22,758 research outputs found

    Querying Streaming System Monitoring Data for Enterprise System Anomaly Detection

    Full text link
    The need for countering Advanced Persistent Threat (APT) attacks has led to the solutions that ubiquitously monitor system activities in each enterprise host, and perform timely abnormal system behavior detection over the stream of monitoring data. However, existing stream-based solutions lack explicit language constructs for expressing anomaly models that capture abnormal system behaviors, thus facing challenges in incorporating expert knowledge to perform timely anomaly detection over the large-scale monitoring data. To address these limitations, we build SAQL, a novel stream-based query system that takes as input, a real-time event feed aggregated from multiple hosts in an enterprise, and provides an anomaly query engine that queries the event feed to identify abnormal behaviors based on the specified anomaly models. SAQL provides a domain-specific query language, Stream-based Anomaly Query Language (SAQL), that uniquely integrates critical primitives for expressing major types of anomaly models. In the demo, we aim to show the complete usage scenario of SAQL by (1) performing an APT attack in a controlled environment, and (2) using SAQL to detect the abnormal behaviors in real time by querying the collected stream of system monitoring data that contains the attack traces. The audience will have the option to interact with the system and detect the attack footprints in real time via issuing queries and checking the query results through a command-line UI.Comment: Accepted paper at ICDE 2020 demonstrations track. arXiv admin note: text overlap with arXiv:1806.0933

    A hybrid intrusion detection system

    Get PDF
    Anomaly intrusion detection normally has high false alarm rates, and a high volume of false alarms will prevent system administrators identifying the real attacks. Machine learning methods provide an effective way to decrease the false alarm rate and improve the detection rate of anomaly intrusion detection. In this research, we propose a novel approach using kernel methods and Support Vector Machine (SVM) for improving anomaly intrusion detectors\u27 accuracy. Two kernels, STIDE kernel and Markov Chain kernel, are developed specially for intrusion detection applications. The experiments show the STIDE and Markov Chain kernel based two class SVM anomaly detectors have better accuracy rate than the original STIDE and Markov Chain anomaly detectors.;Generally, anomaly intrusion detection approaches build normal profiles from labeled training data. However, labeled training data for intrusion detection is expensive and not easy to obtain. We propose an anomaly detection approach, using STIDE kernel and Markov Chain kernel based one class SVM, that does not need labeled training data. To further increase the detection rate and lower the false alarm rate, an approach of integrating specification based intrusion detection with anomaly intrusion detection is also proposed.;This research also establish a platform which generates automatically both misuse and anomaly intrusion detection software agents. In our method, a SIFT representing an intrusion is automatically converted to a Colored Petri Net (CPNs) representing an intrusion detection template, subsequently, the CPN is compiled into code for misuse intrusion detection software agents using a compiler and dynamically loaded and launched for misuse intrusion detection. On the other hand, a model representing a normal profile is automatically generated from training data, subsequently, an anomaly intrusion detection agent which carries this model is generated and launched for anomaly intrusion detection. By engaging both misuse and anomaly intrusion detection agents, our system can detect known attacks as well as novel unknown attacks

    NeuDetect: A neural network data mining system for wireless network intrusion detection

    Get PDF
    This thesis proposes an Intrusion Detection System, NeuDetect, which applies Neural Network technique to wireless network packets captured through hardware sensors for purposes of real time detection of anomalous packets. To address the problem of high false alarm rate confronted by the current wireless intrusion detection systems, this thesis presents a method of applying the artificial neural networks technique to the wireless network intrusion detection system. The proposed system solution approach is to find normal and anomalous patterns on preprocessed wireless packet records by comparing them with training data using Back-propagation algorithm. An anomaly score is assigned to each packet by calculating the difference between the output error and threshold. If the anomaly score is positive then the wireless packet is flagged as anomalous and is negative then the packet is flagged as normal. If the anomaly score is zero or close to zero it will be flagged as an unknown attack and will be sent back to training process for re-evaluation

    A survey of intrusion detection system technologies

    Get PDF
    This paper provides an overview of IDS types and how they work as well as configuration considerations and issues that affect them. Advanced methods of increasing the performance of an IDS are explored such as specification based IDS for protecting Supervisory Control And Data Acquisition (SCADA) and Cloud networks. Also by providing a review of varied studies ranging from issues in configuration and specific problems to custom techniques and cutting edge studies a reference can be provided to others interested in learning about and developing IDS solutions. Intrusion Detection is an area of much required study to provide solutions to satisfy evolving services and networks and systems that support them. This paper aims to be a reference for IDS technologies other researchers and developers interested in the field of intrusion detection

    Hierarchical Design Based Intrusion Detection System For Wireless Ad hoc Network

    Full text link
    In recent years, wireless ad hoc sensor network becomes popular both in civil and military jobs. However, security is one of the significant challenges for sensor network because of their deployment in open and unprotected environment. As cryptographic mechanism is not enough to protect sensor network from external attacks, intrusion detection system needs to be introduced. Though intrusion prevention mechanism is one of the major and efficient methods against attacks, but there might be some attacks for which prevention method is not known. Besides preventing the system from some known attacks, intrusion detection system gather necessary information related to attack technique and help in the development of intrusion prevention system. In addition to reviewing the present attacks available in wireless sensor network this paper examines the current efforts to intrusion detection system against wireless sensor network. In this paper we propose a hierarchical architectural design based intrusion detection system that fits the current demands and restrictions of wireless ad hoc sensor network. In this proposed intrusion detection system architecture we followed clustering mechanism to build a four level hierarchical network which enhances network scalability to large geographical area and use both anomaly and misuse detection techniques for intrusion detection. We introduce policy based detection mechanism as well as intrusion response together with GSM cell concept for intrusion detection architecture.Comment: 16 pages, International Journal of Network Security & Its Applications (IJNSA), Vol.2, No.3, July 2010. arXiv admin note: text overlap with arXiv:1111.1933 by other author

    Development of life prediction capabilities for liquid propellant rocket engines. Post-fire diagnostic system for the SSME system architecture study

    Get PDF
    This system architecture task (1) analyzed the current process used to make an assessment of engine and component health after each test or flight firing of an SSME, (2) developed an approach and a specific set of objectives and requirements for automated diagnostics during post fire health assessment, and (3) listed and described the software applications required to implement this system. The diagnostic system described is a distributed system with a database management system to store diagnostic information and test data, a CAE package for visual data analysis and preparation of plots of hot-fire data, a set of procedural applications for routine anomaly detection, and an expert system for the advanced anomaly detection and evaluation

    An improved artificial dendrite cell algorithm for abnormal signal detection

    Get PDF
    In dendrite cell algorithm (DCA), the abnormality of a data point is determined by comparing the multi-context antigen value (MCAV) with anomaly threshold. The limitation of the existing threshold is that the value needs to be determined before mining based on previous information and the existing MCAV is inefficient when exposed to extreme values. This causes the DCA fails to detect new data points if the pattern has distinct behavior from previous information and affects detection accuracy. This paper proposed an improved anomaly threshold solution for DCA using the statistical cumulative sum (CUSUM) with the aim to improve its detection capability. In the proposed approach, the MCAV were normalized with upper CUSUM and the new anomaly threshold was calculated during run time by considering the acceptance value and min MCAV. From the experiments towards 12 benchmark and two outbreak datasets, the improved DCA is proven to have a better detection result than its previous version in terms of sensitivity, specificity, false detection rate and accuracy
    • …
    corecore