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Abstract

Efficient and Scalable Techniques for Multivariate Time Series

Analysis and Search

Aminata Kane, Ph.D.

Concordia University, 2017

Innovation and advances in technology have led to the growth of time series data

at a phenomenal rate in many applications. Query processing and the analysis of

time series data have been studied and, numerous solutions have been proposed. In

this research, we focus on multivariate time series (MTS) and devise techniques for

high dimensional and voluminous MTS data. The success of such solution techniques

relies on effective dimensionality reduction in a preprocessing step. Feature selection

has often been used as a dimensionality reduction technique. It helps identify a sub-

set of features that capture most characteristics from the data. We propose a more

effective feature subset selection technique, termed Weighted Scores (WS), based on

statistics drawn from the Principal Component Analysis (PCA) of the input MTS

data matrix. The technique allows reducing the dimensionality of the data, while re-

taining and ranking its most influential features. We then consider feature grouping

and develop a technique termed FRG (Feature Ranking and Grouping) to improve

the effectiveness of our technique in sparse vector frameworks. We also developed a

PCA based MTS representation technique M2U (Multivariate to Univariate trans-

formation) which allows to transform the MTS with large number of variables to a

univariate signal prior to performing downstream pattern recognition tasks such as

seeking correlations within the set. In related research, we study the similarity search

problem for MTS, and developed a novel correlation based method for standard MTS,

ESTMSS (Efficient and Scalable Technique for MTS Similarity Search). For this, we

uses randomized dimensionality reduction, and a threshold based correlation compu-

tation. The results of our numerous experiments on real benchmark data indicate the

iii



effectiveness of our methods. The technique improves computation time by at least

an order of magnitude compared to other techniques, and affords a large reduction

in memory requirement while providing comparable accuracy and precision results in

large scale frameworks.
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Chapter 1: Introduction

1.1 Time Series

A time series consists of observations recorded on discrete time points (discrete time

series) or continuously through time (continuous time series) at regular time interval.

Continuous time series can be discretized without much loss of information by using

its inherently discrete type or techniques such as sampling or aggregation. Time series

can be univariate or multivariate in nature.

⎛
⎜⎜⎜
⎝

−0.80
−0.29
−0.26
−0.45

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

−0.80 − 0.51 − 1.36
−0.29 − 0.51 − 1.43
−0.26 − 0.70 − 1.07
−0.45 − 1.02 − 0.73

⎞
⎟⎟⎟
⎠

(a) (b)

Table 1.1: Vector representation of a UTS (a), Matrix representation of a
MTS (b)

t1 t2 t3 t4

Var1 -0.80 -0.29 -0.26 -0.45

(a)

t1 t2 t3 t4

Var1 -0.80 -0.29 -0.26 -0.45
Var2 -0.51 -0.51 -0.70 -1.02
Var3 -1.36 -1.43 -1.07 -0.73

(b)

Table 1.2: Table representations of a UTS(a) and MTS(b)

1



1. Introduction

Figure 1.1: Signal(s) representating a UTS(Left) and UTS(right)

A univariate time series (UTS) T of length n pertains to one variable. It can be

viewed as a point in an n dimensional space and expressed as: T= <x1, x2, . . . , xn>,
where xi is a real value in IR.

A multivariate time series (MTS) refers to time series that deal with recordings

of values for more than one variable/attribute at regular interval of times. It can be

viewed as a number of UTS. If m is the number of variables in a MTS A, we can

write: A = (a11, . . . ..a1n), (a21, . . . a2n), . . . . (am1, . . . .amn).

Then, a MTS A that has n instances (of length n) and m variables can be repre-

sented as an n × m element matrix An×m, with n rows and m columns a follows:

An,m =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1,1 a1,2 ⋯ a1,m

a2,1 a2,2 ⋯ a2,m

⋮ ⋮ ⋱ ⋮
an,1 an,2 ⋯ an,m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Time series data represent a large fraction of the world’s supply of data [97] and,

data generated in many applications can be transformed into time series without

much loss of information [58, 56]. Hence, a growing number of applications in areas

such as Finance, Neuroscience, health sciences require the ability to analyze and

process such voluminous data. Unfortunately, when it comes to processing large time

series datasets, the challenges already pertaining to time series in reduced settings

(e.g. high dimensionality, redundancy or noise introduced through data collection

2



1. Introduction

and the presence of dependencies between features) are of greater scale. On the other

hand, most classical techniques are not adequately equipped to gracefully scale to

larger datasets. Hence, pattern recognition on such data involves either tweaking the

existing techniques or coming up with new ones that would adaptively process data

in such environment.

Research in this field has been particularly active in recent years. While much

has been achieved, the proposed techniques mostly focus on UTS and are not easily

applicable to real life scenarios known to be better captured in multivariate abstrac-

tions. Examples include the global economy, in which coexist a number of markets

around the globe, trading a variety of financial products daily. Although one could

be brought to think that, geographical locations or country local sovereignties and

monetary regulation would make of the global financial markets a group of inde-

pendent structures, it has been shown that asset prices often respond to the same

global events [2]. In Neuroscience, the complexity of the human brain; its need

for strong inter-connectivity and cohesion is better captured by also analyzing how

voxels or regions of interest relate to one another than by merely analyzing voxels

individually [85, 34, 52]. A multivariate analysis of time series data often considers

the phenomena from an overall perspective, determines and leverages the intrinsic

structure of the multivariate data, while providing a multi-layered analysis for better

insights. In particular, research using correlation based techniques [48, 51, 100, 103]

such as the Canonical Correlation Analysis(CCA) or Principal Component Analysis

(PCA) have shown that capturing and leveraging the information within MTS can be

crucial in improving efficiency in many data mining areas such as similarity search,

feature-subset selection, clustering, classification, hence the importance of develop-

ing techniques that would work better for multivariate series with large number of

variables.

1.1.1 Notation

This section provides the notation used in this thesis unless otherwise specified.

� D denotes the set of MTS (or, D’ if normalized).

3



1. Introduction

� DU denotes the set of UTS.

� An,m denotes a multivariate TS of n instances with m variables.

� A, A = [aij] denotes a matrix representing the multivariate TS.

� AT denotes the matrix transpose of A.

� V is the right eigenvector matrix of size m×m, Vk is the right eigenvector matrix

of size m × k.

� S is the diagonal matrix of the singular values of A, Sk is the diagonal matrix

of the k largest singular values of A.

� ai,∗ denotes the ith row of the matrix.

� a∗,j denotes the jth column of the matrix.

� ai,j denotes the element entry at the ith row and jth column of the matrix.

� θ the explained variance in the data that are represented within k retained

principal components

� ρ is the Pearson correlation coefficient.

� ϵ is the user specified correlation threshold.

1.2 Thesis Objectives

The foundation of this research stems from two important aspects. First of which is

the need to devise techniques that are better suited for today’s big data characteristics.

And, the second aspect is the necessity to analyses and process data from highly

unified frameworks such as an enterprise risk, the human brain, or a human organisms

as multivariate concepts and rules rather than merely a concurrence of univariate ones.

Highly unified frameworks present multilayed complexities that are better captured

and conveyed through multivariate studies.

4



1. Introduction

This research is focused on devising efficient and scalable techniques for time series

data analysis and search, particularly for MTS, where we primarily relied on the PCA.

The presented techniques retain the crucial underlying characteristics of the orig-

inal MTS data, and leverage its structural properties for better interpretation. They

size-ably reduce the time complexity and memory requirements for large datasets

where storing the whole data in memory or relying on a large time complexity is not

an option.

1.3 Thesis Contributions

This thesis presents a number of efficient and scalable techniques for MTS analysis

and search. Our contributions, described as follows, particularly reside in the domains

of dimensionality reduction and similarity search.

� A feature subset selection technique, the Weighted Scores(WS) technique [48]:

We first study the problem of uncovering the most relevant and discriminative

features in a MTS. We analyze the MTS internal structure to find and leverage

more information about the variables as they all do not equally contribute to the

MTS. The technique relies on statistics drawn from the PCA to determine the

weights of the variables with respect to the whole multivariate dataset and rank

them accordingly. Subsequently selecting the set of most relevant features allows

reducing the dimensionality while retaining the domain interpretability. The

technique is unsupervised and sets a framework for improved efficiency in time

series pattern recognition tasks such as classification, clustering or similarity

search.

� A feature subset selection and grouping technique, the FRG (Feature Ranking

and Grouping technique) [49]: In some practical applications, feature subset

selection alone may disregard important information when seeking for the most

relevant and discriminative features in MTS. Those frameworks include MTS

data exhibiting sparse feature vector structures, or Bio-informatics applications

where dependent features are known to work better in groups than on their
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own. In such cases combining feature selection to feature grouping yields better

results [110]. We present an unsupervised feature selection and grouping tech-

nique, namely FRG, that reduces noise, identifies relevant features, and groups

correlated ones for increased efficiency and accuracy. The technique uses un-

supervised learning through randomized PCA to determine influence and rank

the features accordingly. Correlated features are then subsequently identified,

grouped, and recombined into unique features to allow for a more efficient and

scalable processing of high dimensional MTS.

� A MTS reduction and representation technique, termed M2U(Multivariate to

Univariate transformation) [50]: We present a PCA based MTS transformation

technique that converts the MTS with large number of variables to a UTS prior

to performing downstream pattern recognition tasks such as seeking correlations

within a set of UTS. This technique is particularly important because, on one

hand, the transformation takes into account the correlation between variables,

in addition to decreasing redundancy and noise and, reducing the intrinsic high

dimensionality. Other proposed univariate representations are often not able to

retain the correlation between variables within each multivariate dataset. On

the other hand, substantial recent research studied ways to improve efficiency for

UTS pattern recognition tasks in general, and similarity search in particular [79,

88, 12, 71]. Our proposed representation will allow efficient UTS techniques to

be easily extended to MTS data.

� A UTS transformation and representation technique, TVR(Trend and Value

Representation) [47]: We developed a UTS transformation and representation

technique, TVR(Trend and Value Representation). This technique is obtained

by extending the clipping technique [81, 53, 54] and incorporates the time series

trend information, in addition to the value information in order to better capture

the time series characteristics and providing greater accuracy.

� The formulation of a similarity measure [47] based on a binary weighted dissim-

ilarity measures for mixed types of variables measuring different objects : We
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formulate of a weighted symbolic similarity measure measure based on a binary

weighted dissimilarity measures for mixed types of variables measuring different

objects. Using this similarity measure along with TVR in the pruning phase

allows to substantially reduce the search space in large dataset frameworks.

� An efficient and scalable technique for MTS Similarity Search: We proposed

the use of the three techniques M2U [50], TVR [47] and the proposed symbolic

correlation measure based on a binary weighted dissimilarity measure for mixed

variables [47] in conjunction, to devise an efficient and scalable technique for

MTS similarity search (ESTMSS). The technique improves computation time

by at least an order of magnitude compared to other techniques, and affords a

massive reduction in memory requirement while providing comparable accuracy

and precision results in large scale frameworks.

These techniques contribute, from a general perspective, to the effort looking to

address two sizable challenges that this area encounters: the high dimensionality of

the data which makes it difficult to work with; and the scarcity of effective similarity

search techniques for MTS.

1.4 Thesis Organization

The remainder of this dissertation is organized as follows. We review the background

and related literature in Chapter 2. Chapter 3 presents the feature subset selection

technique Weighted Scores (WS), followed by the feature subset selection and group-

ing technique FRG in Chapter 4. The MTS reduction and representation technique

M2U is introduced in Chapter 5. Chapter 6 discusses the UTS transformation and

representation technique, TVR (Trend and Value Representation), followed by the

formulation of a similarity measure based on a binary weighted dissimilarity mea-

sures for mixed types of variables measuring different objects. Concluding remarks

and future directions are presented in Chapter 7.

7



Chapter 2: Background and Related

Work

Multivariate time series (MTS) data mining presents major challenges and, a fair

amount of pre-processing is often required to improve the usability of the data for

downstream pattern recognition tasks such as similarity search. The greatest chal-

lenges encountered stem from the high dimensionality of the data, both in terms of

length and number of variables, its volume and, the need to accurately assess simi-

larities in time series. Core research activities in this area can essentially be classified

into the following three areas: (1) time series data reduction and transformation, (2)

time series similarity measures, and (3) time series indexing. Reductions and trans-

formation techniques often look to uncover a reduced representation while retaining

the important characteristics of the original data. Similarity measures help identify

patterns and shapes. They assess how alike or different are time series based on given

criteria. Time series indexing structures and techniques support efficient computation

in terms of time and memory requirements. Our research goals and contributions fit

in the first two core areas. In what follows we introduce the background and literature

pertaining to those two core areas.

2.1 Time Series Data Reduction Techniques

Data reduction is widely recognized as an important preprocessing step for pattern

recognition tasks; especially in large data frameworks. In the particular case of time
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series, data reduction can often be seamless. This is due to the fact that time series

data inherently presents a structure such that, it generally exhibits some amount of

redundancy. A given point may influence many nearby observations though auto-

correlation, and two successive data points can often be within a predictable range,

hence presents the possibility to seamlessly reduce the data.

While many data reduction and representation strategies have been proposed, the

techniques must be carefully chosen to ensure their suitability for the data at hand

and, for the intended downstream tasks. Doing so, ensures the effectiveness of the

overall mining technique. Time series data reduction techniques can be generally

categorized in three core areas: data compression, numerosity reduction, and dimen-

sionality reduction; although dimensionality reduction and numerosity reduction may

be considered as forms of data compression.

Data compression techniques primarily provide a strategy to minimize the amount

of data (or number of bits) needed to be stored or transmitted. Compressions can

be qualified as either lossless or lossy. Lossless compressions generally rely on data

redundancies to reduce the data without losing information, and hence, allow for a

recovery of the full information when uncompressed. Lossy compressions on the other

hand, rely on strategies that reduce the data by omitting nonessential information

according to human perception for instance. They ideally present an acceptable level

of information loss with respect to the gain in other aspects such as memory space or

time complexity.

Numerosity reduction techniques use parametric and non-parametric models such

as sampling, histograms or clustering to estimate the original data and replace it by

smaller forms of representation. For instance, in the case of the parametric model,

once the data has been estimated using the parametric model, storing the parameter

rather the original data is common practice.

Dimensionality reduction techniques seek to uncover or devise a rich reduced set

of features that retain crucial underlying structure from the original data. More

formally stated: given a set of n points X = {n ∈ IRd} in a high dimensional Euclidien

space, we look to describe X in fewer dimensions k << n, d without distorting the

Euclidien distance between any two points by much (by less than a well defined small
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ϵ).

Otherwise expressed, define a function f such that ∀xi, xj ∈X

∣∣f(xi) − f(xj)∣∣2 ≈ ∣∣xi − xj ∣∣2. (2.1)

Dimensionality reduction techniques include feature extraction, feature selection

or feature re-engineering techniques. The state or art techniques are often based on

one or a combination of some of four widely used techniques: (1)Fourier transform,

or a derivative of the Fourier transform (2) the Wavelet transform, (3)the Singular

Value Decomposition, and the (4)Random projection technique. Depending on the

type of data at hand, some techniques may be more suitable to consider than others.

In what follow, we introduce those four widely used techniques but first define some

notions that they shared.

Definition 2.1. (Orthogonal Transformation) Given two vectors u⃗ and v⃗, an orthog-

onal transformation T: V -> V of u⃗ and v⃗ to T(u⃗) and T(v⃗) respectively is a linear

transformation which preserves symmetric inner product. In particular, it preserves

the length of the vectors and the angle between the vectors.

Definition 2.2. (Orthonormality) - Given two vectors u⃗ and v⃗ in an inner product

space ( a vector space that has an additional structure called inner product, generaliz-

ing the dot product) , u⃗ and v⃗ are said to be orthonormal if they are both unit vectors

(their lengths are each equal to 1) and are orthogonal (the angle between them is 90).

An orthonormal set of vectors is comprised of vectors that are all pairwise orthogonal

and of unit length.

The Fourier transform [23], originated from results first introduced by Jean

Baptist Joseph Fourier in 1807 stating the feasibility of expressing any piecewise con-

tinuous periodic function with period T , as the sum of a (possibly infinite) set of

oscillating functions, based on the sines and cosines and, whose frequencies are mul-

tiple of the angular frequency ω0 = 2π
T . Those results were further extended to any

periodic function f(t) with period T . Such functions may hence be approximated to
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a sum of their Fourier series (or complex exponentials) and expressed as:

f(t) = a0
2 + ∑∞k=1 (akcos 2kπt

T + bksin
2kπt
T ) where:

a0 = 2
T ∫

T
2

−T
2

f(t)dt,

ak = 2
T ∫

T
2

−T
2

f(t)cos2kπt
T dt, k = 1, 2, 3, . . .

bk = 2
T ∫

T
2

−T
2

f(t)sin2kπt
T dt, k = 1, 2, 3, . . .

The Fourier transform decomposes and analyses a function of time into its fre-

quency domain, rather than its time domain. For data that is discrete in nature

such as time series, the Discrete Fourier Transform (DFT) is more appropriate. This

technique is based on orthogonal transforms where the coefficients are uncovered by

carrying out an inner product between the input signal and a set of orthonormal basis

functions. It is often preferred when the data is periodic due to the periodic nature

of the functions used to approximate the original data. The original time series data

is transformed into frequency components sorted in decreasing order of importance.

As the first few components often carry most of its so called energy, ignoring the

remaining components known as negligible is appropriate. Once the dimensionality

is reduced, the Fourier domain affords a framework where data processing is more

efficient. An approximation of the original features can be reconstructed by using the

available components.

The time complexity of the fast Fourier transform is such as for a time series of

length n, computing the k first component takes Min (O(nlogn), O(kn)). Clearly,

although acceptable some other techniques such as the Discrete Wavelet transform

(DWT) reviewed next, present a better time complexity.

The Wavelet transform is an orthogonal transform and a derivative of the

Fourier transform. The first wavelet transform known as Haar wavelet [28] was intro-

duced by Alfred Haar in 1909 although wavelets were not yet defined as such until

Jean Morelet coined the concept in 1981. Similarly to the way the Fourier transform

relies on the sin and cos functions as its basis functions to decompose other functions,
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the wavelet transform leverages wavelets as its basis functions. With Ψ(t) ∈ L2(R) set
as the mother wavelet, it may be transformed and dilated through critical sampling.

The wavelet transform may be expressed as:

Wf(a, b) = ∫
∞
−∞ f(t) 1√

a
Ψ∗ ( t−ba ) dt ∣b∈R,a∈R+

where b is the translating parameter, indicating the corresponding region, a is the

scaling parameter greater than zero because negative scaling is undefined.

In this framework as well, the discrete wavelet transform (DWT) is more appro-

priate for data with discrete time points such as time series and an inner product

between the input signal and a set of orthonormal basis functions allow to uncover

the coefficients.

The family of DWT present a key advantage over the DFT in that they are multi-

resolution transforms, hence allow to efficiently operate in both the spectral and

time domains. Indeed, although a particular case of the Fourier transform known

as the Short-time Fourier transform (STFT) may provide both time and frequency

information, the resolution in frequency may be limited by the fixed size sliding

window used to uncover its spectrogram. The Wavelet transform affords a framework

that not only enables the intrinsic analysis of the time series’ frequency but also

provides other important insights such as the scale of the time series or time at which

a specific observation occurred.

It is also possible to reconstruct an approximation to the original time series by

using the coefficients that result from the DWT. The scale of the transformation,

or amount of details in the signal, plays an important role in the reconstruction

process. Coarser resolution coefficients pertain to small scales and allow for better

data reconstruction than the higher resolution coefficients that refer to larger scales.

The time complexity of the DWT for a signal of length n is O(n) (wavelet transforms

without compact support may however require O(n2)).
The Singular Value Decomposition (SVD) is an orthogonal linear transfor-

mations in which one assumes all basis vectors to form an orthonormal matrix. It

projects the original dataset in a new coordinate system where the directions are pair-

wise orthonormal. It has been used in many applications primarily for the following

key advantages:
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� reduces redundancies and noise introduced during the data collection process.

� reduces the number of variables while retaining the variability in the data.

� identifies relationships and interactions between variables.

� identifies hidden patterns and classify them according to the amount of infor-

mation stored in the data.

The SVD may be used as an important step in many other powerful dimensional-

ity reduction techniques such as Principal Component Analysis(PCA) [48], Canonical

Correlation Analysis(CCA) [9] or Independant Component Analysis(ICA) [33] among

others. The basis vectors of the SVD are however data dependent which presents both

advantages and disadvantages. Among the disadvantages is the need to store the basis

vectors in addition to the new data points in order to be able to reconstruct the origi-

nal data [114]. Although this technique currently provides the best approximation to

an original matrix, computing the SVD of a large matrix of n instances and m vari-

abes can be expensive with a time complexity of O(min(n2m, m2n)) if randomization

techniques are not used.

TheRandom Projections technique, unlike the DFT, DWT, SVD, is not based

on orthogonal transformations, but rather on a projection of time series randomly to

a lower dimensional space. It is fundamentally based on the Johnson-Lindenstrauss

lemma proposed in 1984 [40] and stated as:

Lemma 2.1. (Johnson-Lindenstrauss Lemma)

For any 0 < ϵ < 1 and any interger n let k be a possitive interger such that

k ≥ 24

3ϵ2 − 2ϵ3 logn (2.2)

then for any set A of n points ∈ IRd

there exists a map f ∶ IRd → IRk such that for all xi, xj ∈ A

(1 − ϵ)∣∣xi − xj ∣∣2 ≤ ∣∣f(xi) − f(xj)∣∣2 ≤ (1 + ϵ)∣∣xi − xj ∣∣2 (2.3)
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The lemma conveys that, given a set of points in a high-dimensional space, they

can be projected and embedded into a lower dimensional subspace, such that distances

between the points are nearly preserved.

For random projections, the lower dimensional subspace is randomly chosen based

on some distribution and, we can seek to have a probabilistic guaranty that the

distance between two time series in the higher dimensional space will have some sort

of correspondence with the distance between the same two time series in the lower

dimensional space. Considering a matrix An×m the original data with m variables

and n observations, then Ak×m = Rk×nAn×m is the random projection of An×m onto a

lower k-dimensional subspace. This technique is carried out by using a random matrix

whose rows have unit lengths Rk×n and projecting the original n-dimensional data onto

a k-dimensional (k << n) subspace. The time complexity of such a transformation

is O(nkm). Unlike DFT, DWT and SVD, the random projection method does not

allow to reconstruct the original data. This technique is known to be efficient for

frameworks with relatively small numbers of very long time series due to the fact

that, the data size k resulting from the reduction does not depend on the time series

instances but on the number of time series [114]. It is however known to be less

effective than PCA for severe dimensionality reduction [24].

In this thesis work, since our intent is to substantially reduce the dimensionality

without impacting time and accuracy, we essentially use either the standard SVD, or

randomized versions of the SVD [30, 17] in our computation of the PCA (discussed

in Chapter 3), which allows to achieve those objectives as we will see in Chapters 3,

4, 5 and 6.

Dimensionality reduction techniques often provide time series representations strate-

gies that afford a framework where large scale data becomes more manageable. Such

representation techniques can primarily be grouped into four classes [81], as illustrated

in Fig. 2.1. The classes are labeled according to the nature of transformation applied

to the data: model based, data adaptive based, non-data adaptive, and data dictated.

Model based time series representation techniques often use the parameters driving

the model to represent the time series. In this case, comparing two times series may

be carried out by checking whether they have the same set of parameters driving the
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Figure 2.1: Time series representation techniques partly extracted from
the taxonomy in [81]

model. Non-data adaptive techniques rely on the same set of transformation parame-

ters for all types of data, regardless of their specificities or of the differences between

their respective features. Most non-data adaptive techniques can be transformed to

data adaptive techniques by adding a data sensitive selection step [21]. Data adaptive

representation techniques assume that, during the transformation process, parameters

of the transformation such as the compression ratio of the data are influenced by the

internal structure of the data. The SVD for instance is a data adaptive representation

technique that works particularly well for data where linear dependencies exist.Data

dictated representation techniques rely on a compression ratio that is data dictated.
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For instance, in the particular case of of the clipping technique, the time series record-

ings are transformed into bits, where each bit value is indicative of the corresponding

point’s position with respect to the average. Clipped data [81, 53, 54], consisting of a

sequence of symbolic bits has the advantage of being directly comparable to the raw

time series data.

Our proposed Trend and Value Representation(TVR) technique incorporates tech-

niques from three different classes: a non-data adaptive technique(Piecewise Aggre-

gation Approximation(PAA)), a data adaptive technique (Symbolic Aggregation Ap-

proximation(SAX)) and a data dictated technique (clipping); although clipping can

be considered a particular case of the SAX representation [81]. Hence, this allowed

to leverage advantages from all three classes of techniques as we will see in Chapter

6.

2.2 Multivariate Time Series Similarity Search Re-

lated Literature

Similarity search can either be regarded as a stand-alone task or as a crucial step

in many data mining tasks such as indexing, classification, clustering or anomaly

detection [79].

An important step in a similarity search process is devising a similarity measure

to assess how alike or different are time series based on given criteria. When seeking

similarities between time series, one can consider many aspects, among which simi-

larity in time, in shape or in change. The similarity in time otherwise implies how

correlated are time series. The similarity in shape seeks for the likeness in patterns of

change, irrespective of the time points. The similarity in change considers the likeness

in auto-correlation structure.

The choice of the similarity measure often depends on a few aspects among which

the type of data at hand, the feature(s) that we look to compare, and the type of

application we are dealing with.

Similarity measures can primarily be classified in to four categories based on the
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paradigms that guide them: shape based measures, edit based measures, feature based

measures, and structure based measures. Shape based measures seek to compare

the general shape of two time series. Edit based measures tend to first transform

the time series to a alternate representation then to assess the minimum number of

operations required for the transform to occur. Feature based measures investigate

and extract important features from original time series then, subsequently compare

the extracted features using a distance measure. The aim of the structure based

measures is a bit similar to that of the shape based measures, with respect to the

fact that they look to compare the time series from an overall perspective. The

structure based measures often seek to find high level structures in the data, which

will allow for a comparison in an overall perspective. The structure based measures are

further considered compression based when they analyses how well the time series can

be compressed together; higher compression ratios make better similarity measures.

On the other hand they are considered model based when the strategy is to fit a

number of time series to a model, then assess the similarity by comparing the model’s

parameters.

The work in this thesis investigated similarities in time and shapes, while linear

dependency was an important factor. We essentially used Pearson correlation as the

measure to assess similarity between two time series.

Research in time series similarity search has attracted the attention of many re-

searchers, resulting in much progress in recent years, particularly for UTS. We can

divide the research activities and results since the 90s to three periods.

The early years, from 1994 to 2003 represent a period which described concepts

along with the technique strategy and provided implementation guidelines. The pro-

posed techniques in this time period mainly focused on UTS and smaller dataset

sizes.

During 2003 to 2008, two tendencies were more pronounced. A first one where

the research investigated techniques proposed at the time and looked to improve

them, or devise more efficient strategies. A second tendency reflected a moment

where the research community had started to understand the importance of devising

techniques for MTS. Indeed, it became clear that many situations are in fact only part

17



2. Background and Related Work

of complex occurrences that involve many interrelated aspects. Such situations are

better represented by multivariate concepts and rules, than by compounded isolated

effects from univariate ones. A MTS data analysis affords a multi-layered analysis,

uncovers interactions between variables, and provides an overarching view of the

internal structure for better insights. Although there were serious attempts at the

time and good progress was achieved, the literature often focused on MTS with low

number of variables.

Since 2008, several solution techniques were proposed to improve similarity search

and related applications such as clustering or classification. We can note three par-

ticular shifts in the current literature.

The first shift represents a tendency of moving away from theoretical “Toy prob-

lems to realistic deployments” [35] to address the real world problems. For instance,

a clear effort to develop techniques that would process time series data as received,

with its imperfections (uncleansed data, different length series, etc.) [35, 36, 92].

The other two shifts are found in the literature looking to address today’s big

data challenges. Those challenges essentially stem from its magnified characteristics

in terms of volume, variety, increased need for velocity, veracity and value.

Where one focuses on processing scalable and efficient search in large size data,

the second one focuses on scalable and efficient search in MTS with larger numbers

of variables and dimensions. The latter is the focus of this thesis work.

The research trend focused on efficient and scalable search in large size data is

mostly directed to UTS (search across large numbers of UTS, millions to trillions

of them) and heavily relies on indexing. In particular, we note the work of Shieh

and Keogh [87] who proposed a technique for indexing and mining terabyte sized

time series, or Camerra et al. [12], for indexing and mining a billion of time series

in later work. In 2012, a study by Rakthanmanon et al. [79] proposed a method for

searching and mining trillions of time series subsequences by combining 4 techniques,

allowing for early abandoning and using Dynamic Time Warping. ”The difficulty of

scaling search to large datasets largely explains why most academic work on time

series data mining has plateaued at considering a few millions of time series objects,

while much of industry and science sits on billions of time series objects waiting to be

18



2. Background and Related Work

explored” [79]. While much has been achieved with the techniques in this trend, they

mostly focus on indexing techniques and on UTS. More work is required to develop

techniques that would work better for MTS.

The second research trend focuses on efficient and scalable search for MTS with

a large number of variables (and often higher number of instances) that generally

follows one of three approaches. In the first approach, each variable within the MTS

is considered independently as a time series [22], and often analyzed separately by

using univariate techniques. While being easier to process, this approach often re-

quires much more computation time. The second approach consists of stacking all

data contained within all variables as a lengthy UTS [46], to be analyzed as such,

using univariate techniques. Like the first approach, this strategy often overlooks the

relationships that exist among the variables and cannot efficiently process a relatively

large number of variables. The third approach, considers the MTS as a whole and

transforms it into a lower dimensional representation that still captures its main char-

acteristics, and the hidden relationships among variables, while rendering the data

more manageable [86, 103, 82]. Although this approach presents more complexity,

it provides more accurate results for similarity search. Techniques of this third ap-

proach can often be classified into two groups; those that deal with streaming time

series data, and the rest. In the following subsections we will review these techniques.

2.2.1 Multivariate Time Series Similarity Search Techniques

for Data in Motion (Streaming Data)

The first group of techniques, proposed to identify patterns in streaming time series,

which is continuous, unbounded, and a timely ordered sequence of data elements

generated and/or collected (at a rapid rate). These series may include multiple mea-

surements at each time point hence, they can be looked at as MTS.

A notable work in this area is an approach for discovering correlations and hidden

variables in multiple streaming time series, introduced through SPIRIT((Streaming

Pattern dIscoveRy in multIple Timeseries) by Papadimitriou et al. in [75]. The dis-

covered information would be used to summarize the entire trend in the set of streams
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and, allow for fast forecasting and outliers detection. This technique is based on PCA

and satisfies some important goals of online streaming algorithms such as automatic

detection of patterns, adapting to the changes in real-time, scaling up linearly with

the number of time series and, suitability for distributed environments.

In a practical application, Sayal et al. [84] introduced a method for extracting

time correlations among multiple stream time series. The proposed method expresses

time correlations as reusable correlation rules and textual representations conveying

observed dependencies or relationships among stream time series. For instance, the

observation that a change in the values of one set of time-series data streams initiates

a chain effect that causes the change in the values of another set of time-series data

streams. For example, if the value of an attribute A increases more than 5%, then

the value of the other attribute B is expected to decrease by more than 10% within

two days. More precisely, in an IT operational environment, a server performance

has a time-delayed impact on database performance that can be quantified according

to proposed rules. The proposed method consists of three main steps. In the first

step, the original time series data was summarized by aggregation at different time

granularities. In the second step, the change points upon which the comparisons were

based were detected using CUSUM in order to reduce the search space and convert

continuous data stream into discrete data stream. In the third step, the correlation

rules were generated. The proposed method used sampling techniques to determine

a few candidates to work with in order to speed up the search.

Wang et al. [99] proposed a technique for similarity search and discovery of pat-

terns in time series. Using a vector quantization technique for dimension reduction

and a symbolic representation of time series, they apply a string matching technique,

LCSS (longest Common subsequence), to compare time series of different lengths.

The authors address the case of a nearest neighbour of the input query with a thresh-

old given for the distance measure. The proposed solution partitions each sequence

into equivalent length segments and uses vector quantization to represent each seg-

ment into a codebook. The similarity measure is then carried out using an extended

version of the LCSS that will allow to compare sequences of different lengths.

Zhang et al. [111] extend the clipping technique [81] to propose a technique for
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correlation analysis in stream time series. Using binary sequences to dynamically

represent streaming time series, a similarity search and clustering operation is ran on

incoming streams. The article focused on fast correlation analysis in a large number

of stream time series and proposed a technique called HBR (Hierarchical Boolean

Representation). The technique processes a large number of incoming stream series,

transform them into boolean series, before to check their pairwise correlation values

against given correlation thresholds. A candidate set is then identified as containing

all series for which their boolean versions are correlated above the given thresholds.

An extension of the Pearson similarity measure is subsequently used to compute the

correlation value between original time series selected as part of the candidate set.

The problem of exploring and identifying correlations among multidimensional

arrays of data stream (particularly between two such arrays in environments with

limited resources) was explored by Wang et al. [100]. For this, they propose to use

an improved version of the standard canonical correlation analysis technique (CCA).

When used in its standard form CCA (or NaiveCCA) does not perform well for

multidimensional time series. This technique , termed ApproxCCA [100] uses an

incremental computation paradigm and low rank approximation technique based on

unequal probability sampling to reduce the dimensionality of the product matrix

(composed by the sample covariance matrix and sample variance matrix). The pro-

posed changes were mainly carried out in two steps: an incremental computation

performed on the variance and covariance matrices, and a low-rank approximation

conducted on the product matrix to obtain the canonical eigenvalue and the canonical

correlation eigenvector.

In recent years we witness more research effort looking to apply real world sit-

uations [36, 80] where data can be efficiently processed with its imperfection (e.g.

uncleansed). An example of such trends is the work in [36] by Hu et al. which is in-

tended to be robust for environments with irrelevant and missing data scenarios. The

technique is based on the general techniques of weighted voting and Bayesian classifi-

cation and, extends the techniques of dictionary-based classification. More precisely,

a framework to classify multi-dimensional time series by weighting each classifier’s

track record is proposed. The classifier’s track record weights are themselves based
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on each stream’s previous track record on the class it is predicting at the moment,

but also on the distance from the unlabeled object.

Raptis et al. [80] presented a real-time wireframe for skeletal motion classification.

The key components of this technique include three aspects: an angular representation

of the skeleton, to render recognition more robustness for noisy input, a cascaded

correlation-based classifier for MTS data with a distance metric based on dynamic

time warping to evaluate the difference in motion between an acquired gesture and,

an oracle for the matching gesture. While the first two key components can be re-used

for other skeletal motion classification scenarios, the oracle for the matching gesture

is specifically tailored for a known canonical time based musical beat. The technique

provides a framework that serves to guide individuals during exercise sessions (in this

case dance instead of rehabilitation).

While some progress has been noted in the area of streaming MTS analysis and

search, it is still in its infancy and more advanced techniques are needed to seamlessly

and adaptively cater to streaming data in large data frameworks, regardless of its

arrival rate. In this thesis work, we developed efficient and scalable techniques for

MTS data at rest that we plan to extend to streaming data frameworks in our future

work.

2.2.2 Multivariate Time Series Similarity Search Techniques

for Data at Rest

The second group of techniques concerns MTS similarity search for data at rest.

While techniques in this group are today increasingly investigating big data challenges

pertaining to MTS with large number of variables and instances, early techniques,

investigated multivariate time series with fairly small number of variables. They

often relied on indexing techniques. Those early techniques included the work of

Vlachos et al. [98], investigating similarity search in the trajectories of moving objects

in two to three dimensional spaces with different orientations. The technique used

an indexing scheme that leverages the hierarchical tree of a clustering algorithm

for nearest neighbor queries. The technique afforded among other things, a time

22



2. Background and Related Work

series normalization strategy, a mapping of trajectories to space that would be robust

against rotations and translation scaling, an elimination of the noise that results from

vertical shifting by mapping the spacial coordinates of the trajectories to sequences

of arcs and angles pairs prior to normalization. It also accommodated assessing the

similarity between variable lengths time series data.

In a similar framework, Chen et al. [14] also studied MTS similarity in relation with

moving object trajectories. Data from such frameworks is known to be carrying much

noise, hence this technique like many others investigated ways to devise a technique

that would be robust against noisy data. An extension to the Edit or Levenshtein

distance was introduced as Edit Distance on Real sequence (EDR). It allowed to

assess the dissimilarity between two objects by counting the minimum number of edit

operations required to transform one object into the other, while handling local time

shifts and assigning penalties to the unmatched parts. The distance measure was

combined with different implementation methods of three pruning techniques, known

as mean Q-gram techniques to improve the retrieval process.

The other strategy within this group of techniques is attempting to reduce di-

mensionality and transform the MTS prior to measuring the similarity for relatively

larger number of variables. This latter strategy seems more suited for multivariate

time series with large number of variables due to the fact that, when careful selected,

the dimension reduction techniques often allow for more efficient data processing. In

this framework, Yang et al. [103], proposed a similarity measure for MTS, based on

PCA, called Eros (Extended Forbenius Norm). The authors propose to represent two

MTS as two matrices (e.g. A and B), whose PCA are computed to uncover their

respective eigenvalues and eigenvectors. The eigenvalues and eigenvectors are then

subsequently used to uncover the dataset weight vector w and measure the similarity

between the two matrices. Provided with the two original matrices and the dataset

weight vector w, the technique assesses the similarity between the two datasets by

computing Eros(A,B,w)=∑n
i=1wi∣ < ai, bi > ∣, where < ai, bi > is the inner product of ai

and bi. This proposed similarity measure does not satisfy the triangle inequality, but

can be provided with an upper and lower bounding by using the weighted Euclidean

distance. In combination with Eros, a search based K nearest neighbors (KNN) for
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MTS is proposed. Experimentally, the proposed solution outperforms the Euclidean

distance(ED), Weighted Sum SVD (WSSVD), Dynamic Time Warping (DTW), and

the PCA similarity factor (SPCA) in terms of precision and recall. It also presents a

better time complexity than the Euclidian distance and DTW.

Yang et al. further investigated the idea in [104] by exploring how the stationarity

of the time series might impact the proposed technique. The time series were first

rendered stationary before processing. A time series is considered stationary if its

correlation is stable, i.e. if its statistical properties such as the mean and the cor-

relation coefficients, do not change over time. Applying Eros on brain stimili time

series rendered stationary showed a performance improvement in precision and recall

of over 24%.

Karamitopoulos et al. [51] proposed a MTS similarity search technique based

on reducing the MTS data set size and dimensionality using a principal component

analysis (PCA) signature prior to measuring similarity. The idea explored in the

paper is the recognition that if two MTS are similar, their PCA representations will

be similar in some way as well. An interesting aspect of this similarity search technique

is that it does not directly rely on applying each time a intensive computation of the

PCA to query frequently arriving object in order to match them to the most similar

objects in a database or classify them into predetermined classes. Rather, the resource

intensive computations of the PCA are conducted only once to build up a database of

PCA signatures, which will be subsequently used to allow the quicker identification

of a query objects most similar correspondent in the database.

Tanaka et al. [94] devised a technique for finding motifs in MTS. This technique,

like many in this group, also relies on the recognition that if two multivariate time

series are similar, their PCA representations will be similar in some way [51, 4]. The

technique first relies on dimensionality reduction and transforms the MTS to a UTS

by applying a standard PCA. It retains the first principal component to be used in the

subsequent steps. The dimensionality reduction is followed by a transformation of the

data to a sequence of symbols using SAX(Symbolic Aggregate Approximation) [67] an

extension of the PAA (Piecewise aggregate approximation) [107, 57] technique. The

technique subsequently looks to find motifs using the MDL (Minimum Description
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Length) principle on all dimensions of the MTS. While, this technique provides good

results for relatively low number of variables, and cases where the first principal

component carries a large amount of the explained variance, computing the standard

PCA algorithm on a large matrix normally requires O(min (n2m, m2n)), which can

be prohibitively expensive in large dataset environments. Techniques transforming

the multivariate time series to the univariate domain often yields better results as

they tend to retain more characteristics from the original data [86, 82].

Banko et al. [4] proposed to use the correlation based dynamic time warping (CB-

DTW) technique to find correlations between MTS for applications in MTS recogni-

tion. This technique goes through three steps to assess the similarity between MTS.

In the first and second steps, the time series of the given database and the query

time series are segmented respectively; in the third step the distance between the

two is assessed. The segmentation strategy is the same for both the query and the

time series contained in the database. A key aspect in this segmentation process is

the need for homogeneous segments, hence correlation was used for that purpose.

The segments are obtained by bottom-up segmentation, where every element of the

whole UTS within a given MTS is handled as a segment and the costs of the ad-

jacent segments are calculated (using special, PCA related cost). Subsequently two

segments with the minimum cost are to be merged. This being a top down strategy,

The merging and cost calculation of adjacent segments continues until some set goal

is reached. After the MTS are segmented, the third step consists of assessing the

DTW dissimilarity between the query and the time series from the database. For

that purpose the PCA similarity factor (SPCA) is uncovered on each segment to feed

the dynamic time warping (DTW) local dissimilarity function. In combing DTW and

PCA based similarity measures, the technique preserves the internal correlation that

exist between variables, and allows for advantages such as a robustness against phase

shifts of the time axis, or accommodating differences in sampling rates. The tech-

nique outperformed peer techniques on the 2004 competition database of signature

verification and the AUSLAN datasets.

In applications to classifications, Esmael et al. [22] proposes a technique for MTS

classification. The technique extends the Symbolic Aggregate Approximation (SAX)
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technique [67] using three new string symbols (U, D and S) to represent the trend of

the time series (UP, Down, Straight). First each variable within the multivariate time

series is divided into a sequence of smaller segments by sliding a window incrementally

across the time series. Then the algorithm transforms the numerical values of each

variable in the given time series into a sequence of ⟨value, trend ⟩ pairs. While a

good level of precision can be expected from this technique because the quantization

happens directly on the data, it will not easily scale to large multivariate dataset

environments, where the number of variables are expected to be sizably larger.

Also in a clustering/classification frameworks, Spiegel et al. [92] proposed an ap-

proach that can be generalized for contextual pattern detection in multivariate sensor

data. The technique consisting of three steps: feature extraction based on important

time series characteristics to devise learning models, uncovering internally homoge-

neous time intervals and change points through segmentation, and finally clustering

and/or classifying time series segments into the sub-population to which they belong

to, based on contextual similarity. The segmentation procedure relies on a PCA based

segmentation technique derived from a time-varying multivariate data segmentation

method. The latter is known to be robust for signal processing and complex drive ma-

neuvers that consist of multiple consecutive time series segments. Examples of such

maneuvers include for instance ”stop and go at traffic lights or overland drives” [92].

In this trend of research as well, much progress has occurred in recent years.

However there is still a need to improve on many aspects of the current available

techniques. As we will see, in Chapters 3, 4, 5, and 6, our introduced techniques

provide improvements on precisions and recall, memory space usage and processing

time when compared to peer techniques.

2.3 Summary

Multivariate Time series analysis has grown in importance, relevance and popularity

in recent years. Traditional methods for uncovering meaningful patterns are no longer

suitable in today’s high dimensional data processing frameworks. In this Chapter, we
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introduced the background and literature pertaining to data reduction and similarity

search in MTS. Although good progress has been achieved, more work is required to

improve on many aspects of the current available techniques. For instance, much of

the current literature for similarity search is still focused on fairly low size multivariate

problems with less than 150 variables. In addition, even finding suitable ways to

reduce and represent time series in the preprocessing stage is still an open problem.

We however believe that better results for MTS analysis and search in large data

frameworks can be achieved by combining some important aspects among which the

following three:

� understanding that high performance data driven discovery or unsupervised

learning in MTS is becoming a necessity in large data frameworks.

� leveraging powerful tools and techniques such as the Principal Component Anal-

ysis(PCA), Randomized Matrix Theory aided by a heightened computational

power,

� adopting a multidisciplinary approaches to allow for a richer and broader re-

search frameworks.

Our contributions in Chapters 3, 4, 5 and 6 follow those lines of thoughts. In the

next Chapter, we introduce an efficient dimensionality reduction, and more precisely

feature selection technique using PCA and based on unsupervised learning.
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Chapter 3: Feature Selection

In this chapter, we introduce the Weighted Scores(WS) technique, an unsupervised

learning technique to identify the top-k discriminative features for multivariate time

series(MTS).

The Weighted Scores technique uses statistics drawn from the Principal Compo-

nent Analysis (PCA) of the input data to leverage the relative importance of the

principal components along with the coefficients within the principal directions of the

data to uncover the ranking of the features. In what follows, we review the back-

ground and preliminaries in Section 3.1, discuss the related work in Section 3.2, and

introduce the technique in Section 3.3. Section 3.4 presents the performance eval-

uation. A summary, our concluding remarks and future directions are presented in

Section 3.5.

3.1 Background and Preliminaries

Innovation and advances in technology have led to the growth of data at a phenomenal

rate. Paradoxically, the existing MTS data reduction, analysis and mining techniques

do not scale well to its current challenges. Among those challenges, the presence

of noise and redundancies in high dimensional data for many practical applications

makes it difficult to uncover important patterns. Hence, most pattern recognition

tasks rely on dimensionality reduction through feature extraction or feature selection

as crucial preprocessing steps, for reasons of efficiency and interpretability, for a better

understanding of the underlying processes that generated the data, but also to build
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a framework that allows downstream pattern recognition tasks such as classification,

clustering or similarity search to perform more efficiently.

While feature extraction and selection both ultimately allow to use a reduced set

of features to achieve higher or similar accuracy results as using all features, they

differ in terms of strategies. On one hand, feature extraction relies on transforming

existing features/variables into a lower dimensional space, and creating a new and

reduced number of features from original features. The new features are conceived

so to have the largest possible variance, since the percentage of explained variance

retained for the new variables indicates the amount of information retained within

the reduced data. The larger the variance retained, the lower will be distortion at

reconstruction. Feature extraction techniques often can uncover the new embedding

space in linear time, making them preferred in terms of computational complexity.

Unfortunately, the transformation process in feature extraction methodologies can

render the newly extracted features difficult to interpret.

On the other hand feature selection (also known as variable or attribute subset

selection), identifies a subset of most relevant features from the original set to be

used for subsequent processes. The difference in reduction strategies makes feature

selection preferred as a dimensionality reduction method for practitioners in cases

where the interpretability of the reduced subset needs to be maintained with respect to

the originally acquired features, or when there are far more features than samples [27].

The feature selection process is however a combinatorial optimization problem, which

is NP Hard [72, 15]. To uncover the needed subset in reasonable time, most techniques

in this area rely on heuristics. In our case, we rather rely on matrix decomposition. We

present a simple yet effective and scalable unsupervised feature selection technique

based on statistics drawn from the Principal Component Analysis (PCA) [41] of

the input data. While this technique leverages the desired properties of the PCA,

it retains the results interpretability of the results by combining the advantages of

feature extraction and selection techniques.

An important aspect of this technique is the recognition that not only the co-

efficient within the principal directions are crucial in identifying the importance of

variables, as seen in major related work [41, 109, 18, 90] but also more importantly
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each principal component should be weighted with its relevance during assessment of

the variable’s weight.

Our empirical evaluation in a large number of application domains using numerous

benchmark datasets indicate our proposed technique improved performance in terms

of accuracy, speed, and scalability.

3.1.1 Principal Component Analysis and Singular Value De-

composition

In this section we review the PCA and SVD techniques which form the basis for our

proposed techniques in Chapters 3, 4 and 5.

The PCA and SVD are orthogonal linear transformations and matrix decompo-

sition techniques that project the original dataset in a new coordinate system where

the directions are pairwise orthonormal. A main advantage of these techniques in

our work is that they guaranty the uncovering of an optimal reduced embedding with

minimal approximation error, and hence retains the crucial underlying structure of

the original data. The PCA and SVD are amongst the most efficiently computable

techniques and powerful tool of choice for reduction of high dimensional data. Be-

sides, these two techniques decrease redundancy and noise, highlight relationships

between the variables, and reveal patterns by compressing the data. They help iden-

tify similarities and dissimilarities as well. Using these two techniques on raw MTS

data often requires some preprocessing such as mean-centering and scaling to adjust

values measured on different scales to a relatively common scale, since PCA is a vari-

ance maximizing technique. In addition, some conditions [93] on the raw input data

have to be met for the results from the PCA/SVD to be numerically stable and valid.

These conditions are primarily as follows:

� The relationships between variables must be linear.

� There should be ”adequate” redundancies amongst the variables through cor-

relation to allow summarization of the variables into a rich, reduced set of

components.
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� The sample data size must be adequate compared to the number of variable.

� No significant outlier must be present in the data since otherwise bias may be

introduced in the computation of the PCA for such data to have more weight

than the remaining data.

Many large datasets occurring in practice meet these conditions and exhibit suitable

characteristics. Due to their sizes, such frameworks often present relationships be-

tween its variables, and are also much prone to redundancies and noise. In cases where

the data fails to meet these conditions, additional preprocessing may be required to

help remediate the issues, explained as follows.

For the first condition, the relationships between variables may be visualized on a

matrix scatterplot, or by randomly sampling variables in large scale settings. When

the relationships are non-linear, transformations can be carried out using non-linear

methods such as linear regression, exponential models among others to achieve lin-

earity.

For the second condition, the adequacy of the redundancy in the dataset can be

uncovered by using the Bartlett’s test of sphericity. While one principal component

will suffice in the cases where the variables are perfectly correlated, in the case where

they are orthogonal (uncorrelated), having to retain a number of component equal to

the number of variable is likely to be expected.

For the third condition, the suitability of the sample size can be tested using the

Kaiser-Meyer-Olkin (KMO) technique. This condition is the most difficult to fulfill

in large scale environments because many datasets, particularly in health sciences

are ”sample starved”. In cases where there are far more variables than samples, a

number of methods have been proposed to test for sampling adequacy. The technique

proposed in [43] to assess the stability of the principal components is particularly

suitable for cases where we have a small sample size compared to a large number of

variables.

While the PCA is often explained through an eigen-decomposition of the covari-

ance matrix (ATA) for an original data matrix An,m, it can be performed through the

SVD of the data matrix. In our work, we consider the latter.
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The relationship between the SVD and the PCA can be uncovered as follows:

Let A be an n × m data matrix and C = ATA/(n − 1) be its m × m covariance

matrix. C is a symmetric matrix that can be diagonalized as C = V DV T where V

and D are respectively the matrices of eigenvectors and eigenvalues λi(on a diagonal

matrix in decreasing order of importance, where i = 1, 2, ..., m). The principal

components, also labeled as PC scores are obtained by projecting the original data

on the eigenvectors, also called principal directions or principal axes. By doing so,

we obtain the transformed variables in AV.

The singular value decomposition of A can also be expressed as A = USV T where S

is the diagonal matrix of singular values si, where i = 1, 2, ..., m. We can then see that,

with C = ATA/(n−1) and A = USV T , C can be rewritten as C = V SUTUSV T /(n−1),
hence C = V S2

(n−1)V
T . This shows that the right singular vectors V are principal direc-

tions and eigenvectors of the covariance matrix can be uncovered from the singular

values by using the relationship λi = s2i /(n − 1). The principal components can also

be uncovered from both AV and US since AV = USV TV , hence as AV = US. Each

principal component points in the direction of maximal variance and excludes the

variance already accounted for by the previous principal components.

The Principal Component Analysis based on the Singular Value Decomposition

of a data matrix can be described as follows:

Let An,m be a matrix with n dimensions and m variables, and k be the dimension of

the space in which we wish to embed the data. Using a Singular Value Decomposition

of the matrix, PCA returns the top k left and top k right singular vectors of A. It

subsequently projects the original data on the k-dimensional subspace spanned by

the chosen column singular vectors.

Definition 3.1. (Singular Value Decomposition) Let A be an n ×m data matrix with

r as its rank. The singular value decomposition (SVD) of A is the factorization

A = USV T , where:

� U is a column-orthonormal n×r matrix whose columns are the eigenvectors of

AAT ,

� S is a diagonal r×r matrix of the singular values si for A, otherwise related
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to the eigenvalues λi of the covariance matrix ATA by λi = s2i /(n − 1), where
λ1 ≥ . . . ≥ λr ≥ 0, and,

� V is a column-orthonormal r×m matrix whose columns are the eigenvectors of

ATA.

For large scale settings, the randomized PCA can similarity be computed using

a randomized SVD. While both the standard and randomized SVD techniques al-

low to uncover the best rank-k approximation of the original matrix, the standard

approaches are computationally expensive, often with O(min(n2m, m2n)) time com-

plexity. Alternatively, the randomized techniques have proven to maintain high accu-

racy relative to the standard techniques while providing far better computational cost

in high dimensional frameworks [30, 29, 17]. These randomized techniques present

different resolution strategies but all often rely on the key paradigm that the original

matrix can be intuitively and carefully approximated, hence, the few needed principal

components uncovered without having to thoroughly compute the full SVD.

From this Singular Value Decomposition, the new matrices that are of interest

for us are matrix S, which contains the singular values, and matrix VT , whose rows

represent the right eigenvectors. Often, a rank-k approximation of the dataset (Ak =
UkSkV T

k ) works well because many datasets in practical applications have structures

such that only the first few principal components are non-negligible.

To identify the number k of principal components to retain we use the relative

percentage variance criterion to translate the amount of variance we wish to retain

in the data to the number of principal components.

Algorithm 3.1 summarizes the steps in uncovering the number of principal com-

ponents to retain. Algorithm 3.2 provides the steps within our proposed technique.

3.1.2 Problem Formulation

A MTS An,m of n instances for m variables/features can be represented as an n×m
matrix A (shown below) in which ai,j is the value of variable vj measured at time-

stamp i, for 1 ≤ i ≤ n, 1 ≤ j ≤m.
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An,m =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1,1 a1,2 ⋯ a1,m

a2,1 a2,2 ⋯ a2,m

⋮ ⋮ ⋱ ⋮
an,1 an,2 ⋯ an,m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
We are interested in the problem of unsupervised feature selection that can be

framed from a general perspective as:

Let A be a data matrix of n instances and m features. The goal is to find the most

informative features within the data matrix, without relying on class labels to guide

the search. The expectation is to preserve the intrinsic structure of the original data

as represented by all features when the data is represented using the selected subset

of features.

The problem of unsupervised feature subset selection is also often considered as an

instance of the column subset selection (CSS)problem [13, 10] defined more formally

as follows:

Definition 3.2. (Column Subset Selection) Let A be an n ×m data matrix of real

numbers and k <m be the number of columns we look to retain to form the matrix C of

dimensions n×k. A column subset selection operation uncovers the k best columns of

A such that the residual ∥A−CC�A∥ξ is minimized over all possibles combinations of

k columns out of m choices for matrix C. Here, CC�A denotes the projection onto the

k-dimensional space covered by the columns of C, ξ= {2, F} denotes the spectral norm

and Frobenius norm respectively, and C� stands for the Moore-Penrose pseudo-inverse

of C.

Essentially in the CSS problem, we seek to retain C columns out of A that best

capture as much as possible of A with respect to the spectral or Forbenius norm.

3.2 Related Work

Feature selection techniques can be classified under two main categories: supervised

and unsupervised. Supervised feature selection methods such as Fisher Score [20] or
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ReliefF [61] usually evaluate the feature importance by uncovering the dependence

between feature and class labeled. These techniques assume that the data is labeled,

while this can’t be assumed for high dimensional frameworks where obtaining labels

can be very expensive or impossible. Unsupervised techniques such as the Leverage

Score sampling [42] use all data points to uncover the hidden structure from unlabeled

data and infer a relation that allows to best categorize the data. Selecting features in

such scenarios is a much more difficult problem and can become intractable (NP-Hard)

very fast since we are dealing with a combinatorial optimization problem [72, 15].

Another categorization of feature selection techniques is based on whether it is a

Filter or Wrapper method. Wrapper methods search for an optimal feature subset

adapted to the specific mining algorithm, which in turn enhances the performance

of the specific learning task. Filter methods on the other hand analyze the intrinsic

properties of the original data, and select highly-ranked features according to some

defined criterion such as variance, entropy, smoothness, density or reliability [27].

Filter methods are known to be more scalable, effective in computation time, and

robust to overfitting.

The literature pertaining to feature selection in general is vast and can be placed

back to about six decades ago [6, 8]. Early techniques where often based on prob-

abilistic strategies [37]. Recent literature is increasingly directed towards strategies

looking to address the challenges that result from high dimensional frameworks [6].

More specifically, and although scarce, some effort has been made to investigate fea-

ture selection in MTS [108, 32, 16, 106]. Those techniques are unfortunately often

supervised relying on wrapper methods, which can often be expensive in large dataset

frameworks. There is a need to develop unsupervised techniques better suited for time

series data in such frameworks.

Recent directions in unsupervised feature selection have included techniques that

looked to identify features that are best at preserving some implied cluster structure

within the dataset. In such cases, the strategy is often to maximize some clustering

performance, while maintain the cluster coherence after the data is represented using

only the selected variables [101].

Other techniques looked into features that favored locality preserving features.
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Such techniques often look for criteria such as the similarity between data instances

and construct a k nearest neighbor graph, in order to retain the features that best

preserve the graph structure [73].

Another set of techniques looked to uncover the features that would be most rep-

resentative of the data. Among those, the variance maximizing methods are known

to be among the preferred ones due to their simplicity and efficiency in conserving the

geometrical structure of the data space. In that particular direction, many techniques

rely on the PCA for efficient unsupervised feature selection. This is primarily due to

the fact that the PCA is known to be one of the most efficiently computable tech-

niques for linear dimensionality reduction. Jolliffe [41] studied different algorithms

using PCA for unsupervised feature selection, where the features are associated with

principal components based on the absolute value of their coefficients and selected

or discarded depending on weather they belong to the first few or last few principal

components. Particularly Jolliffe [42] proposes a method that consists of sampling

columns from the original matrix A that correspond to the largest leverage scores

ℓ
(k)
i , for some rank k < rank(A). The leverage score of the ith column of A ℓ

(k)
i = ∥

[Vk]i,∗∥22 for 1 ≤ i ≤ n is computed as the squared Euclidean norm of the ith row of

the matrix Vk containing the top right singular vectors (otherwise known as principal

directions).

A randomized version of the technique was proposed in Drineas et al. [18], where

for some rank k < rank(A), a probability distribution over the ith columns of A was

defined as pi = ℓ(k)i /k, where Σiℓ
(k)
i = ∥[Vk]∥2F = k and Σipi = 1. It retains C number

of columns sampled from A with probabilities proportional to their leverage scores.

In [109], Yoon et al. determines the contribution of each feature (or band) to the

new features (principal component score image bands in this case of a hyper-spectral

imaging application). The squares of the principal direction coefficients at each band

are computed and normalized to the sum of 1 according to the equation: Wk(i) =
Pk(i)2/Σn

i=1Pk(i)2, i ∈ {1, ..., n}, where Wk(i) is a weighting factor of the i-th feature

of the k-th principal component, and Pk(i) is the principal direction(eigenvector).

All these technique have been quite successful in many application domains and

fundamentally rely on the basic idea of using PCA for feature selection by choosing
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columns according to the magnitude of the coefficients on the principal directions.

Those coefficients are understood as the weights (or the amount of contribution) of

each input variable to the corresponding principal component.

However, an important aspect they overlook is the recognition that by additionally

factoring in the relative importance of each principal component prior to computing

the feature weight, the accuracy in identifying the most relevant features is highly

improved.

3.3 Weighted Scores

In this section, we formally define our proposed technique, and describe its underlying

intuition.

Definition 3.3. (Weighted Scores) - Let Vk contain the top k right singular vectors

of matrix A ∈ Rn×m with rank r = rank(A) s.t. r ⩽ min{n,m} and k ⩽ r. Then, the

(rank-k) weighted score of the i-th column of A is defined as

wS
(k)
i = ∣Σk

j=1wjti,j ∣, for 1 ⩽ i ⩽m, where:

� wj = λj/Σr
z=1λz is the fraction of variance carried by the j-th column in [Vk], for

1 ⩽ j ⩽ k
λj = σ2

j /(n − 1) is the variance corresponding to the jth singular value, conse-

quently to the jth column of [Vk], and λ1 ≥ . . . ≥ λr ≥ 0, and

� wjti,j is the j-th column entry of the i-th row [wVk]i,∗ of the weighted matrix

[wVk].

The goal is to identify the best subset of k features from the original data matrix,

which would retain important characteristics while relying on the PCA. Our pro-

posed technique approaches the problem from a numerical analysis perspective and

utilizes the information contained in matrices S and V resulting from the Singular

Value Decomposition of A expressed as USV T . Here, S carries the singular values in

decreasing order, and the columns of V are the right singular vectors also arranged in

decreasing order of importance. Those right singular vectors in V are known as the

37



3. Feature Selection

eigenvectors of the covariance matrix ATA. Hence, the principal components carry

in decreasing order an explained amount of variance from the data.

Intuitively, if we look to recombine the principal components into a new frame-

work, it will be crucial to factor in their importance/weight in relation to the provided

MTS dataset. The importance/weight is reflected through the proportion of explained

variance retained by the specific j-th principal component labeled wj = λj/Σr
z=1λz in

our technique. To obtain the weighted-matrix wVk, each component within the re-

tained matrix of eigenvectors Vk is multiplied by its corresponding weight wj, where

j = 1,2, . . . , k.
In addition, the entries in each eigenvector provide the regression coefficient of its

corresponding principal component, which in turn is expressed as a linear combina-

tion of all the variables from the original matrix. More precisely, the coefficient of the

ith feature from the original matrix uncovered through PCA is expected to be the ith

entry of the eigenvector.

The first k principal components can be expressed as follows, where X1, ...,Xm are

the original variables within the data matrix A.

a1,1X1 + a1,2X2 + a1,mXm = PC1

a2,1X1 + a2,2X2 + a2,mXm = PC2

. . .

ak,1X1 + ak,2X2 + ak,mXm = PCk

The largest (in absolute value) coefficients of the linear combination identify the

most relevant variables for the given principal component and reveal otherwise hidden,

implied relationships. We must note that we take into account negative coefficients,

since the intent is to uncover the aggregated effect of the variable within the given

dataset.

The (rank-k) weighted score of the i-th column of A is then computed as wS
(k)
i =

∣Σk
j=1wjti,j ∣.
The greater variance along with higher eigenvector’s coefficients (positive or neg-

ative) are considered as the most important factors when selecting a variable in the
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Algorithm 3.1 - Uncover the number k of PCs to retain
Input: A ∈ Rnxm, θ (cumulative variance explained)
Output: k, the number of principal components to retain.
begin

1: Uncover fraction of total explained variance
2: f(k) ← Σk

z=1λz/Σr
z=1λz for all z = {1, . . . , r}

3: Choose the smallest k so that f(k) ⩾ θ and retain that
number of k eigenvectors to keep explained variance θ in
the new embedding.

4: return k

end

ranking process. As illustrated in line 7 of Algorithm 3.2, the features are ranked in

decreasing order of importance to allow for an easier selection process.

The technique leverages advantages from both feature extraction and selection

techniques. It relies on SVD and PCA to find an optimal embedding in the lower

subspace and subsequently identifies the contribution of each original variable.

The Weighted Scores (WS for short) algorithm3.2 summarizes the steps in our

proposed technique.

3.4 Performance Evaluation

To evaluate the effectiveness of the Weighted Scores technique, we implemented the

code in Matlab and conducted numerous experiments on benchmark datasets. We

used a PC configured with Intel Quad core i7 2.00GHz CPU, 8GB RAM, and running

Windows 7.

3.4.1 Benchmark Datasets

The experiments were ran on over fifty synthetic and real time series benchmark

datasets, from many domain applications, including UCR Time Series Classification

Archive [55], UCI repository [66], FMRI datasets from [44, 63, 19], and financial

market datasets [78].
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Algorithm 3.2 - Weighted Scores (WS)

Input: Matrix A ∈ Rn×m of rank-r, θ (cumulative variance explained)
Output: Sr ∈ Rn×c which has the top c most representative ranked features of A.
begin

1: Compute the Singular Value Decomposition
[U,S,V T ]← SV D(A)

2: Compute the proportion of variance carried by each component
For j ← 1 to r
λj ← (s2j/(n − 1)), where sj ∈ S

end for
3: Identify the number k of principal components to retain

k ← Algorithm 3.1(A, θ)
4: M ← Vk

5: Build the weighted matrix [wVk]
For j ← 1 to k

wj ← λj/Σr
j=1λj

[wVk]∗,j ← wj ∗ [M]∗,j
end for

6: Compute the weighted score for each variable

wS
(k)
i = ∣Σk

j=1wjti,j ∣, for all i = {1, 2, ..., m}.
7: Sort the variables according to their weights:

Cn×m ← wS
(k)
1 ≥ ... wS

(k)
i ≥ ... ≥ wS

(k)
m

8: Select the top-c features
Sr ← Cn×c

end
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Table 3.1: Benchmark Datasets

Datasets Features Instances Classes

Arrhythmia 279 452 16
CorAl 6 32 2
Madelon 500 1800 2
Mallat 1024 2345 8
Gisette 5000 6500 2
Ionesphere 34 351 2
Iris 4 150 3
Reuters 5080 1806 2
Soybean 35 47 4
S&P 500 1153 4
Synthetic
Control Chart

60 600 6

In an attempt to uncover how our proposed technique would fair against other

techniques on classical, well-known datasets specifically designed for feature selection

problems, we conducted experiments on datasets other than time series. For that, we

used 5 high dimensional data sets from [27], 25 small benchmark datasets from [26],

and 12 small datasets used in [11].

Our aim has been to cover a wide variety of datasets with different and challenging

characteristics in feature selection. Table 3.1 and what follows provide more details

about the datasets discussed in this section.

The Arrhythmia dataset [66] was generated to distinguish presence and ab-

sence of cardiac arrhythmia.

The CorAl dataset [66, 60] allows to test feature selection in the presence of

highly correlated features, a nonlinear concept and irrelevant features. Its first four

features completely determine the target concept: (A∧B)∨(C∧D). The fifth feature

is irrelevant, while the sixth is highly correlated with a 25% error rate (matches the

class label 75% of the time).

The Fisher Iris dataset [66] is based on Fisher’s linear discriminant model, dis-

tinguishing iris species from each other. While one of the classes is linearly separable

from the other two, the other two are not linearly separable from each other.
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The Madelon dataset [27, 66] presents Gaussian clusters positioned on the

vertices of a hypercube and labeled randomly. It is generated with 20 relevant and

480 noise features. The test set was artificially constructed with 500 variables, 2

classes, and 1800 samples to illustrate the difficulty of selecting a feature set when no

feature is informative by itself, and all the features are correlated with each other [27].

The Mallat dataset [55] is a synthetic dataset known to have difficult signal

patterns. It was used to evaluate the error rate in applying Classification Regression

Tree (CART) to the reduced size data for classifying process fault types.

The MLSP 2014 Schizophrenia dataset [63] was made available as part of

an official competition of the IEEE International Workshop on Machine Learning for

Signal Processing (MLSP 2014). The information was used to select features that

enhance diagnosis on schizophrenic individuals.

The Gisette dataset [27, 66] is high dimensional and generated for a handwritten

digit recognition application. It was used to assess how well different techniques can

separate the two confusable classes: four and nine.

The Ionosphere dataset [66] consists of radar data collected by a system in

Goose Bay, Labrador. Radar signals targeted free electrons in the ionosphere, while la-

beling radars showing evidence of some type of structure in the ionosphere as ”Good”,

and those that do not as ”Bad”.

The Reuters dataset [66] is frequently used in text categorization applications.

It consists of documents that appeared in Reuters newswire in 1987. Each document

was then manually categorized into a topic among over 100 topics.

The Soybean Small dataset [66] is often used in multi-class classification prob-

lems to predict problems with soybean crops from crop data.

The S&P dataset [102] consists of adjusted daily closing stock prices gathered

from Yahoo for 500 stocks that make up the S&P 500 index during 1153 days (from

Jan 2, 2003 to Aug 1, 2007). An 1153×427 matrix was generated and mean-centered

for processing; 73 columns with missing values were discarded. Labels were generated

to also evaluate the performance of unsupervised techniques as part of the study. We

generate 4 classes, one for each time period of the year where data instances occur

(respectively 1st quarter, 2nd quarter, 3rd quarter, 4th quarter).
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Synthetic Control Chart Time Series dataset [66] consists of synthetically

generated control charts data to help define the notion of similarity between time

series. The control chart patterns are time series that show the level of a machine

parameter plotted against time and generated according to the process described in

Alcock and Manolopoulos [1].

3.4.2 Peer Techniques

We compared our technique against the following seven supervised and unsupervised

techniques:

� Clever [105] is an unsupervised technique which uses PCA and leveraging a

Common Principal Components (CPCA) between MTS.

� FSPCA [90], feature selection using principal component analysis (FSPCA)

is unsupervised. It exploits results from a PCA of the covariance matrix to

evaluate the significance of each feature component.

� Fisher Score(FS) [20] is a supervised technique that seeks a subset of features,

such that the distances between data points reflect memberships to classes.

� Leverage Score(LS) [42] is unsupervised and relies on PCA. It samples fea-

tures from the original matrix that correspond to the largest leverage scores.

� Leverage Score Sampling(LSS) [18] is an unsupervised technique, consid-

ered as a randomized version of the technique proposed in [42]. It samples fea-

tures corresponding to probabilities proportional to its largest leverage scores.

� Max-Relevance Min-Redundancy(mrmr) [77] is a supervised technique

which selects good features according to the maximal dependency criterion

based on mutual information.

� ReliefF(RfF) [61] is a supervised technique which estimates the quality of

attributes according to how well their values distinguish between instances that

are near each other.
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Our proposed technique leverages variance as a criterion to identify and rank rele-

vant features. Other techniques based on variance and here compared to our technique

include Fisher Score [20], Leverage Score [42, 18], Clever [105], FSPCA [90]. In these

techniques either the highest ranked features are chosen [42, 105, 20, 90] or features

are randomly sampled, with a probability proportional to their importance [18]. We

also compared our results in this section with techniques based on other criterions

such as dependence (e.g. Max-Relevance Min-Redundancy(mrmr) [77]). The pro-

posed technique outperforms the other techniques in terms of speed and accuracy on

a large number of datasets as shown in the empirical results; details of which follow.

3.4.3 Evaluation and Results

We designed sets of experiments, among which three discussed in this section.

3.4.3.1 Ranking Features and Minimizing the Residual

For this set of experiments, we evaluate the performance of our Weighted Score (WS)

technique against other techniques on a large number of datasets. For each dataset,

we retain the set of k most relevant features and subsequently evaluate the different

methods according to their ability to minimize the residual ∥A − CC�A∥ξ. Here, as

seen in Definition 3.2, A is the original data matrix with all features, C is the matrix

build out of the k identified features and, ξ = {2, F}, where the value 2 denotes the

Euclidean norm and F denotes the Forbenium norm. The goal is to identify which

technique provides the best set of features.

In minimizing the residual ∥A−CC�A∥ξ, figures 3.1, 3.2, 3.3, and Table 3.4 show

that our technique (WS) is best at minimizing the residual. We further analyze the

selected features and their ranking on the Iris, CorAl, Madelon and S&P datasets.

The Fisher Iris dataset has four features, two of which, namely the 3rd and the

4th are good enough to distinguish the underlying classes [66, 112]. As can be seen

in Table 3.2, four of the compared techniques (including ours) accurately picked the

3rd and the 4th features as the most relevant features. Our unsupervised Weighted

Score (WS) technique and the supervised Fisher Score(FS) technique provided the
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Table 3.2: Iris & CorAl Features Ranking

Techniques Feature number Feature number

WS 3 4 1 2 1 2 3 4 6
FSPCA 1 4 2 3 2 3 6 5 1
LS 4 3 2 1 1 3 4 2 6
LSS 4 3 2 1 1 4 6 3 2
Clever 4 1 2 3 2 4 5 6 3
FS 3 4 1 2 1 2 3 4 6
RfF 4 3 1 2 1 3 2 4 6
mrmr 4 2 3 1 1 6 2 3 4

Datasets (Fisher Iris) (CorrAl)

same ranking whereby we have features 3, 4, 1 then 2.

The CorAl dataset is known to have 4 relevant features{1, 2, 3, 4}, one irrelevant
feature {5} and one highly correlated {6} with a 25% error rate (matches the class

label 75% of the time) [66]. All compared methods except for FSPCA [90] and the

Leverage Score technique [42] consistently rank the 4 relevant features {1, 2, 3, 4}
above 6 and 5 (see Table 3.2).

On the Madelon dataset, our proposed technique (WS) along with ReliefF suc-

cessfully returned all the 20 relevant features. Although, as seen in Table 3.5, the

different methods however return a different ranking of the 20 features. Fisher Score

and mrmr also return a good number of the 20 relevant features, respectively 13 and

12 (Table 3.5). Consequently Fig. 3.2, and Table 3.5 show that with 20 features

retained out of the original 500, those four techniques are better at minimizing the

residual ∥A −CC�A∥ξ than the other techniques.

We further assess the performance of the various techniques with different sizes of

retained features. Fig. 3.4 shows the reconstruction error ∥A−CC�A∥ξ for a number

of selected features between 5 and 35. Fisher Score, mrmr, ReliefF, and WS exhibit

a sharp decrease of the residual for selections between 5 features and 20 features, and

a more controlled decrease after 20 features. This behavior illustrates the fact that,
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Tech. Feature number

WS 15 19 17 21 13
FSPCA 19 25 27 5 14
LS 14 20 22 24 19
LSS 11 6 18 19 31
Clever 8 14 17 22 31
FS 5 3 7 1 31
RfF 8 6 16 24 14
mrmr 2 5 3 1 7

Dataset Ionosphere

Table 3.3: Ionosphere top 5 fea-
tures selected by different tech-
niques

Figure 3.1: Inosphere residual min-
imisation for 5 features

Table 3.4: Minimizing the Residual ∥A − CC�A∥ξ on Different Datasets
Using Different Techniques

Arrethmia (20 of 34) Gisette (20 of 5000) Ionosphere (5 of 34) Madelon (20 of 500) Mallat (15 of 1025) Reuters(20 of 5180) S&P( 20 of 427)
Techniques Residual Time Residual Time Residual Time Residual Time Residual Time Residual Time Residual Time

WS 1.657 0.031 376.836 1.374 0.116 0.004 0.010 0.100 0.022 0.979 0.002 6.122 0.0187 0.069
FSPCA 4.585 0.021 3257.888 1.360 0.262 0.005 175.060 0.100 0.031 0.986 3.058 6.139 0.797 0.073
LS 7.574 0.021 3259.343 1.380 0.513 0.004 104.050 0.100 0.118 1.018 1.554 6.522 0.306 0.070
LSS 5.619 0.024 1369.852 1.346 0.335 0.009 17.740 0.100 0.096 1.003 3.376 6.309 0.396 0.068
Clever 32.814 0.732 4181.725 2017.580 0.326 0.058 5.670 4.500 0.091 3.399 3.565 431.475 0.286 0.546
FS 5.665 0.086 2726.849 0.142 0.925 0.004 0.080 0.100 0.029 0.271 1.788 455.186 1.196 0.038
RfF 14.033 0.853 669.300 43.737 1.234 0.177 0.010 15.700 1.098 66.763 0.542 112.379 0.252 5.570
mrmr 52.861 0.087 4181.725 0.598 1.259 0.007 0.080 0.400 0.774 1.045 5.020 0.925 1.112 0.358

for up to 20 features, those particular techniques are progressively selecting relevant

features with higher weights within the dataset. These observations are consistent

with what is known of the dataset (it was generated with 20 relevant and 480 noise

features). As seen in Fig. 3.4, while the four techniques(mrmr, Fisher Score, ReliefF

and WS) select some of the same features for subset sizes between 5 and 35, WS

appears to be selecting the best set each time, followed by ReliefF and mrmr. In par-

ticular ReliefF and WS select the same set of 20 best features. We must note that, of

the four feature selection techniques performing well on this dataset, three techniques

(mrmr, Fisher, ReliefF) are supervised, while our technique (WS) is unsupervised.

Experiment results on the time series dataset S&P shown in Fig. 3.5 indicate that

our technique consistently outperforms the remaining techniques for selected features
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Figure 3.2: Madelon residuals min-
imization for 20 features

Figure 3.3: Arrethmia residual
minimization for 5 features

Table 3.5: Madelon Dataset 20 Most Representative Features Selected
Using Different Algorithms

Techniques 20 Most Relevant Features Selected from Madelon

WS 106 337 456 65 494 339 454 154 476 434 319 242 282 379 129 49 443 29 473 452
FSPCA 223 256 407 251 331 18 148 322 188 221 406 200 413 243 313 52 402 334 350 286
LS 69 388 41 138 224 4 64 74 1 86 141 170 171 175 264 448 452 15 17 37
LSS 268 401 218 179 106 445 23 162 74 301 463 204 486 209 479 227 40 361 99 369
Clever 29 106 282 339 54 77 100 107 139 196 237 246 275 285 359 406 442 467 467 482
FS 476 242 337 65 129 106 49 379 339 443 473 454 494 324 425 206 412 205 283 297
RfF 379 49 476 242 319 339 443 29 473 452 494 154 282 434 454 106 337 129 65 456
mrmr 242 49 129 443 337 379 454 65 473 494 339 106 297 324 11 425 476 299 283 412

between 20 and 300.

3.4.3.2 Discriminative Power of the Selected Features

In this set of experiments we investigate how well do the subsets of features, selected

by different algorithms, help in separating classes. For that purpose, different fea-

ture selection algorithms are used to identify and select the top-k features from each

dataset (20 features in both cases of the Synthetical- Control dataset in Fig. 3.6 and

the Soybean dataset in Fig. 3.7).

The synthetical-Control dataset consists of synthetically generated control charts

data to help define the notion of similarity between time series. In some cases the

Euclidean distance can be quite large while time series are still similar. Hence Alcock
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Figure 3.4: Reconstruction error ∥A − CC�A∥ξ for selected features (5 to
35) on the Madelon dataset.

and Manolopoulos [1] proposed to transform the series using the DFT, into feature

vectors prior to computing their similarities using a distance function. The data

is stored in an ASCII file, with 600 rows and 60 columns, a single chart per line,

and 6 classes (Normal, Cyclic, Increasing trend, Decreasing trend, Upward shift and

Downward shift). Because the Fourier space preserves the Euclidien distance of two

signals [1], the dataset provides a good testing space for clustering and classification

problems.

The Soybean dataset was gathered from information regarding plant conditions(e.g.

mold growth) and environmental conditions such as temperature, precipitation etc.

to help predict diseases in soybean crops. In this experiment, the small version of the

dataset was used with four classes of diseases(diaporthe-stem-canker(D1), Charcoal

Rot(D2), Rhizoctonia Root Rot(D3), Phyrophtora Rot(D4)).

The selected subset of features for each dataset(Synthetical-Control Charts and

Soybean) is used to perform the PCA and original data samples are projected onto

the first two principal components.The classes within both datasets each present a
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Figure 3.5: Reconstruction error ∥A − CC�A∥ξ for selected features(20 to
300) on the S&P dataset.

number of dots which all bear the same color as seen on Fig. 3.6 and Fig. 3.7. The

results on Fig. 3.6 show that, along with the Fisher Score technique, WS is best at

separating the classes in the Synthetical-Control Charts dataset. Furthermore, the

results in Fig. 3.7 shows that our technique outperforms all the remaining techniques

in classifying the Soybean dataset.

3.4.3.3 Classification Improvement with Feature Elimination

Our feature selection technique was also evaluated on the MLSP 2014 Schizophrenia

Classification Challenge dataset [63]. In this specific experiment we looked to assess

how the proposed feature selection technique contributed to improving classification.

We used two classifiers from the Matlab Statistics and Machine Learning Toolbox:

the linear Super Vector Machine(SVM) and Subspace K-Nearest-Neighbors(KNN). In

both cases, the classification accuracy improves as we eliminated 45% of the features.

Our technique shows that the first principal component carried 99.54 of the ex-

plained variance (Table 3.6), and returns 55 percent of the features (101 features) as
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Figure 3.6: Synthetic Control data projection on the first two principal
components

Figure 3.7: Soybean data projection on the first two principal components
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Table 3.6: Percentage of variance explained for the first 6 principal com-
ponents

Principal Component PC1 PC2 PC3 PC4 PC5 PC6
Variance Explained (%) 99.545 0.226 0.142 0.05 0.02 0.017

Figure 3.8: Classification improvement with feature elimination

relevant (Fig. 3.8).

On one hand when the number of retained features is below 101, the accuracy

decreases, due to the fact that relevant features are missing. On the other hand,

when the number of retained features is over 101, the accuracy is affected due to the

fact that irrelevant features were being introduced.

Identifying and leveraging the relevant set of features allows improving classifica-

tion accuracy in the this dataset.

3.5 Summary

In this chapter we proposed a new feature selection technique using Principal Com-

ponent Analysis. It leverages the desired properties of the principal components by

identifying the features that allow to retain the maximum variability of the data, hence

to minimize the reconstruction error. Our experiments on numerous real datasets in-

dicate that while our technique picks the top most representative k features in terms
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of accuracy, its computation time is comparable to the other efficient PCA based tech-

niques while it enjoys at least an order of magnitude better than other techniques.
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Chapter 4: Feature Selection, Group-

ing and Engineering

We also study the problem of uncovering the most relevant and discriminative features

in sparse MTS and in environments where dependent features work better together.

Existing solution techniques often rely entirely on feature selection. We believe that

one should also consider interactions among the feature vectors and combine fea-

ture section to feature grouping for improved results. In this chapter, we propose an

unsupervised feature selection and grouping technique that reduces noise, identifies

relevant features and groups correlated ones. For this, we first apply unsupervised

learning through a randomized PCA to uncover influencial features and rank them

accordingly. The correlated features are then identified, grouped, and recombined

into unique feature vectors to allow scalable and high performance query processing

over high dimensional MTS. We carried out numerous experiments to evaluate the

performance of the proposed technique using well-known benchmark datasets in dif-

ferent application domains. Our results indicate improved efficiency while providing

increased accuracy in most cases.

In what follows, we review the background and preliminaries in Section 4.1, discuss

the related work in Section 4.2, and introduce the technique in Section 4.3. Section

4.4 presents the performance evaluation. A summary, our concluding remarks and

future directions are presented in Section 4.5.
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4.1 Background and Preliminaries

In many fields, practitioners work with large amounts of MTS data to find interesting

and meaningful patterns. Effective management and processing of such data have pro-

gressively become very challenging due to the overwhelming growth in volume, high

dimensionality and complexity, as well as increased amount of noise and redundan-

cies in such frameworks. Processing such data often leads to high computational cost

and massive memory requirements. Furthermore, identifying and extracting useful

information require preprocessing steps such as feature grouping or dimensionality

reduction for many practical applications. Dimensionality reduction can often be

achieved through feature selection or extraction, both of which yield a rich reduced

set of features, however they differ in their approaches.

On one hand, feature extraction relies on transforming the existing feature vari-

ables and creating a new and often reduced number of richer features as a function

of the original features. For instance, in the particular case of PCA, the new fea-

tures are conceived so to have the largest possible variance, since the percentage of

explained variance retained in the new variables indicates the amount of information

retained within the reduced data. The larger the variance retained, the lower will

be the distortion at reconstruction. Feature extraction techniques often can uncover

a new optimal embedding space in linear time, making them preferred in terms of

computational complexity. They are generally based on preprocessing steps such as

normalization, standardization, discretization, signal enhancement, coordinates trans-

formations or local feature extraction. Unfortunately, such transformation processes

can render the newly extracted features difficult to interpret.

On the other hand, feature selection (also known as variable or attribute subset

selection) identifies the subset of features that best captures adequate information

from the original set to be used for successful and enhanced subsequent processes.

The immediate interpretability that results from retaining a subset of the original

variables makes feature selection as a preferred dimensionality reduction strategy for

practitioners in cases where the construability of the acquired subset of features with
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respect to the original features is to be maintained, or when the number of features

is sizeably larger than the number of samples [27]. The feature selection process is

however a combinatorial optimization problem, which is NP-Hard. To overcome that

challenge, most proposed techniques rely on solving, learning, or discovery methods

to uncover the set of relevant features in reasonable time.

While feature subset selection aims to identify and retain a reduced set of the

most influential features within a dataset, the existing techniques tend to overlook the

underlying relationships between the feature vectors. Investigating those relationships

often reveals the presence of groups within the given data which leads to uncovering

important characteristics that could otherwise be missed. The importance of such

groupings particularly reveals itself in sparse feature frameworks or in cases where

dependent features are known to work better together in groups than individually.

Recent research directions, have for instance, shown that many datasets in practice

present a structure such that correlated features work better in groups than when

considered individually [110]. Hence feature dependence or correlation has become

one of the most widely used means of uncovering groups within a dataset. We present

a simple, yet efficient unsupervised feature selection technique that reduces noise,

identifies the most influential features and groups the correlated ones.

The technique first relies on unsupervised learning, hence data driven discovery,

through randomized PCA to uncover influence and rank features accordingly. Corre-

lated features are then subsequently identified, grouped and, re-structured into unique

features to allow for a more efficient and scalable processing of high dimensional MTS.

The technique combines advantages from both feature extraction and selection

techniques by leveraging desired properties from the PCA, and retaining interpretabil-

ity through the selection of a subset from the original features. It also reveals more

insights about the data and improves accuracy by uncovering and leveraging fea-

ture groups within the given subset. Our experimental results on a large number of

application domains and well studied benchmark datasets indicate its performance.
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4.1.1 Problem Formulation

A MTS An,m of n instances with m variables can be represented as an n ×m matrix

A (shown below) in which ti,j is the value of variable vj measured at time-stamp i,

for all 1 ≤ i ≤ n and 1 ≤ j ≤m.

An,m =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t1,1 t1,2 ⋯ t1,m

t2,1 t2,2 ⋯ t2,m

⋮ ⋮ ⋱ ⋮
tn,1 tn,2 ⋯ tn,m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

We are interested in the problem of unsupervised feature selection and grouping that

can be framed from a general perspective as follows:

Let A be a data matrix of n instances and m features. The goal is to find the

most ”informative” features within the data matrix, by data driven discovery, hence

without relying on class labels to guide the search. By ”informative” we mean features

that best capture the underlying structure of the data. We also seek to group and re-

combine correlated features within the selected subset. The expectation is to preserve

as much as possible of the original data intrinsic structure within the selected subset

of relevant and non redundant features, to allow for enhanced results when conducting

downstream processes.

The unsupervised feature subset selection problem is often considered an instance

of the column subset problem (CSS) [13, 10] defined in Section 3.2.

We use a randomized SVD algorithm [30], to identify and retain the k first prin-

cipal components according to the relative percentage variance criterion. The k prin-

cipal components carry the amount of variance we wish to retain from the data.

4.2 Related Work

The literature pertaining to feature selection in general is vast and can be placed

back to about six decades ago [6, 8]. Early techniques where often based on proba-

bilistic strategies [37]. A large variety of strategies have since been proposed. Recent
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literature is increasingly directed towards strategies looking to address big data chal-

lenges pertaining to the high volume and dimensionality, as well as to the increasing

amounts of noise and redundancies.

More specifically, and although scarce, some effort has been made to investigate

feature selection in MTS [108, 32, 16, 106]. Those techniques are unfortunately often

supervised which can be expensive in large dataset frameworks. There is a need to

develop techniques better suited for time series data in such frameworks.

While the proposed feature selection techniques generally succeed in identifying a

subset of most relevant features, they often fail to uncover and leverage some im-

portant relationship between variables, which would otherwise provide more insight

into the data. Consequently, feature grouping is increasingly becoming a very im-

portant tool to further reduce the dimensionality, bring out the intrinsic relationship

that could otherwise be missed and eliminate redundancies [113, 110, 96]. This is

particularly true in sparse vector environments where feature grouping yields very

good results [110]. Leveraging feature interactions is also important in practical ap-

plications such as in Bio-informatics where dependent features are known to work

better in groups than on their own. For instance studies have shown that, due to

their functionality, genes are required to be considered within given groups for more

meaningful results, when gene activity studies are being conducted [65].

Early feature grouping techniques include techniques from the fused lasso family

such as fused Lasso [95], graph based fused lasso [59] and a generalization of the

fused Lasso technique [25], but also Elastic-Net [115], OSCAR (octagonal shrinkage

and clustering algorithm for regression) [7] and, the Variable Grouping in Multivari-

ate Time Series Via Correlation [96]. The fused lasso family of techniques uses some

sparse fused regularizers to penalizes the differences between coefficients and accord-

ingly link features. These techniques however are often not able to find the feature

groups automatically from the data but rather require them to be provided in order to

achieve sparse modeling. The Elastic-Net [115] technique is considered an extension

of the lasso technique and provides similar sparsity representations. It uses both ℓ1

and ℓ2 regularizers and forces the coefficients of highly correlated features to be close
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in high dimensional frameworks. While this is very efficient in grouping highly corre-

lated features, it can miss cases where variable are highly correlated but of different

magnitudes. OSCAR [7] allows for feature selection and automatic feature grouping

using ℓ1 and ℓ2 regularizer and a pairwise ℓ∞ regularizer; the ℓ1 regularizer is used for

feature selection purposes, while the ℓ∞ regularizer serves to group the features and

reduce redundancies automatically. It is however not always easily applicable due to

the complex nature of its proximity operator and its optimization process that can be

computationally expensive. The technique proposed in [96] groups MTS by primarily

leverages time lagged correlations between variables to uncover relationships. The

MTS is decomposed into smaller groups of MTS, where variables within the same

group are highly correlated according to Spearman correlation measure, while they

are relatively independent of one another when residing in different groups. The tech-

nique uses a genetic algorithm among other strategies for grouping features.

Much of the recent effort for feature grouping has also relied on feature dependence

measurements, such as Mutual Information(MI) [91, 62] or correlation coefficient mea-

sures [68, 110] to study the underlying structure of the data. The mutual information

is often used in these settings when the goal is to quantify the amount of information

that one can gain about one variable from what is known about another variable,

while the correlation coefficient is rather used to reveal the strength of the linear

dependencies between two variables. While some progress has been noted in recent

years, more work pertaining to feature selection and grouping is needed to better

address today´s data challenges in high dimensional and high volume frameworks.

4.3 FRG: Feature Ranking and Grouping

The proposed technique, FRG presents a two steps approach. In the first step, it

uncovers the feature relevance and ranks the variables accordingly. It subsequently

identifies, groups, and combines correlated features in the second step.

Given a MTS represented in the form of a matrix An×m and a correlation threshold

ϵ, our goal is to identify the most influential features (according the their weights)
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while grouping and recombining features that are correlated to those influential fea-

tures, within the chosen subset, with a correlation value greater than ϵ.

Definition 4.1. (Relevant and Primary) Let A ∈ Rn×m be a matrix with rank r =
rank(A) such that r ⩽min{n,m} and k ⩽ r. Let Vk be the matrix containing the top

k right singular vectors of A, and Sk be the matrix containing the top k singular values

of A. We consider DU , the set of m features (UTS) that make up A, and DU(k) (sorted

in descending order) the subset of the k most relevant features from DU . Then, we say

a feature Xi of the matrix A is ”Relevant and Primary” if, for all Xi,Xj ∈DU(k)

such that i < j, whenever ρ(Xi,Xj) ≥ ϵ, then ŵ
(k)
i ≥ ŵ

(k)
j . Xj is subsequently included

in the group GXi
containing Xi and removed from DU(k), with:

� DU(k) is the set of the k most relevant features of A.

� GXi
is the group containing all features correlated (with correlation over ϵ) to

Xi, and Xi is the primary feature in that group.

� ρ(Xi,Xj) is the pairwise Pearson correlation value of Xi and Xj, and ϵ the

correlation threshold

� ŵ
(k)
i = ∣Σk

j=1wjvi,j ∣, for 1 = 1,2, ...,m,

– ŵ
(k)
i is the ith element entry of ŵ, and the weight of feature variable Xi.

– wj = λj/Σr
z=1λz, the fraction of variance carried by the jth column in Vk,

for j = 1,2, ..., k

– λj = σ2
j /(n − 1) is the variance corresponding to the jth singular value,

consequently to the jth column of Vk, and λ1 ≥ . . . ≥ λr ≥ 0

4.3.1 Feature Weighting and Ranking

We use randomized PCA to reveal the relevance of the given features and rank them

accordingly. We expect this to help chose the subset of features that best captures the

structure of the original data. Let us consider the factorization A ≈ UkSkV T
k resulting
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from the SVD of the matrix A. From this factorization, our proposed technique uses

matrix Sk which contains the singular values, and matrix Vk
T , whose rows represent

the eigenvectors of the covariance matrix ATA to compute statistics that will reveal

relevance. The basic idea that allows to compute those statistics known as variable

weights or weighted scores [48] stems from the composition of the factoring matrices

Sk and Vk. Indeed, the column entries of a vector within Vk provide the regression

coefficients of its corresponding principal component, which in turn is expressed as a

linear combination of all the variables from the original matrix. The most relevant

variables for the given principal component are reflected through the largest positive

or negative coefficients of the linear combinations. Hence, the entries within each

eigenvector already provide a sense of how important or influential each variable is

within the specific principal component.

In addition when considered with respect to the whole dataset, each eigenvector

reflects a different level of importance. Indeed, they represent in decreasing order an

explained amount of variance from the data. The diagonal entries of the matrix Sk,

also sorted in decreasing order of importance, allow to uncover the fraction of variance

carried by each principal component. For instance, with σj as the jth diagonal entry of

Sk, the fraction of explained variance retained by the specific jth principal component

is computed as wj = λj/Σr
z=1λz with λj = σ2

j /(n − 1).
Let us consider the weight vector ŵ containing all the m variable weights. To

obtain the weight ŵ, we multiply each principal direction by its importance, or cor-

responding percentage of variance. Hence, we multiply the matrix Vk of principal

directions by the vector Λk carrying the respective fractions of explained variances

for the principal directions. The weights’ vector ŵ is then expressed as ∣VKΛk∣ and,
its ith entry ŵ

(k)
i corresponds to the weight of the ith original variable Xi expressed

as ŵ
(k)
i = ∣Σk

j=1wjvi,j ∣.
The variables are subsequently sorted according to their weights in decreasing order

to reveal the most influential ones. To identify the number k of variables to retain

we use the Broken-Stick method [64]. Steps 1 to 4 in the Algorithm summarize the

variable weighting and ranking process.
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4.3.2 Feature Grouping and Reduction

The second step in our proposed technique consists of identifying dependent features,

gathering them into groups and re-combining each group into a univariate feature

through PCA.

We use Pearson’s product-moment coefficient [76] as the measure to assess the

dependence between features. The Pearson correlation measure is known to be robust

against data that is not normalized and to respond better to baseline and scale shifts

when compared to other measures [114].

Let Xi and Xj be two features from A. The Pearson correlation coefficient of Xi,

Xj denoted ρ(Xi,Xj) is a value in [-1,1] that measures the linear dependency between

Xi and Xj , defined as follows:

ρ(Xi,Xj) =
∑n

t=1 (xi − xi) (xj − xj)√
∑n

t=1 (xi − xi)2
√
∑n

t=1 (xj − xj)2
(4.1)

where xi is the mean of Xi over n and xj is the mean of Xj over n. The Pearson

correlation coefficient can be approximated to the Pearson product moment, expressed

as follows:

ρ(Xi,Xj) =
1

n − 1
n

∑
t=1

xixj

SxiSxj

(4.2)

where xi = (xi − xi) , xj = (xj − xj), Sxi= [(1/n − 1)∑n
t=1 xi

2]1/2,
and Sxj=[(1/n − 1)∑n

t=1 xj
2]1/2.

As defined in Definition 4.1, a feature Xi of the data matrix A is considered rele-

vant and primary if for every Xj in the sorted set DU(k) of the k most relevant features

of A, whenever ρ(Xi,Xj) ≥ ϵ, it holds that ŵ
(k)
i ≥ ŵ

(k)
j and that Xj is included in

the same group GXi
that contains Xi, and hence removed from DU(k). The feature

grouping and reduction process happens as follows:

Given a user specified correlation threshold ϵ, our goal is to identify the most influen-

tial features and group them with lesser influential ones that are strongly correlated to

them (with correlation value greater than the given threshold ϵ), within the selected
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subset. The approach unfolds according to the following steps:

1. Pick the first elementXi from the ordered setDU(k) of k most influential features

(sorted in descending order).

2. Group correlated features:

� Find every other feature in DU(k) whose correlation with Xi is not less

than a threshold value ϵ. Remove all such features from DU(k) and include

them into a group called GXi
in which Xi is the primary feature. If no

such feature exists, then Xi will be the only feature in GXi
; keep Xi and

the process continues at step 4.

3. Run a local randomized PCA [30] on the group GXi
and select the first principal

component’s scores as the new feature to represent the whole group.

4. Pick the next element of the updated ordered set of features. Steps 2 and 3 are

repeated until no more feature could be added to the list of most influential and

non redundant features.

Algorithm 4.1 summarizes the steps for feature grouping and reduction from line

6 to 15.

4.4 Experimental Set Up and Results

To evaluate the effectiveness of our proposed selection and grouping technique FRG,

we implemented the proposed algorithm in Matlab and conducted numerous exper-

iments on benchmark datasets, using a configured PC with Intel Quad core i7 2.00

GHz CPU, 8 GB RAM, and running Windows 7.

4.4.1 Benchmark Datasets

The experiments were ran on over fifty synthetical and real time series benchmark

datasets, from a wide range of domain applications, including UCR time series clas-

sification archive [55], UCI repository [66], FMRI datasets from [44, 63, 19], and
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Algorithm 4.1 - Feature Ranking and Grouping (FRG)

Input: A ∈ Rnxm

Output: Sr ∈ Rn×k is spawned by the k most influencial features of A.
begin

1: FEATURE RANKING
2: Compute the truncated Singular Value Decomposition

[Uk, Sk, V
T
k ]← Randomized SV D(A)

3: Uncover the variable weights and populate ŵk, the vector of
weighted scores
ŵk ← ∣VKΛk∣ with Λk = diag(S2

k ./Σk
i=1sii)

Note: ŵk
i corresponds to the weight of the ith feature variable

and can be expressed as ŵk
i = ∣Σk

j=1λjvi,j ∣
4: Sort the variables according to their weights in decreasing

order both in the weights vector ŵ and the set of features DU

ŵk ← ŵk
1 ≥ ... ŵk

i ≥ ... ≥ ŵk
m

DU ← X1 ≥ ... Xi≥ ... ≥ Xm

5: Uncover the number k of most influential features to retain
k ← Broken stick method(ŵk)
DU(k) ← X1 ≥ ... Xi≥ ... ≥ Xk

6: FEATURE GROUPING
7: i ← 1,
8: Set the first element of the sorted set DU(k) to be Xi

while( exist(GetNextFeature(DU(k), i))) do
Xi ← SetNextFeature(DU(k), i)
j ← i

9: Successively set the remaining items from DU(k) to Xj

to assess how dependant they are with Xi

while( exist(GetNextFeature(DU(k), j))) do
(Xj ← SetNextFeature(DU(k), j))
j ← j + 1

10: Compute their pairwise correlations
ρij ← ∣ρ(Xi,Xj)∣

11: Insert the features correlated to Xi in the feature
group GXi and delete it from the set DU(k)

If (ρij ⩾ ε) then add Xj to set GXi and delete
Xj from DU(k)

end while
12: If GXi is not empty then add Xi to GXi and compute

the local Randomized PCA of the Group GXi

13: Select the first PC’s scores to replace the feature Xi, at its
original position in DU(k)

i← i + 1
14: end while
15: return Sr
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Table 4.1: Benchmark Datasets

Datasets Features Instances Classes

CBF 900 128 3
Coffee 28 286 2
Coil 17 340 2
Congress 16 435 2
ChlorineC 3840 166 3
CorAl 6 32 2
EEG Arethmia 279 452 16
ECG 5000 4500 140 5
EEG EyeState 15 14980 2
Face 350 88 4
FMRIStarplus 80 74000 2
Heart 13 270 2
Madelon 500 1800 2
Gisette 5000 6500 2
Ionesphere 34 351 2
Iris 4 150 3
Pima 8 768 2
Reuters 5080 1806 2
Soybean 35 47 4
Synth ctrl 60 600 6
Trace 100 275 4
Two Patterns 4000 128 4
UPS 13 270 2

financial market datasets [78]. In an attempt to uncover how the proposed tech-

nique would fair against other techniques on classical well-known datasets specifically

designed for feature selection problems, we also conducted experiments on datasets

other than time series. For these we used 5 high-dimensional data sets from [27], 25

small benchmark datasets from [26], and 12 small datasets used in [11]. Our aim was

to be as thorough as possible by considering a wide variety of datasets with different

and challenging characteristics for feature selection. We provide more details about

the datasets discussed in this section in Table 4.1 and in what follows.
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4.4.2 Peer Techniques

We compared our results against those of the following eight supervised and unsu-

pervised techniques:

� Clever [105] is unsupervised, using PCA and leveraging a Common Principal

Components (CPCA) between MTS.

� FSPCA [90], feature selection using principal component analysis (FSPCA)

is unsupervised. It exploits results from a PCA of the covariance matrix to

evaluate the significance of each feature component.

� Fisher Score(FS) [20] is a supervised technique that seeks a subset of features,

such that, the distances between data points reflect memberships to classes.

� Leverage Score(LS) [42] is unsupervised and,relies on PCA. It samples fea-

tures from the original matrix that correspond to the largest leverage scores.

� Leverage Score Sampling(LSS) [18] is unsupervised, considered a random-

ized version of the technique proposed in [42]. It samples features corresponding

to probabilities proportional to its largest leverage scores.

� Max-Relevance Min-Redundancy(mrmr) [77] is supervised and selects

good features according to the maximal dependency criterion based on mutual

information.

� ReliefF(RfF) [61] is supervised and estimates the quality of attributes ac-

cording to how well their values distinguish between instances that are near to

each other.

� Weighted Scores(WS) [48] is an unsupervised learning technique that iden-

tifies the top-k discriminative features by leveraging statistics drawn from the

principal components. Its intuition is based on the fact that principal compo-

nents must have different weights when being recombined in a new framework

with respect the whole dataset. Our proposed feature selection and grouping

technique(FRG) is an extension of the Weighted Score (WS) technique.
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Our proposed technique leverages variance as a criterion to identify and rank rele-

vant features and uses Pearson correlation as a way to assess the dependence between

the selected features. Other techniques based on variance that we considered and com-

pared to our technique include Fisher Score [20], Leverage Score [42, 18], Clever [105],

and FSPCA [90]. In these techniques either the highest ranked features are cho-

sen [42, 105, 20, 90] or features are randomly sampled with a probability proportional

to their importance [18]. We also compared our results with techniques based on other

criteria such as dependence (e.g., Max-Relevance Min-Redundancy(mrmr) [77]). Our

proposed technique outperforms the other techniques in terms of speed and accuracy

on a large number of datasets as shown in our results, details of which follow.

4.4.3 Evaluation and Results

We designed sets of experiments described as follows.

4.4.3.1 Ranking Features and Minimizing the Residual ∥A −CC�A∥ξ

For this set of experiments, we evaluate the performance of our Feature Selection and

Grouping Technique (FRG) against other techniques on a large number of datasets.

For each dataset, we retain the set of k most relevant features and subsequently

evaluate the different methods according to their ability to minimize the residual

∥A −CC�A∥ξ. Here, A is the original data matrix with all features, C is the matrix

built out of the k identified features, and ξ = {2, F}, where the 2 denotes the Euclidean
norm and F denotes the Forbenium norm. The goal is to identify which technique

yields the best set of features.

In minimizing the residual ∥A−CC�A∥ξ, figure 4.1 to 4.3 show that our techniques

(FRG and WS) are best at minimizing the residual. We must note that, the first step

of our proposed technique (FRG) provides the same set of features than the Weighted

Scores (WS) technique. In cases where the selected features are not correlated over

a given threshold ϵ, the selected subsets of features remain the same. However, for

cases where linear dependencies are noted between features, with correlations values

greater than ϵ, the correlated features are re-grouped and recombined, to provide
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Table 4.2: Iris & CorAl Features Rank-
ing

Techniques F. number F. number

FRG 3 4 1 2 1 2 3 4 6
WS 3 4 1 2 1 2 3 4 6
FSPCA 1 4 2 3 2 3 6 5 1
LS 4 3 2 1 1 3 4 2 6
LSS 4 3 2 1 1 4 6 3 2
Clever 4 1 2 3 2 4 5 6 3
FS 3 4 1 2 1 2 3 4 6
RfF 4 3 1 2 1 3 2 4 6
mrmr 4 2 3 1 1 6 2 3 4

Datasets (Iris) (CorrAl)

Table 4.3: Ionosphere top 5
features selected by different
techniques

Tech. Feature number

FRG 15 19 17 21 13
WS 15 19 17 21 13
FSPCA 19 25 27 5 14
LS 14 20 22 24 19
LSS 11 6 18 19 31
Clever 8 14 17 22 31
FS 5 3 7 1 31
RfF 8 6 16 24 14
mrmr 2 5 3 1 7

Dataset Ionosphere

one feature per group. The Madelon [27, 66] dataset presents an example of such

cases. It is made of Gaussian clusters positioned on the vertices of a hypercube and

labeled randomly. The dataset was generated with 20 relevant and 480 noise features

and considered high dimensional. On this dataset, our proposed technique (FRG),

in its first step, along with Weighted Scores (WS) and ReliefF successfully returns

all 20 relevant features. The correlated features selected by FRG are subsequently

regrouped and re-engineered in its second step. Table 4.4 shows the resulting set of

ten features for FRG, when the correlation threshold ϵ is set to 0.98. Fisher Score

and mrmr also return a good number of the twenty relevant features, respectively 13

and 12 (see Table 4.4). Consequently Fig. 4.1 shows that, with 20 features retained

out of the original 500, those five techniques are better at minimizing the residual

∥A −CC�A∥ξ than the remaining techniques.

Feature ranking is also an important aspect in bothWS and FRG. It uncovers early

in the process which features best capture the structure of the data and, specifically

for FRG, it helps identify the features that are relevant and primary. We further

investigate the performance of the various techniques on the Madelon, Iris and CorAl

datasets in relation with feature ranking. Fig. 4.3 shows the reconstruction error
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Figure 4.1: Madelon residuals
minimization for 20 features

Figure 4.2: Inosphere residual
minimisation for 5 features

Table 4.4: Madelon dataset 20 Most representative features selected using
different algorithms

Techniques 20 Most Relevant Features Selected from Madelon

FRG ϵ>0.98 P106,129 P337,65 456 P494,454 339 P154,434,282 P476,242 P319,29,452 P379,49 P443,473

WS 106 337 456 65 494 339 454 154 476 434 319 242 282 379 129 49 443 29 473 452
FSPCA 223 256 407 251 331 18 148 322 188 221 406 200 413 243 313 52 402 334 350 286
LS 69 388 41 138 224 4 64 74 1 86 141 170 171 175 264 448 452 15 17 37
LSS 268 401 218 179 106 445 23 162 74 301 463 204 486 209 479 227 40 361 99 369
Clever 29 106 282 339 54 77 100 107 139 196 237 246 275 285 359 406 442 467 467 482
FS 476 242 337 65 129 106 49 379 339 443 473 454 494 324 425 206 412 205 283 297
RfF 379 49 476 242 319 339 443 29 473 452 494 154 282 434 454 106 337 129 65 456
mrmr 242 49 129 443 337 379 454 65 473 494 339 106 297 324 11 425 476 299 283 412

∥A −CC�A∥ξ for a number of selected features between 5 and 35 from Madelon. We

note a sharp decrease of the residual for selections between 5 and 20 features, and

a more controlled decrease after 20 features, for Fisher Score, mrmr, ReliefF, WS

and FRG. This behavior illustrates the progressive selection of very relevant features

with much weight within the dataset. These observations are consistent with what

is known of the dataset (it was generated with 20 relevant and 480 noise features).

While the five techniques(mrmr, Fisher Score, ReliefF, WS and FRG) select some

of the same features for feature subset sizes between 5 and 35, as seen on Fig. 4.3 ,

FRG and WS appear to be selecting the best sets each time, followed by ReliefF and

mrmr.
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Figure 4.3: Reconstruction error ∥A − CC�A∥ξ for selected features (5 to
35) on the Madelon dataset.

The Fisher Iris dataset is known to present a structure such that two of its features

(the 3rd and the 4th) are sufficient to distinguish the underlying classes [66, 112]. As

can be seen in Table 4.2, six of the compared techniques (including ours) accurately

picked the 3rd and the 4th features as most relevant features.

The CorAl dataset characteristics are such as, 4 features are known to be relevant

{1, 2, 3, 4}, one irrelevant feature {5} and one highly correlated {6} with a 25%

error rate (matches the class label 75% of the time) [66]. Table 4.2 shows that of

the compared methods, all but FSPCA [90] and the Leverage Score technique [42]

consistently rank the 4 relevant features {1, 2, 3, 4} above 6 and 5.

We should note that, of the five feature selection techniques which performed well

on these datasets, mrmr, Fisher, and ReliefF are supervised, while our techniques

(WS and FRG) are unsupervised.

4.4.3.2 Classification Improvement with Feature Selection and Grouping

Our feature selection technique was also evaluated for classification performance on

a large number of dataset.

Our feature selection technique was also evaluated for classification performance

on a large number of dataset. In this specific experiment we looked to assess how
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Figure 4.4: Classification accuracy of the nine techniques on a number of
dataset.

the proposed feature selection technique contributes to improving classification. We

used two classifiers from the Matlab Statistics and Machine Learning Toolbox: the

linear Super Vector Machine (SVM) and Subspace K-Nearest-Neighbors (KNN). In

most cases, as illustrated on Fig. 4.4, the classification accuracy for FRG improves

when compared to that of WS. In applying correlation based feature grouping and

reduction along with feature selection, FRG affords a framework with much more

reduced computational cost and memory requirements for downstream applications

while improving accuracy.

4.5 Summary

In this chapter we proposed an efficient unsupervised feature selection and grouping

technique using PCA. It leverages the desired properties of the principal components

by identifying the features that allow to retain the maximum variability of the data,
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and hence results in reduced reconstruction error. In addition, our technique groups

and re-combines correlated features to allow for additional insights in the data and

enhanced accuracy for downstream pattern recognition tasks. It furthermore sub-

stantially reduces the dimensionality by removing a large number of misleading re-

dundancies while retaining the important information for the learning process. Our

experiments on numerous real datasets indicated the effectiveness of our technique.

We are currently working on extending the proposed technique to application frame-

works in which uncovering and grouping non-linearly dependent features is of interest.
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Chapter 5: Transformation and Sim-

ilarity Search

Multivariate time series (MTS) data mining has attracted much interest in recent

years as increasing number of applications require the capability to manage and pro-

cess large collections of MTS. In those applications, carrying out pattern recognition

tasks such as similarity search, clustering, or classification can be challenging due

to the high dimensionality, noise, redundancy, and feature correlated characteristics

of the data. Dimensionality reduction is consequently often used as a preprocess-

ing step to render the data more manageable. We propose in this chapter a novel

MTS similarity search technique that addresses the challenge through dimensional-

ity reduction and correlation analysis. An important contribution of the proposed

technique is M2U, a technique allowing to transform an input MTS data with large

number of variables to a univariate signal prior to searching for correlations within

the set. The technique relies on unsupervised learning through PCA to uncover and

use the weights associated with the original input variables in the univariate deriva-

tion. We conduct numerous experiments using various benchmark datasets to study

the performance of the proposed technique. Compared to major existing techniques,

our results indicate increased efficiency while providing improved similarity search

accuracy. In what follows, we review the background and preliminaries in Section

5.1, discuss the related work in Section 5.2, and introduce the technique in Section

5.3. Section 5.4 presents the performance evaluation. A summary, our concluding

remarks and future directions are presented in Section 5.5.
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5.1 Background and Preliminaries

Innovation and advances in technology have led to the growth of data at a phenomenal

rate. The existing MTS data reduction, analysis and mining techniques unfortunately

do not scale well to its current challenges. The challenges include high dimensionality

of the data, both in terms of the number of variables and the length of the time

series, presence of noise and redundancies which make it difficult to uncover important

patterns for many practical applications. Most pattern recognition tasks rely on

dimensionality reduction as a crucial preprocessing step, for reasons of efficiency and

interpretability, for a better understanding of the underlying processes that generated

the data, and for easier downstream pattern recognition tasks.

The choice of reduction techniques requires careful considerations to ensure their

suitability for the data at hand and downstream tasks, hence the effectiveness of

the overall proposed technique. In similarity search for instance, when a much re-

duced representation is needed, MTS reduction techniques often follow one of three

approaches. In the first approach, each variable within the MTS is considered in-

dependently as a time series [22], and often analyzed separately by using univariate

techniques. While being easier to process, this approach often requires much more

computation time. The second approach consists of stacking all data contained within

all variables and form a UTS [46], to be analyzed as such using univariate techniques.

Like the first one, this approach often overlooks the relationships that exist among

the variables and cannot efficiently process a relatively large number of variables.

The third approach, considers the MTS as a whole and transforms it into a lower

dimensional representation that still captures its main characteristics, and the hid-

den relationships between the variables, while rendering the data more manageable.

Although this approach presents more complexity, it provides more accurate results

for the similarity search [86, 103, 82].

We propose a similarity search technique based on dimensionality reduction and

time series correlations analysis. An important aspect of this technique is its repre-

sentation basis on PCA which allows transforming the input MTS with large number
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of variables to a UTS prior to looking for correlations. This is particularly important

because, on one hand, the representation takes into account the correlations between

variables within each multivariate dataset, in addition to decreasing redundancy, noise

and, reducing its intrinsic high dimensionality. Other proposed univariate representa-

tions are often not able to retain the correlation between variables [22]. On the other

hand substantial research and progress in making UTS pattern recognition tasks in

general, and similarity search in particular, very efficient on large datasets has oc-

curred in recent years [79, 12, 71]. Our proposed representation technique allows

efficient UTS techniques to be easily extended and deployed to MTS.

5.1.1 Problem Formulation

A univariate time series (UTS) X = < x1, x2, ..., xn > of dimension n is a sequence

of real values for a variable measured at n different timestamps. A MTS An,m of n

instances for m variables can be represented as an n×m matrix A (shown below)

in which ai,j is the value of variable X∗,j measured at time-stamp i, for 1 ≤ i ≤ n,

1 ≤ j ≤m.

An,m =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1,1 a1,2 ⋯ a1,m

a2,1 a2,2 ⋯ a2,m

⋮ ⋮ ⋱ ⋮
an,1 an,2 ⋯ an,m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
We are interested in the problem of similarity search in MTS defined as follows:

Definition 5.1. (MTS similarity search)

Let D = {A1
n,m,A

2
n,m...,A

q
n,m} be a set of MTS, each of which containing n instances

and m variables; and ϵ be a user specified correlation threshold value. A MTS similar-

ity search retrieves all pairs of times series Ai and Aj in D such that their coefficient

of correlation is greater than ϵ, for 1 ≤ i, j ≤ q.

Similarity search techniques in time series can be classified into two categories:

subsequence search and whole sequence search. Here, we focus is on whole sequence
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search and use Pearsons product-moment coefficient [76] as the measure for similarity

between two time series.

5.1.2 Number of Principal Component to Retain

Algorithm 5.1 - Find the number kmax of PCs to retain

Input: D′ = {A1
n,m,A

2
n,m...,A

q
n,m} a set of normalized MTS, θ cumulative variance to

retain from each MTS.
Output: The number kmax of principal components to retain from each MTS s.t. kmax =
max(k1, k2, ..., kq)
begin

1: kmax ← 0
2: for i← 1 to q do
3: Uncover fraction of total explained variance
4: f(k) ← Σk

z=1λz/Σr
z=1λz for all z = {1, . . . , r}

5: Choose the smallest k so that f(k) ⩾ θ and retain that
number of k eigenvectors to keep explained variance θ
in the new embedding.

6: if k > kmax then kmax ← k
7: end for
8: return kmax

end

In our proposed technique, we use a randomized version of the SVD technique [30].

To identify the number of principal components to retain from each MTS, we use the

relative percentage variance criterion [41] to translate the amount of variance we wish

to retain in the data to the number of principal components. The number k of relevant

principal components may vary for different MTS, consequently kmax, representing

the largest of all identified ks, are to be retained. Algorithm 5.1 summarizes the steps

in uncovering kmax.

5.2 Related Work

Transforming MTS into lower dimensional time series has been an interesting research

topic for which many dimensionality reduction methods have been proposed. Those
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broadly adopted include Independent Component Analysis (ICA) [38], Random Pro-

jection (RP) [5, 24], and Principal Component Analysis(PCA) [94, 5, 24].

The Independent Component Analysis technique allows to find a new basis in

which to represent the multivariate data. It can be considered a generalization of

the PCA technique since the latter can be used as a preprocessing step in some ICA

algorithms. However, while the goal in PCA in is to capture the maximum variance

of data or minimize reconstruction error, the goal of ICA is to minimize the statistical

dependence between the basis vectors. ICA however presents limitations that include

the inability to determine the order of the independent components and the need for

input time series data with non-Gaussian distribution.

The Random Projections technique is based on the Johnson Lindenstrauss lemma

proposed in 1984 [40]. Unlike the PCA, it is not based on orthogonal transformations

but rather on random projections to a lower dimension based on some distribution.

The lemma conveys that given a set of points in a high-dimensional space, they

can be projected and embedded into a chosen much lower dimension subspace in

such a way that distances between the points are nearly preserved. In the case of the

random projection, the lower dimension where we look to embed the data is randomly

chosen based on some distribution and we seek to have a probabilistic guaranty that

the distance between two time series in the higher dimensional space will have some

sort of correspondence with the distance between the same two series in the lower

dimensional space. Considering a matrix An×M the original data with m variables and

n observations, then Ak×M = Rk×nAn×M is the random projection of An×M onto a lower

k-dimensional subspace. This technique is carried out by projecting the original n-

dimensional data onto a k-dimensional (k << n) subspace, by using a random matrix

whose rows have unit lengths Rk×n. This data reduction technique is efficient for

frameworks with a relatively small collection of very long time series length due to

the fact that the data size k resulting from the reduction does not depend on the

length of the time series but rather the number of time series [114]. It is however

known to be less effective than PCA for severe dimensionality reduction [24].

The PCA technique is an orthogonal linear transformations in which one assumes

all basis vectors to form an orthonormal matrix. It projects the original dataset in
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a new coordinate system where the directions are pairwise orthonormal. A main

advantage of PCA in our work is that it guaranties the uncovering of an optimal

new embedding with minimal approximation error, and hence retains the crucial

underlying structure of the original data. In addition to reducing dimensionality, the

transformation decreases redundancy and noise, highlights relationships between the

variables and reveals patterns by compressing the data while expressing it in such a

way that highlights their similarity and dissimilarity. In addition, if two MTS are

similar, their PCA representations will also be similar [51, 103]. Many similarity

search techniques [103, 94, 4, 51] have relied on PCA for MTS processing as it is

known to be one of the most efficiently computable techniques and a powerful tool

of choice in high dimensional data environments for linear dimensionality reduction.

PCA is however also limited by the fact that, as a new set of features is generated,

the reduced form of the data is still a matrix. Retaining the first principal component

in order to transform the data to a univariate signal has been explored with some

level of success in the literature [94]. However, since principal components carry in

decreasing order portions of the explained variance from the data, in order to retain

enough information in the new representation, one would need to retain at least a

few principal components in most cases. Hence the reduced form of the data would

remain in a matrix form.

5.3 M2U Transformation

Given a set of MTS D= {A1
n,m,A

2
n,m...,A

q
n,m} and a user specified correlation threshold

ϵ, our goal is to identify all pairs of time series in D whose Pearson correlation value

is not less than ϵ. The proposed technique follows a two-steps resolution process. It

first uses a novel transformation technique (M2U) to transform MTS to a UTS, then

seeks pairwise correlations within the set of newly generated univariate series, using

the Pearson product moment correlation. An important aspect about the proposed

representation resulting from the M2U transformation is that it allows efficient UTS

pattern recognition techniques to be easily extended to MTS.
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5.3.1 M2U : Multivariate Time Series to a Univariate Time

Series Transformation

In this section, we present the transformation process and describe its underlying

intuition. Line 2 to 13 in Algorithm 5.2 provides the transformation steps.

Definition 5.2. (Multivariate to Univariate Transformation (M2U)). Let A ∈ Rn×m

be a matrix with rank r = rank(A) s.t. r ⩽min{n,m} and k ⩽ r. Let Vk be the matrix

containing the top k right singular vectors of A and Sk be the matrix containing the

top k singular values of A. Then, the (rank-k) univariate representation of A is defined

as [Un,1]ki = Σm
v=1ai,vŵv , for i = 1,2, ...,m, where:

� ai,v is the element of matrix A at row i, and column v.

� ŵj = Σk
z=1wzej,z, for j = {1,2, ...,m} is the weight of the column variable j within

the given multivariate dataset, called weighted score defined below.

� [Un,1]ki = Σm
v=1ai,vŵv is the i-th entry of the newly generated UTS Un,1.

We assume that each MTS Ai
n,m in D of n instances for m variables can be

represented as an n×m normalized matrix A (shown below).

Each column variable X∗,j holds a particular weight or importance ŵj with respect

to the whole data matrix An×m [48]. Let us consider ŵ, the weight vector containing

all variable weights.

X∗,1 X∗,2 ⋯ X∗,m

An,m =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1,1 a1,2 ⋯ a1,m

a2,1 a2,2 ⋯ a2,m

⋮ ⋮ ⋱ ⋮
an,1 an,2 ⋯ an,m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Intuitively, to transform a MTS to a UTS in a new framework, we will need to un-

cover and take into account the variable’s importance or weight in the reconstruction

process.
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Algorithm 5.2 - M2U and Pairwise Correlation Search

Input: D′ = {A1
n,m,A

2
n,m...,A

q
n,m} a set of normalized MTS, θ (cumulative variance

explained), ϵ a user specified Pearson correlation threshold.
Output:A set C of all pairs (Ai,Aj) in D’ whose correlation is not less than ϵ.
begin

1: Estimate kmax using Algorithm 5.1.
k ← kmax

2: for i← 1 to q do
3: STEP1: Reduce MTS Ai ∈D′ to UTS U i, add it to DU

4: A← the ithMTS of rank r, in D’,Ai
n,m

5: Compute the Singular Value Decomposition
[U,S,V T ]← SV D(A)

6: Retain a matrix of k eigenvectors
7: M ← Vk

8: Build the weighted matrix [wVk]
For z ← 1 to k

wz ← λz/Σr
z=1λz

[wVk]∗,z ← wz ∗ [M]∗,z
end for

9: Compute the weighted score for each variable

ŵ
(k)
j ← ∣Σk

z=1wzej,z ∣, for all j = {1, 2, ..., m}.
10: Build the weighted matrix [ŵA]

For v ← 1 to m
ŵv ← ŵ

(k)
v

[ŵA]∗,v ← [A]∗,v ∗ ŵv

end for
11: Uncover row entries for the new univariate signal Un,1

[Un,1]i ← Σm
v=1ai,vŵv, for i = {1, 2, ..., n}

12: add [Un,1] to DU

13: end for
14: STEP2: Uncover correlated pairs
15: For all (U i, U j) ∈DU

16: Compute their pairwise Pearson correlations
17: If ( ∣ρ(U i, U j)∣ ⩾ ϵ ) then add (Ai,Aj) to C

end
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5.3.1.1 Finding the Weighted Scores(Variable Weights)

We rely on unsupervised learning through a principal component analysis of the input

data to uncover the variable weights (weighted scores) within ŵ. We use information

drawn from the diagonal of the matrix S and the rows of matrix V (from the factor-

ization A = USV T ) to computed statistics that reveal influence on the columns of the

original matrix A.

Let us first note that the entries in each column of V = ATUS� (where S� denotes

the Moore pseudo-inverse of S) provide the regression coefficients of a corresponding

principal component, which in turn is expressed as a linear combination of all vari-

ables from the original matrix. More precisely, the coefficient of the ith new feature

component uncovered through PCA is expected to be the ith entry of the eigenvector.

The first k principal components can be expressed as follows, where X1, ...,Xm are

the original variables within the data matrix A.

e1,1X1 + e1,2X2 + e1,mXm = PC1

e2,1X1 + e2,2X2 + e2,mXm = PC2

. . .

ek,1X1 + ek,2X2 + ek,mXm = PCk

Just as the principal components can be expressed as a linear combination of all the

variables from the original matrix, the original variables can also be defined as linear

combinations of the principal components. The rows of V each concern a specific

variable and are considered rescaled data projected onto the principal components; the

data is indeed rescaled according to the singular values to ensure that the covariance

is identity.

In the multivariate to univariate transformation process, we wish to uncover the

influence of the original variables with respect to the input data. Thus, we will seek to

retain coefficients that are ”unscaled”. Such coefficients will account for the relative

portions of variance carried by the principal components.

Definition 5.3. (Weighted Scores) Let A ∈ Rn×m be a matrix with rank r = rank(A)
s.t. r ⩽min{n,m} and k ⩽ r. Let Vk be the matrix containing the top k right singular
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vectors of A and Sk be the matrix containing the top k singular values of A. Then,

the (rank-k) weighted score of the i-th column of A is defined as ŵ
(k)
i = ∣Σk

j=1wjei,j ∣,
for i = 1,2, ...,m.

where:

� wj = λj/Σr
z=1λz, the fraction of variance carried by the j-th column in [Vk], for

1 ⩽ j ⩽ k and

� λj = σ2
j /(n − 1) is the variance corresponding to the jth singular value(σj), con-

sequently to the jth column of [Vk], and λ1 ≥ . . . ≥ λr ≥ 0.

Let us note that the weight w within the weighted score is reflected through the

proportion of explained variance retained by the specific principal component. For in-

stance if we consider the jth principal direction, its weight labeled wj is wj = λj/Σr
z=1λz.

A matrix [wVk] of weighted principal directions is then constructed by multiplying

each component within the retained matrix of eigenvectors Vk by its corresponding

weight wj.

E1 E2 ⋯ Ek

Vk =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e1,1 e1,2 ⋯ e1,k

e2,1 e2,2 ⋯ e2,k

⋮ ⋮ ⋱ ⋮
em,1 em,2 ⋯ em,k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

w1E1 w2E2 ⋯ wkEk

[wVk] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w1e1,1 w2e1,2 ⋯ wke1,k

w1e2,1 w2e2,2 ⋯ wke2,k

⋮ ⋮ ⋱ ⋮
w1em,1 w2em,2 ⋯ wkem,k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Subsequently, the row entries of the weighted matrix [wVk] are aggregated as per

line 9 of Algorithm 5.2 to provide the variable weights vector ŵ.

ŵ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∣w1e1,1 +w2e1,2 +⋯ +wke1,k∣
∣w1e2,1 +w2e2,2 +⋯ +wke2,k∣

⋮ ⋮ ⋱ ⋮
∣w1em,1 +w2em,2 +⋯ +wkem,k∣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ŵ1

ŵ2

⋮
ŵm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The variable weights vector ŵ entries expressed as ŵj = ∣Σk
z=1wzej,z ∣, for j = {1,2, ...,m},
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are the original weights for the column-variables within the given multivariate dataset.

5.3.1.2 Deriving the Univariate Signal

Once the variable weights are uncovered, the next step consists of building a weighted

matrix [Aŵ] by factoring the original data matrix An×m and the variable weights

vector ŵ. More precisely, as shown on lines 10 and 11 of Algorithm 5.2, each column

of An×m is factored by its corresponding weight and the row entries of the weighted

matrix are subsequently aggregated to form the new univariate derivation.

Un,1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1,1 a1,2 ⋯ a1,m

a2,1 a2,2 ⋯ a2,m

⋮ ⋮ ⋱ ⋮
an,1 an,2 ⋯ an,m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∗

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ŵ1

ŵ2

⋮
ŵm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Σm
v=1a1vŵv

Σm
v=1a2vŵv

⋮
Σm

v=1anvŵv

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

An important aspect of this representation technique is that it uses statistics

drawn from the PCA to leverage the relative importance of each variable and uncovers

a univariate derivation of the time series. The new derivation takes into account

the correlation between variables in the MTS dataset and, decreases redundancy

and noise. The proposed representation will allow efficient UTS pattern recognition

techniques to be easily extended to MTS.

5.3.2 Similarity Measure

We use Pearson’s product-moment coefficient [76] as the measure to assess similarity

between two time series. The Pearson correlation measure is known to be more robust

against data that is not normalized and to respond better to baseline and scale shifts

when compared to other measures [114].

Let X and Y be two normally distributed time series of equal dimension n. The

Pearson correlation coefficient of X and Y denoted ρ(X,Y ), is a value in [-1,1] that
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measures the linear dependency between X and Y, defined as follows:

ρ(X,Y ) = ∑n
t=1 (xt − x) (yt − y)√

∑n
t=1 (xt − x)2

√
∑n

t=1 (yt − y)
2

(5.1)

where xt is the mean of X over n and y is the mean of Y over n. The Pearson

correlation coefficient can be approximated to the Pearson product moment, expressed

as follows:

ρ(X,Y ) = 1

n − 1
n

∑
t=1

xy

SxSy

(5.2)

where x = (xt − x) , y = (yt − y), Sx= [(1/n − 1)∑n
t=1 x2]1/2, and

Sy=[(1/n − 1)∑n
t=1 y2]1/2.

Given a user specified correlation threshold ϵ, our goal is to identify all pairs of time

series whose Pearson correlation value is not less than ϵ. Algorithm 5.2 summarizes

the steps for the pairwise correlation search from line 14 to 17.

5.4 Performance Evaluation

Our proposed technique was implemented in Matlab and, numerous experiments we

conducted on benchmark datasets, using a PC configured with Intel Quad core i7

2.00 GHz CPU, 8 GB RAM and, running Windows 7.

5.4.1 Benchmark Datasets

The experiments were ran on benchmark datasets drawn from widely used reposi-

tories [3, 55, 39]. We present experiments and results for three of these benchmark

datasets used.

The Australian language sign dataset(AUSLAN) [45] was gathered through

two gloves, with 22 sensors while native AUSLAN speakers signed. The dataset con-

tains 95 signs having 27 examples each, hence a total of 2565 of signs gathered. This

dataset is well used in similarity search problems due to its complexity.
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The INRIA Holidays images dataset (INRIA HID) [39] is a collection of im-

ages used in testing robustness to various transformations: rotations, viewpoint and

illumination changes, blurring, etc. The dataset contains 500 high resolution image

groups representing a large variety of scene types to incorporate diversity in repre-

sentation.

The Transient classification benchmark dataset (Trace) [83] was gathered for

power plant diagnostics. The dataset has 5 variables (4 process variables and a class

label) and 16 operating states. The class label is set to 0 until the transient occurs,

at which time it is set to 1. The part of the data that is of interest in our work is the

subset where the transient occurs.

5.4.2 Evaluation and Results

We designed experiments to assess the performance of the proposed technique. In

this section, we compare our performance against those from primarily five other

techniques: the Correlation Based Dynamical Time Warping (CBDTW) [4], the 2-

D correlation measure for matrices(see section 6.2) (Corr2 ), the Dynamical Time

Warping(DTW), Eros [106] and the Euclidien Distance(ED).

Figure 5.1: Recall-Precision on
AUSLAN

Figure 5.2: Recall-Precision on
TRACE
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Figure 5.3: Left -Six images from the INRIA HID of three scenes taken
at different points in time, found as closest matches. Right -Univariate
signals for the six images after M2U transformation. Image names are
color-coded with their corresponding signal.

The recall-precision ratios recorded for all techniques on the datasets AUSLAN

and TRACE datasets are shown in Fig. 5.1 and Fig. 5.2 respectively. On both

datasets, we can see that the Euclidien Distance(ED) and Dynamical Time Warp-

ing(DTW) perform worst compared to other techniques. This may be due to the fact

that, neither of these techniques takes into account the existing correlations between

the variables of the MTS while the remaining four techniques do. Our technique out-

performs the remaining techniques on both datasets. In another set of experiments,

we further evaluated how the proposed univariate representations compares to the

case where the original matrices are used to find pairwise correlations within a set

of MTS. Our results confirm that our technique yields improved similarity search

accuracy. To illustrate this, let us consider the six images from the INRIA Holidays

images dataset,of three scenes taken at different points in time, on the left side of

Fig. 5.3.
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For the purpose of the experiment, the images were converted to the grayscale

intensity images, then to double precision to transform the true-color image RGB to

2-dimensional matrices. Each image is represented by a 2816×2112 matrix.

Using our proposed transformation technique M2U, each matrix is transformed

into a univariate signal represented on the right side of Fig. 5.3. The color of each

univariate signal (Fig. 5.3 right) matches the color of the text on its corresponding

image to the left side (Fig. 5.3 left). We can see that similar images generated similar

univariate signals. Furthermore, using our technique, the Pearson correlation coeffi-

cients post transformation are:

ρ(Tree1,Tree2)=0.9661,

ρ(SS1,SS2)=0.9413,

ρ(Sky1,Sky2)=0.9982.

To uncover the correlation coefficient obtained using the original matrices without

transformation, we use the 2-D correlation coefficient Corr2, defined as:

Corr2(Ai,Aj) = ΣnΣm(Ai
mn−Āi)(Aj

mn−Āj)√
(ΣnΣm(Ai

mn−Āi)2)(Aj
mn−Āj)2

where Āi =mean2(Ai) and Āj =mean2(Aj).

For this set of experiments on the full image matrices, the Pearson correlation

coefficients are:

Corr2 (Tree1,Tree2)=0.6261,

Corr2 (SS1,SS2)=0.7594,

Corr2 (Sky1,Sky2)=0.8027.

Let us consider the case in which we are looking for similar images with a correla-

tion coefficient greater than a correlation threshold ϵ = 0.7. In this case, the images of

Tree1 and Tree2 would not have been returned as correlated if the full matrix is used,

while it would be identified if the Pearson correlation is applied to the univariate

86



5. Transformation and Similarity Search

Figure 5.4: Runtime for each step
in the proposed technique as the
length of the time series increases
(INRIA dataset)

Figure 5.5: Runtime for each
step in the proposed technique as
the number of variables increases
(INRIA dataset)

derivation using our technique (M2U).

Transforming MTS to a univariate signal yields improved similarity search accu-

racy. When the matrix goes through a PCA transformation, in addition to reducing

the dimensionality, it decreases redundancy and noise, highlights relationships be-

tween the different variables, and reveals patterns by compressing the data while

expressing it in such a way that highlights their similarity and dissimilarity. In addi-

tion, since we are not discarding any of the relevant principal components, but rather

re-combing variables, we preserve much of the relevant and needed information from

the data.

In this set of experiments, we concatenate images from the INRIA dataset to

build larger images, hence larger matrices to compare for scalability. As the length

of the time series or the number of variables grows, the runtime grows as well. We

can identify two phases within the runtime as illustrated in Figures 5.4 and 5.5 for

the INRIA dataset. The first phase (M2U transformation) allows using the M2U

algorithm and represent the MTS as a UTS. This first step ultimately allows for

a tremendous saving in memory space, and in computation time for downstream

applications. The second phase allows computing the correlation values and identify

similar time series. Of the two phases, we note that the transformation step makes
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Figure 5.6: Comparing the pro-
posed technique runtime to that
of Corr2 as the length of the time
series varies

Figure 5.7: Comparing the pro-
posed technique runtime to that
of Corr2 as the number of vari-
ables varies

up a larger portion of the run time. This is due to the fact that, once the multivariate

series is reduced to a univariate series, the second step will merely consist of finding

the correlation value between two UTS. We remark that the runtime in the first step

has also been substantially reduced using the Randomized SVD technique rather than

using the standard SVD. To illustrate the difference in computation time between the

two versions of SVD, let us consider a matrix of size 650×497 to be reduced using

standard SVD and Randomized SVD. The reduction time using standard SVD is

about 0.11061 seconds with an SVD error of 0.1913, while the reduction time using

randomized SVD is about 0.0065 seconds with SVD error of 0.1921.

The proposed technique performs sizeably better than peer techniques in terms of

computation time, Fig. 5.6 and Fig. 5.7 illustrate respectively the comparison of the

runtime between our proposed technique to that of Corr2 as the length (Fig. 5.6) and

number of variables (Fig. 5.7) of the time series vary. In both cases we use logarithmic

time scale and illustrate the time increase as the dimensionality(dimensions and vari-

ables) increased. We can note from Fig. 5.6 and Fig. 5.7 that the proposed technique

only slightly outperforms Corr2 in terms of runtime for low number of variables and

instances (lower than 20X, where X is the number of variables or instances). However,

for a number of variables over 20X, the proposed technique significantly outperforms
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Corr2. For instance, at 60X, the computation time of Corr2 is an order of magnitude

greater than that of the proposed technique and on average 85 times the runtime of

our proposed technique for 90X.

5.5 Summary

We proposed a novel technique for MTS transformation, analysis and search. The

technique relies on dimensionality reduction and correlation analysis to uncover sim-

ilar MTS. It uses statistics drawn from the Principal Component Analysis to find a

unique conversion of MTS to UTS representation prior to seeking correlations. Our

experiment results indicate increased accuracy and efficiency when compared to ma-

jor existing techniques. The proposed representation allows efficient techniques for

UTS to be easily extended to MTS.
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Chapter 6: Trend and Value based

Representation and Sim-

ilarity Search

Research in time series knowledge discovery in general, and in similarity search in

particular has been very active in recent years, due to the number of application do-

mains that are progressively requiring to work with large amounts of high dimensional

time series data. Unfortunately, for many practical applications, high dimensionality

of data in such frameworks makes it difficult to uncover important patterns from

the raw data. Hence time series transformation techniques have become important

preprocessing tools for many pattern recognition tasks. In this chapter we investigate

the problem of similarity search in time series and propose a symbolic transformation

technique that incorporates the time series value and trend information to enhance

accuracy in the search results; and a symbolic similarity measure. We also apply

this technique along with the representation technique M2U from section 5.2 to mul-

tivariate time series(MTS) datasets to investigate the problem of similarity search

for MTS. We conduct numerous experiments to evaluate the performance of the pro-

posed technique. Our results indicate increased accuracy and efficiency compared to

existing techniques. In what follows, we review the background and preliminaries in

section 6.1, discuss the related work in Section 6.2, and introduce the technique in

Section 6.3. Section 6.4 introduces an application of the proposed technique to MTS.

Section 6.5 presents the performance evaluation. A summary, and future directions
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are presented in Section 6.6.

6.1 Background and Preliminaries

Innovation and advances in data generation and collection technologies have led to

the growth of data at a phenomenal rate. This presents continuous challenges to

existing data exploration, analysis and mining techniques. This is true in particular

for time series, which increasingly makes up a large fraction of the world’s supply of

data. Many fields such as medical monitoring and imaging, aerospace science, and

Finance, require the ability to manage and process large collections of time series

data and to discover interesting and meaningful patterns in the data.

Research on time series repositories and streaming systems has been very active in

recent years, looking to improve existing models and techniques and/or develop new

ones that would gracefully scale to today’s needs. This has resulted in much progress,

particularly for univariate time series (UTS) where substantial research in making

time series search very fast on very large datasets has occurred [79, 88, 12]. There

is however a need to further improve the results to better address todays evolving

data needs in terms of volume, velocity, veracity, value, and for efficient analysis and

search. In this chapter we propose a similarity search technique based on time series

correlations analysis. The technique looks through a dataset of time series with large

number of instances and returns pairs of correlated time series without having to go

through a pairwise comparison of all the series in the dataset.

Our contributions can be summarized as follows:

� A symbolic representation technique incorporating trend and value information

from the original time series to better capture and represent its characteristics.

� The formulation of a similarity measure based on a binary weighted dissimilarity

measures for mixed types of variables measuring different objects to improve

accuracy.

91



6. Trend and Value based Representation and Similarity Search

6.2 Preliminaries

In this section we review some background, definitions and notions needed in this

chapter.

A UTS X = < x1, x2, ..., xn > of dimension n is a sequence of real values for

a variable/attribute measured at n different timestamps. We are interested in the

problem of similarity search in time series defined as follows:

Let DU = {X1,X2...,Xq} be a set of UTS of n instances each, and ϵ be a user specified

correlation threshold value. A time series similarity search retrieves all pairs of times

series X i and Xj in DU such that their correlation distance does not exceed ϵ, for

1 ≤ i, j≤ q.
Similarity search techniques in time series can be classified in two categories: sub-

sequence search and whole sequence search. In our work,we focus on whole sequence

search for which we use Pearson’s product-moment coefficient [76] as the measure to

assess similarity between two time series. This measure is known to be more robust

against data that is not normalized and to respond better to baseline and scale shifts

when compared to other measures [114].

Let X and Y be two normally distributed time series of equal dimensions n. The

Pearson correlation coefficient of X and Y denoted ρ(X,Y ), is a value in [-1,1] that

measures the linear dependency between X and Y, defined as follows:

ρ(X,Y ) = ∑n
t=1 (xt − x) (yt − y)√

∑n
t=1 (xt − x)2

√
∑n

t=1 (yt − y)
2

(6.1)

where xt is the mean of X over n and y is the mean of Y over n.

The Pearson correlation coefficient can be approximated to the Pearson product

moment as follows:

ρ(X,Y ) = 1

n − 1
n

∑
t=1

xy

SxSy

(6.2)

where x = (xt − x) , y = (yt − y), Sx= [(1/(n − 1))∑n
t=1 x2]1/2 and,

Sy=[(1/(n − 1))∑n
t=1 y2]1/2.

92



6. Trend and Value based Representation and Similarity Search

Table 6.1: Notations used in this chapter

D Set of MTS (or, D’ if if the time series are normalized)

DU Set of UTS, D′U if normalized.

D̂S Set of symbolic time series resulting from the STEP1 transformation

X UTS data X= < x1, x2, ...xn >
X̂ A symbolic representation of the time series X

θ
The explained variance in the data that are represented within k
retained principal components

ρ Correlation coefficient
ρ̂ Symbolic correlation coefficient
ϵ User specified Pearson correlation threshold

C Resulting correlation set

6.3 Related Work

Processing raw time series data in similarity search presents major challenges due

to the high dimensionality, noise, redundancy and feature correlated characteristics

of the data. One way to reduce those challenges is to rely on reduction and rep-

resentation techniques that provide a synopsis structure while retaining important

characteristics of the data. As the first step in our proposed technique, we discretize

the UTS into a symbolic string to ease its processing. Numerous such representation

techniques have been proposed in recent years [67, 70, 81, 111, 89]. While some of

these techniques are based on the ”clipping” or hard limiting technique [81, 53, 54],

for which the compression ratio is data dictated, most of them are data adaptive

and assume that the user has a choice over the compression ratio of the data when

generating the new representation. Among them, the Symbolic Aggregation Approx-

imation (SAX) transformation [67] has particularly been widely used in the literature

due to its simplicity and ability to transform the time series data without much

knowledge about the data. Through a two steps process: a reduction based on the
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Piecewise Aggregation Approximation(PAA) [107, 57] and a discretization, it allows

a time series of some length n to be reduced to a string of arbitrary length ω, (ω <
n), using an alphabet of arbitrary integer size a, where typically a > 2. The original

time series is discretized by first obtaining a PAA approximation and subsequently

using predetermined breakpoints to map the PAA coefficients to SAX symbols.

The clipping technique provides an actual bit level approximation of the data

where each bit indicates whether the series is above or below the average. It is a par-

ticular case of the SAX transformation technique with two classes and no dimension

reduction [81].

An important advantage of the clipping technique over other techniques is that it

allows comparing the original raw data directly to the new representation and satisfies

the lower bounding property [81]. However, like the SAX transformation technique,

clipping is limited as it does not take into consideration the trend information from

the original time series. Recent research [111, 69] in time series representation have

incorporated both the value and trend to improve the approximation accuracy. While

progress has been made, improvements are still needed.

In [69] the technique proposes 1D-Sax, an extension to the SAX transformation,

which incorporates the trend information and represents the time series in binary

sequence. The time series is first divided into segments on which the corresponding

linear regression of the time series is computed and eventually quantized into a symbol

combining both the trend and value. Hence, while it improves on the retention of

the original time series information, it does not provide the flexibility to reflect the

weight that the trend or the value should bear based on the original time series

structure. Zhang et al. in [111] present a technique that takes into account the trend

information and adapts to streaming time series. The technique transforms each real

value into a binary bit for the value, and after a first pruning phase, also transform

the direction on a wider interval into one bit. This technique goes through two full

steps of transformations and candidate set selection prior to computing the similarity

measure on the reduced set of original time series. In large data setting going through

those steps can lead to much overhead in terms of computation time. Our proposed

method transforms the time series into a binary representation that incorporates
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both the value and trend information from the original series by using the Piecewise

Aggregation Approximation (PAA) and extending the clipping technique [81].

6.4 Trend and Value Based Representation

Our proposed technique follows a two steps solution process. The first step, TVR(Trend

and Value Representation) uses a novel symbolic time series representation technique

which extends the Clipping technique [81]. The representation incorporates the time

series trend information, in addition to the value information in order to better cap-

ture the time series characteristics while providing greater accuracy and flexibility.

The advantage of this representation is that it provides dedicated bit positions for

the value and trend, and, hence allows more flexibility to calibrate either one without

affecting the other.

In the second step, we use our proposed weighted symbolic correlation measure for

mixed types of binary variables measuring different objects, and a preset threshold to

allow identifying a reduced candidate set before computing pairwise correlation using

Pearson correlation. The symbolic correlation measure provides greater accuracy and

flexibility for frameworks for which either the trend or the value based approach would

be better suited. Lines 1 to 8 of Algorithm 6.1 represent step 1 (TVR), while step 2 is

presented from lines 9 to 15. In what follows, we explain details of our the proposed

solution.

Given a correlation threshold ε, our goal is to determine all pairs of correlated

times series, with a correlation greater than ϵ, within the dataset, while avoiding the

costly pairwise comparisons in large datasets. In this step, we first discretize the

UTS into a symbolic string. The UTS is then transformed into a boolean symbolic

representation of size 2ω, with ω being the number of PAA segments.

The information within each segment will be represented by two bits.

For i= 1 to 2ω;

� the 1st bit represents the value information, hence the position of the current

point of the series in relation with its mean
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Algorithm 6.1 - Correlated Trend Value Representations(CTVR)

Input: D′U = {X1,X2...,Xq} a set of normalized UTS of n instances each, ϵ a user
specified Pearson correlation threshold.
Output: A correlation set C of all pairs (Xi,Xj) in D’ with correlation greater than ϵ.
begin

1: STEP1 - TVR : Time Series Transformation
2: for i← 1 to q do

3: Transform Xi to a symbolic series X̂i of size 2ω and add it to D̂S

4: Compute the mean value of each the Series
X̄i ← 1/n∑n

z=1 xzi
5: For z ← 1 to ω
6: If x̄z,i ≥ X̄i then X̂2z−1 ← 1 else X̂2z−1 ← 0
7: if x̄z,i ≤ x̄z+1,i then X̂2z ← 1 else X̂2z ← 0

end for
8: end for
9: STEP2: Uncover correlated pairs

10: For all X̂i, X̂j ∈ D̂S ,
11: Compute their pairwise symbolic correlations
12: If (∣ρ̂ ˆ(Xi, X̂j)∣ ⩾ ε) then add (Xi,Xj) to CS

13: For all (Xi,Xj) ∈ CS

14: Compute their pairwise Pearson correlations
15: If ( ∣ρ(Xi,Xj)∣ ⩾ ϵ ) then add (Xi,Xj) to C

end
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Figure 6.1: Steps in transforming UTS into symbolic strings using our
proposed technique.

� the 2nd bit represents the current trend of the series compared to its most recent

position

More formally stated:

Let X = <x1, . . . , xn> be a time series of length n. The corresponding symbolic

Boolean series is X̂ = <ŝ1, . . . , ŝ2ω> of length 2ω where ω is the number of segments.

The symbolic series X̂ combines boolean values characterizing the position of the

point compared to the mean of the series (in the odd positions within X̂), and for

the local trend, the position of the midpoint of the current segment is compared to

the most recent midpoint (x̄) encountered (in the even positions within X̂).

For i= 1 to ω:

X̂2i−1 =

⎧⎪⎪⎨⎪⎪⎩

1 , if x̄i ≥ X̄

0, if x̄i < X̄
X̄ = 1

n ∑
n
t=1 xt,

X̂2i =

⎧⎪⎪⎨⎪⎪⎩

1, if x̄i ≤ x̄i+1
0, if x̄i > x̄i+1

Fig. 6.2 illustrates the proposed representation technique in the particular case

where ω (the number of segments) is equal to n (the length of the original time

series). In this case, each numerical value of the series is transformed into a symbol

illustrating its position in relation with the mean. A second symbol reflecting the

direction is allocated as a result of comparing two consecutive values to get a sense
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Figure 6.2: Proposed method illustration (ω = n).

of the trend. In this particular scenario the result in some cases may be affected by

some amount of noise due to the fact that we consider all the points when looking into

the trend. The new representation is a string of size 2ω, where the odd positioned

bits represent the symbol reflecting the value and the even positioned bits reflect the

trend information. Having a dedicated position for the value and trend allow for more

flexibility in the case one would want to manipulate or put more consideration into

one set without impacting the other.

In a more general perspective Fig. 6.3 illustrates our proposed representation

technique in the case where the number of segments ω is less than the length n of

the original UTS. This scenario reflects the situation where the time series sequence

is divided into segments of equal length. The middle point of each segment is chosen

and the linear regression of the position of the curve corresponding to the midpoint

is assessed and given a symbol based on whether it is above or below the mean.

Consecutive midpoints are compared to get a sense of the trend and a symbol is

allocated, to reflect the direction of the time series.

One of the advantages for our proposed representation technique is that it provides

dedicated positions for the value and trend, and hence allows for the flexibility to

allocate more weight into one set without affecting the other.
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Figure 6.3: Proposed method illustration (ω << n).

6.4.1 Similarity Measure

The second step in our proposed technique consists of measuring the similarity be-

tween time series.

Going through the symbolic transformation and computing the symbolic correla-

tion first, will provide a better performance in speed and space, with the following

advantages:

� no pairwise computation of the Pearson correlation on numerical values will be

required among all pairs of series within the dataset

� Boolean operations are faster to perform (due to hardware support) and require

less memory space during computation

Definition 6.1. (Symbolic correlation) - Given binary symbolic series X̂ i = <si1, si2, . . . , si2n>
and X̂j = <sj1, sj2, . . . , s

j
2n>, and a correlation threshold ε, the symbolic correlation

value ρ̂ of the two series is:

ρ̂ = 1 − (1/2n) ∗ [α (
n

∑
1

si2k−1 ⊕ sj2k−1) + β(
n

∑
1

si2k ⊕ sj2k)],

where 1≤ k ≤ n, α and β are the weights reflecting the importance of either group
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(trend or value). If ∣ρ̂∣⩾ε, the series are correlated within the threshold and included

in the candidate set.

We are weighting dissimilarity between binary vectors, while allocating unequal

importance to two different objects (bits where the ”trends” match, and bits where the

”values” match). We use and adapt the Hamming distance to a weighted dissimilarity

measure for Binary variables to assess the correlation between the symbolic series.

The Hamming distance [31] applied to Boolean strings X and Y over {0,1}n can

be seen as measuring the distance between Boolean vectors, expressed as follows:

dHD(X,Y ) =
n

∑
1

X(i)⊕ Y (i)

where ⊕ is the boolean XOR operation applied to corresponding bit strings X(i) and
Y (i) of the boolean vectors.

The Hamming distance returns the number of bit entries in which the boolean

vectors differ.

We note that within each symbolic string, the even and odd bit positions are

different in nature, representing respectively entries for values and trends. They can

be considered separately. Each symbolic string has n even entries and n odd entries.

Comparing the bit entries at odd positions consist of computing their dissimilarity

using:

n

∑
1

(si2k−1 ⊕ sj2k−1), and 0 ≤
n

∑
1

(si2k−1 ⊕ sj2k−1) ≤ n,

which is equivalent to:

0 ≤ ∑
n
1(si2k−1 ⊕ sj2k−1)

n
≤ 1.

Comparing the bit entries at even positions consist of computing their dissimilarity

using:
n

∑
1

(si2k ⊕ sj2k), and 0 ≤
n

∑
1

(si2k ⊕ sj2k) ≤ n,
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which is equivalent to:

0 ≤ ∑
n
1(si2k ⊕ sj2k)

n
≤ 1.

Considering two entire time series of length n, we can evaluate their correlation

as follows:

ρ̂ = 1 − (1/2n) ∗ [α (
n

∑
1

si2k−1 ⊕ sj2k−1) + β(
n

∑
1

si2k ⊕ sj2k)].

where α is the weight associated with the odd bit positions (which corresponds to the

values of the time series), and β is the weight associated with the even bit positions

(which corresponds to the trend of the time series).

We want to find the correlation candidate set that will be comprised of all symbolic

series whose computed symbolic correlation would return a value greater than the

provided correlation threshold.

Once the candidate set is established, we compute the Pearson correlation between

the pairs within the candidate set to obtain their coefficient of correlation.

Computing Pearson correlations between the time series within the reduced candi-

date set allow for a faster identification of the set that satisfies the Pearson correlation

threshold in a smaller environment.

6.5 Applying CTVR to Multivariate Time Series

In this section we explore the feasibility of applying the proposed CTVR technique to

multivariate time series (MTS). We are interested in the problem of similarity search

in MTS defined as follows:

Definition 6.2. (Multivariate time series similarity search)

Let D = {T 1
n,m, T

2
n,m..., T

q
n,m} be a set of MTS, each of which containing n instances

and m variables; and ϵ be a user specified threshold value. A MTS similarity search

retrieves all pairs of times series T i and T j in D such that their correlation distance

does not exceed ϵ, for 1 ≤ i, j ≤ q.
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The first step in this application consist of reducing the dimensionality of the

MTS. We use the representation technique M2U seen in section 5.3 to transform all

MTS to UTS. We subsequently use the CTVR technique discussed in section 6.4 to

transform the newly generated univariate series to symbolic series and find correlated

pairs in a second and third steps. As discussed in section 5.1.3, a fair amount of

preprocessing of the MTS data is required as the dimensionality reduction relies on

PCA. Here as well, the number kmax, of relevant principal components to retain from

each MTS is identified as illustrated in Algorithm 5.1 of section 5.3. Algorithm 6.2

summarizes the steps required in carrying out similarity search within a given set of

MTS using ESTMSS (the efficient and scalable technique for MTS similarity search).

Algorithm 6.2 - Efficient And Scalable Technique for MTS Similarity
Search (ESTMSS)

Input: D′ = {A1
n,m,A

2
n,m...,A

q
n,m} a set of normalized MTS, θ (cumulative variance

explained), ϵ a user specified Pearson correlation threshold.
Output: A set C of all pairs (Ai,Aj) in D’ whose correlation is not less than ϵ.
begin

1: Estimate kmax using Algorithm 5.1.
k ← kmax

2: for i← 1 to q do
3: Transform the MTS to a UTS using M2U

DU ←M2U(Ai)
4: end for
5: Using CTVR, transform the series in DU to symbolic series and find correlated pairs

C ← CTV R(DU)
end

6.6 Performance Evaluation

To evaluate the effectiveness of our solution approach, we developed the code in

Matlab and conducted numerous experiments using benchmark datasets. For this we

use a configured PC with Intel Quad core i7 2.00 GHz CPU, 8 GB main memory,

running Windows 7.
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6.6.1 Datasets

The experiments were ran on benchmark datasets drawn from several widely used

repositories [3, 78, 44] in the current literature. Experiments and results pertaining

to two of the used datasets are reviewed in this section.

The financial Market indices [78] individually present a certain number of

stocks for which a weighted average is computed (often based on the stock capitals)

to reflect their overall performance in the market.

We selected the UTS representatives of the following five market indices to com-

pare: The Dow Jones Industrial Average (combining 30 stocks representative of the

American market), the NASDAQ-100 (tracking 100 largest non-financial companies

in the National Association of Securities Dealers Automated Quotations market), the

FTSE100 (combining 100 companies with the largest capitalization traded in the Lon-

don market), the Deutscher Aktien indeX (DAX) (including 30 German companies

traded in the Frankfurt market), and the S&P or the Standard & Poor’s 500 (index

based on the market capitalizations of 500 large companies having common stock

listed on the NYSE or NASDAQ).

The time period used in this experiment included 11 months from May 19th 2010

to April 18th 2011.

The Activity Recognition from Single Chest-Mounted Accelerometer

dataset (ARFSCMA) [3] is intended for motion patterns and activity recognition.

It was gathered from 15 participants performing 7 activities while wearing accelerom-

eter mounted on their chests, at a sampling frequency of 52 Hz. This dataset is often

used in classification, clustering, and similarity search problems due to its complexity.

The Australian language sign dataset(AUSLAN) [45] was gathered through

two gloves, with 22 sensors while native AUSLAN speakers signed. The dataset con-

tains 95 signs having 27 examples each, hence a total of 2565 of signs gathered. This

dataset is well used in similarity search problems due to its complexity.

The INRIA Holidays images dataset(INRIA HID) [39] is a collection of im-

ages that have served in testing the robustness to various transformations: rotations,

viewpoint and illumination changes, blurring, etc. The dataset contains 500 high
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resolution image groups representing a large variety of scene types to incorporate

diversity in representation.

6.6.2 Evaluation and Results

We designed experiments to assess the performance of the proposed technique. In

this section, we review a set of experiments through which we evaluated how varying

lengths of the PAA segments impacted the performance and recall of our algorithm.

We also review the effect of varying length of the PAA segments according to the

time series length in different datasets. We finally assess recall and precision while

comparing our results to those from the clipping technique [81] for UTS.

In the case of MTS, we looked into runtime and precision while comparing our

results to those from primarily three techniques: the Correlation Based Dynamical

Time Warping (CBDTW) [4], the Dynamical Time Warping, and an implementation

of the standard PCA transformation followed by an exact match computing a pairwise

comparison of all series.

Another set of experiments allowed to assessed the influence of the change in

dimensionality on runtime while accuracy was being preserved; those experiments

further allowed us to investigate the proposed technique’s scalability on large MTS

datasets.

We finally reviewed the effect of varying length of the PAA segments according to

the time series length in different datasets.

6.6.2.1 Impact of the number of segments on precision

The precision of similarity is determined by varying length of the segments according

to the length of the time series in the dataset. In our experiments, the best precision

is observed when the number of segments w is closer to the length of the time series

for the value based transformation. This can be explained by the fact that a more

detailed capture of the characteristics of the original time series is achieved in that

case. On the other hand, it requires slightly wider segments for the trend to avoid

incorporating much noise and outliers. Fig. 6.4 shows the particular case of a dataset,
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Figure 6.4: Precision as number of segments varies.

where the best precision was achieved for ω close to n/4, while the length of the

time series is n = 4000. We investigated the impact that the trend or value had

in uncovering correlations for this dataset. As illustrated in Fig. 6.5, a study of

the relationship between the S&P 500 and NASDAQ-100 on the chosen time periods

shows that for relatively smaller durations the value contributions was best to helping

uncover correlations. However for longer durations the trend was best for uncovering

correlations. Some datasets provide better results when the value is given more

weight, while others rely more on the trend when it comes to uncovering similarities.

The results obtained from the indices dataset collected during May 19th 2010 to

April 18th 2011 time period show a high correlation between S&P and Dow. This

can be explained possibly by the fact that the S&P index is weighted, maintained and

published by the same joint venture that published the Dow Jones Industrial average.

NASDAQ although positively correlated to all indices, shows that association to a

lesser degree during the chosen period of time. Results from our method compared to

implementations of other methods show an improvement in run time and space while

providing comparable precision and recall. For datasets where the trend is the most

important factor, carefully picking the number of segments to best accommodate the

trend help achieving better results, as it will avoid including noise and outliers.
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Figure 6.5: Identifying correlations while allocating more weight on value,
trend or equally on both.

Figure 6.6: Precision/Recall on the ARFSCMA dataset for different tech-
niques
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6.6.2.2 Precision and Recall on the ARFSCMA dataset

The ARFSCMA dataset is known to be a complex dataset for similarity search prob-

lems due to the fact that different activities can share common components or pat-

terns. Additional detailed information often helps differentiate those activities. In

capturing the trend information in addition to the value information to be represented

in symbolic time series, our proposed technique better captures the characteristics of

the original time series, and increases the pruning power.

Experimental results summarizing an average for the seven activities as con-

ducted by 15 participants are show on Fig. 6.6. We compare the precision/recall

ratio achieved by the clipping technique [81] against that of our technique in 3 cases

(ω = n/8, ω = n/2, ω = n). The results for the case where ω = n/8 are comparable to

those for the clipping technique. As illustrated earlier, this can be explained by the

fact that less details are captured from the original time series values in that case. The

best results on this dataset were noted for the case ω = n/2. An important advantage

that our proposed technique provides when compared to the clipping technique, is

the increased pruning power.

6.6.2.3 Execution time and precision as dimensionality increases on MTS

In this set of experiments we studied our performance on a large number benchmark

datasets, and represent here results gathered from three of them.

The data from each market index is considered a MTS and represented as a

matrix for processing using our technique. It is subsequently transformed into UTS

for further processing using CTVR.

As the number of variables grows, so does the runtime. We can identify three

phases within the runtime as illustrated in Fig. 6.7 for the stock indices dataset.

The first phase allows to represent the MTS as a UTS, the second phase transforms

the UTS to a symbolic representation, while the 3rd phase allows for the correlation

computation.

Of the three phases, the transformation step seems to make up more of the run

time. This is due to the fact that, in the first phase, we use a randomized PCA to
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Figure 6.7: Run time for each step based on the number of variables

reduce the dimensionality, hence an enhanced execution speed is expected. And, in

the third phase, we have a symbolic Boolean representation of the series. The corre-

lation computation is based on bitwise operations, hence the speed of execution. We

note an important improvement in computation time compared to peer techniques.

As the length of the time series sequence increases, we also note an increase in the

precision. This can be explained by the fact that the symbolic representation is then

more representative of the original time series for it captures more details.

Although a much smaller dataset, AUSLAN is known to be a complex dataset for

similarity search problems due to the presence of a large number of zeroes making

it harder to find correlations. However PCA is known to be very efficient in the

processing of sparse matrices. For experiments conducted on this dataset, we selected

the percentage of explained variance to be retained from each MTS to 90%. This

ensures that much of the structure of the data is retained in the selected principal

components. Given that this dataset has small length and a small number of variables,

we selected the number of PAA segments to either n (the dimension of the time series)

or n/2. For the correlation based dynamical time warping technique (CBDTW) [4],

we set the number of segments to 20, for effective warping. Experimental results

summarizing an average for over 100 category pairs of sign on the methods compared
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Figure 6.8: Precision/Recall on AUSLAN(MTS) for different algorithms

(DTW, CBDTW, PCA exact match, proposed technique) for this dataset show on

Fig. 6.8, that our technique and the PCA exact match technique outperform the other

two techniques in terms of precision and recall, while it substantially outperform the

all techniques in terms of execution time.

Using the The INRIA Holidays images dataset [39], we concatenate images and

look to study the effect of increasing the number of variables and the length of the

time series on the proposed technique. Fig. 6.9 shows the accuracy graph, in function

of the number of variables for the techniques that we compared. All three techniques

provided good accuracy results on this dataset. Fig. 6.10 uses a logarithmic time

scale and illustrates the time increase as dimensionality(dimensions and variables)

increased.

In comparing our runtime against those of other techniques, our technique saves up

to two orders of magnitude. For instance CBDTW required on average 40 times more

than our technique on the same datasets and, was not able to process larger size ma-

trices. While the PCA exact match runtime and our proposed technique appear to be

close in runtime on Fig. 6.10, due to the relatively low number of dimensions/variables

used in this test, in order to be able to include other peer techniques, the difference

is expected to become much more important in larger dimension settings. The PCA
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Figure 6.9: Accuracy on INRIA HID for different number of variables

exact match implementation is a version based on standard PCA and exact match of

all pairs. It will present slightly better accuracy results than our proposed technique

used with the Randomized PCA technique, it is however expected to be slower in

large dimension settings.

6.6.2.4 The study of scalability on MTS

We have seen that our algorithm is comparable or out-performs peer techniques in

terms of similarity search quality while presenting better running time for queries

where the peer techniques can process the input size.

We further investigated the scalability of our approach to a framework where the

dimensionality is much larger. More specifically how would the technique withstand

a 1000% 10000% increase in dimensionality. Results gathered from the The INRIA

Holidays images dataset are represented in this section. Fig. 6.11 shows that with

a number of variables increased to 1000%, the running time increases by a factor of

about 5.5. A time series length/dimension increase to 1000% leads to a the run time

increase by a factor of 6.2. A 10000% increase in number of variables leads to an

increase by a factor of 47 in time, while the same rate of increase in length/dimension

leads to an increase by a factor of 41.6 in run time as seen in Fig. 6.12. We include
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Figure 6.10: Runtime on INRIA HID as dimensionality increases

Figure 6.11: Run Time for larger number of variables
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Figure 6.12: Run Time for longer time series

a line with linear behavior (y = ax) in Fig. 6.11 and Fig. 6.12 to further observe the

limits of the running time. We can see that as we keep multiplying the dimension

or variable by 10, the running time is linear and remains below the line y = ax. It

appears to present an asymptotic behavior, although further empirical studies and

theoretical analysis would be needed to obtain provable guarantees.

6.7 Summary

In this chapter we present an efficient technique for time series analysis and search.

The proposed method allows for a reduction in memory requirement, an enhancement

in performance, and an improvement in accuracy for similarity search in large data

settings when compared to traditional techniques. In our future work, we intend to

extend the proposed technique to streaming data and non linearly dependent data

frameworks.

112



Chapter 7: Conclusion and Future

Work

Research in multivariate time series (MTS) analysis and search has grown in impor-

tance, relevance and popularity in recent years. As data volume becomes prohibitively

large, the traditional methods investigating meaningful patterns in such frameworks

are no longer suitable for such massive high dimensional data (both in terms of size

and number of variables). The objective of our work is to provide a framework where

downstream pattern recognition tasks in general and similarity search operations in

particular perform more efficiently in such settings.

In this dissertation, we presented a set of efficient and scalable unsupervised tech-

niques for MTS analysis and search. The techniques primarily rely on the principal

component analysis to learn and leverage the internal structure of the multivariate

data for better results.

� We studied the problem of uncovering the most relevant and discriminative

features in MTS and presented an unsupervised feature subset selection tech-

nique [48] based on statistics drawn from the Principal Component Analysis

of the input data. While this technique leverages the desired properties of the

PCA, it also retains the results interpretability by combining the advantages of

feature extraction and selection techniques.

� In some frameworks, such as MTS data exhibiting sparse feature vectors, or

MTS in some practical Bio-informatics applications where dependant features

are known to work better in group than on their own feature subset selection
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alone can come short in uncovering the most relevant and discriminative features

in MTS. We developed an unsupervised feature subset selection and grouping

technique [49], termed FRG (Feature Ranking and Grouping), that yields better

results in such cases. The technique first relies on unsupervised learning through

randomized Principal Component Analysis (PCA) to uncover influence and rank

the features accordingly. Correlated features are then subsequently identified

grouped and re-engineered into unique features to allow for a more efficient and

scalable processing of the high dimensional MTS.

� We also developed a reduction and representation technique for MTS termed

M2U [50](Multivariate to Univariate transformation). This technique is partic-

ularly important because, on one hand, the transformation takes into account

the correlation between variables, while decreasing redundancy and noise, di-

mensionality and requirements in memory space and computation time. On the

other hand substantial research and progress in making UTS pattern recogni-

tion tasks in general, and similarity search in particular, very efficient on large

datasets has occurred in recent years [79, 88, 12, 71]. Our proposed representa-

tion will allow efficient UTS techniques to be easily extended to MTS.

� We developed a UTS transformation and representation technique, TVR [47](Trend

and Value Representation) which extends the clipping technique [81] by incor-

porating the time series trend information, in addition to the value information

to better capture the data characteristics and provide greater accuracy.

� We formulated of a weighted symbolic similarity measure measure based on a

binary weighted dissimilarity measures [47] for mixed types of variables mea-

suring different objects. Using this similarity measure along with TVR in the

pruning phase allows to substantially reduce the search space in large dataset

frameworks.

� We propose the use of the techniques M2U [50], TVR [47] and the proposed

symbolic correlation measure based on a binary weighted dissimilarity measure
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for mixed variables [47] in conjunction to devise ESTMSS, an efficient and

scalable technique for multivariate time series similarity search.

Experiments were ran on benchmark data that has been extensively used in

the literature; Our results show that the proposed technique outperformed peer

techniques. The combination of these three techniques affords a suitable tool

for uncovering similar multivariate time series in large data settings .

Our experimental evaluations of these techniques on a large number of application

domains and extensively studied benchmark datasets indicate their performances in

terms of accuracy speed and scalability when compared to state of art techniques.

They provide simpler approaches to large MTS data processing, improvements in

memory space requirements and computation time and improvements on precision

and recall.

7.1 Future Work

While this thesis contributes to the field of MTS analysis and search in several as-

pects, the presented techniques can be extended to other types of data. We will look

to generalize our techniques where possible. In addition, many opportunities for ex-

tending this work remain. This section presents some of the directions we intend to

pursue in our future work.

Streaming multivariate time series: The techniques presented in this dis-

sertation were developed for standard time series data at rest. We plan on extending

this work to large streaming MTS, where the objective would be to devise some sort of

models that adaptively uncovers information about the evolving internal structure of

the data, for adaptive dimensionality reduction, similarity search, and improved pre-

diction capabilities. Among the challenges that we foresee are: the known constraints

that come in maintaining streams, the high dimensionality of the data, but also the

need for a strategy that efficiently tracks and leverage correlations as maintaining

pairwise correlations in such settings would not be efficient.
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Uncertain multivariate time series: There is an increasing need for efficient

and scalable MTS techniques that would process raw data as it is received, with all

its imperfections (e.g. missing or erroneous data). In that framework, we particularly

plan on extending our work to uncertain time series where the values of the series

may be unavailable, imprecise or unknown at timestamps. We will first investigate

feature selection and forecasting in this direction. The intention is to leverage feature

selection in this case to improve prediction accuracy. We plan on using uncertain time

series correlation analysis as an important step in our search for the most relevant

features and expect the uncertain time series correlation proposed in [74] to be more

suitable in this scenario. Indeed, standard time series techniques are often not well

equipped for uncertain time series issues. The technique in [74] extends the sample

Pearson correlation coefficient and uses the cumulative distribution function (CDF)

of the random variables correlation rather than the exact correlation.

Non-Linear multivariate time series: Our proposed contributions are cur-

rently better suited for data that has Gaussian (normal) distribution, and with linear

dependencies. We plan to extend our work to include Non-linear data, and data

for which the dependence structure goes beyond linear correlation. We particularly

intend to investigate and leverage manifold learning and nonlinear dimensionality re-

duction techniques. In the case of the similarity measure we believe that techniques

such as the Bhattacharyya distance, Mutual Information (MI) and Copula probability

distribution among others could be good techniques to further investigate.

Theoretical analysis aspects: We plan to investigate why our techniques out-

perform peer techniques from a theoretical analysis perspective. For instance, in the

case of the Weighted Scores and FRG techniques, sampling columns from the MTS

according to their Weighted Scores empirically proves to provide a better matrix

approximation than the state of art techniques. Although the intuition behind the

computation of the variable weights provides some insights into the reason for that

noted performance, it would be interesting to obtain provable guarantees.
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