545 research outputs found

    AltURI: a thin middleware for simulated robot vision applications

    Get PDF
    Fast software performance is often the focus when developing real-time vision-based control applications for robot simulators. In this paper we have developed a thin, high performance middleware for USARSim and other simulators designed for real-time vision-based control applications. It includes a fast image server providing images in OpenCV, Matlab or web formats and a simple command/sensor processor. The interface has been tested in USARSim with an Unmanned Aerial Vehicle using two control applications; landing using a reinforcement learning algorithm and altitude control using elementary motion detection. The middleware has been found to be fast enough to control the flying robot as well as very easy to set up and use

    Software Reuse across Robotic Platforms: Limiting the effects of diversity

    Get PDF
    Robots have diverse capabilities and complex interactions with their environment. Software development for robotic platforms is time consuming due to the complex nature of the tasks to be performed. Such an environment demands sound software engineering practices to produce high quality software. However software engineering in the robotics domain fails to facilitate any significant level of software reuse or portability. This paper identifies the major issues limiting software reuse in the robotics domain. Lack of standardisation, diversity of robotic platforms, and the subtle effects of environmental interaction all contribute to this problem. It is then shown that software components, fuzzy logic, and related techniques can be used together to address this problem. While complete software reuse is not possible, it is demonstrated that significant levels of software reuse can be obtained. Without an acceptable level of reuse or portability, software engineering in the robotics domain will not be able to meet the demands of a rapidly developing field. The work presented in this paper demonstrates a method for supporting software reuse across robotic platforms and hence facilitating improved software engineering practices

    Service-Oriented Architecture for Space Exploration Robotic Rover Systems

    Full text link
    Currently, industrial sectors are transforming their business processes into e-services and component-based architectures to build flexible, robust, and scalable systems, and reduce integration-related maintenance and development costs. Robotics is yet another promising and fast-growing industry that deals with the creation of machines that operate in an autonomous fashion and serve for various applications including space exploration, weaponry, laboratory research, and manufacturing. It is in space exploration that the most common type of robots is the planetary rover which moves across the surface of a planet and conducts a thorough geological study of the celestial surface. This type of rover system is still ad-hoc in that it incorporates its software into its core hardware making the whole system cohesive, tightly-coupled, more susceptible to shortcomings, less flexible, hard to be scaled and maintained, and impossible to be adapted to other purposes. This paper proposes a service-oriented architecture for space exploration robotic rover systems made out of loosely-coupled and distributed web services. The proposed architecture consists of three elementary tiers: the client tier that corresponds to the actual rover; the server tier that corresponds to the web services; and the middleware tier that corresponds to an Enterprise Service Bus which promotes interoperability between the interconnected entities. The niche of this architecture is that rover's software components are decoupled and isolated from the rover's body and possibly deployed at a distant location. A service-oriented architecture promotes integrate-ability, scalability, reusability, maintainability, and interoperability for client-to-server communication.Comment: LACSC - Lebanese Association for Computational Sciences, http://www.lacsc.org/; International Journal of Science & Emerging Technologies (IJSET), Vol. 3, No. 2, February 201

    Robotics Middleware: A Comprehensive Literature Survey and Attribute-Based Bibliography

    Get PDF
    Autonomous robots are complex systems that require the interaction between numerous heterogeneous components (software and hardware). Because of the increase in complexity of robotic applications and the diverse range of hardware, robotic middleware is designed to manage the complexity and heterogeneity of the hardware and applications, promote the integration of new technologies, simplify software design, hide the complexity of low-level communication and the sensor heterogeneity of the sensors, improve software quality, reuse robotic software infrastructure across multiple research efforts, and to reduce production costs. This paper presents a literature survey and attribute-based bibliography of the current state of the art in robotic middleware design. The main aim of the survey is to assist robotic middleware researchers in evaluating the strengths and weaknesses of current approaches and their appropriateness for their applications. Furthermore, we provide a comprehensive set of appropriate bibliographic references that are classified based on middleware attributes.http://dx.doi.org/10.1155/2012/95901

    Designing Distributed, Component-Based Systems for Industrial Robotic Applications

    Get PDF
    none3noneM. Amoretti; S. Caselli; M. ReggianiM., Amoretti; S., Caselli; Reggiani, Monic

    Viewfinder: final activity report

    Get PDF
    The VIEW-FINDER project (2006-2009) is an 'Advanced Robotics' project that seeks to apply a semi-autonomous robotic system to inspect ground safety in the event of a fire. Its primary aim is to gather data (visual and chemical) in order to assist rescue personnel. A base station combines the gathered information with information retrieved from off-site sources. The project addresses key issues related to map building and reconstruction, interfacing local command information with external sources, human-robot interfaces and semi-autonomous robot navigation. The VIEW-FINDER system is a semi-autonomous; the individual robot-sensors operate autonomously within the limits of the task assigned to them, that is, they will autonomously navigate through and inspect an area. Human operators monitor their operations and send high level task requests as well as low level commands through the interface to any nodes in the entire system. The human interface has to ensure the human supervisor and human interveners are provided a reduced but good and relevant overview of the ground and the robots and human rescue workers therein

    An orchestrator for networked control systems and its application to collision avoidance in multiple mobile robots.

    Get PDF
    Networked Control System (NCS) consists of controlled distributed nodes while an Orchestrator functions as a central coordinator for controlling the distributed tasks. The NCSs have challenges of coordination and right execution sequencing of operations. This paper proposes a framework named Controlled Orchestrator (COrch) for coordinating and sequencing the tasks of NCSs. An experiment was performed with three robotic vehicles that are considered as individual control system. Furthermore, the proposed orchestrator COrch decided the sequencing of operations of the robots while performing obstacle avoidance task for spatially distributed robots in parallel. COrch is used to control this task by utilizing the concept of Remote Method Invocation (RMI) and multithreading. RMI is used to prepare the software for controlling the robots at remote end while multithreading is used to perform parallel and synchronize execution of multiple robots. The remote end software generates signals for sequential, parallel and hybrid mode execution
    • …
    corecore