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ABSTRACT

In the past few decades, researchers have proposed many discriminant analysis (DA) algorithms for the
study of high-dimensional data in a variety of problems. Most DA algorithms for feature extraction are
based on transformations that simultaneously maximize the between-class scatter and minimize the within-
class scatter matrices. This paper presents a novel DA algorithm for feature extraction using mutual
information (MI). However, it is not always easy to obtain an accurate estimation for high-dimensional MI.
In this paper, we propose an efficient method for feature extraction that is based on one-dimensional MI
estimations. We will refer to this algorithm as mutual information discriminant analysis (MIDA). The
performance of this proposed method was evaluated using UCI databases. The results indicate that MIDA
provides robust performance over different data sets with different characteristics and that MIDA always
performs better than, or at least comparable to, the best performing algorithms.
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1. INTRODUCTION

Dimensionality reduction of the raw input variable space is an essential preprocessing step in the
classification process. There are two main reasons to keep the dimensionality of the input features
as small as possible: computational cost and classification accuracy. It has been observed that
added irrelevant features may actually degrade the performance of classifiers if the number of
training samples is small relative to the number of features [1-2].

Reduction of the number of input variables can be achieved by selecting relevant features (i.e.,
feature selection), [3-4] or by extracting new features that contain maximal information about the
class label from the set of original features (i.e., feature extraction) [5-6]. To keep some of the
original features, it may be more suitable to perform feature selection. However, when the
number of irrelevant features is orders of magnitude larger than the number of relevant features,
feature selection requires a large set of training data to obtain reliable transformations.
Additionally, because switching from one feature to another is a discrete operation, feature
selection is not a smooth process. Another reason that motivates using feature extraction over
selection is feature extraction’s power to distribute relevant information amongst different
original features. This advantage results in greater information compaction [7].
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The function that describes feature extraction is z = f{x), ze R" . This function can be either linear

or nonlinear. The classifier determines whether a linear or nonlinear extraction method ought to
be used. For this reason, deciding whether to apply a nonlinear feature extraction method before a
linear classifier, or a linear classifier followed by nonlinear classifier, is common. In the first case,
the input data are projected by a nonlinear feature extractor onto a set of variables. The nonlinear
patterns are unfolded, and the separation of the classes is made possible by a linear classifier. In
the second case, the classifier has the responsibility of finding the nonlinear separation boundaries
[8]. In [9], it has been shown that a proper linear transformation on input data improves the
performance of the simple k-nearest-neighbors (KNN) classifier. For this reason, we will consider
linear feature extraction in this paper.

Currently, many researchers have presented a variety of methods for linear feature extraction.
PCA is one of the most well known methods. Finding an orthogonal set of projection vectors for
extracting features is the ultimate goal of PCA. PCA extracts features by maximizing the variance
of data. Though this approach is an adequate method for reducing dimensionality, because of its
unsupervised nature, it is not suitable for classification-based feature extraction tasks [10].

Linear discrimination analysis (LDA) is also a well known and popular linear-dimension-
reduction algorithm for supervised feature extraction [11]. LDA computes a linear transformation
by maximizing the ratio of between-class distance to within-class distance, thereby achieving
maximal discrimination. In LDA, a transformation matrix from an n-dimensional feature space to
a d-dimensional space is determined such that the Fisher criterion of between-class scatter over
within-class scatter is maximized.

However, the traditional LDA method is based on the restrictive assumption that the data are
homoscedastic, i.e., the classes of the data have equal covariance matrices. In particular, it is
assumed that the probability density functions of all classes are Gaussian with identical
covariance matrices, but with different means [12]. Moreover, traditional LDA cannot solve the
problem posed by nonlinearly separable classes. Hence, LDA’s performance is unsatisfactory for
many classification problems that have nonlinear decision boundaries. To solve this problem, a
nonlinear extension of LDA has been proposed [13-14].

Moreover, LDA-based algorithms generally suffer from the small sample size (SSS) problem that
occurs when the number of training samples is less than the dimension of feature vectors [15]. A
traditional solution to this problem is to apply PCA in conjunction with LDA [16]. Recently,
more effective solutions have been proposed to solve the SSS [10].

Another problem that is common to most DA methods is that these methods can only extract C-1
features from the original feature space, where C is the number of classes. Recently, a method
based on DA was proposed for describing a large number of data distributions and to solve the
limitation posed by DA methods on the number of features that can be extracted. This method is
known as subclass discriminant analysis (SDA) [17].

One of the most effective approaches for optimal feature extraction is based on MI. MI measures
the mutual dependence of two or more variables. In this context, the feature extraction process is
creating a feature set from the data that jointly have the largest dependency on the target class and
that has minimal redundancy. However, it is almost impossible to obtain an accurate estimation
for high-dimensional MI. In [7, 18], a method known as MRMI was proposed for learning linear
discriminative feature transforms with an approximation of the MI between transformed features
and class labels as a criterion. The approximation is inspired by the quadratic Renyi entropy,
which provides a nonparametric estimate of the MI. However, there is no general guarantee that
maximizing the approximation of MI using Renyi’s definition is equivalent to maximizing MI
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defined by Shannon. Moreover, the MRMI algorithm is subject to the curse of dimensionality. In
[8], a method of extracting features based on one-dimensional MI has been presented. This
method is called MMI. In this method, the first feature is extracted in a manner that maximizes
the MI between the extracted feature and the class of the data. The other features must be
extracted such that they are orthogonal and maximize the MI between the extracted features and
the class label. However, in general the orthogonality of a newly extracted feature relative to
previous features cannot guarantee independence; as such, this method still cannot eliminate
redundancy. To overcome the difficulties of MI estimation for feature extraction, Parzen window
modeling has been employed to estimate the probability density function [19]. However, the
Parzen model may suffer from the “curse of dimensionality,” which refers to the over-fitting of
high-dimensional training data [8].

The purpose of this paper is to introduce an efficient method for extraction of features with
maximal dependence on the target class and minimal redundancy between extracted features. This
method uses one-dimensional MI estimation and Fisher-Rao’s criterion to overcome the practical
obstacles mentioned above. The proposed method is then evaluated against six databases. The
results were compared with those obtained from the PCA-, LDA-, SDA- [17] and MI-based
feature extraction methods (MRMI-SIG) proposed in [18]. The results indicate that MIDA
provides robust performance over different data sets with different characteristics and that MIDA
always performs better than, or at least comparable to, the best algorithms.

The rest of the paper is divided as follows. In Section II, a summary of information theory
concepts is provided. In Section III, we describe our algorithm for feature extraction. In Section
IV, based on experiments, we compare the practical results of our method with other methods. In
Section V, we conclude.

2. BACKGROUND ON INFORMATION THEORY

2.1. Mutual information and feature extraction

MI is a nonparametric measure of relevance between two variables. Shannon’s information theory
provides a suitable formalism for quantifying these concepts [20]. Assume that a random variable
X represents a continuously valued random feature vector and that a discrete-valued random
variable C represents the class labels. In accordance with Shannon’s information theory, the
uncertainty of class label C can be measured by entropy H(C) as

H(C)==)_ p(c)log p(c) e
ceC

where p(c) represents the probability of the discrete random variable C. The uncertainty of C
given a feature vector X is measured by the conditional entropy as s

H(CX) == p) [Z p(cx)log p(clx)} dx 2)

ceC

where p(C|x) is the conditional probability for variable C given X.

In general, the conditional entropy is less than or equal to the initial entropy. The conditional
entropy is equal if and only if variables C and X are independent. By definition, the amount that
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the class uncertainty is decreased by is the MI. As such, I(X;C)=H(C)-H (C|X ) . After applying

the identities p(c,x) = p(c|x) p(x) and p(c)= J p(c,x)dx, I can be expressed as

1(X:C) = 0log—LE® 3
(X:0) ;me) og T (3)

If the MI between two random variables is large, then the two variables are closely related. The
Ml is zero if and only if the two random variables are strictly independent [21].

In classification problems, suitable features are those that have a higher quantity of MI with
respect to classes. There are two bounds on Bayes error that justify the use of MI for feature
extractions. The first bound is Hellman and Raviv’s upper bound: p, <(H(C)-1(X:;C))/2. The
second bound is Fano’s lower bound: p, Z(H(C)—I(X;C)—l)/log(NC). As the MI grows, the
bounds decrease and reduce Bayes error. So using MI is a reasonable criterion for feature
extraction. On the other hand, according to the inequality of data processing for any deterministic
transformation7'(-) , we hold

I(T(x);C)<I1(X;C) 4

This equality is only held when the transformation process is invertible [22], so that no
improvement will occur in the MI existing between the data and classes. For this reason, our
objective in this paper is to propose a heuristic method for feature extraction that is based on a
minimal-redundancy-maximal-relevance framework that maximizes the information in a reduced
space.

2.2. Discriminant Analysis

Most of the previously defined DA methods are based on Fisher-Rao’s criterion [23], which is
given by

‘VTAV‘
©)

V =arg max

‘VTBV‘

Matrices A and B are assumed to be symmetric and positive-definite so that they define a metric.
LDA, respectively uses the between- and within-class scatter matrices A=5, and B=5,, in (1).

C
Sy = (i = — )" (6)

i=1

c n
SW :%22% —w)ry =)' (7)

i=l j=1

C is the number of classes, g the sample mean of class i, g the global mean, X; is the jth
sample of class i, and pn,is the number of samples in that class. The objective is to find a linear

transformation v that maximizes the between-class scatter matrix s, and minimizes the within-
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class scatter matrix s, (Fisher's criterion). Other DAs are formed by redefining either the A or B
matrices. As an example NDA, the following nonparametric version,
where a,-lj is the parameter of the between-class scatter matrix for A, is used:

cC n C
— Z Xy =My =M @)
i=1 j=1 I=1

1#

:»—t

This nonparametric version avoids the outcomes that are affected by samples placed away from
the boundary. M is the mean sample ( x;;) that belongs to class I( #i). In another DA algorithm

known as aPAC, a new weighted scatter matrix is defined as zi:lzj:i+1w(d )Sii s

T . . ; ;
where S; = (; — p)(g; — )" , where d; is the Mahalanobis distance between classes i and j, and

w()is a weight function that provides the equality of each class contribution to the classification

accuracy. PDA is another DA algorithm that is formed by redefining the within-scatter matrix as
B=S,, +Q, where Q is a penalizing matrix that penalizes noisy eigenvectors.

A common problem with most DA methods results from a deficiency in the rank of the between-
scatter matrix. For example, the rank of s,in the LDA, PDA, aPAC, and most other DA methods

is smaller than C — 1 (rank(Sz)<C —-1). These methods are able to extract only C — 1 features

from the original feature space. These C — 1 features will be sufficient if the classes are separated
linearly. However, for realistic data sets, most data cannot be separated linearly. Therefore, this
limitation prevents these methods from extracting the optimum set of features [24]. To overcome
this problem, in [25], heteroscedastic LDA is introduced as a new DA that redefines the A matrix
such that it considers both the differences between class means and their covariances, as shown in
equation 9.

c-1 C
_ 112 T5-1/2 1 1
c= Z Z {Z M = 1 — 1) X' +4(logZ —Elog):i —Elog):j)} 9)

i=1 j=i+l

where ¥, is the covariance matrix of the samples in class i, and X; is the average between X, and
X i In [17], another DA, subclass discriminant analysis (SDA), is proposed to overcome this

problem. In the SDA approach, to increase the rank of Sp, the authors define a new A matrix by
dividing each class into subclasses:

H,
Ty ZZZ z zpljpk/(,u,, M)y — ,Uk1) (10)

i=l j=1 k=i+l I=1

where p;and ; are the prior and mean of the jth subclass in class i, and H; is the number of

subclass divisions in class i.
3. MUTUAL INFORMATION DISCRIMINANT ANALYSIS

To obtain an optimal extraction of features from the set of original features, we need to create a
new set of features that has the largest dependency on the target class. Let us denote the original
feature set as X, which is a sample of the continuously valued random vector. C is a discrete-
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valued random variable that represents the class labels. The problem is to find a linear mapping W
such that the transformed features

Y=wTx (11)

Maximize the MI between the transformed features ¥ and the class labels C, /(W T X;C). That is,
we seek

W, =argmax I(W" X:;C) (12)
w
p(yl ym7 )
17:0)= chj JpOnvtog T ay,dy (13)

The requirement of knowing the underlying probability density functions (PDFs) of the data and
the integration of these PDFs always makes it difficult to accurately estimate high-dimensional
MI [26]. The above-mentioned solution is not practical because of its large computational
requirements for complex problems.

To overcome the above-mentioned practical obstacles, in this paper we have used Fisher-Rao’s
criterion and one- dimensional MI estimation to estimate the MI for low-dimensional data spaces.
We used a popular histogram method [27] to obtain the estimation. Histogram estimators can
deliver satisfactory results for low-dimensional data spaces.

Most DA algorithms try to separate class means as well as possible, not taking into consideration
discriminatory information. Moreover, because most DA algorithms only make use of second-
order statistical information, the covariance is optimal for data that have a unimodal Gaussian
density with well-separated means for each class. Furthermore, the maximum rank of s, isC—1.

Thus, these methods cannot produce more than C —1features. To overcome this problem, in this
section, we define a new information-theory criterion based on Fisher-Rao’s criterion and M1
Consider a data set X that is represented by M samples {x, x,, ..., x,, }. Each sample is

represented by N features {f,, f,, ..., fy | that take on values in N-dimensional space. Each sample
also belongs to one of C classes. The new between-class scatter matrix S, and the within-class
scatter matrix S, , based on the one-dimensional MI, can be defined as follows:

0=,

Mz

a; (14)

ij

]
—

J

by (15)

ij

,MZ

Il
—

=%

i=l j

where a; and b; can be defined as follows

(506 i=j
a"f_{ 0 i%j (16)
_ 0 i=]
b"f_{ctﬂ(f,-;fj) i#j ("
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where I1(f,;C) is the MI between the i-th feature, and the class label and ct are integer constants.
When S, is maximized, the features with largest dependency on the target class are extracted.
When S, is minimized, the features with minimum redundancy are extracted. ct is a parameter

that determines how the extracted features are dependent relative to the class label, as well as how
independent the extracted features are from other features. Then, ct determines how much s,

should be maximized and how much S, should be minimized. These optimal values will be
calculated as follows:

1) Initialization:
Set X to the initial feature set;
Set S to the empty set;
Set ct to zero;
Set t to the desired number of features that will be extracted

2) For ct=0 to L, do the following:
Calculate Szusing (14) and Sy using (15)

Vs,V
W =argmax ——
v ‘VTSWV‘
Project the data

y=w'x

Calculate

' i1
K=Z<I(yi;C)—ﬁzl(yi;yj)>
i=1 j=1

End for
3) Finding the optimal value for ct

ct,, =argmax K
ct

By solving optimization problem (5) using (14) and (15), the projection vector set consists of the
eigenvectors that correspond to the nonzero eigenvalues of B™'A:

AV = BVA (18)
The transformation matrix W must be created from the largest eigenvectors V :

W=[v1,v2,v3,...v,] (19)

The optimal feature set is obtained by projecting the original feature set onto the projection
matrix:

Y=wTx (20)
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where x is the original feature set, and v is the optimal feature set.

By solving the optimization problem, new features are extracted from the original features. These
new features jointly have the largest dependency on the target class and minimal redundancy.
The proposed MI-based feature extraction can be summarized by the following procedure:

1) Initialization:

Set X to the initial feature set;

Set S to the empty set;

Set ct to ct,;

Set t to the desired number of features that will extracted
2) Determine the weighting matrix

Calculate Szusing (14) and Sy using (15)

‘VTSBV‘
WO

pr = arg max

v ‘VTSWV‘

3) Extract the feature
Y=W,," X

S« {r}
4) Output the set S that contains the extracted features.

Table 1. Description of the data sets used in the comparison.

Data set Features | Classes | Samples
Letter 16 26 20000
Libras movement 90 15 360
Wall-following 24 4 5456
Madelon 500 2 2600
Hill-valley with noise 100 2 1212
Hill-valley without noise | 100 2 1212

4. RESULTS

In this section, we investigate the performance of the proposed method using several UCI data
sets (the UCI machine learning repository contains many real-world data sets that have been used
by a variety of investigators) [28] and compare the obtained results with other well-known feature
extraction methods: PCA, LDA, SDA and the MI-based feature extraction method proposed in
[18]. The MI-based method is also known as MRMI-SIG.

A support vector machine (SVM) [29] with a Gaussian radial basis function as a kernel and a
KNN classifier [30] has been applied to evaluate the classification performance. A SVM classifier
is usually picked because it is less sensitive to the curse of dimensionality than other classifiers.
As such, the quantity of information that this data will carry about classes will be in high
correlation with its performance. A tenfold cross-validation procedure on the training data is used
to determine the cost and width of the SVM kernel. Instead, a KNN classifier with all of its
simplicity performs so well in these types of experiments that it is often used to compare a variety
of methods. It is because of its good performance that we applied KNN with K=1 in this paper.
To obtain more reliable results, divide by the absolute maximum of the training set to normalize
input values of the data for all classifiers.
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To increase the significance of our result statistics obtained from using data sets with a limited
number of samples, and to obtain the classification rates, the average values over 10-fold cross-
validation have been applied. To assess the classification accuracy for every 10-fold partition,
nine were used as a training set and one as test set. First, the algorithm for our feature extraction
was run on our training sets. Then, the classifier was trained and tested. At the end, the average
classification results were reported as the error. To evaluate the performance of our method
presented in this paper, six data sets have been used. Table I shows brief information about the
data sets used in this paper. In the following section, we will give a short description of each data
set and the results obtained by examining those methods using KNN and SVM classifiers. Then,
we compare the results of our algorithm with the results from the other methods.

The first data set used in our paper was the Letter data set. The objective is to identify the 26
capital letters of the English alphabet. This data set is consists of 20000 samples. Each sample
comprises 16 attributes that were scaled to fit into the integer range from 0 through 15. Here, our
classifiers showed different results. In the first component, KNN indicated that SDA was better
by 22.2%. However, our method had adequate performance at 21.4%. SVM showed our method
to be the best. For the next three components, KNN showed that our method was better than the
other methods, but SVM indicated that both LDA and SDA were better than our algorithm. In the
fifth component, KNN again showed that our method was the best. SVM showed that MRMI was
better and placed our algorithm second in rank. For the last two components, both classifiers
returned the result that MRMI was the best method; our method ranked second again. In this data
set, our method was generally adequate in all components in comparison to the other methods.
Whenever our method was ranked second, its performance was close to the first-ranked
algorithm.

Table 2. Percentile average classification accuracy with KNN on the different data sets

Letter data set Libras movement data set

Dim. Raw PCA LDA SDA MRMI MIDA Dim. Raw PCA LDA SDA MRMI MIDA
1 4.4 152 221 222 163 21.4 1 244 233 314 264 203 26.9

2 6.4 21.1  40.0 40.1 2438 49.9 2 46.1 331 50.0 43.6 267 48.1

3 103 337 517 517 40.6 65.9 3 453 506 506 561 278 66.7

4 13.6 538 670 67.0 60.0 70.1 4 46.7 650 558 678 28.6 72.5

5 206 683 744 744 743 71.7 5 46.1 717 619 764 353 78.3

6 302 771 816 816 84.1 83.4 6 464 786 622 828 358 80.3

7 459 859 858 858 907 90.0 7 456 819 63.6 853 36.1 822
Wall-Following data set Madelon data set

Dim. Raw PCA LDA SDA MRMI MIDA Dim. Raw PCA LDA SDA MRMI MIDA
1 50.0 393 49.7 452 404 553 1 496 502 534 510 510 49.5

2 722 541 659 640 565 74.1 2 520 542 - - 50.1 54.9

3 81.8 725 752 77.1 68.7 85.2 3 505 572 - - 504 61.9

4 850 802 - 81.8 753 89.6 4 513 649 - - 50.6 74.3

5 857 843 - 84.7 80.0 91.3 5 494 795 - - 48.5 84.2

6 852 872 - 858 827 91.6 6 50.7 888 - - 48.0 87.5

7 842 873 - 86.8 844 92.1 7 519 859 - - 47.7 87.6
Hill-valley with noise data set Hill-valley without noise data set

Dim. Raw PCA LDA SDA MRMI MIDA Dim. Raw PCA LDA SDA MRMI MIDA
1 533 527 756 51.8 503 54.4 1 53.1 493 761 520 489 50.6

2 513 584 - 540 521 78.9 2 545 559 - 67.2 498 66.8

3 534 681 - 69.2 51.6 89.3 3 533 753 - 754 528 88.5

4 516 898 - 88.1 537 94.8 4 540 887 - 86.2 556 92.5

5 516 961 - 95.1 56.7 98.8 5 539 953 - 949 578 974

6 50.1 983 - - 58.5 99.3 6 539 974 - - 58.4 984

7 517 984 - - 58.0 99.5 7 532 981 - - 59.5 99.3
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The second data set was the Libras movement data set that contains 15 classes and 24 instances.
Each class refers to a hand movement type in Libras. This data set represents the coordinates of
movements with 90 features. In this data set, the KNN and SVM classifiers showed that the
results obtained from our method generally were better than the results of other methods. For the
first two components, the KNN classifier showed that the LDA method was better and our
method ranked second. Meanwhile, the SVM classifier ranked our method first for components 3
to 5. Both classifiers showed our method to be better than the other methods. However, for the
last two components, SDA performed better. For these two components, our method ranked
second again.

The third data set was a wall-following robot navigation data set that consists of 24 features. Its
objective is to test the hypothesis that a seemingly simple navigation task is actually a nonlinearly
separable classification task. Therefore, linear classifiers, unlike non-linear classifiers, cannot be
trained to perform navigations around a room without collisions. Here, the results from the KNN
and SVM classifiers showed that our feature extraction method was able to obtain better
discriminative information compared to the other five methods for the first seven components.
Other methods could not extract the discriminative information because this data set contains
features that are nonlinearly separable.

Table 3. Percentile average classification accuracy with SVM on the different data sets

Letter data set Libras movement data set

Dim. Raw PCA LDA SDA MRMI MIDA Dim. Raw PCA LDA SDA MRMI MIDA
1 7.5 8.1 19.3 193 121 20.9 1 153 94 192 164 75 22.8

2 8.8 19.0 43,5 435 266 37.9 2 322 281 403 339 158 43.6

3 128 364 56.0 560 448 535 3 339 458 489 444 214 60.0

4 158 591 704 704 614 62.7 4 353 619 514 60.0 26.1 70.0

5 230 729 767 767 77.30 76.8 5 353 678 544 692 311 71.9

6 343 798 837 837 87.0 85.6 6 356 714 558 739 342 733

7 516 842 875 875 926 91.8 7 367 725 5715 718 364 74.2
Wall-Following data set Madelon data set

Dim. Raw PCA LDA SDA MRMI MIDA Dim. Raw PCA LDA SDA MRMI MIDA
1 557 445 623 558 483 66.9 1 46.5 468 537 554 467 55.2

2 69.1 528 682 649 58.1 70.7 2 463 555 - - 48.8 60.1

3 79.7 67.6 733 755 665 80.0 3 48.1 638 - - 49.1 66.9

4 833 763 - 78.0 75.1 85.1 4 477 712 - - 48.7 78.7

5 845 831 - 81.8  80.2 89.1 5 51.7 836 - - 49.9 88.2

6 828 867 - 837 820 90.3 6 509 914 - - 50.5 89.2

7 809 869 - 86.5 825 91.5 7 524 894 - - 50.5 90.0
Hill-valley with noise data set Hill-valley without noise data set

Dim. Raw PCA LDA SDA MRMI MIDA Dim. Raw PCA LDA SDA MRMI MIDA
1 476 457 689 533 493 54.0 1 49.1 509 693 51.6 493 51.8

2 474 497 - 543 477 534 2 49.1 536 - 56.6 499 56.1

3 476 508 - 56.0 49.8 56.9 3 49.1 552 - 57.7  49.6 63.4

4 475 536 - 59.1 492 60.2 4 494 584 - 57.8 495 65.8

5 473 552 - 579 504 63.4 5 498 620 - 61.0 492 65.4

6 474 559 - - 49.0 64.3 6 50.1 625 - - 49.9 66.0

7 470 574 - - 49.3 64.9 7 50.7 643 - - 49.3 66.6

The fourth data set used in our paper was Madelon, which is an artificial data set containing data
points that are divided into 32 clusters. Each cluster is located at the vertices of a five dimensional
hypercube and randomly labeled +1 or -1. This data set is constructed of 500 attributes. Of these
attributes, 5 are relative features, 15 are redundant features consisting of linear combinations of
those relative features, and the remaining 480 features are irrelevant. In this case, our method was
better based on the KNN and SVM classifier results. The detailed results are as follows: for the
first component, KNN indicated that the LDA method was better. The SVM classifier ranked
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SDA first and our method second. For the remaining components, with the exception of the sixth
component, both the KNN and SVM classifiers indicated that our algorithm was the best. For the
sixth component, both classifiers showed that the PCA method was better, and our method ranked
second again.

The fifth and sixth data sets are the Hill-valley data set. This data set is made up of 100 points on
a two-dimensional graph. Its objective is to distinguish hills from valleys, and it consists of two
data sets. One data set is noisy, and the other data set is noiseless. We used both sets in our
experiment. In the fifth case, using the noisy subdata, our method was generally better according
to the KNN classifier results. For the first component, LDA performed better than the others, and
ours ranked second. For the rest of components, our method had better performance. However,
according to the results obtained from the SVM classifier for the first component, LDA was the
leading method, and our method ranked second. For the second component, SDA was better and
we ranked second. For the rest of the components, we ranked first. For this data set, according to
the results that we obtained from the KNN classifier, our method was the best. The SVM
classifier showed that LDA was better, but if we compare all results together, our method was
generally the leading method. In the sixth case, using the second subdata (the set without noise),
our method again ranked first as the best method for extracting discriminative information. For
the first component, according to KNN classifier, the result of LDA method was the best.
However, for the second component, SDA ranked first place with 67.2%. We ranked in second
place with 66.8%. For the remaining components, our method ranked first. Meanwhile, for the
first component, according to the SVM classifier, the leading method was LDA. For the second
component, the leading method was SDA. For both components, our method ranked second.
However, our method ranked first for the remaining components. Again, as we observed in the
previous data set, KNN ranked our method highest. SVM ranked LDA above our method, but in
aggregate, our method was better.

5. CONCLUSIONS

Feature extraction plays an important role in classification systems. In this paper, a novel DA
method for feature extraction based on MI was proposed. This method is called MIDA. The goal
of MIDA is to create new features by transforming the original features such that the
transformation simultaneously maximizes the MI between the transformed features and the class
labels and minimizes redundancy. In contrast to other DA algorithms that are based on second-
order statistics, the proposed method is based on information theory that is able to compare the
nonlinear relationships between random variables (i.e., between a vector of features and the class
label). The proposed method was evaluated using six data sets from UCI databases. The
experiments have shown that the MIDA method performs comparably to existing methods.
MIDA’s performance was frequently better than other methods. For experiments when it was not
ranked the best, MIDA ranked close to the best. MIDA is effective for dimensionality reduction.
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