57,219 research outputs found

    MAINTENANCE OF DATA RICHNESS IN BUSINESS COMMUNICATION DATA

    Get PDF
    Business negotiations – be they face-to-face or electronic – are conducted through communication enabling the declaration of negotiation objectives and active implementation of negotiation strategies to achieve pre-defined goals and the declaration of a successful or unsuccessful end of the negotiation. The processing of exchanged textual communication enables the automatic transformation of unstructured data into processable structured datasets and subsequently the analysis of textual content without losing the data richness of exchanged communication messages. For this purpose, the paper presents Text Mining-based pre-processing approaches and dimensionality reduction algorithms from Feature Extraction and Feature Selection in a research framework and evaluates those to counteract common dimensionality problems with textual processing. In doing so, the maintenance of data richness in communication data is considered as the overall goal to determine the dataset with minimal information loss. In this sense, various pre-processed and transformed communication datasets derived from dimensionality reduction are integrated as input data into selected classification models to measure the prediction performance regarding the final negotiation outcome with ROC analysis. The central results of the ROC show that quantified business communication generated by Optimized Selection delivers the best data based on Lovins’ stemming algorithm compared to stemming variations of Forward Selection and SVD

    Efficient and Scalable Techniques for Multivariate Time Series Analysis and Search

    Get PDF
    Innovation and advances in technology have led to the growth of time series data at a phenomenal rate in many applications. Query processing and the analysis of time series data have been studied and, numerous solutions have been proposed. In this research, we focus on multivariate time series (MTS) and devise techniques for high dimensional and voluminous MTS data. The success of such solution techniques relies on effective dimensionality reduction in a preprocessing step. Feature selection has often been used as a dimensionality reduction technique. It helps identify a subset of features that capture most characteristics from the data. We propose a more effective feature subset selection technique, termed Weighted Scores (WS), based on statistics drawn from the Principal Component Analysis (PCA) of the input MTS data matrix. The technique allows reducing the dimensionality of the data, while retaining and ranking its most influential features. We then consider feature grouping and develop a technique termed FRG (Feature Ranking and Grouping) to improve the effectiveness of our technique in sparse vector frameworks. We also developed a PCA based MTS representation technique M2U (Multivariate to Univariate transformation) which allows to transform the MTS with large number of variables to a univariate signal prior to performing downstream pattern recognition tasks such as seeking correlations within the set. In related research, we study the similarity search problem for MTS, and developed a novel correlation based method for standard MTS, ESTMSS (Efficient and Scalable Technique for MTS Similarity Search). For this, we uses randomized dimensionality reduction, and a threshold based correlation computation. The results of our numerous experiments on real benchmark data indicate the effectiveness of our methods. The technique improves computation time by at least an order of magnitude compared to other techniques, and affords a large reduction in memory requirement while providing comparable accuracy and precision results in large scale frameworks

    Fusion of hyperspectral, multispectral, color and 3D point cloud information for the semantic interpretation of urban environments

    Get PDF
    In this paper, we address the semantic interpretation of urban environments on the basis of multi-modal data in the form of RGB color imagery, hyperspectral data and LiDAR data acquired from aerial sensor platforms. We extract radiometric features based on the given RGB color imagery and the given hyperspectral data, and we also consider different transformations to potentially better data representations. For the RGB color imagery, these are achieved via color invariants, normalization procedures or specific assumptions about the scene. For the hyperspectral data, we involve techniques for dimensionality reduction and feature selection as well as a transformation to multispectral Sentinel-2-like data of the same spatial resolution. Furthermore, we extract geometric features describing the local 3D structure from the given LiDAR data. The defined feature sets are provided separately and in different combinations as input to a Random Forest classifier. To assess the potential of the different feature sets and their combination, we present results achieved for the MUUFL Gulfport Hyperspectral and LiDAR Airborne Data Set

    A new kernel method for hyperspectral image feature extraction

    Get PDF
    Hyperspectral image provides abundant spectral information for remote discrimination of subtle differences in ground covers. However, the increasing spectral dimensions, as well as the information redundancy, make the analysis and interpretation of hyperspectral images a challenge. Feature extraction is a very important step for hyperspectral image processing. Feature extraction methods aim at reducing the dimension of data, while preserving as much information as possible. Particularly, nonlinear feature extraction methods (e.g. kernel minimum noise fraction (KMNF) transformation) have been reported to benefit many applications of hyperspectral remote sensing, due to their good preservation of high-order structures of the original data. However, conventional KMNF or its extensions have some limitations on noise fraction estimation during the feature extraction, and this leads to poor performances for post-applications. This paper proposes a novel nonlinear feature extraction method for hyperspectral images. Instead of estimating noise fraction by the nearest neighborhood information (within a sliding window), the proposed method explores the use of image segmentation. The approach benefits both noise fraction estimation and information preservation, and enables a significant improvement for classification. Experimental results on two real hyperspectral images demonstrate the efficiency of the proposed method. Compared to conventional KMNF, the improvements of the method on two hyperspectral image classification are 8 and 11%. This nonlinear feature extraction method can be also applied to other disciplines where high-dimensional data analysis is required

    Optimized kernel minimum noise fraction transformation for hyperspectral image classification

    Get PDF
    This paper presents an optimized kernel minimum noise fraction transformation (OKMNF) for feature extraction of hyperspectral imagery. The proposed approach is based on the kernel minimum noise fraction (KMNF) transformation, which is a nonlinear dimensionality reduction method. KMNF can map the original data into a higher dimensional feature space and provide a small number of quality features for classification and some other post processing. Noise estimation is an important component in KMNF. It is often estimated based on a strong relationship between adjacent pixels. However, hyperspectral images have limited spatial resolution and usually have a large number of mixed pixels, which make the spatial information less reliable for noise estimation. It is the main reason that KMNF generally shows unstable performance in feature extraction for classification. To overcome this problem, this paper exploits the use of a more accurate noise estimation method to improve KMNF. We propose two new noise estimation methods accurately. Moreover, we also propose a framework to improve noise estimation, where both spectral and spatial de-correlation are exploited. Experimental results, conducted using a variety of hyperspectral images, indicate that the proposed OKMNF is superior to some other related dimensionality reduction methods in most cases. Compared to the conventional KMNF, the proposed OKMNF benefits significant improvements in overall classification accuracy

    Dimension Reduction by Mutual Information Discriminant Analysis

    Get PDF
    In the past few decades, researchers have proposed many discriminant analysis (DA) algorithms for the study of high-dimensional data in a variety of problems. Most DA algorithms for feature extraction are based on transformations that simultaneously maximize the between-class scatter and minimize the withinclass scatter matrices. This paper presents a novel DA algorithm for feature extraction using mutual information (MI). However, it is not always easy to obtain an accurate estimation for high-dimensional MI. In this paper, we propose an efficient method for feature extraction that is based on one-dimensional MI estimations. We will refer to this algorithm as mutual information discriminant analysis (MIDA). The performance of this proposed method was evaluated using UCI databases. The results indicate that MIDA provides robust performance over different data sets with different characteristics and that MIDA always performs better than, or at least comparable to, the best performing algorithms.Comment: 13pages, 3 tables, International Journal of Artificial Intelligence & Application
    • …
    corecore