+2 and Li2 [72]. Here, an effective
potential of the form:

Veff(r) = −1
r
− αD

2 (r2 + d2)2 −
αQ

2 (r2 + d2)3 + VSR(r) , (2.38)

was chosen, in which the second and third term contribute to the dipole αD and
quadrupole αQ polarizability of the core. The VSR term represents the potential
of the effective core potential ansatz, which was fitted via ab initio calculations.
Additionally, the cutoff parameter d was introduced to account for the divergence of
the potential near the nucleus (see section 2.5.1). With this approach it was possible
to reproduce the dissociation energies and bond distances for the two molecular
systems, when compared to other ab initio simulations [72].

To improve upon the ansatz by Bardsley et al. (equation 2.38), Fuentealba et
al. [4, 5, 73] used one of the proposed cutoff functions by Müller et al. [2, 3] of the
following form:

ω(r, γ) =
(

1− e−( r
γ )2)2

, (2.39)

in which, γ is the cutoff factor, which was fitted to experimental atomic ionization
energies for Li, Na and K. The corresponding polarization potential Vpol was chosen

Vpol(r, R) = −ω(r, γ)αD

2r4 + ω(r, γ)αDr ·R
r3R3 −

αD

2R4 , (2.40)

in which r and R are the distances between the core and the valence electron and
the core and another nucleus/core, respectively.
This ansatz incorporates three different contributions to the core polarization: the
induced dipole by the single electron, the single nucleus and the combination of
the single electron and the nucleus (Fig. 2.1). Employing this ansatz results in an
accurate description of the dimer and hydride ions of the elements Li, Na and K. This
made the description of core polarization in simulations of single electron-systems
using the framework of effective core potentials possible.

This work by Fuentealba et al. represents the first published application of the
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Fig. 2.1: Graphical representation of the induced dipole µ⃗ at a core λ by a single
electron (A), a single nucleus/core (B), and an electron and a nucleus/core (C).

core polarization potential (CPP) ansatz by Müller et al. [2, 3].

Multi-electron ansatz

The work of Fuentealba et al. [6, 73] pointed out, that for multiple-electron systems
it is important to incorporate terms of two electrons and two nuclei inducing a dipole
moment at a given core (Fig. 2.2).

λ
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~µj ~µ e−i
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~rλν

~Rλξ

~µν

~µξ~µ

Z+
ν

Z+
ξ

Fig. 2.2: Graphical representation of the induced dipole µ⃗ at a core λ by two electrons
(left) and two nuclei/cores (right).

This ansatz represents the fundamental work towards the incorporation of core
polarization beyond alkali and earth alkali elements for all main group elements [6,
7, 74], transition elements (see e.g. [8, 9]) and f-elements (see e.g. [75]) using only
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the dipole polarizability of the atomic core.

l-dependent cutoff functions

One way to improve upon the CPP ansatz was proposed by Foucrault et al. [76] by
using a cutoff function, which uses a projection operator on the spherical harmonics,
dependent on the angular momentum l of the following form:

ω (rλ, γλ) =
lmax∑
l=0

l∑
m=−l

Fl(rλ, γ
l
λ) |lmλ⟩ ⟨lmλ| , (2.41)

with

Fl

(
rλ, γ

l
λ

)
=

0 for r < γl
λ

1 for r ≥ γl
λ

. (2.42)

With this ansatz highly, accurate simulations of alkali compounds can be performed.
For example, the approach was recently employed to simulate alkali-noble gas
dimers [77, 78] or alkali hydrides [79].

Core polarization beyond the dipole polarizability

An alternative to the above described approaches by Fuentealba/Müller and Foucrault
et al., which introduced a potential operator to account for the core polarization,
is a second order perturbation theory ansatz [80]. One advantage of this ansatz is
that no cutoff function has to be introduced, because no 1

r4 operator is added to
the Hamiltonian [81, 82]. Dalgarno et al. incorporated not only contributions of
the dipole moment, but also higher multipole and adiabatic corrections [80]. Using
a similar approach, it was possible to accurately describe core-valence correlation
in alkali dimers and determine spectroscopic properties in better agreement with
experimental values, when compared with the approach by Bardsley et al. [72]
(eq. 2.38).

2.5.4 Generalization of the CPP ansatz

While the fundamental work of Fuentealba/Müller allowed for incorporating core
polarization via the dipole polarizability, the CPP ansatz was not applicable to general
molecular systems and other multipole polarizabilities. The work of Schwerdtfeger
and Silberach [12, 83, 84] and Nicklaß [14] generalizes the CPP ansatz and allows to
perform simulations beyond single- and two-electron systems. Furthermore, in this
framework not only the dipole polarizability αD, but also the quadrupole polarizability
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2.5 Core polarization

αQ and the adiabatic correction to the dipole polarizability βD are considered. Here,
the electric field of a single electron f⃗λ is described as:

f⃗λ =
∑

i

r⃗λi

r3
λi

ω (rλi, γλ)−
∑
µ̸=λ

R⃗λµ

R3
λµ

Qµ , (2.43)

in which cutoff functions of the Müller-type are employed [2, 3]. For incorporating
the multipole and adiabatic corrections, the following potentials are added to the
Hamiltonian:

Vdi = −1
2
∑

λ

αλ
Df⃗

2
λ , (2.44)

Vquad = − 1
12
∑

λ

αλ
Q

∑
A∈{X,Y,Z}

 ∂f⃗λ

∂Aλ

2

, (2.45)

Vadia =
∑

i

∑
λ

3βλ
D

r6
λi

. (2.46)

By substituting f⃗λ with the expression in equation 2.43 for the core-core interaction
Ω, the single-electron V ′ and the two-electron V ′′ term can be obtained:

Ω = −1
2
∑

λ

{
αλ

D
∑
µ̸=λ

Q2
µ

R4
λµ

ω4(Rλµ, γλ)

+αλ
Q
∑
µ ̸=λ

Q2
µ

R6
λµ

ω6(Rλµ, γλ)

+2αλ
D
∑
µ<ν
ν ̸=λ

R⃗λµ · R⃗λν

R3
λµR

3
λν

QµQνω
2(Rλµ, γλ)ω2(Rλν , γλ)

+αλ
Q
∑
µ<ν
ν ̸=λ

QµQν

R3
λµR

3
λν

3(R⃗λµ · R⃗λν)2

R2
λµR

2
λν

− 1
ω3(Rλµ, γλ)ω3(Rλν , γλ)

}
(2.47)
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V ′ = −1
2
∑

i

∑
λ

{
αλ

D

[
1
r4

λi

ω4(rλi, γλ)− 2
(
xλi

r3
λi

Bλ
X + yλi

r3
λi

Bλ
Y + zλi

r3
λi

Bλ
Z

)
ω2(rλi, γλ)

]

+
(
αλ

Q − 6βλ
D

) 1
r6

λi

ω6(rλi, γλ)

+αλ
Q

[
1
r3

λi

Dλ − 3
(
x2

λi

r5
λi

Cλ
XX + y2

λi

r5
λi

Cλ
Y Y + z2

λi

r5
λi

Cλ
ZZ

)

− 6
(
xλiyλi

r5
λi

Cλ
XY + xλizλi

r5
λi

Cλ
XZ + yλizλi

r5
λi

Cλ
Y Z

)]
ω3(rλi, γλ)

}
(2.48)

V ′′ = −
∑
i<j

∑
λ

{
αλ

D

[
xλi

r3
λi

· xλj

r3
λj

+ yλi

r3
λi

· yλj

r3
λj

+ zλi

r3
λi

· zλj

r3
λj

]
ω2(rλi, γλ)ω2(rλj, γλ)

+1
2α

λ
Q

[
− 1
r3

λi

· 1
r3

λj

+ 3
(
x2

λi

r5
λi

·
x2

λj

r5
λj

+ y2
λi

r5
λi

·
y2

λj

r5
λj

+ z2
λi

r5
λi

·
z2

λj

r5
λj

)

+ 6
(
xλiyλi

r5
λi

· xλjyλi

r5
λj

+ xλizλi

r5
λi

· xλjzλi

r5
λj

+ yλizλi

r5
λi

· yλjzλi

r5
λj

)]

· ω3(rλi, γλ)ω2(rλj, γλ)
}

(2.49)

Here, BA, CAB and D (A,B ∈ {X, Y, Z}) are geometric constants:

Bλ
A =

∑
µ̸=λ

QµAλµ

R3
λµ

ω2(Rλµ, γλ) (2.50)

Cλ
AB =

∑
µ̸=λ

QµAλµBλµ

R5
λµ

ω3(Rλµ, γλ) (2.51)

Dλ =
∑
µ̸=λ

Qµ

R3
λµ

ω3(Rλµ, γλ) (2.52)

Ω, V ′ and V ′′ represent the general analytic form of the CPP ansatz [2, 3], for which
a matrix-representation was derived by Schwerdtfeger and Silberbach for the use
in modern quantum chemical program packages [12, 83, 84]. In their work, they
showed, that employing Müller-type cutoff functions allows for solving the matrix
elements

⟨ϕ|xm1ym2zm3|r⃗ |−k|ϕ⟩ (mi ∈ N0, k ∈ Z), (2.53)
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2.5 Core polarization

which are in general not solvable for arbitrary k greater than two. Their work is
of fundamental importance, because solving matrix elements for V ′ (eq. 2.48) and
V ′′ (eq. 2.49) involves values of k which are greater than two. This ansatz of solving
the CPP matrix elements was used for a general implementation of the CPP ansatz
in the program package MOLPRO [13] (and MELD [85–88]) by Nicklaß [14]. The
present work is based on the implementation of Nicklaß following the ansatz and
assumptions made by Schwerdtfeger and Silberbach to solve the matrix-representation
of the CPP integrals and the numerical approximations for solving the mathematical
functions within.
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3 Implementation of the CPP ansatz

3.1 Quantum Objects Library (QOL)
The Quantum Objects Library (QOL) [15] is a software library, which was designed
and implemented by M. Hanrath in 2006. Since then, the QOL provides a means
for implementing various ab initio methods and tools written in the programming
language C++. For this work, the two most important parts of the QOL are (i)
the implementation [89, 90] and optimization [91, 92] of the closed-shell Hartree-
Fock program, namely the SCF, and (ii) the evaluation of the ARGOS [93–95]
pseudopotential integrals via a wrapper [96]. Additionally, the SCF can be combined
with the spin-orbital coupled cluster program of M. Hanrath, which is a separate
program, used to perform correlation calculations with arbitrary substitution levels.
For enabling the use of CPPs in the QOL we followed the implementation by
Nicklaß [14]. For this, the SCF program was extended with the evaluation of
additional integrals needed for the CPPs.

3.2 Modifying the QOL SCF
In general, the SCF code of the QOL solves the general Roothaan-Hall eigenvalue
problem (eq. 2.8) by employing a modified [97–99] Obara-Saika scheme [100, 101] for
the evaluation of the SCF integrals [102]. In addition to the SCF integrals, pseu-
dopotential integrals are evaluated using the pseudopotential routine of the ARGOS
code. These pseudopotential integrals are represented by a matrix HPP, which is
added to the core Hamiltonian matrix Hcore during the SCF procedure (Fig. 3.1).

In this work, we follow the design principle of the pseudopotential routine. First,
we evaluate the one- and two-electron CPP integrals and represent them as one- and
two-electron matrices, namely V′ and V′′, respectively. After that, the matrices are
combined with the respective integral matrices during the SCF procedure (Fig. 3.1).
Thus, the incorporation of the CPP integrals is straightforward and there is no need to
modify the complex and efficient integral code. Additionally, the generated matrices
can be compared to the matrices in the MOLPRO implementation, analogous to
the one-electron matrices without CPP contributions as previously described [91].
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3 Implementation of the CPP ansatz

Start HF/SCF

Hcore ← Hcore + HPP

Hcore ← Hcore + V′
CAT

G← G + V′′
CAT

V′
prim ← calcV1()

V′
CAT ← prim2cat(V′

prim)

SCF-loop

E ← E + Ω

Dprim ← cat2prim(Dcat)

V′′
prim ← calcV2(Dprim)

V′′
CAT ← prim2cat(V′′

prim)

End HF/SCF

Fig. 3.1: Schematic of the modified SCF for incorporating the CPP contributions
V′, V′′ and Ω.

Importantly, the CPP matrices have to be represented in the same basis before they
are combined with the corresponding SCF integral matrices. Note, that the QOL uses
different basis representations for integrals and matrices - the primitive basis (prim),
in which primitive Cartesian Gaussians (PCGs) [103] are used, and the contracted
angular transformed (CAT) basis described by J. Held [91]. For the evaluation
and thus representation of the CPP integrals, we use PCGs in accordance with the
original work of Nicklaß [14]. To combine the CPP integrals with the SCF integrals,
we therefore have to transform them into the CAT basis (Fig. 3.1). Importantly, the
density matrix D is transformed into the primitive basis before it is used for the density
contraction for the two-electron CPP matrix V′′. All the transformations (prim2cat
and cat2prim) are performed with the BasisTransformation-Class written by J.
Held [91]. To incorporate the nucleus repulsion energy contribution Ω into the
simulation, we added it after the converged SCF procedure.

3.3 The two-electron matrix V′′

Setting up the V′′ matrix is computationally the most demanding component of the
CPP implementation. The V′′ matrix is the result of a density contraction, which is
analogous to the density contraction of the SCF integrals. The latter results in the
two-electron matrix G by combining the density matrix D and the electron repulsion
integrals (ERIs) ⟨ik|jl⟩ and ⟨ik|lj⟩ via
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3.3 The two-electron matrix V′′

Gij =
∑
kl

Dkl

[
⟨ik|jl⟩ − 1

2 ⟨ik|lj⟩
]
. (3.1)

Analogously, setting up the two-electron CPP matrix V′′ involves a density contrac-
tion, but instead of the ERIs we use the CPP two-electron integrals ⟨ik|v̂′′|jl⟩ and
⟨ik|v̂′′|lj⟩ via

V ′′
ij =

∑
kl

Dkl

[
⟨ik|v̂′′|jl⟩ − 1

2 ⟨ik|v̂
′′|lj⟩

]
. (3.2)

Constructing both matrices according to the same equation allows for combining
them correctly via matrix-matrix addition (Fig. 3.1).

Listing 3.1: Pseudocode for a straightforward implementation of the density con-
traction.

1 init V′′

2 loop over ijkl

3 ⟨ik|v̂′′|jl⟩ ← calcIntegral()

4 ⟨ik|v̂′′|lj⟩ ← calcIntegral()

5 V ′′
ij ← V ′′

ij + Dkl · ⟨ik|v̂′′|jl⟩
6 V ′′

ij ← V ′′
ij − 1

2Dkl · ⟨ik|v̂′′|lj⟩
7 end

8 return V′′

A straightforward way of implementing the density contraction according to equa-
tion 3.2 is to use a loop over all four summation indices of the two-electron integrals
⟨ik|v′′|jl⟩ and ⟨ik|v′′|lj⟩, adding them with the corresponding prefactors (1 and
−1

2) to the V′′ matrix (Listing 3.1). Here, calcIntegral represents a function for
calculating the corresponding two-electron CPP integral. In this implementation,
the integrals are calculated “on the fly”, i.e. no integrals are saved and reused, but
instead evaluated when needed. With the loop over the four indices (i,j,k and l),
the runtime scaling of the implementation is O(N4), where N is the number of
basis functions. For reducing this runtime scaling, the two-electron integrals can be
separated into multiple products of two one-electron integrals [14]. With this, the
two-electron integrals can be expressed as

⟨ik|v̂′′|jl⟩ =
∑

λ

∑
t

cλt · ⟨i|v̂λt|j⟩ · ⟨k|v̂λt|l⟩ , (3.3)

in which t describes different types of one-electron integrals in the CPP ansatz, λ
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the center in the molecular system and cλt a center- and integral-specific prefactor.
In this work, the integrals of the type ⟨i|v̂λt|j⟩ are not calculated “on the fly”, but
stored in a matrix for easy access. Hence, we introduce the notation

⟨i|v̂λt|j⟩ = vλt
ij . (3.4)

Finally, equation 3.2 can be rewritten as:

V ′′
ij =

∑
λt

cλtV
′′λt

ij (3.5)

V ′′λt
ij =

∑
kl

Dkl · vλt
ij · vλt

kl − 1
2

∑
kl

Dkl · vλt
il · vλt

kj . (3.6)

With this, we express the density contraction using the one-electron integrals without
changing the scaling. To finally reduce the runtime scaling, we have to rearrange the
above equation. For this, we first rearrange the first term on the right-hand side of
equation 3.6. Here, the indices of vλt

ij are independent of the summation indices k
and l and thus independent of the summation.

V ′′λt
ij = vλt

ij

∑
kl

Dkl · vλt
kl − 1

2

∑
k

∑
l

Dkl · vλt
il · vλt

kj . (3.7)

Introducing the intermediate scalar Xλt for the summation with the indices k and l,
we can rewrite equation 3.7 as:

V ′′λt
ij = vλt

ij ·Xλt − 1
2
∑

k

∑
l

Dkl · vλt
il · vλt

kj (3.8)

This reduces the scaling of the first term from O(N4) to O(N2), because only two
indices are used during the density contraction. The separation of the integrals and
the density matrix, however, is not possible for the term on the right-hand side,
because only one index of the corresponding integral matrix v is connected to one of
the two summation indices (l and k). However, instead of contracting both indices
at once, it is possible to contract each index on its own. Hence, we first contract
index k

V ′′λt
ij = vλt

ij ·Xλt − 1
2

∑
l

vλt
il ·

∑
k

Dkl · vλt
kj , (3.9)
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which results in an intermediate matrix Yλt

V ′′λt
ij = vλt

ij ·Xλt − 1
2

∑
l

vλt
il · Y λt

lj . (3.10)

Then, we contract Yλt with the second summation index l, resulting in another
intermediate matrix Zλt. Thus, the two-electron matrix V′′ can be expressed using
only two indices

V ′′λt
ij = vλt

ij ·Xλt − 1
2Z

λt
ij . (3.11)

This formulation is the foundation of the current implementation for the construction
of V′′ (Listing 3.2).

Listing 3.2: Pseudocode for the final implementation of the density contraction.

1 init V′′, Xλt, Y λt, Zλt, vλt

2 loop over λ, t

3 vλt ← calcIntegralMatrix(λ, t)

4 loop over kl

5 Xλt ← Xλt + Dkl · vλt
kl

6 end

7 Zλt = 0
8 loop over jl

9 Y = 0
10 loop over k

11 Y λt ← Y λt + Dkl · vλt
kj

12 end

13 loop over i

14 Zλt
ij ← Zλt

ij + Y λt · vλt
il

15 end

16 end

17 loop over ij

18 V ′′
ij ← V ′′

ij + cλt · vλt
ij ·Xλt

19 V ′′
ij ← V ′′

ij − cλt · 1
2Zλt

ij

20 end

21 end

22 return V′′

First, all required one-electron integrals for a given integral type t and a core λ are
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calculated and stored in the corresponding matrix vλt (line 3). Then, Xλt (left term
of equation 3.11) (lines 4-6) and matrix Zλt (right term of equation 3.11) (lines 7-16)
are constructed. For setting up Zλt, two looping branches with three indices each
are needed. In the first branch (j, l, k), a scalar Y λt is initialized and subsequently
used in the second branch (j, l, i) to calculate the intermediate matrix Zλt. Finally,
both Xλt and Zλt are used to output V′′ (eq. 3.11) (lines 17-22).

With regards to computational demands, the bottleneck of this algorithm is setting
up the Zλt matrix. In contrast to the runtime scaling of the generation of Xλt, which
is O(N2), generating the Zλt matrix with 2O(N3), because two summations with
three indices each are used. This is an improvement by a factor of N when compared
to the straightforward implementation (Listing 3.1).

3.4 Evaluating the CPP integrals
For generating the V′ and V′′ matrices, CPP integrals need to be evaluated. For
this, we follow the original implementation by Nicklaß [14] in MOLPRO [13]. Parts
of the original code were taken as inspiration for the custom implementation in this
work. In the next sections we provide a compact overview over all equations and
relations needed to understand the evaluation and thus the implementation in detail.
For further details, consider the literature:

• Derivation of the equations [12]
• Corrections [14] of and errata [83, 84] to the original work (derivation of the

equations)
• Implementation [14] and usage in MOLPRO [13, 14]
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3.4 Evaluating the CPP integrals

3.4.1 The one- and two-electron CPP integrals

The one- and two-electron integrals for the CPP ansatz are defined as follows:

⟨i|v′|j⟩ = −1
2

∑
λ

{
αλ

D

[
vλ0004

ij − 2
(
vλ1003

ij Bλ
X + vλ0103

ij Bλ
Y + vλ0013

ij Bλ
Z

)]

+ αλ
Q

[
vλ0006

ij + vλ0003
ij Dλ

− 3
(
vλ2005

ij Cλ
XX + vλ0205

ij Cλ
Y Y + vλ0025

ij Cλ
ZZ

)
− 6

(
vλ1105

ij Cλ
XY + vλ1015

ij Cλ
XZ + vλ0115

ij Cλ
Y Z

)
− 6βλ

Dv
λ0006
ij

]}
, (3.12)

⟨ij|v′′|kl⟩ = −
∑

λ

{
αλ

D

[
vλ1003

ik vλ1003
jl + vλ0103

ik vλ0103
jl + vλ0013

ik vλ0013
jl

]

+ 1
2α

λ
Q

[
− vλ0003

ik vλ0003
jl

+ 3
(
vλ2005

ik vλ2005
jl + vλ0205

ik vλ0205
jl + vλ0025

ik vλ0025
jl

)
+ 6

(
vλ1105

ik vλ1105
jl + vλ1015

ik vλ1015
jl + vλ0115

ik vλ0115
jl

) ]}
. (3.13)

Here, the one- and two-electron integrals are defined with respect to two and four
PCGs, respectively. These basis functions are indexed by i, j, k and l. λ represents
the index for all cores/centers in the molecular system. Bλ

A, Cλ
AB and Dλ are constants,

which are described in the equations 2.50-2.52. αλ
D, αλ

Q and βλ
D represent the dipole,

quadrupole polarizability and the adiabatic correction to the dipole polarizability,
respectively [12, 80].
vλt

ij represents the integral for a given type t (t = m1m2m3k), core λ and two
PCGs, indexed by i and j

vλm1m2m3k
ij = ⟨i|v̂λt|j⟩

=
〈
i

∣∣∣∣∣(x− xλ)m1(y − yλ)m2(z − zλ)m3∣∣∣r⃗ − R⃗λ

∣∣∣k · ωk−(m1+m2+m3)
(∣∣∣r⃗ − R⃗λ

∣∣∣ , γλ

) ∣∣∣∣∣ j
〉
.

(3.14)

Here, the cutoff function ω ensures the correct numeric behaviour at the core
region [12]. Of the multiple types of cutoff functions described in the literature, we
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3 Implementation of the CPP ansatz

use one function of the Müller-type [2]:

ω(r, γλ) = 1− e−γλr2
, (3.15)

in which γλ is the so-called cutoff parameter. This is the only function of the Müller-
type that allows for employing the quadrupole polarizability αQ without any further
precautions [14].

3.4.2 Evaluation of the one- and two-electron integrals

The mathematical existence of the solution of the vλt
ij integral is crucially linked to

the combinations of m1, m2, m3 and k [12]. These values are used to define some
new constants, which are later used for the evaluation of the vλt

ij integrals. First, k1

and k2 can be extracted from the original k using the following relation:

(k1, k2) =


(

k
2 , 0

)
, for even k(

k−1
2 , 1

)
, for odd k

. (3.16)

Another constant derived from the vλt
ij integral indices is q, which is later used

throughout the integral evaluation

q = k − (m1 +m2 +m3) ∈ N . (3.17)

Importantly, the expression of q depends on the chosen cutoff function (eq. 3.15) [14].
Furthermore, while we discuss the evaluation of the vλt

ij integrals in the next section,
there is one integral, which cannot be evaluated in this manner. This integral vλ0003

ij

is expressed and thus evaluated using three other integrals

vλ0003
ij = vλ2005

ij + vλ0205
ij + vλ0025

ij . (3.18)
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3.4 Evaluating the CPP integrals

General evaluation of vλt
ij

With the above constants at hand, the general vλt
ij integrals can be evaluated via

vλm1m2m3k
ij =

√
π3

Γ(k/2)e
−βir

2
i −βjr2

j

·
n1i∑

η1i=0

n2i∑
η2i=0

n3i∑
η3i=0

n1j∑
η1j=0

n2j∑
η2j=0

n3j∑
η3j=0

(
n1i

η1i

)(
n2i

η2i

)(
n3i

η3i

)(
n1j

η1j

)(
n2j

η2j

)(
n3j

η3j

)

· (−1)
∑3

o=1

∑2
h=1(noh−ηoh)xn1i−η1i

i yn2i−η2i
i zn3i−η3i

i x
n1j−η1j

j y
n2j−η2j

j z
n3j−η3j

j

·
lη1∑

ζ1=0

lη2∑
ζ2=0

lη3∑
ζ3=0

3∏
c=1

(
lηc
ζc

)
(ζc − 1)!!

2ζc/2 b lηc −ζc
c

q∑
µ=0

(
q

µ

)
(−1)µusη

lη

k2 (k1, aµ, |⃗b|) .

(3.19)

Here, β are the exponents of the basis functions and b⃗ is a vector, which is later used
to determine how to evaluate the integral. The vector and its norm |⃗b| are defined as:

b⃗ =


b1

b2

b3

 = βir⃗i + βj r⃗j and |⃗b| =
√
b2

1 + b2
2 + b2

3 . (3.20)

Additionally, more constants are introduced by the above equation:

aµ = βi + βj + µγλ , (3.21)

sη
l = lη1 + lη2 + lη3 −

ζ1 + ζ2 + ζ3

2 , (3.22)

with
lηc = ηc1 + ηc2 +mc ∈ N0 . (3.23)

ζ1, ζ2, ζ3 are constrained to be even integers by incrementing the index by two. Γ is
the gamma function of the following form:

Γ(z) =
∫ x

0
xz−1e−xdx . (3.24)

usη
lη

k2 (eq. 3.19) is a function to evaluate the rest of the integral expression depending
on the value of k2 being odd or even and, if odd, whether the subtraction s− k1 is a
positive or negative integer.
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3.4.3 Evaluation of u for even k

With k being even (k1 = k
2 , k2 = 0), the u function can be calculated using the d

function [12] derived by Schwerdtfeger and Silberbach as follows:

us
0(k1, a, b) = b−2s+2k1−3

k1−1∑
ν=0

(
k1 − 1
ν

)
(−1)ν

(
a

b2

)ν

d
(
s− k1 + ν + 3

2 ,
b2

a

)
. (3.25)

The evaluation of the d function differs depending on the first argument (p+ 1
2) and

second argument (x). For positive p and x, the d function is evaluated using

d
(
p+ 1

2 , x
)

= (2p− 1)!!
2p−1 (−1)pex

daw(
√
x)−

p−1∑
i=0

(−1)ixi+ 1
2

2i

(2i+ 1)!!

 . (3.26)

Here, daw is the Dawson function

daw(x) = e−x2
∫ x

0
et2
dt . (3.27)

For x values smaller than 0.01 d is evaluates via

d(p+ 1
2 , x) =

∞∑
n=0

xp+n+ 1
2

n!(p+ n+ 1
2) , (3.28)

which is truncated after n = 6 in the implementation. For negative p values, the d
equation is evaluated using p′ = −p in

d
(1

2 − p
′, x
)

= ex

2Cp′p′daw(
√
x)−

p′∑
i=1

Cip′xi−p′− 1
2

 , (3.29)

with
Cip =

i∏
ν=1

(
p+ 1

2 − ν
)−1

= 2i(2p− 2i− 1)!!
(2p− 1)!! . (3.30)

3.4.4 Evaluation of u for odd k

For odd k (k1 = k−1
2 , k2 = 1), the u function is evaluated via

us
1(k1, a, b) = ak1−s−1eb2/a

s−k1∑
ν=0

(
s− k1

ν

)
(−1)ν

(
a

b2

)k1+ν+ 1
2
γ

(
k1 + ν + 1

2 ,
b2

a

)
,

(3.31)

34



3.4 Evaluating the CPP integrals

for s− k1 ≥ 0, with γ being the incomplete gamma function

γ

(
p+ 1

2 , x
)

= (2p− 1)!!
2p−1

erf(
√
π)− e−x

p−1∑
µ=0

xµ+ 1
2

2µ

(2µ+ 1)!!

 , (3.32)

with the error function
erf(x) =

∫ x

0
e−t2

dt . (3.33)

For s− k1 < 0, the u function is evaluated by

us
1(k1, a, b) = 2ak1−s−1eb2/a

k1∑
ν=0

(
k1

ν

)
(−1)νH

(
k1 − s− ν,

b2

a

)
, (3.34)

which employs another custom function H, which is evaluated recursively

H(p, x) = 2(p+ x)− 3
2(p− 1) · H(p− 1, x)− x

p− 1 · H(p− 2, x) ,

H(0, x) = a− 1
2 erf(

√
x) ,

H(1, x) = 2e−x · m(
√
x) , (3.35)

with the Dawson-error-hybrid function

m(x) =
∫ x

0
et2 · erf(t)dt , (3.36)

for positive arguments of x. For negative values this relation is applied:

H(−p, a) = 1
2

p∑
ν=0

(
p

ν

)
(−1)νa−ν− 1

2 · γ
(
ν + 1

2 , a
)
. (3.37)

Simplified evaluation of the integral

The above described cases and custom functions are used to evaluate the general
form of the integral. Besides this general form (eq. 3.19), there is a simplified form of
the integral. This simplified integral can be evaluated if b⃗ is equal to 0⃗. This is the
case when both basis functions are located at the current core or when the relation

−βir⃗i = βj r⃗j (3.38)
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holds true. In the latter case (eq. 3.38) the general integral transforms to

vλm1m2m3k
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n1i∑
η1i=0

n2i∑
η2i=0

n3i∑
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(
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)(
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)(
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)(
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)(
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)(
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)

· (−1)
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∑2
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i yn2i−η2i
i zn3i−η3i
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j y
n2j−η2j

j z
n3j−η3j
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· e−βir⃗
2
i −βj r⃗ 2

j Lkqλ
ij (η1i + η1j +m1, η2i + η2j +m2, η3i + η3j +m3) ,

(3.39)

while in the former case (r⃗i = r⃗j = 0⃗) the integral simplifies even more to

vλm1m2m3k
ij = Lkqλ

ij (n1i + n1j +m1, n2i + n2j +m2, n3i + n3j +m3) , (3.40)

with

Lkqλ
ij (p1, p2, p3) =

∫
R3
xp1yp2zp3

1
rk

q∑
µ=0

(
q

µ

)
(−1)µe−[βi+βj+µγλ]r2

dτ . (3.41)

All pi are constrained to be even, otherwise the whole integral would become zero
and no explicit evaluation is needed [14]. The evaluation of this integral is split into
two cases. For even k the integral can be evaluated as

Lkqλ
ij (p1, p2, p3) = π

3
2
(p1 − 1)!!(p2 − 1)!!(p3 − 1)!!

2s

k
2 −1∏
c=0

1
s− c+ 1

2

·
q∑

µ=0

(
q

µ

)
(−1)µ(βi + βj + µγ) k

2 −s− 3
2 , (3.42)

while for odd k the integral is evaluated as

Lkqλ
ij (p1, p2, p3) = 2π(p1 − 1)!!(p2 − 1)!!(p3 − 1)!!

(s− k−1
2 )!

(2s+ 1)!!

·
q∑

µ=0

(
q

µ

)
(−1)µ(βi + βj + µγλ) k−1

2 −s−1 , (3.43)

with
s = p1 + p2 + p3

2 . (3.44)

For this last form of the integral, there is the additional condition that if s− j < 0
holds true, the integral evaluates to zero [14].

36



3.5 Implementation and design decisions

3.5 Implementation and design decisions

3.5.1 Cpp and Integral class

The implementation in this work is based on the object-oriented programming
paradigm, which expresses the functionalities of the program via so-called classes.
These classes can then be used to build the final program. To design the program
structure in an intuitive way, we implemented a “top-level” class, the Cpp class
(Fig. 3.2), which performs all crucial steps during the SCF procedure (section 3.2).
This class is initialized by a molecule, a basis representation, CPP parameters (γλ,
αλ

D, αλ
Q and βλ

D) and molecule-dependent constants (Bλ
A, Cλ

AB and Dλ), which are
calculated before the SCF procedure. The class is then used for calculating the
CPP contributions Ω, V′ and V′′ via calcNucNuc, calcOneEle and calcTwoEle,
respectively (Fig. 3.2).

Float

CppCpp

- _molecule : Molecule

- _basis : CGBTree_Plain<Float>

- _cppData : CppData

- _cppMoleculeData : CppMoleculeData

+ Cpp(molecule : Molecule, basis : CGBTree_Plain<Float>, cppData : CppData, cppMoleculeData : CppMoleculeData)

+ calcNucNuc()

+ CppIntOne(currentAtom : Atom, integralIndex : int) : SymmetricMatrix<Float>

+ calcOneEle() : SymmetricMatrix<Float>

+ calcTwoEle(densityMatrix : Matrix<Float>) : SymmetricMatrix<Float>

Fig. 3.2: Schematic representation of the Cpp class, which performs all crucial
operations for the contributions of the CPP ansatz (Ω, V′ and V′′) to the SCF code.
The class is templated with the template argument Float, which represents a generic
type of floating point number.

Both functions calcOneEle and calcTwoEle employ the Integral class, which repre-
sents the integral evaluation (Fig. 3.3) described in section 3.4. This class is a so-called
base class, which allows for deriving two other classes, namely CPPIntegralGeneral
and CPPIntegralSimple. These two classes evaluate the general (eq. 3.19) and the
simplified form (eq. 3.40) of the vλt

ij integral via their evaluate member-function.
Of note, most classes in this work are template-classes allowing for evaluating the
integrals with different floating point precision, if needed.

3.5.2 Decision making during the integral evaluation

With CppIntegralGeneral and CppIntegralSimple at hand, we then implemented
the integral evaluation to set up the one- and two-electron matrices (V′ and V′′). The
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CppIntegralGeneral

+ evaluate()

CppIntegral

CppIntegralSimple

+ evaluate()

Fig. 3.3: Simplified schematic representation of the CppIntegral base class and the
derived classes CppIntegralGeneral and CppIntegralSimple.

only missing part is a way to decide which integral evaluation is needed according to
the conditions described in section 3.4. For this, the class CppIntegralEvaluator
was implemented (Listing 3.3).

Listing 3.3: Pseudocode to evaluate the vλt
ij using either the the simple or the general

form of the vλt
ij integral during the initialization of the CppIntegralEvaluator class.

1 if (r⃗ 2
i + r⃗ 2

j == 0) && (b⃗ 2 == 0)

2 value = CppIntegralSimple . evaluate ();

3 else if (b⃗ 2 == 0)

4 tmp = 0

5 loop over n1i, n2i, n3i, n1j , n2j , n3j

6 tmp = tmp + ... · CppIntegralSimple . evaluate ();

7 value = e−βi·r⃗ 2
i −βj ·r⃗ 2

j · tmp

8 else

9 value = CppIntegralGeneral . evaluate ();

Here, we first check two cases, in which the vλt
ij integral can be evaluated via the

simplified form (line 1 and 3). If this is not the case, we refer to the general form of
the integral evaluation (line 9).

3.5.3 Setting up the vλt and V′ matrix

With the above equations and the decision making process via CppIntegralEvaluator,
the vλt

ij can be evaluated. For the construction of V′ and V′′, we use the matrix vλt

to store all vλt
ij integrals for a given core λ and a given type of integral t = m1m2m3k.

Constructing this matrix is straightforward and is achieved by iterating over all n
basis functions, resulting in a n× n matrix.

This matrix is then used for constructing V′ by summing over all vλt and a
prefactor cλt according to equation 3.12. Hence, when only contributions of the core
polarization potentials using the dipole polarizeability αλ

D are considered the sum
would look like this
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V′ = −1
2 ·
∑

λ

∑
t∈D1

αλ
Dcλtvλt , D1 = {0004, 1003, 0103, 0013} . (3.45)

Additional contributions of the quadrupole polarizability αλ
Q and the adiabatic

correction to the dipole polarizability βλ
D extend the sum to

V′ = −1
2 ·
∑

λ

∑
t∈D1

αλ
Dcλtvλt +

∑
t∈D2

αλ
Qcλtvλt − 6βλ

Dvλ0006

 , (3.46)

with
D2 = {0006, 0003, 2005, 0205, 0025, 1105, 1015, 0115} .

Here, cλt are the prefactors in equation 3.12, e.g. 1 and −6Cλ
XY for vλ0004

ij and vλ1105
ij ,

respectively. This concludes the construction of V′ and V′′. The next step is to
implement a way of passing CPP parameters to the program.

3.5.4 Input for CPP parameters

For running simulations using CPPs, the parameters of the CPPs (γλ, α
λ
D, α

λ
Q, β

λ
D) are

read from an input file. Additionally we specify the charge of the valence electrons
qλ of a core λ. Here, the SimpSimpleInputParser, written by J. Held, is extended
by the -data flag, which receives the file path of the input file as an argument.
Then, the parameters are read from a file starting with the CppData identifier. All
values are read line-by-line until the CppDataEnd identifier is encountered (line 2-3
in Listing 3.4). In each line the CppData identifier, and the atomic label are read
as string (std::string) and all following values (αλ

D, αλ
Q, βλ

D, γλ and qλ) are read
as floating point numbers (double) separated by whitespace characters. Everything
before and after these lines is ignored (line 1). All processing is done by the CppData
class, which is then passed to the CppMolecularData and Cpp class.

Listing 3.4: Example of a CPP parameter input file.

1 Atom alpha_D alpha_Q beta_D gamma QCharge

2 CppData Na 0.9947 0.0000 0.0000 0.6200 1.0000

3 CppData Br 6.6660 2.2222 1.0101 1.0000 1.0000 CppDataEnd

3.5.5 Technical details

The QOL was compiled with the GCC C++ Compiler (version 10.2) [104]. Addi-
tionally, three external libraries were used: BOOST (version 1.75.0) [105], GNU
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Scientific Library (gsl [106]) for special mathematical functions (table 3.1) and the
INTEL Math Kernel Library (version 11.3) [107] for calling LAPACK/BLAS routines
throughout the SCF procedure.

Tab. 3.1: Mathematical functions from external libraries used in this work.

Mathematical function equation Library Library function

error function erf 3.33 BOOST erf
binomial coefficient BOOST binomial_coefficients<T>
gamma function Γ 3.24 BOOST tgamma_lower

dawson function daw 3.27 gsl gsl_sf_dawson

All other function, e.g. the incomplete gamma function γ (eq. 3.32) or the Dawson-
error hybrid function m (eq. 3.36), were implemented according to Nicklaß [14].

3.6 Verifying the SCF CPP implementation

3.6.1 Computational details

To verify the implementation of the CPP ansatz in the SCF code of the QOL,
we performed simulations of atomic and dimer systems using energy-consistent
small-core pseudopotentials of the Stuttgart-Cologne group [62]. These simulations
were compared to MOLPRO (version 2020.2) [13] simulations with same inputs.
Hereby, only closed-shell systems are considered. The QOL was compiled on a PC
(Intel(R) Core(R) i3-8100; 16 GB RAM; name: pc11) as described in section 3.5.5.
The simulations were performed on a cluster node (Intel(R) Xeon(R) CPU E7-
4809 v3; 500 GB RAM; name: dc01). All CPP parameters were chosen arbitrarily
(Appendix A.1). The absolute energy difference between the SCF QOL and MOLPRO
closed-shell Hartree-Fock (rhf) ground state energy was chosen as criterion for the
successful implementation. In both SCF programs a energy convergence threshold
of 10−7 a.u. was chosen and the energies were compared with a precision of 12
floating point digests. All deviations smaller than 10−12 a.u. will be displayed as
0.0000 · 10−00 a.u.
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3.6.2 Atomic systems

Atomic systems represent the least complex system to verify the implementation
of the CPP ansatz into the QOL. Since there is only one core center in theses
simulations, only the CppIntegralSimple is called during the simulations. Here,
different PPs with different basis set sizes were compared (Tab. 3.2). The energy
differences were lower than the energy convergence threshold of 10−7 a.u., indicating
that the CPP code behaves the same in QOL as in MOLPRO. Thus, the correct
behavior of CppIntegralSimple confirms the correct implementation. Since the
CPP parameters were chosen arbitrarily, it is not possible to assess the contribution
of the CPP to the energy in a physically meaningful way. To get an impression of
this influence, we would like to mention, that the contribution of the CPP amounts
to 4 to 12 % of the total energy (Appendix A.2). Such a significant contribution
allows for a safe comparison of both implementations.

Tab. 3.2: Absolute energy differences between the MOLPRO and QOL implementa-
tion of the CPP ansatz for different PPs in atomic systems. All energy differences
are given in atomic units.

Atom PP/Basis Contraction Number of Iterations
|∆E| / a.u.

QOL MOLPRO
Mg 10SDF [108] 4s4p 6 6 0.0000 · 10−00

Yb 60MWB [64, 109] (7s6p5d)/[5s4p3d] 8 8 2.3704 · 10−11

Hg 60MHFa (8s7p6d)/[6s5p3d]a 7 8 1.5632 · 10−11

60MWB [110, 111] (8s7p6d2f1g)/[6s5p3d2f1g] 7 6 9.7913 · 10−11

a unpublished; see [62]

3.6.3 Molecular systems

For the evaluation of the CPP integrals in simulations of molecular systems, not
only CppIntegralSimple, but also CppIntegralGeneral is employed. Hence, these
systems allow to verify the correct implementation of both classes. As in the atomic
test systems, no significant deviations in the energy are observed when the QOL
energy values are compared to MOLPRO (Tab. 3.3). Thus, both classes were
implemented correctly for multiple PPs and different basis sets. The only difference
can be observed in the convergence of both SCF procedures. In most molecular
simulations the SCF of the QOL converges faster. This, however, was not observed
in the atomic simulations and thus this not a significant observation. Again, in these
simulations the contribution of the CPPs ranges between 0.1 and 5 % of the total
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energy (Appendix A.2), allowing for a fair comparison of both implementations.

Tab. 3.3: Absolute energy differences between the MOLPRO and QOL implementa-
tion of the CPP ansatz for different PPs in molecular systems. All energy differences
are given in atomic units.

Dimer PP/Basis Contraction Number of Iterations
|∆E| / a.u.

QOL MOLPRO
Na2 10SDF [5] (4s4p)/[2s2p]a 6 7 2.1656 · 10−12

K2 10MWB [112] (7s6p)/[5s4p]a 9 9 9.3265 · 10−10

Sc2 10MHF [113] (8s7p6d)/[2s1p1d]a 9 11 3.4099 · 10−10

Hg2 60MHFa (8s7p6d)/[6s5p3d]a 9 11 1.2074 · 10−09

60MWB [110, 111] (8s7p6d2f1g)/[6s5p3d2f1g] 11 12 8.4702 · 10−10

a unpublished; see [62]

3.7 Verifying the implementation of CPPs in CC
simulations

Having confirmed the correct incorporation of the CPP integrals into the SCF
procedure, we next performed CC simulations. To perform these CC simulations
in combination with CPPs, we extended the already existing interface between the
SCF method and the CC code, the so-called MO transformation. The CC program
was provided by M. Hanrath.

3.7.1 MO transformation

Molecular orbitals

A converged SCF simulation yields the molecular orbital (MO) coefficients Cil. These
coefficients relate the atomic orbitals (AOs) to the MOs by

|MOi⟩ =
n∑
a

Cia |AOa⟩ . (3.47)

These MOs represent the optimized spin orbitals of the Hartree-Fock method. Using
these MOs in a correlation method is advantageous, because they describe the
best possible solution for a single determinate description of the wave function.
Additionally, while performing electron correlation methods with AOs is possible,
MOs are simpler to implement and converge typically faster in these procedures [114].
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3.7 Verifying the implementation of CPPs in CC simulations

SCF integral MO transformation

The QOL SCF code and the CC code produce separate binaries and the former does
not pass the MO coefficients to the latter. For being able to perform a CC simulation,
we thus have to (i) transform the AOs to MOs using the MO coefficients and (ii) pass
the MOs to the CC program. Because the SCF and the CC program are independent
of each other, this MO transformation is implemented in an intermediary program.
For the MO transformation, the MO coefficients Cil are used to transform the one-
and two-electron integrals from the AO-basis to the MO-basis via

⟨i|ĥ|j⟩ =
n∑
a

Cia

n∑
b

Cjb ⟨a|ĥ|b⟩ (3.48)

⟨ij|kl⟩ =
n∑
a

Cia

n∑
b

Cjb

n∑
c

Ckc

n∑
d

Cld ⟨ab|cd⟩ (3.49)

where a, b, . . . and i, j, . . . are the indices of the AO and MO basis, respectively. These
transformed integrals are then passed to the CC method via an integral file.

Transforming the integrals, especially the two-electron integrals, scales with O(n8)
when implementing this transformation via equation 3.49. The current implementa-
tion of the MO transformation in the QOL, scales only with O(n5), which is achieved
by matrix-matrix multiplications and subsequent shuffling. The latest changes in the
implementation of the MO transformation were performed by M. Hülsen [115], J.
Ciupka [89] and J. Held [91]. Please consider their work for a more detailed explana-
tion. For the efficient transformation of the two-electron integrals ⟨ab|cd⟩, they are
described by a four tensor Gabcd, which is indexed by only two indices, of which one
is a super index of three indices, e.g. Gabc,d. With this, a MO transformation can be
performed by a single matrix multiplication

∑
d

cld · gabc,d = gabc,l ; CldGT
abc,d = Gabc,l . (3.50)

After this step, the indices are shuffled so that the next AO index can contracted to
a MO index, e.g.

Gabc,i
shuffle−−−→ Giab,c . (3.51)

Repeating these steps three times results in a fully contracted tensor Gijkl, which
is then further transformed and saved to a file. The resulting file, containing the
transformed integrals, is part of the input for the CC program.
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3 Implementation of the CPP ansatz

CPP MO transformation

To make the CPP integrals available for the CC simulation, they have to be in-
corporated in the MO transformation. For this, the already implemented MO
transformation of J. Ciupka and J. Held was modified by adding the CPP integrals
onto the AO integrals. The first implementation added the CPP integrals onto the
AO integrals as they are being calculated

⟨a|ĥ|b⟩ ← ⟨a|ĥ|b⟩+ ⟨a|v′|b⟩ , (3.52)
⟨ab|cd⟩ ← ⟨ab|cd⟩+ ⟨ab|v′′|cd⟩ . (3.53)

The modified integrals ⟨a|ĥ|b⟩ and ⟨ab|cd⟩ were then transformed with two and four
matrix multiplication, respectively.

Here, however, it is possible to split the two-electron CPP integrals into products
of one-electron CPP integrals, as described in section 3.3. This allows for an
implementation, in which the SCF integrals and the CPP integrals are calculated and
transformed separately, because there is no need to incorporate the CPP integrals
before the MO transformation of the SCF integrals. Hence, the one-electron CPP
integrals (vλt

ij ) are transformed by two matrix-matrix multiplications and combined
according to equation 3.3. For this no shuffling of indices is needed. This way
of transforming the integrals represents the current implementation, which can
be performed with the addTwoEleCpp member function of the Cpp class. In this
implementation the two-electron integrals (electron repulsion and CPP) are stored
linear in the memory. Thus, combining the two integrals, after the transformation,
is done from the first (0) to the last (n4 − 1) index of these integrals.

3.7.2 Verifying the implementation (MO transformation)

To verify the implementation of the CPP MO transformation, simulations in atomic
and dimer closed-shell systems were performed using the CCSD method. The ground
state energy was compared to energies obtained using MOLPRO. This allowed for
verifying the CPP integral routine on a correlated level.

3.7.3 Computational details

All simulations were performed analogous to the SCF test simulations (section 3.6.1).
The only difference to the previous SCF simulations, was that we chose an energy
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3.7 Verifying the implementation of CPPs in CC simulations

convergence threshold of 10−9 a.u. to avoid an error propagation to the coupled
cluster simulation. Here, we chose the CCSD method because both programs are
capable of performing such simulations. Here, the convergence threshold of 10−7 a.u.
for the correlation energy was chosen and all electrons were explicitly correlated
(MOLPRO core flag). All other parameters were chosen according to the default
values of MOLPRO. All deviations smaller than 10−12 a.u. will be displayed as
0.0000 · 10−00 a.u.

3.7.4 Atomic and molecular systems

Tab. 3.4: Comparison of the correlation energies of CCSD performed with MOLPRO
and the combination of QOL MO transformation and CC program in atomic systems.
The absolute energy differences |∆Ecorr| are given in atomic units.

Atom PP/Basis Contraction |∆Ecorr| / a.u.
Mg 10SDF [108] 4s4p 0.0000 · 10−00

Yb 60MWB [64, 109] (7s6p5d)/[5s4p3d] 7.9111 · 10−10

Hg 60MHFa (8s7p6d)/[6s5p3d]a 8.4099 · 10−09

60MWB [110, 111] (8s7p6d2f1g)/[6s5p3d2f1g] 1.9628 · 10−08

a unpublished; see [62]

We observe that both the atomic (Tab. 3.4) and molecular (Tab. 3.5) test simulations
deviate from the MOLPRO energies by approximately 10−8 to 0 (smaller than 10−12)
a.u. Thus, both CCSD implementations using CPPs behave the same with respect
to the convergence threshold of 10−7 a.u.

Tab. 3.5: Comparison of the correlation energies of CCSD performed with MOLPRO
and the combination of QOL MO transformation and CC program in molecular
systems. The absolute energy differences |∆Ecorr| are given in atomic units.

Dimer PP/Basis Contraction |∆Ecorr| / a.u.
Na2 10SDF [5] (4s4p)/[2s2p]a 6.5875 · 10−09

K2 10MWB [112] (7s6p)/[5s4p]a 5.4548 · 10−08

Sc2 10MHF [113] (8s7p6d)/[2s1p1d]a 2.2732 · 10−09

Hg2 60MHFa (8s7p6d)/[6s5p3d]a 4.9281 · 10−09

60MWB [110, 111] (8s7p6d2f1g)/[6s5p3d2f1g] 5.9430 · 10−08

a unpublished; see [62]

Again, the influences of the CPPs are large enough for both simulations to be com-
pared (Appendix A.2). In contrast to the SCF simulations, however, the contribution
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3 Implementation of the CPP ansatz

is even larger. In the atomic magnesium simulation for example, the correlation
energy from the simulation with a CPP is about 20 % smaller than that from the
simulation without CPP. For both simulations, the biggest gain in correlation energy
can be observed with the 60MWB PP for mercury (about 100 %) and ytterbium
(266 %). These large changes in correlation energy allow for a fair comparison of
both programs to verify the successful implementation in the QOL.
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4 CPPs in molecular simulations

To investigate the influence of CPPs in molecular systems, we focused on two test
systems, Hg2 and HgF4. The simulations were centered around the energy-constant
small-core PP of mercury, 60MDF [116]. Although, the two test systems have been
previously described both in experimental and theoretical investigations, theoretical
investigations employing CPPs are still lacking. The two test systems are both
closed-shell systems, which, in principle, allows for performing these simulations
using the QOL. While the CC program does allow for arbitrary substitutions levels,
it does not allow to perform CCSD(T) simulations. To reproduce values in the
literature, however CCSD(T) was required and we thus used the MOLPRO program
package to perform al simulations instead, which also offers a significantly faster
implementation of the CPP ansatz.

4.1 Generating the CPP
A prerequisite for the simulations are CPP parameters for the respective pseudopo-
tential. Since these parameters have not been previously reported, we first generated
them for the mercury PP 60MDF [116]. The generation of CPPs in the literature
involves two steps: first, the dipole polarizability αD is obtained by an ab initio
simulation and second, the cutoff factor γ is fitted, so that the simulations accurately
describe ionization potentials (IPs) [10, 11]. We modified this procedure by purely
relying on ab initio methods and data. The quadrupole polarizability αQ and the
adiabatic correction to the dipole polarizability βD were not considered and thus not
generated.

4.1.1 Dipole polarizability

To obtain the dipole polarizability αD, we performed a DHF simulation for Hg20+,
which corresponds to the ECP60MDF core, by using the program provided by
D. Kolb [117]. We obtained a value of 0.10662239 a.u. for αD. This values was
used throughout all following simulations, both for the fitting of the CPPs and the
molecular simulations.
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4 CPPs in molecular simulations

4.1.2 Cut-off parameter

In previous works, the cutoff parameter γ was fitted to ionization potentials of the
corresponding element [10, 11]. Here, we propose a different approach. We first
perform AE-DKH2 (second-order Douglas-Kroll-Hess Hamiltonian) simulations for
the Hg20+ and Hg19+ ground states. AE-DKH2 simulations were provided by M.
Dolg employing the ANO-RCC basis of Roos et al. [118, 119]. Both states were
simulated using the multi-reference SCF (MCSCF) method to obtain the energy
difference of both states with respect to the static core-valence correlation. To
obtain the combination of static and dynamic core-valence correlation, the CCSD(T)
method was employed. The energy difference between both states represents an
ionization potential, which was chosen as the fitting criterion for PP simulations
employing the 60MDF PP. In this simulation the one electron system (PP Hg19+)
was fitted to accurately describe the AE IP. The resulting CPPs are referred to
as stat and statDyn for the fit onto the static core-valence correlation energy and
the combination of static and dynamic core-valence correlation energy, respectively.
Additionally, one fit was performed for the difference between stat and statDyn to
approximate a core-valence correlation solely relying on dynamic correlation. This
CPP is called dyn (Tab. 4.1).

Tab. 4.1: Obtained γ values for ECP60MDF using an αD of 0.10662239 a.u.
stat dyn statDyn

1.4403 1.9580 2.5792

4.1.3 Testing the generated CPPs

For testing the generated CPPs, we performed a CCSD(T) simulation of the first
four ionization potentials. These values were compared to ECP60MDF simulations
without CPPs and experimental values (Tab. 4.2). The spin-orbit (SO) contribution
was estimated by M. Dolg for all IPs and subtracted form the experimental values
(exp.-SO). This allowed for the direct comparison of the ECP60MDF simulations
with the experimental values. We observed that the values of the first three IPs were
higher than when comparing the simulations with and without CPPs. While stat
CPP describes all IPs well, the dyn and statDyn CPPs significantly deviate from
the first two IPs in the experimental literature. In general, the third and fourth IPs
were not effected by the different cutoff parameter, varying by only, 0.03 and 0.01 eV,
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4.2 Hg2

Tab. 4.2: Comparison of the calculated first four ionization potentials, given in
electronvolts (eV), for the mercury atom between simulations with and without CPPs
and experimental values. All simulations were performed using the ECP 60MDF
and different cutoff parameters. αD is 0.10662239 a.u. The experimental values were
corrected by the SO contribution by M. Dolg.

exp.-SO no CPP cutoff parameter name/value
stat dyn statDyn expFit

1.4403 1.9580 2.5792 7.0850
IP1 / eV 10.44 [120, 121] 10.35 10.48 10.55 10.66 10.42
IP2 / eV 18.76 [122] 18.65 18.88 18.99 19.16 18.76
IP3 / eV 35.27± 0.05 [123] 35.00 35.20 35.19 35.17 35.01
IP4 / eV 48.67± 0.15 [124] 48.51 48.73 48.74 48.74 48.52

respectively.
To test these simulations, we also fitted a CPP with respect to the first two experi-
mental IPs (expFit). Here, we employed a least-square fit, which resulted in a γ value
of 7.0850. The fitted CPP accurately describes the first two IPs, which was expected
since these two were used for the fitting procedure (Tab. 4.1). While the third and
fourth IPs were less accurately described, they were still within the experimental
variance.
To further test the generated CPPs and their influence in molecular simulations, we
simulated spectroscopic constants of the two systems Hg2 and HgF4.

4.2 Hg2

The mercury dimer Hg2 represents the least complex molecular system containing
mercury, for which experimental and theoretical data have been reported in the
literature. However, none of the theoretical approaches in the literature have employed
the CPP ansatz as derived by Schwerdtfeger and Silberbach.

4.2.1 Computational details

For investigating the influence of the CPPs, we used the four generated CPPs in
CCSD(T) simulations. Additionally, the counterpoise (CP) correction [125] was used
to account for the basis set superposition error (BSSE) [126, 127]. To probe for the
influence, three spectroscopic constants of the dimer were determined: the bond
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distance re, the dissociation energy De and the harmonic frequency ωe. All values
were obtained by single point simulations for bond distances in a range between
6.5 and 8.0 Å with a step size of 0.1 Å. Seven of the obtained data points were
fitted by a polynomial of order five using the program mniv provided by M. Dolg.
To understand the influence of the CP correction, the CPPs and the contraction
of the basis set, we performed four sets of simulations for each CPP (non, stat,
dyn, statDyn and expFit). These combinations vary in the contraction of the basis
and the use of the CP correction. The two possible contractions are the contracted
basis sets ((12s12p9d3f2g)/[6s6p4d3f2g]) and the uncontracted basis set which was
augmented by additional basis functions (15s14p11d5f3g). A detailed description of
the basis sets can be found elsewhere [116].

The goal of these simulations was to reproduce literature values and further extend
them by employing the CPP method. Note, that the MOLPRO implementation [13]
of the CPP ansatz is limited to angular momenta in the basis set, which are smaller
than five. Hence, no basis set extrapolation (BSE) was performed.

4.2.2 Spectroscopic constants

First we compared the simulations with and without the CP correction. This
correction has the biggest influence on the spectroscopic constants. For example,
when comparing the simulations with and without the CP correction using the
contracted basis set, the re, De and ωe differ by about 0.13 Å, 150 cm−1 and
3.5 cm−1, respectively (Tab. 4.3). This also holds true for the uncontracted basis set.

The second biggest influence with a similar order of magnitude is the use of
different basis sets. Here, the deviation between both basis sets is about 0.1 Å for
the bond distance re. Changes in De and we differed depending on the use of the CP
correction. With the CP correction the difference in De is about 120 cm−1, while
without the CP correction it is only about 20 cm−1. For we the changes are about
2.1 cm−1 and 1.1 cm−1 for with and without CP correction, respectively. While we
could not reproduce the spectroscopic constants published by Figgen et al. [116], the
qualitative behaviour regarding the CP correction can be observed.

Employing the different CPPs yields different values when compared to the simula-
tions without CPPs. Of note, these changes were not very pronounced in simulations
without the CP correction. For example, the differences between stat and no CPP
for the contracted basis set without CP correction were only 0.0037 Å, 1.36 cm−1 and
0.06 cm−1, whereas for simulations with the CP correction they accounted for 0.025 Å,
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Tab. 4.3: Spectroscopic constants of Hg2 obtained by using different cutoff functions
according to section 4.1. The values are compared to both experimental and theoret-
ical literature values. Additionally, the influence of the CP correction and the type
of basis set is depicted.

CPP correction re / Å De / cm−1 ωe / cm−1

(12s12p9d3f2g)/[6s6p4d3f2g]

no 3.7738 404.93 19.57
stat 3.7701 406.29 19.63
dyn 3.7702 405.35 19.58
statDyn 3.7701 404.05 19.63
expFit 3.7629 403.00 19.76

no CP 3.9093 265.98 16.41
stat CP 3.9343 254.63 16.03
dyn CP 3.9358 253.84 15.94
statDyn CP 3.9366 253.16 16.04
expFit CP 3.9358 250.35 16.30

15s14p11d5f3g

no 3.6744 426.99 20.68
stat 3.6713 427.77 20.90
dyn 3.6714 427.01 20.86
statDyn 3.6710 426.47 20.90
expFit 3.6653 426.09 20.86

no CP 3.7928 344.43 18.56
stat CP 3.8178 329.67 18.15
dyn CP 3.8196 328.52 18.12
statDyn CP 3.8208 327.53 18.15
expFit CP 3.8223 324.51 18.19

Literature (theoretical)

Figgen et al.a 3.760 372.00 19.00
CP 3.830 327.00 17.90

CBS/CCSD(T)+SO+∆Tb 3.679 392.00 20.40
BSS+CCSD(T)c CP 3.744 403.28 -

Literature (experimental)

Koperski et al. 3.69± 0.01 [128] 380± 15 [129] 19.6± 0.5 [129]
Koperski et al. 3.605± 0.009 [130]
Greif and Hensel 407d

a Reference [116]
b Reference [131]
c Reference [132]
d PhD thesis: [133]; mentioned in Ref. [131].
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11.35 cm−1 and 0.38 cm−1. Importantly, the observed changes did not significantly
depend on the used CPP. This holds especially true for the three ab initio CPPs
(stat, dyn, statDyn). Here, the maximal deviation was 0.003 Å (uncontracted basis
set, CP), 2 cm−1 (uncontracted basis set, CP) and 0.1 cm−1 (contracted basis set,
CP). In most cases, the values obtained by the expFit CPP are not different from
the other values. An exception was the bond distance, for which the deviation was
more pronounced for simulations without the CP correction (0.008 and 0.005 Å for
the uncontracted and contracted basis, respectively).

For the discussion of the obtained values with theoretical and experimental lit-
erature values, we will only refer to the results obtained with the uncontracted
basis set and CP correction. This is due to the fact that the uncontracted basis set
uses more basis functions for describing the orbitals and should thus result in the
more accurate simulations. Additionally, only CP-corrected values will be discussed
since all theoretical literature values correct for the BSSE. For the comparison with
theoretical literature values, we chose the following two studies:

• Complete basis set (CBS) CCSD(T) simulations by Pahl et al., which were
corrected by spin-orbit (SO) contributions and a triples correction [131].

• AE CCSD(T) simulations by Borschevsky et al., which employ infinite-order
two-component relativistic Hamiltonian obtained by a Barysz-Sadlej-Snijders
(BSS) transformation. Counterpoise corrections were performed [132].

All our obtained values deviate significantly from the simulations performed in the
literature. The bond distance is at least 0.05 Å larger then the literature values, while
the dissociation energy and harmonic frequency are at least 48 cm−1 and 1.84 cm−1

smaller. Furthermore, we observe that the use of CPPs increases these deviations,
rather than improve the accuracy of the performed simulations.

This is even more pronounced when comparing the obtained values to experimental
values. This, however, is due to the fact that the theoretical literature values
overestimate the bond distance and underestimate the dissociation energy and
harmonic frequency. Overall, our simulations are not accurate enough to describe
the experimental values. This could be due to a missing SO correction and the
approximation of the BSSE via the CP correction. To investigate this further, future
work should perform a basis set extrapolation and use more accurate CC methods,
like CCSDT and CCSDTQ, in the PP framework. If the results from these improved
simulations show better agreement with the experimental values, CPPs could then
be added to further improve the results.
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4.3 HgF4

In addition to Hg2, we investigated a second test system, mercury (IV) fluoride (HgF4),
which is not only of theoretical but also experimental interest. From a theoretical
chemist’s point of view it is interesting, because it is stabilized by “relativistic effects”,
which is not the case for the lighter homologous molecules ZnF4 and CdF4 [134,
135]. For an experimentalist, it is interesting due to its weak stability and therefore
difficult synthesize. This is also the reason why the experimental confirmation [135]
of this molecule took place 13 years after its theoretical prediction [134]. The
experimental confirmation was achieved by matrix isolation in a solid argon phase
with IR spectroscopy at 4 K and represents the first (successful) measurement of a
(+IV) mercury compound. In recent years, the existence of another mercury fluoride
(HgF6) was predicted to be at least kinetically stable [136].

4.3.1 Computational details

We simulated the HgF4 system by varying the Hg-F bond distance in a range
from 1.830 to 1.910 Å in 0.005 Å increments using the MOLPRO program package
(version 2020.2) [13]. Analogous to Hg2 (section 4.2), the single point calculations
were fitted to a polynomial of order five to obtain the bond distance re, the harmonic
frequency ωe, the force constant k and the dissociation energy De. To reduce
computational demands and incorporate scalar-relativistic effects, we employed the
60MDF pseudopotential and the corresponding basis set for Hg [116]. For F, we
employed the aug-cc-pVQZ [137] basis set. Additionally, we used the CP correction
to address the BSSE. The simulations were performed with and without the expFit
CPP. Furthermore, we performed an AE-DKH3 (third-order Douglas-Kroll-Hess
Hamiltonian) CCSD(T) simulation, which also employed the CP correction. For the
AE simulations the aug-cc-pVTZ-DK3 [138] and aug-cc-pVQZ [137] basis sets were
used for Hg and F, respectively.

4.3.2 Spectroscopic constants

The CCSD(T) simulation without the expFit yielded a bond distance and harmonic
frequency, which are in agreement with other theoretical studies in the literature [135,
136, 139] (Tab. 4.4). Here, the deviation of re ranges between 0.0007 and 0.0057 Å,
while the deviation of ωe ranges between 5.09 and 7.79 cm−1. Employing the expFit
CPP decreases the bond distance by 0.0029 Å and increases ωe by 3.40 cm−1. These
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obtained values also agree with other theoretical studies [135, 136, 139]. Note, that
all theoretical studies in the literature try to reproduce the values published by
Wang et al. [135]. To establish a new reference values we performed a different
simulation. Performing an AE-DKH3 CCSD(T) simulation results in spectroscopic
constants, which are in the range of the literature values, but differ from our CCSD(T)
simulations without the expFit CPP (Tab. 4.4). To understand this deviation in
more detail, we also compared k and De. We assume that the values obtained by
the AE-DKH3 simulation are the most accurate values, because the simulation was
performed on the highest level of theory. Hence, if the CPP is able to contribute for
missing core-valence correlation, including the expFit CPP should result in values
closer to these values. Employing the CPP resulted in a decreased deviation of ωe, k
and De from 4.95 cm−1, 0.0144 a.u. and 0.0014 a.u. to 1.55 cm−1, 0.0045 a.u. and
0.0009 a.u. While this is an improvement, the deviation for re increased from 0.0015
to 0.0044 Å. Thus, an increased accuracy is not achieved for all values. Of note,
there are no experimental values for re, k and De published in the literature. Thus,
the results of our simulations should be interpreted with caution.

Tab. 4.4: Comparison of the spectroscopic constants of HgF4 by PP simulations
with and without expFit CPP with an AE simulation and other theoretical and
experimental studies.

re / Å ωe / cm−1 k / a.u. De / a.u.

CCSD(T)a+CP 1.8897 693.79 1.0037 0.2661
CCSD(T)a+CP+expFit 1.8868 697.19 1.0136 0.2656
AE-DKH3 CCSD(T)+CP 1.8912 697.69 1.0151 0.2647

CCSD(T)b [135] 1.885 686.00
PBE0a+SO [139] 1.884 688.70
CCSD(T)a+SO [139] 1.889 687.60
X1C/X2C-PBE0a+SO [136] 1.885/1.883 687.00/-

exp. (predicted) [135] ∼ 690.00
exp. (neon-matrix) [135] 703.00
exp. (argon-matrix) [135] 682.00
a ECP60MDF [116]
b ECP60MHF [140]
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4.4 Conclusion of the CPP simulations
The two test systems Hg2 and HgF4 allow for a preliminary investigation of how
CPPs affect the simulations of these systems in the context of the spectroscopic
constants obtained. We observed that these values change when employing CPP,
but that these changes are relatively small. Furthermore, these changes can decrease
the accuracy of the simulations as seen in Hg2 or increase and decrease the accuracy
dependent on the spectroscopic constant as seen in HgF4. In general, the choice of the
CPP does not alter the result when comparing simulations with and without CPPs.
This is plausible, because the CPPs only differ in the cutoff parameter, which ensures
the numeric stability of the CPP ansatz. We can envision multiple explanations for
the unexpectedly small changes of employing CPPs. First, due to the small core of
the pseudopotential, the improvement was expected to be smaller than of a large core
would have been chosen [1]. A good example for the effective use of CPPs in large-
core pseudopotentials is the work of Weigand et al. for the di-, tri- and tetravalent
actinides and lanthanides [10, 11]. There, performing large-core pseudopotentials in
combination with custom CPPs yielded simulated properties of equal accuracy as
the small-core pseudopotential counterpart. Second, we suspect that the closed-shell
character and the symmetry of the investigated systems minimize the contribution of
the CPP ansatz. The reason behind this may be that the induced dipole moments in
these systems cancel each other out. Finally, our results should be interpreted with
caution, because either our underlying simulations are not of satisfying accuracy
(Hg2) or there are not enough experimental values (HgF4) available to obtain a
reasonable and predictive conclusion.
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CPP implementation
We successfully implemented the CPP ansatz in both the integral evaluation of the
SCF program and the interface between the SCF and the CC program, namely the
MO transformation. In both cases, the two-electron CPP integrals were expressed
using the one-electron integrals vλt

ij , which decreased the runtime scaling. Combining
the SCF integrals and the CPP integrals was achieved through straightforward
matrix-matrix additions during the SCF procedure. To verify our implementation,
we then tested it in multiple atomic and molecular test simulations both on the
Hartree-Fock and CC level. We observed no significant deviations from similar
simulations performed with MOLPRO, confirming the successful implementation of
the CPP ansatz.

The herein described implementation extends the features of the QOL and provides
a framework for future investigations of the influence of the CPP in molecular systems
in greater detail. The current implementation of the ARGOS [95] integral evaluation
for the pseudopotential ansatz in the QOL is limited to the use of basis set functions
of angular momenta smaller than five. Overcoming this limitation by implementing
an updated version of the integral evaluation would enable basis set extrapolations.
Furthermore, a thorough analysis of numerical errors of the CPP implementation
with respect to larger basis sets (l > 4) should be performed to ensure a correct
behavior on both the SCF and CC level, because this has not been done in the
original implementation of Nicklaß (MOLPRO). While a basis set extrapolation
is not possible with neither MOLRPO nor QOL yet, the implementation of the
QOL allows for separately employing CPPs in the SCF and QOL program. Thus,
incorporating core-valence and valence-valence correlation on only the correlated level
would allow for reducing the active space in the CC program. In the case of atomic
mercury this could be envisioned as follows: First we perform an SCF simulation
using the 60MDF PP (20 valence electrons) without CPP. Second, we perform a
CC simulation, in which the 5s and 5p electrons are frozen, and employ a custom
CPP generated for a 68 valence electron core to describe the polarization of the
frozen orbitals. Hence, CC simulations could be performed with drastically reduced
computational demands. If this method is successful, it could be transferred to
molecular systems, which, however, would require a frozen-core SCF implementation
in the QOL. Another advantage of the QOL over MOLRPO is that CC simulations
with arbitrary substitutions could be performed. This would allow for a more detailed
investigation of the importance of the CPP while increasing the many-particle basis.
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Furthermore, the implementation presented herein opens up new opportunities to
extend and modify the CPP implementation in the QOL. This lifts the restrictions
imposed by the fact that MOLRPO is a commercial product and no source code
is published nor accessible. Furthermore, the angular momentum-dependent CPP
ansatz by Foucrault et al. [76] could be implemented for an even more detailed
investigation of CPPs in general. All this would allow for a thorough investigation
of the influence and importance of CPPs in molecular systems.

Simulations of Hg2 and HgF4

To get a first impression on the influence of the CPPs in molecular systems, we
simulated the potential curves of Hg2 and HgF4. Here, we extracted the bond distance,
harmonic frequency, force constant and the dissociation energy and compared them
to theoretical and experimental values. All simulations were performed using the
60MDF small-core energy-consistent PP. For this, we generated new CPPs and
investigated their influence on the spectroscopic constants. We observed that the
influence of the CPPs was small and did not always result in improved values. These
small changes can be explained by the use of the small-core PP, for which the
core polarization and core-valence correlation was expected to be small and thus
difficult to correct for. The lack of improvement in all values was not expected. This
conclusion, however, requires further validation, because the performed simulations
were not accurate enough or there are not enough experimental values published.

To continue the investigation of the influence on CPPs in molecular systems,
simulations of higher accuracy should be performed. This includes the calculation of
spin-orbit contributions and a better description of the BSSE. To account for the
BSSE and the basis set incompleteness, a basis set extrapolation is needed. For
this, a CPP implementation without limitations on the basis set would be required.
To widen the scope of application, additional molecular properties, like transition
energies and vibrational frequencies, could be investigated to observe the influence
of the CPPs. Furthermore, the fitting of the CPPs should be extended by also
optimizing the used basis set or by introducing an angular momentum-dependent
cutoff function using the approach by Foucrault et al. [76]. With this, the use of CPPs
may improve the simulations. At last, the investigation should be extended to other
molecular systems to allow for a broad understanding of the influence of the CPPs.
Of note, CPPs are commonly used in large-core PPs and thus, the investigation
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of the CPPs should be extended for larger cores, too. Here, accurate CPPs could
enhance simulations of large molecular systems, by efficiently describing the core
polarization and core-valence correlation.
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Appendix

A.1 CPP parameters (section 3.6 and 3.7)

Tab. A.1: CPP parameters for the test simulations with both the QOL and MOLPRO
CPP implementation. The core charge q is only needed for the simulations with
QOL implementation and is linked to the corresponding PP core size.

Element αD / a.u. αQ / a.u. βD / a.u. γ q / e−

Na 0.9947 0.0000 0.0000 0.6200 1.0000
K 1.0000 0.0000 0.0000 1.0000 9.0000
Sc 1.0000 0.0000 0.0000 0.1000 11.000
Mg 1.2345 0.0000 0.0000 1.5000 2.0000
Yb 2.9876 0.0000 0.0000 5.0000 2.0000
Hg 1.0000 0.0000 0.0000 20.000 20.000
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Appendix

A.2 Absolute energies (section 3.6 and 3.7)

Tab. A.2: Comparison of ground state energies obtained by SCF simulations per-
formed with and without CPPs given in a.u. Additionally, the relative influence of
the CPPs are given in %.

System PP ESCF / a.u. ESCF+CPP / a.u. ESCF+CPP
ESCF

− 1 / %

Mg 10SDF −7.8559 · 10−01 −8.3152 · 10−01 5.8
Yb 60MWB −3.2541 · 10+01 −3.6772 · 10+01 13.0
Hg 60MHF −1.4808 · 10+02 −1.5414 · 10+02 4.1

60MWB −1.5255 · 10+02 −1.6005 · 10+02 4.9
Na2 10SDF −3.5699 · 10−01 −3.7137 · 10−01 4.0
K2 10MWB −5.6044 · 10+01 −5.6531 · 10+01 0.9
Sc2 10MHF −9.2093 · 10+01 −9.2099 · 10+01 0.01
Hg2 60MHF −2.9613 · 10+02 −3.0826 · 10+02 4.1

60MWB −3.0508 · 10+02 −3.2008 · 10+02 4.9

Tab. A.3: Comparison of CCSD correlation energies obtained by simulations per-
formed with and without CPPs given in a.u. Additionally, the relative influence of
the CPPs are given in %.

System PP Ecorr / a.u. Ecorr+CPP / a.u. Ecorr+CPP
Ecorr

− 1 / %

Mg 10SDF −3.3696 · 10−02 −2.6432 · 10−02 -21.6
Yb 60MWB −1.7199 · 10−01 −6.3028 · 10−01 266.5
Hg 60MHF −1.2633 · 10−01 −1.8154 · 10−01 43.7

60MWB −5.6632 · 10−01 −1.1393 · 10+00 101.2
Na2 10SDF −2.1431 · 10−02 −1.9723 · 10−02 -8.0
K2 10MWB −1.0180 · 10−01 −9.9853 · 10−02 -1.9
Sc2 10MHF −2.8661 · 10−01 −2.8668 · 10−01 0.02
Hg2 60MHF −2.6441 · 10−01 −3.7820 · 10−01 43.0

60MWB −1.1447 · 10+00 −2.3089 · 10+00 101.7

A.3 Reproducibility
All simulation data presented in this work are stored on the server of the Institute of
Theoretical Chemistry. These data are located in the home directory (either home or
home_noBackup) of S. Bubeck in a separate directory named ThesisData.
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AE all-electron
AO atomic orbital
ANO-RCC all natural orbitals-relativistic and (semi-)core correlation
B Breit
BLAS Basic Linear Algebra Subprograms
BSE basis set extrapolation
BSS Barysz-Sadlej-Snijders
BSSE basis set superposition error
C Coulomb
CAT contracted angular transformed
CBS complete basis set
(MR)CC (multi-reference) coupled cluster
CCSD coupled cluster singles and doubles
CCSD(T) coupled cluster singles, doubles and perturbative triples
CCSDT coupled cluster singles, doubles and triples
CCSDTQ coupled cluster singles, doubles, triples and quadruples
(MR)CI (multi-reference) configuration interaction
CP counterpoise
CPP core polarization potential
D Dirac
DHF Dirac-Hartree-Fock
DKH2 second-order Douglas-Kroll-Hess
DKH3 third-order Douglas-Kroll-Hess
ECP effective core potential
ERI electron repulsion integral
FC frozen core
GCC GNU Compiler Collection
gsl GNU Scientific Library
(R)HF (restricted) Hartree-Fock
IP ionization potential
LAPACK Linear Algebra PACKage
MCSCF multi-configuration self-consistent field
MO molecular orbital
MP model potential
PCG primitive Cartesian Gaussian
PP pseudopotential
QOL Quantum Objects Library
RAM random access memory
SCF self-consistent field
SO spin-orbit
VO valence-only
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