
Software reuse across robotic platforms: Limiting the effects of diversity

Glenn Smith, Robert Smith and Aster Wardhani
Centre for IT Innovation, Faculty of Information Technology

Queensland University of Technology, Australia
Email gp.smith@qut.edu.au

Abstract

Robots have diverse capabilities and complex interac-
tions with their environment. Software development for ro-
botic platforms is time consuming due to the complex nature
of the tasks to be performed. Such an environment demands
sound software engineering practices to produce high qual-
ity software. However software engineering in the robotics
domain fails to facilitate any significant level of software
reuse or portability.

This paper identifies the major issues limiting software
reuse in the robotics domain. Lack of standardisation, di-
versity of robotic platforms, and the subtle effects of envi-
ronmental interaction all contribute to this problem. It is
then shown that software components, fuzzy logic, and re-
lated techniques can be used together to provide suitable
abstractions to address this problem. While complete soft-
ware reuse is not possible, it is demonstrated that signifi-
cant levels of software reuse can be obtained.

Without an acceptable level of reuse or portability, soft-
ware engineering in the robotics domain will not be able to
meet the demands of a rapidly developing field. The work
presented in this paper demonstrates a method for support-
ing software reuse across robotic platforms and hence fa-
cilitating improved software engineering practices.

1. Introduction

Software engineering in the robotics domain faces
unique challenges. Robots have diverse capabilities and en-
gage in complex interactions with their environment. The
tasks that are typically performed by robots are com-
plex due to the non-determinism inherent in the environ-
ment in which they operate. This complexity makes soft-
ware development for robotic platforms time consuming.
Such an environment demands sound software engineer-
ing practices to produce high quality software.

Software engineering in the robotics domain fails to fa-
cilitate any significant level of software reuse or portabil-

ity. Historically robot processing capabilities and memory
capacities have been extremely limited. Software engineer-
ing in this constrained environment typically “hardwired”
code to the hardware to make maximum use of available re-
sources. Consequently the resulting software was very spe-
cialised and dependent on a particular robot. These resource
constraints have been lifted to a great extent with recent
improvements in the area. However, robotics software en-
gineering has failed to improve in line with hardware im-
provements.

In this paper we will discuss the aspects of the robotics
domain that inhibit effective software engineering. There
is a diverse range of hardware used to perform typical ro-
bot tasks and a lack of standardisation of the hardware in-
terfaces used. This diversity accounts for part of the chal-
lenges to software engineering. However, it is the conse-
quences of environmental interaction that poses the most
significant challenges. As robots interact with their environ-
ment they must be aware of their physical presence and con-
figuration in that environment. Attributes such as robot size
and sensor orientation can create dependencies in the con-
trolling software to a particular robot. These dependencies
restrict software reuse and portability. A change in orienta-
tion of a single sensor could cause the controlling software
to fail.

The manifestation of the challenges outlined is the de-
pendency between a robot’s controlling software and its
hardware configuration. The solution presented here uses
a Virtual Robot Framework (VRF) that essentially provides
an abstraction layer to limit the effects of diversity and lack
of standardisation of robot hardware. Fuzzy logic is used to
enable the construction of the VRF. Finally the extraction of
the specification of physical attributes from the robot soft-
ware combine to limit the effects of environmental interac-
tion.

The following sections of this paper present in more de-
tail the challenges for software engineering in the robotics
domain, and describe our approach to addressing these chal-
lenges. The details of the implementation are provided in
Section 4. Related approaches in the area are presented in

Proceedings of the 2005 Australian Software Engineering Conference (ASWEC’05)

1530-0803/05 $20.00 © 2005 IEEE

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Queensland University of Technology ePrints Archive

https://core.ac.uk/display/10875908?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Section 5. Finally insight into the experience this work has
provided and general discussion of the applicability of the
approach is given.

2. Challenges of robotics software engineer-
ing

Historical hardware limitations in robotics no longer ap-
pear to be the limiting factor in robotics software engineer-
ing. This change has not led to the adoption of more mod-
ern software engineering techniques utilised in general soft-
ware engineering. Software reuse is virtually non-existent
and significant effort is required to move software to related
robot platforms. The use of modular software components
in the robotics domain is only starting to develop. It is pro-
posed that significant obstacles to more effective software
engineering remain and contribute to the current state of ro-
botics software engineering. There are three major obsta-
cles identified. These are detailed in the following subsec-
tions.

2.1. Diversity of robotic platforms

There is a wide variety of robot hardware available giv-
ing near infinite number of combinations of this hardware.
To simplify our discussion consider the broad dichotomy of
this hardware: effectors and sensors. Effectors change the
state of the robot or the environment. Sensors collect data
from the robot and sample the state of the environment.

Sensors include items such as infrared sensors, sonar,
video cameras, thermostats, GPS locators, and pressure sen-
sors. For each of these kinds of sensors there are typi-
cally many variations, for example, a video camera could
be colour, greyscale, monocular, binocular, fixed or mov-
ing. Variations in signal types, and data rates require very
particular coupling of software to these devices. There is an
equally complex categorisation for effectors including items
such as wheels, arms, lights, speakers, and probes.

The software controlling the effectors and sensors needs
to correctly interpret input and generate meaningful output
across a wide variety of data and signal types. This vari-
ation of effectors and sensors may be compared with the
variation of input and output devices for desktop comput-
ers. However there are two major distinctions. First, effec-
tors and sensors must interact with the real world environ-
ment. Second, the physical orientation (location and direc-
tion) of effectors and sensors has a profound effect of the in-
terpretation of input and the generation of output. The con-
sequences of these distinctions are discussed below in the
context of environmental interaction.

At this point is should be clear that robotics software
engineering is at least as complex as general software en-
gineering. This is without considering the effects of envi-

ronmental interaction or the typical complexity of the tasks
performed. Furthermore, there is the added variation intro-
duced by the wide variety of robotic operating systems.

2.2. Environmental interaction

From the software engineering perspective, there are two
major causes of environmental interaction difficulties for ro-
bots: 1) the effector and sensor location and orientations are
significant, and 2) the variation of sensor input is large. The
consequences of these will be described and discussed in
turn.

Robots can vary significantly in their combination of
types of effectors and sensors (hardware configuration).
However, the impact on software engineering is felt when
considering the possible location and orientation of these ef-
fectors and sensors. Even when the hardware configuration
is the same, the controlling software may no longer work if
the location or orientation of a single sensor is changed. For
example, if an infrared sensor located on the front of the ro-
bot is turned to face the side, the controlling software must
change its interpretation of the input from that sensor. Even
such a simple change is likely to require modification of
the controlling software. Thus a change in sensor (or effec-
tor) location or orientation essentially changes the configu-
ration of the robot. Thus software may not even be reusable
between robots with the same hardware configuration. Con-
sider the problems that would occur if software for personal
computers needed to be changed because of the direction
the monitor was facing.

The input to the robot generated by sensors typically re-
quires more interpretation than input generated by general
computer input devices. Sensor readings may vary because
of completely independent environmental factors such as
the level of lighting. Sensor input received by the control-
ling software is typically continuous in value. These val-
ues may vary with no distinguishable change to the envi-
ronment. For example it is not uncommon to receive suc-
cessive readings such as 0.849 and 0.0902, and the differ-
ence may or may not be significant. Input to a desktop com-
puter tends to be more constrained and more stable, for ex-
ample a keyboard produces discrete values within a limited
set of possible values. While sensor input alone does not di-
rectly cause problems with software reuse, it does add to the
complexity of the software created.

The interpretation of sensor values also varies with the
physical attributes of the robot with respect to the environ-
ment that it is operating within. For example, if a sensor in-
dicates that an object is 2 meters away, the interpretation of
this value will depend on the size of the robot. For a large ro-
bot, the size of a car, this distance may be considered close.
For a small robot, the size of a mouse, this distance may
be considered far. There are many other physical attributes

Proceedings of the 2005 Australian Software Engineering Conference (ASWEC’05)

1530-0803/05 $20.00 © 2005 IEEE

that have similar relationships. The dependencies on phys-
ical attributes are likely to create further dependencies be-
tween the controlling software and robot hardware.

2.3. Lack of standardisation

Some of the diversity of robot composition could be con-
strained by standardisation of software interfaces for hard-
ware components. However, there is a distinct lack of in-
terface standardisation, possibly as the robotics domain is
still a relatively small market. Currently the number of ro-
bots in existence are some orders of magnitude less than
the number of desktop computers. This smaller market will
not generate those same forces that have led to standardisa-
tion of interfaces for desktop computer hardware. The com-
bination of the small market and the diverse range of hard-
ware reduce the impetus for standardisation as it is difficult
for a single vendor to dominate and the advantage of do-
ing so is limited.

The problems of platform diversity and environmental
interaction are exacerbated by the lack of standardisation.
Given these challenges, it is not surprising that the majority
of robotics software development produces specialised code
that is only capable of working on a single robot config-
uration. There is little opportunity for software reuse even
though it is desperately needed in such a complex software
engineering domain.

3. Approach

To limit the effects of diverse robotic platforms and envi-
ronmental interaction, we propose the use of a component
system architecture combined with various levels of data
abstraction. The system is composed of several component
frameworks, each supporting a typical facet of robot con-
trol. These first level component frameworks plug into a sin-
gle second level component framework (or component sys-
tem) that mediates their communication. This should not be
confused with a traditional layered architecture, it is a tiered
component architecture [17]. The general structure is, com-
ponents plug into the first level component frameworks, and
these frameworks plug into the component system.

The individual components are where the majority of
software development would occur, and where the specific
behaviours of the robot would be encoded. It is in these
components that we aim to provide the highest level of reuse
across different robots.

The first level component frameworks each address a dif-
ferent facet of robot control. In the system we have devel-
oped there are five component frameworks for high-level
control and these are categorised as Behaviours, Deliber-
ation, Detection, Navigation, and Vision. These are illus-
trated in Figure 1. These communicate through a Data Ex-

change (DX) framework. There is also another component
framework called the Virtual Robot Framework that pro-
vides a “virtual robot” interface to the rest of the system. It
is supported by a robot (XML) configuration file and a de-
scriptor file of the fuzzy abstractions it should use. The VRF
is a specialist framework and will be described in some de-
tail in later sections. This set of component frameworks is
not intended to be final and the architecture allows for new
frameworks to be added and implementations of the exist-
ing component frameworks to be interchanged. We aim to
provide a high degree of reuse of the control frameworks
across different robots. The VRF is a special case in that it
is tightly bound to the robot configuration and as such is not
portable across different robots. The VRF in effect decou-
ples the rest of the system from the robot hardware.

The component system supports the communication of
the component frameworks. It is the most stable entity and
should rarely change, except when support for a new type
of component framework is required.

Component System

Vision

Deliberation

Detection

Virtual Robot

Framework

(VRF)

Behaviours

Navigation DX

XML
Fuzzy

Functions

Figure 1. The VRF decouples the high-level
frameworks and components from the hard-
ware. The high-level frameworks need to use
the standard interfaces and fuzzy abstrac-
tions provided by the VRF to be portable.

The VRF is the key to software reuse in this system. To
understand the function of the VRF, consider the function of
the Java Virtual Machine (JVM) [10]. The JVM provides for
platform independent execution of Java Bytecode. That is,
Java Bytecode can execute on any platform that has a JVM

Proceedings of the 2005 Australian Software Engineering Conference (ASWEC’05)

1530-0803/05 $20.00 © 2005 IEEE

available. This is similar to the function of the VRF, any
code that uses the VRF interface can be moved between ro-
bots that implement the VRF interface. However, this com-
parison is not entirely accurate as VRFs are necessarily con-
figured based on the capabilities of the robot. So there is a
limitation: code can only be used on VRF configurations
that support all the required capabilities. Note that the capa-
bilities of the VRF map directly to the capabilities of the ro-
bot; so it is the case that if the VRF cannot support the code,
then the robot hardware would not support the code either.
The benefit for reuse lies in the space where robot capabili-
ties overlap.

This gives an understanding of the general architecture
used, we will now consider how the challenges presented in
Section 2 have been addressed.

3.1. Addressing diversity of robotic platforms

The effects of diverse robot hardware is limited by the
VRF. The VRF provides a set of standard interfaces for in-
teracting with low-level hardware. Implementing these in-
terfaces is hardware dependent, although the interfaces only
need to be implemented once for a given type of hardware
on a particular robot. An example of an interface to interact
with the sensors is in Figure 2. Once implemented, the VRF
provides a stable “virtual robot” platform for other compo-
nent frameworks to use.

The implementation of the interface does not need to be
linked to any particular underlying hardware. For example,
take the isBlocked method which indicates if the path
in a given direction is clear of obstacles or not. The imple-
mentation of this method may utilise a camera or a set of in-
frared sensors to determine the result. Thus the method can
be implemented on varying hardware. Abstracting the re-
quired functionality from the underlying hardware allows
the component frameworks using the VRF to be indepen-
dent of the actual hardware configuration. This adaptation
across different kinds of hardware can be applied in many
different cases. Further independence is gained by abstract-
ing the values used, this is discussed in the next sub-section.

3.2. Addressing effects of environmental interac-
tion

There are two main aspects to environmental interaction,
the first discussed here is the dependency on effector and
sensor location. When considering this aspect the physi-
cal attributes of the robot relative its environment must also
be taken into consideration. If the controlling software re-
quired implicit knowledge of the size, shape, and sensor lo-
cations for a robot it would be bound directly to that robot
and reusing the code on another robot would almost cer-
tainly require change.

/**
* @return errNone if successful
* Pre: ID != null
* Inv: ID != null
* Pst: rawValue[n] == *reading* &&
* timeStamp == *time of reading*
* for all n
* Dsc: Polls all the sensors and stores the
* reading in rawValue[]
*/

public int pollAll();
public int poll(int ID);

/**
* @return timeStamp
* Pre: True
* Inv: True
* Pst: True
* Dsc: Returns the timing stamp of the latest
* polled data
*/

public double getTimeStamp(double ID);

/**
* @return rawValue
* Pre: True
* Inv: True
* Pst: True
* Dsc: Returns the rawValue property
*/

public double getRawValue(double ID);

/**
* @return Distance from rawValue
* Pre: timeStamp != 0
* Inv: timeStamp != 0
* Pst: timeStamp != 0
* Dsc: Calculates the distance equivalent to the
* rawValue reading
*/

public double calcDistance(double ID)
throws Exception;

Figure 2. An extract of the SensorGroup in-
terface.

The VRF utilises specifications of the robot configura-
tion including sensor and effector positioning as well as the
physical attributes of the robot. This information is loaded
into the VRF from a configuration file, which is written
once for each robot type and altered according to hardware
changes. A configuration file using XML is very flexible,
as used by [8] and [4]. The XML configuration file used to
specify the robots (see Figure 3) is based on work done by
[4]. This way the VRF can be easily modified for new ro-
bots, or along with changes in an existing robot hardware
configuration.

The XML configuration file also indicates the placement
of hardware items such as sensors and cameras (see Fig-

Proceedings of the 2005 Australian Software Engineering Conference (ASWEC’05)

1530-0803/05 $20.00 © 2005 IEEE

<Robot RobotType="Khepera">
<Dimension Height="70"/>
<Polygon

NPoints="6"
XPoints="-35,-35,-35,35,35,35"
YPoints="-40,0,40,-40,0,40"/>

<CenterOfRotation
XCenterOfRotation="0"
YCenterOfRotation="-10"/>

<Drive
DistanceLeftRightWheel="40"
WheelDiameter="20"
MaxSpeed="200"/>

...
</Robot>

Figure 3. An extract of the XML configuration
file defining the physical structure of a robot.

ure 4). Sensors can be grouped together to form zones.
The concept of sensor zones is used in abstraction work
done in the Pyro programming framework [2]. These are
used by Pyro to help manage varying robot morphologies.
These zones, for example, could be Front, Back, Left, and
Right. This allows measurements to be consolidated for
these zones and returned in a consistent manner indepen-
dent of the actual hardware configuration supporting that
zone. The group of sensors included in a zone can overlap,
for example, if a sensor is on the front-right aspect of a ro-
bot it could be included in the Front and Right zone. Equally
if the front-right sensor was then rotated to face the front
only, then it would be removed from the sensor group cor-
responding to the Right zone.

These sensor groups provide additional abstraction from
the configuration of individual hardware items, allowing the
VRF to present a standard representation of varying col-
lections of sensors. This further reduces the direct depen-
dencies between controlling software and hardware config-
uration. If the controlling software is written to use zones,
then provided the zones can be constructed from the sen-
sor groups on a given robot, the software can be reused on
that robot.

The configuration information can also be used to assist
in the initialisation of software components, and allow the
components to ensure all the services that they require are
in fact available. This is important to support a culture of
plug-and-play robotic software components as it will pro-
vide some assurances that if a new component initialises, it
can in fact operate correctly rather than leading to run-time
failure. There are still many cases where run-time failure
can occur, but these are yet to be solved for general compo-
nent based software engineering.

The second aspect of environmental interaction is the in-
teraction with the environment through effectors and sen-

<Sensor>
<Label>I1</Label>
<Infrared Typ="INFRARED">

<SensorGroup>1</SensorGroup>
<ScanRange>55</ScanRange>
<ZeroDistance>0</ZeroDistance>

</Infrared>
<Position

XPosition="17"
YPosition="15"
ZPosition="8"/>

<Rotation XRotation="45"/>
</Sensor>

Figure 4. An extract from the XML configura-
tion file showing the definition of an infrared
sensor.

sors. The values used are typically continuous and have
some degree of variation resulting from the number of en-
vironmental factors that can influence the sensor readings,
such as lighting, and vary the effect of actions taken by ef-
fectors, such as moving on a slippery surface. This effects of
these variations needs to be limited to help reduce the com-
plexity of the controlling software and to support a simpli-
fied virtual robot interface. We have applied fuzzy logic to
this problem.

In general, a fuzzy system [7] has three parts. The first is
a fuzzification section. This section is responsible for tak-
ing real input data (also referred to as crisp data), and con-
verting it to data that has meaning to the fuzzy system.
Next, the fuzzified data is applied to the fuzzy-rule base sec-
tion. The rule base is applied and result calculated within
the high-level components. The result of the rule-base sec-
tion is fuzzified output data. This fuzzified output data is
converted back to real or crisp data using a defuzzification
process. The VRF completes all of these tasks.

The use of data fuzzification allows the use of impre-
cise data, and enables grouping of values that have simi-
lar meaning but distinct concrete representations. Consider
the simple example, introduced in Section 3.1, of determin-
ing if the path in a particular direction is clear or blocked
implemented by an isBlocked method presented by the
VRF. One robot may have a video camera facing forward
and use optical flow to determine free space, another robot
may have three infrared sensors pointing forward. Very dif-
ferent methods of interpretation are required of these sen-
sors. However, these values can be translated to a fuzzy
value with the direction and the range of the obstacle. The
appropriate range can then be returned by the VRF satisfy-
ing components that use that VRF method. Obviously the
implementation of the isBlocked method will be very
different for the VRF for each robot.

However, most importantly, the fuzzy membership func-

Proceedings of the 2005 Australian Software Engineering Conference (ASWEC’05)

1530-0803/05 $20.00 © 2005 IEEE

tions can be easily decoupled from their crisp meanings.
Decoupling here is the key so that the meaning of the lin-
guistic terms (i.e. natural language names for the range of
values) can be modified easily to meet the description rela-
tive to different robots. Examples of these are shown in Fig-
ure 5.

Distance Sets

0

0.5

1

0 3 6 9 12
metres

M
em

be
rs

hi
p

V
al

ue

VeryNear

Near

MidRange

Far

VeryFar

Direction Sets

0

0.5

1

0 90 180 270 360
degrees

M
em

be
rs

hi
p

V
al

ue Front

Right

Behind

Left

Speed Sets

0

0.5

1

0 3 6 9 12 15 18
cm/s

M
em

be
rs

hi
p

V
al

ue

Stopped

VerySlow

Slow

MidSpeed

Fast

VeryFast

Figure 5. The input membership sets for
some linguistic variables. These sets use ex-
ample scales for illustration only. They will be
different according to the robot they are try-
ing to describe.

These fuzzy values can then be used to describe hard-
ware placement and orientation, the direction of obstacles
or targets, speeds of travel and distances to the robot. All
fuzzy terms are relative. By this we mean robot-centric. So
an obstacle that is Near to a large robot may only be Far
to a small robot. The VRF is configured with the fuzzy set
membership profiles accordingly to make the correct inter-
pretations. Presently, the fuzzy membership functions have
a predetermine number of sets and profile shape (e.g. trian-
gular). A negotiated number of sets and profile shape is be-
ing considered so as to provide more flexibility for the com-
ponents. This would be limited by the robot hardware and
possible options it can provide.

The combination of these approaches are used to decou-
ple the controlling software from the robot hardware and
simplify the virtual robot interface. While they do not en-
sure standardisation, the benefits of software reuse from us-
ing such a standard robot platform will hopefully be suf-

ficient motivation for both robot manufacturers and users
alike. We will now discuss the implementation of these ap-
proaches to demonstrate their feasibility.

4. Implementation

Prototypes of the VRF have been implemented on mul-
tiple robot systems to test its support of portability. The fol-
lowing robots are quite varied in features and have been se-
lected as they provide a good sample of mobile robots:

• Palmbot [1] - a triangle shaped, three wheeled, omni-
directional robot. Sensing is done using three infrared
sensors and a camera.

• Khepera [11] - a small circular shaped robot approxi-
mately 4cm in diameter. It uses two-wheeled locomo-
tion with eight infrared sensors, light sensors and a lin-
ear camera.

• Koala [11] - a six wheeled robot with multiple infrared
sensors and a colour camera.

• AIBO [16] - from Sony, a four legged walking dog-
inspired robot.

• Webots [12] - a 3D robot simulator from Cyberbotics
simulating multiple robot platforms.

A VRF has been constructed for each of these robots
(for the actual and simulated). The component frameworks
in the system (shown in Figure 1) have been implemented,
however these only required one robot independent imple-
mentation that depends on the specific VRF implementa-
tion. For example, an obstacle avoidance component has
been developed that operates unchanged on each of the ro-
bots by interacting with the robot’s VRF. The configuration
of the sensors on each robot is quite varied so the VRF must
interpret requests to read the sensors and return meaningful
results to the component. The obstacle avoidance is guided
by the VRF to realise meanings for each robot’s size, sen-
sors position & signal meanings, servo positions, and speed
setting.

Using a component design allows software components
implementing different avoidance algorithms to be easily
deployed. These software components plug into the ap-
propriate component framework implementation, where the
component framework that interacts with the robot specific
VRF. A simple illustration of the operation of the VRF will
help show the usage of the abstractions. Take the pseudo-
code for a Braitenberg [3] styled obstacle avoidance algo-
rithm as shown in Figure 6.

Implementation of this simple algorithm requires knowl-
edge or interpretation of facts such as:

• Which direction is ‘front’?

• What is ‘midSpeed’ value for this robot?

Proceedings of the 2005 Australian Software Engineering Conference (ASWEC’05)

1530-0803/05 $20.00 © 2005 IEEE

if (isBlocked(front, veryNear)) then
if (isClear(right, veryFar))

then rotate(slow, right);
else rotate(slow, left);

else moveForward(midSpeed);

Figure 6. Pseudo-code for simple obstacle
avoidance.

• How to ‘move forward’?

• How to rotate?

• Where is the location of the sensors?

• What do the sensor readings mean?

To implement even this simple algorithm would typically
lead to dependencies on the robot’s hardware configuration.
Using the VRF concepts such as ‘front’ and ‘midSpeed’ are
specified when configuring the VRF and its fuzzy member-
ship sets. Concepts such as ‘move forward’ and ‘rotate’ are
available as standard method calls presented by interface
provided by the VRF and implemented for each specific ro-
bot. The configuration of the sensors is provided by way of
the XML configuration file and interpreted by the VRF to
enable calculations sensitive to the current robot configura-
tion. Interpretation of the sensor readings is handled within
the VRF through a process of fuzzification.

An example of the robot specific implementation of the
isFrontClear method provided in the VRF interface is
given in Figures 7 and 8. This code shows how the same
method is implemented for two very different robots. The
input parameter to the getRawValue method is the iden-
tifier of the sensor, and the return value is compared to a
value appropriate for that sensor type. A more sophisticated
implementation may use a heuristic to merge the returned
values, however the code shown in the diagram provides a
simple example for illustration purposes.

public boolean isFrontClear() {
pollAll();
return (getRawValue(0)<300 &&

getRawValue(1)<300 &&
getRawValue(2)<300 &&
getRawValue(8)<300 &&
getRawValue(9)<300 &&
getRawValue(10)<300);

}

Figure 7. An extract of the isFrontClear()
method from the Koala robot VRL.

public boolean isFrontClear() {
pollAll();
return (getRawValue(1)<10 &&

getRawValue(2)<10 &&
getRawValue(3)<10 &&
getRawValue(4)<10);

}

Figure 8. An extract of the isFrontClear()
method from the Khepera robot VRL.

To implement methods in the VRF that make use of con-
tinuous values, fuzzy logic is used. The value sets are con-
figured as shown in Figure 9. This makes use of prede-
fined set types provided by the the NRC FuzzyJ Toolkit [15]
which is a set of Java classes that provide the capabil-
ity for handling fuzzy concepts and reasoning. This extract
from some configuration code corresponds to the fuzzy sets
shown in Figure 5. The decision of how to structure the
fuzzy sets is quite complex, but the implementation with
the support of the fuzzy library is relatively easy.

public FuzzyVRL() {
...

speed = new FuzzyVariable("Speed",0.0,15.0,"cm/s");
speed.addTerm("stopped", new ZFuzzySet(0.0, 1.5));
speed.addTerm("verySlow",

new TriangleFuzzySet(0.0, 3.0, 6.0));
speed.addTerm("slow",

new TriangleFuzzySet(3.0, 6.0, 9.0));
speed.addTerm("midSpeed",

new TriangleFuzzySet(6.0, 9.0, 12.0));
speed.addTerm("fast",

new TriangleFuzzySet(9.0, 12.0, 15.0));
speed.addTerm("veryFast", new SFuzzySet(12.0, 15.0));

...
}

Figure 9. An extract of the fuzzy set forma-
tion code from a FuzzyVRL implementation.

The use of these fuzzy sets enables implementation of
methods using values that are decoupled from the robot
hardware. An example of the moveForward method is
shown in Figure 10. This example demonstrates how a value
is generated to move the robot forward. The speed of the ro-
bot is dependent on the construction of the fuzzy sets.

In some cases fuzzy values cannot be used as the sensor
input and effector output must meet some precise standards.
For these cases there are methods provided to use crisp val-
ues. However, this will still create dependencies on the ro-
bot hardware. These interfaces are only used when accuracy
is more important than portability and should be used only

Proceedings of the 2005 Australian Software Engineering Conference (ASWEC’05)

1530-0803/05 $20.00 © 2005 IEEE

public int moveForward(String speedS) {
double crispSpeed=0.0;
try{

FuzzyValue fuzzySpeed = new FuzzyValue(speed,
speedS);

// calculate the defuzzified value
crispSpeed =

Math.max(fuzzySpeed.maximumDefuzzify()
, 1);

} catch (FuzzyException fe) {
}
System.out.println("Moving at speed "

+ crispSpeed);
return setSpeed((int)(crispSpeed));

}

Figure 10. An extract of the defuzzification
of the Speed variable for use by the robot’s
moveForward method.

when absolutely necessary.
Software components (as described by [17]) are used be-

cause they provide a flexible solution of varying configura-
tions while allowing a modular and independent implemen-
tation. Components are still tailor made to fit a solution but
can be reused across multiple robot configurations. In most
cases this can be done without modification, where this is
not possible only the essential modifications are required.

In our prototype implementation, the robotic framework
and the components are written in Java. The component
model used is the Sun JavaBean model [10]. This allows
them to operate on any platform for which a suitable JVM
is available. JVMs are run on any Windows or Linux OS
based robot and can also be run on the Palm OS and there
are even ports for the Motorola 68k series.

Benchmarking has been performed on our implemen-
tation to ensure the overhead introduced by the compo-
nent system architecture is within realistic bounds. Table 1
shows one example of these results. It shows the timing re-
sults for code execution within the architecture and sub-
frameworks running on the Sony AIBO using a Vision com-
ponent whilst moving throughout the laboratory. The frame-
work is running on a PIII 733 MHz desktop with wireless
link to the remote AIBO. The overheads added by the ar-
chitecture and associated frameworks and components are
highlighted with bold text.

While the time in the system architecture accounts for
24% of the total time, this includes the start-up configura-
tion time and processing time that would be required in any
architecture used. So at a conservative estimate, the results
show that the component system architecture at most intro-
duces a 30% overhead, but in reality it is much less than this
for individual actions once the robot is running. The VRL
overhead is the major contributor in this latter case, thus giv-
ing less than 5% overhead during typical processing.

Execution Area Time (%)

TCP Communications to the AIBO 32%
(java.io.InputStream, OutputStream)
Camera display and image processing 20%
(robots.aibo.camera.*)
Java processing 18%
(java.awt, java.util, java.lang, javax.swing)
Component Architecture overhead 11%
(framework.Framework.run)
Component Framework overheads 10%
(framework.*, behaviours.Schema.*)
VRL overheads 3%
(vrl.AiboVRL.*)
Component actuator commands 3%
(robots.aibo.MechaController)
GUI display 3%

Total 100%

Table 1. A summary of the execution time of
the architecture.

These results are encouraging. Given the trade-off be-
tween this overhead and increased software reuse, the addi-
tional overhead is acceptable. Consider that software reuse
should lead to improved quality and performance, the addi-
tional overhead may be insignificant. There are cases where
performance is required over portability, in these cases there
have been interfaces provided that circumvent much of the
additional processing required, but the architecture still en-
forces the same structure. Using these parts of the interface
will increase the dependencies between the controlling code
and the robot configuration.

5. Related work

There are a few robot control systems in the reviewed
literature that use component-based paradigms for robotic
control architectures. Some of these incorporate mecha-
nisms for abstraction and reuse. The hardware abstraction
problem has been partially addressed in some architectures
([5], [8], [9] and [18]), where hardware abstraction layers
(HALs) have been designed to allow basic control functions
to be ported to different robots. These control functions al-
low low-level abstractions such as requesting a sensor value.
More abstract concepts such as turn right, or is obstacle
near, require different implementations on different robots
even with the abstraction provided by HALs. A mechanism
is needed to provide consistent interpretation of such meth-
ods on various robots. The implementation of these meth-

Proceedings of the 2005 Australian Software Engineering Conference (ASWEC’05)

1530-0803/05 $20.00 © 2005 IEEE

ods needs to take into account the physical size and shape of
the robot and the configuration of sensors and effectors. It is
proposed that the use of fuzzy values to provide an abstrac-
tion from actual values returned from sensors and passed
to effectors allows a more general definition of these meth-
ods. For example the actual distance that defines whether an
obstacle is near will depend on the physical size of the ro-
bot and its task in progress.

The OROCOS project [5] aims at becoming a general-
purpose and open robot control software package. Its goal
is to develop robot control software under an Open Source
licence [14] with extreme modularity and flexibility featur-
ing software components using CORBA [13] technology.
The mechanisms for abstraction are achieved through dili-
gent decoupling of implementation from interfaces and the
use of the ‘object-port-connector’ [6] software pattern.

Notable proprietary software also exists. The high pro-
file MOBILITY architecture from iRobot [9] and the Evo-
lution Robotics Software Platform (ERSP) from Evolution
Robotics [8]. The MOBILITY package is a object-oriented,
CORBA-based robotics control architecture. This product
uses extensible “building blocks” and tools for construction
of any style of robot control system. The ERSP architec-
ture uses components to achieve its modularity and a hard-
ware abstraction layer to facilitate reuse.

From the information available, it was found that none
of these technologies provide a basis for true portability of
software components. They achieve some modularity and
flexibility through basic hardware abstraction, but not in the
more sophisticated “virtual robot” sense.

6. Experience

In our experience, adapting a component to be portable
is largely about decoupling the controlling algorithms from
the implied knowledge of the robotic platform. Implied
knowledge includes such things as the position and orien-
tation of the sensors, the style of drive mechanism and how
to access and manipulate the hardware of the robot. By care-
fully using the interfaces to define clear boundaries between
components that are responsible for each of these areas,
and by providing several layers of abstraction for accessing
the services these components provide, we have achieved a
high degree of portability of high-level components across
a number of robots.

In some cases a mismatch between interfaces needed
to be overcome. An example is a vision exploration com-
ponent, which was originally developed for the Koala ro-
bot and is able to navigate by identifying regions of free
space on the floor. It uses a simple pattern-matching algo-
rithm looking for floor coloured segments. This was easily
adapted for use by our component architecture by provid-
ing an adaptor class that implemented the Vision inter-

face of the target robot’s VRF. This was successfully done
and tested on the Sony AIBO robot. The main problem here
was mismatched method calls that required adaptation. This
kind of mismatch will be reduced when new components
are created with knowledge of the interface standards. How-
ever, this approach will still be required for legacy compo-
nents. In this case once the adaptation was done, the com-
ponent then worked across all implementations of the VRF
supporting video input.

7. Discussion

The use of component frameworks to support different
facets of robot control provides the opportunity to support
varying styles of robot control. Component frameworks can
be swapped in and out of the component system. Provided
the component framework interact correctly with the com-
ponent system they are able to implement specific styles of
robot controls when required. Component frameworks will
vary less than the software components they support, and
this flexibility does not add any further dependencies on ro-
bot hardware.

The combination of a component system architecture
and the VRF component framework limit the effects of di-
verse robotic hardware. The use of fuzzy logic and config-
uration specifications for robots limit the effects of envi-
ronmental interaction. Using these approaches together pro-
vides support for software reuse in a complex software en-
gineering domain. This is essential to allow robotic soft-
ware engineering to mature and meet the needs of a rapidly
expanding domain. Without such an approach, robotic soft-
ware will continue to be specialised to particular robots and
software reuse will continue to be largely non-existent. This
will have adverse effects on the quality of robotic software
and the effort required for software engineering process.

While this work provides for significant increases in soft-
ware reuse and portability, it will not work in all cases.
It is still limited by the capabilities of the underlying ro-
bot. In some cases adaptations can be made to support re-
quired functionality indirectly. It is suggested that compo-
nent frameworks for specialised robot types will be created
to cater for that domain, for example fixed manufacturing
robots, or household cleaning robots. With or without the
use of the approach suggested here, software would still be
unlikely to be portable across these domains.

In conclusion this paper has highlighted the current ob-
structions to software engineering in the robotics domain.
Through understanding these obstructions it can be seen
how they create dependencies on robot configuration and
subsequently limit software reuse and portability. Our ap-
proach to these problems combines the use of software com-
ponent technology and abstraction techniques, to reduce the
impact of these obstructions, thereby allowing a more effec-

Proceedings of the 2005 Australian Software Engineering Conference (ASWEC’05)

1530-0803/05 $20.00 © 2005 IEEE

tive application of modern software engineering practice in
the robotics domain.

References

[1] Acroname. Palm Pilot Robot Kit. www.acroname.com, May
2002.

[2] D. Blank, H. Yanco, and et al. Avoiding the Karel-the-Robot
Paradox: A framework for making sophisticated robotics ac-
cessible. In Accessible Hands-on Artificial Intelligence and
Robotics Education, Stanford, CA, 2004. AAAI Spring Sym-
posium.

[3] V. Braitenberg. Vehicles: Experiments in Synthetic Psychol-
ogy. The MIT Press, Cambridge, Massachusetts, 1984.

[4] A. Bredenfeld. Behavior engineering with “dual dynam-
ics” models and design tools. In Sixteenth International
Joint Conference on Artificial Intelligence IJCAI-99 Work-
shop ABS-4, pages 57–62, Veloso, Manuela, 1999.

[5] H. Bruyninckx. Open Robot Control Software: the ORO-
COS project. In Proceedings of the 2001 IEEE International
Conference on Robotics and Automation, Seoul, Korea, May
21-26 2001. IEEE.

[6] H. Bruyninckx. Decoupling in complex software systems.
www.orocos.org/documentation/decoupling.html, July 2004.

[7] D. Driankov, H. Hellendoorn, and M. Reinfrank. Introduc-
tion to Fuzzy Control. Springer, Berlin, 1998.

[8] Evolution Robotics. Robotic Architecture. Technical White
Paper, www.evolution.com/product/oem/, January 2003.

[9] iRobot. Mobility software package.
www.irobot.com/rwi/p10.asp, March 2003.

[10] JavaSoft. Products and APIs. www.java.sun.com/products,
May 2002.

[11] K-Team. Mobile Robotics. www.k-team.com, July 2002.
[12] O. Michel. Webots. http://cyberboticspc1.epfl.ch/, March

2003.
[13] O. M. G. OMG. The Common Object Request Broker: Archi-

tecture and Specification. OMG, Framingham, MA, 1997.
[14] OpenSource.org. The Open Source Page.

www.opensource.org, June 2002.
[15] N. Research Council of Canada’s Institute

for Information Technology. FuzzyJ Toolkit.
http://ai.iit.nrc.ca/IRpublic/fuzzy/fuzzyJToolkit.html, Oc-
tober 2004.

[16] Sony. Sony AIBO. www.sony.net/Products/aibo/, January
2004.

[17] C. Szyperski. Component Software Beyond Object-Oriented
Programming. Addison-Wesley Press, New York, 1998.

[18] R. Volpe, I. A. Nesnas, T. Estlin, D. Mutz, R. Petras, and
H. Das. The CLARAty architecture for robotic autonomy.
In Proceedings of the 2001 IEEE Aerospace Conference, Big
Sky, Montana, March 2001.

Proceedings of the 2005 Australian Software Engineering Conference (ASWEC’05)

1530-0803/05 $20.00 © 2005 IEEE

