30,277 research outputs found

    On Constructive Axiomatic Method

    Get PDF
    In this last version of the paper one may find a critical overview of some recent philosophical literature on Axiomatic Method and Genetic Method.Comment: 25 pages, no figure

    Did Lobachevsky Have A Model Of His "imaginary Geometry"?

    Get PDF
    The invention of non-Euclidean geometries is often seen through the optics of Hilbertian formal axiomatic method developed later in the 19th century. However such an anachronistic approach fails to provide a sound reading of Lobachevsky's geometrical works. Although the modern notion of model of a given theory has a counterpart in Lobachevsky's writings its role in Lobachevsky's geometrical theory turns to be very unusual. Lobachevsky doesn't consider various models of Hyperbolic geometry, as the modern reader would expect, but uses a non-standard model of Euclidean plane (as a particular surface in the Hyperbolic 3-space). In this paper I consider this Lobachevsky's construction, and show how it can be better analyzed within an alternative non-Hilbertian foundational framework, which relates the history of geometry of the 19th century to some recent developments in the field.Comment: 31 pages, 8 figure

    Categories without structures

    Get PDF
    The popular view according to which Category theory provides a support for Mathematical Structuralism is erroneous. Category-theoretic foundations of mathematics require a different philosophy of mathematics. While structural mathematics studies invariant forms (Awodey) categorical mathematics studies covariant transformations which, generally, don t have any invariants. In this paper I develop a non-structuralist interpretation of categorical mathematics and show its consequences for history of mathematics and mathematics education.Comment: 28 page

    Categories and the Foundations of Classical Field Theories

    Get PDF
    I review some recent work on applications of category theory to questions concerning theoretical structure and theoretical equivalence of classical field theories, including Newtonian gravitation, general relativity, and Yang-Mills theories.Comment: 26 pages. Written for a volume entitled "Categories for the Working Philosopher", edited by Elaine Landr

    Mathematical Models of Abstract Systems: Knowing abstract geometric forms

    Get PDF
    Scientists use models to know the world. It i susually assumed that mathematicians doing pure mathematics do not. Mathematicians doing pure mathematics prove theorems about mathematical entities like sets, numbers, geometric figures, spaces, etc., they compute various functions and solve equations. In this paper, I want to exhibit models build by mathematicians to study the fundamental components of spaces and, more generally, of mathematical forms. I focus on one area of mathematics where models occupy a central role, namely homotopy theory. I argue that mathematicians introduce genuine models and I offer a rough classification of these models

    Higher Theory and the Three Problems of Physics

    Get PDF
    According to the Butterfield--Isham proposal, to understand quantum gravity we must revise the way we view the universe of mathematics. However, this paper demonstrates that the current elaborations of this programme neglect quantum interactions. The paper then introduces the Faddeev--Mickelsson anomaly which obstructs the renormalization of Yang--Mills theory, suggesting that to theorise on many-particle systems requires a many-topos view of mathematics itself: higher theory. As our main contribution, the topos theoretic framework is used to conceptualise the fact that there are principally three different quantisation problems, the differences of which have been ignored not just by topos physicists but by most philosophers of science. We further argue that if higher theory proves out to be necessary for understanding quantum gravity, its implications to philosophy will be foundational: higher theory challenges the propositional concept of truth and thus the very meaning of theorising in science.Comment: 23 pages, 1 table
    corecore