101 research outputs found

    Determinising Parity Automata

    Full text link
    Parity word automata and their determinisation play an important role in automata and game theory. We discuss a determinisation procedure for nondeterministic parity automata through deterministic Rabin to deterministic parity automata. We prove that the intermediate determinisation to Rabin automata is optimal. We show that the resulting determinisation to parity automata is optimal up to a small constant. Moreover, the lower bound refers to the more liberal Streett acceptance. We thus show that determinisation to Streett would not lead to better bounds than determinisation to parity. As a side-result, this optimality extends to the determinisation of B\"uchi automata

    On the (In)Succinctness of Muller Automata

    Get PDF
    There are several types of finite automata on infinite words, differing in their acceptance conditions. As each type has its own advantages, there is an extensive research on the size blowup involved in translating one automaton type to another. Of special interest is the Muller type, providing the most detailed acceptance condition. It turns out that there is inconsistency and incompleteness in the literature results regarding the translations to and from Muller automata. Considering the automaton size, some results take into account, in addition to the number of states, the alphabet length and the number of transitions while ignoring the length of the acceptance condition, whereas other results consider the length of the acceptance condition while ignoring the two other parameters. We establish a full picture of the translations to and from Muller automata, enhancing known results and adding new ones. Overall, Muller automata can be considered less succinct than parity, Rabin, and Streett automata: translating nondeterministic Muller automata to the other nondeterministic types involves a polynomial size blowup, while the other way round is exponential; translating between the deterministic versions is exponential in both directions; and translating nondeterministic automata of all types to deterministic Muller automata is doubly exponential, as opposed to a single exponent in the translations to the other deterministic types

    Rabin vs. Streett Automata

    Get PDF
    The Rabin and Streett acceptance conditions are dual. Accordingly, deterministic Rabin and Streett automata are dual. Yet, when adding nondeterminsim, the picture changes dramatically. In fact, the state blowup involved in translations between Rabin and Streett automata is a longstanding open problem, having an exponential gap between the known lower and upper bounds. We resolve the problem, showing that the translation of Streett to Rabin automata involves a state blowup in Theta(n2)Theta(n^2), whereas in the other direction, the translations of both deterministic and nondeterministic Rabin automata to nondeterministic Streett automata involve a state blowup in 2Theta(n)2^{Theta(n)}. Analyzing this substantial difference between the two directions, we get to the conclusion that when studying translations between automata, one should not only consider the state blowup, but also the emph{size} blowup, where the latter takes into account all of the automaton elements. More precisely, the size of an automaton is defined to be the maximum of the alphabet length, the number of states, the number of transitions, and the acceptance condition length (index). Indeed, size-wise, the results are opposite. That is, the translation of Rabin to Streett involves a size blowup in Theta(n2)Theta(n^2) and of Streett to Rabin in 2Theta(n)2^{Theta(n)}. The core difference between state blowup and size blowup stems from the tradeoff between the index and the number of states. (Recall that the index of Rabin and Streett automata might be exponential in the number of states.) We continue with resolving the open problem of translating deterministic Rabin and Streett automata to the weaker types of deterministic co-B"uchi and B"uchi automata, respectively. We show that the state blowup involved in these translations, when possible, is in 2Theta(n)2^{Theta(n)}, whereas the size blowup is in Theta(n2)Theta(n^2)

    How Deterministic are Good-For-Games Automata?

    Get PDF
    In GFG automata, it is possible to resolve nondeterminism in a way that only depends on the past and still accepts all the words in the language. The motivation for GFG automata comes from their adequacy for games and synthesis, wherein general nondeterminism is inappropriate. We continue the ongoing effort of studying the power of nondeterminism in GFG automata. Initial indications have hinted that every GFG automaton embodies a deterministic one. Today we know that this is not the case, and in fact GFG automata may be exponentially more succinct than deterministic ones. We focus on the typeness question, namely the question of whether a GFG automaton with a certain acceptance condition has an equivalent GFG automaton with a weaker acceptance condition on the same structure. Beyond the theoretical interest in studying typeness, its existence implies efficient translations among different acceptance conditions. This practical issue is of special interest in the context of games, where the Buchi and co-Buchi conditions admit memoryless strategies for both players. Typeness is known to hold for deterministic automata and not to hold for general nondeterministic automata. We show that GFG automata enjoy the benefits of typeness, similarly to the case of deterministic automata. In particular, when Rabin or Streett GFG automata have equivalent Buchi or co-Buchi GFG automata, respectively, then such equivalent automata can be defined on a substructure of the original automata. Using our typeness results, we further study the place of GFG automata in between deterministic and nondeterministic ones. Specifically, considering automata complementation, we show that GFG automata lean toward nondeterministic ones, admitting an exponential state blow-up in the complementation of a Streett automaton into a Rabin automaton, as opposed to the constant blow-up in the deterministic case

    On the Succinctness of Alternating Parity Good-For-Games Automata

    Get PDF
    We study alternating parity good-for-games (GFG) automata, i.e., alternating parity automata where both conjunctive and disjunctive choices can be resolved in an online manner, without knowledge of the suffix of the input word still to be read. We show that they can be exponentially more succinct than both their nondeterministic and universal counterparts. Furthermore, we present a single exponential determinisation procedure and an Exptime upper bound to the problem of recognising whether an alternating automaton is GFG. We also study the complexity of deciding "half-GFGness", a property specific to alternating automata that only requires nondeterministic choices to be resolved in an online manner. We show that this problem is PSpace-hard already for alternating automata on finite words

    State Space Reduction For Parity Automata

    Get PDF
    Exact minimization of ?-automata is a difficult problem and heuristic algorithms are a subject of current research. We propose several new approaches to reduce the state space of deterministic parity automata. These are based on extracting information from structures within the automaton, such as strongly connected components, coloring of the states, and equivalence classes of given relations, to determine states that can safely be merged. We also establish a framework to generalize the notion of quotient automata and uniformly describe such algorithms. The description of these procedures consists of a theoretical analysis as well as data collected from experiments

    Good for Games Automata: From Nondeterminism to Alternation

    Get PDF
    A word automaton recognizing a language LL is good for games (GFG) if its composition with any game with winning condition LL preserves the game's winner. While all deterministic automata are GFG, some nondeterministic automata are not. There are various other properties that are used in the literature for defining that a nondeterministic automaton is GFG, including "history-deterministic", "compliant with some letter game", "good for trees", and "good for composition with other automata". The equivalence of these properties has not been formally shown. We generalize all of these definitions to alternating automata and show their equivalence. We further show that alternating GFG automata are as expressive as deterministic automata with the same acceptance conditions and indices. We then show that alternating GFG automata over finite words, and weak automata over infinite words, are not more succinct than deterministic automata, and that determinizing B\"uchi and co-B\"uchi alternating GFG automata involves a 2Θ(n)2^{\Theta(n)} state blow-up. We leave open the question of whether alternating GFG automata of stronger acceptance conditions allow for doubly-exponential succinctness compared to deterministic automata.Comment: Full version of a paper of the same name accepted fr publication at the 30th International Conference on Concurrency Theor

    From Nondeterministic Büchi and Streett Automata to Deterministic Parity Automata

    Full text link

    Parity and generalised Büchi automata - determinisation and complementation

    Get PDF
    In this thesis, we study the problems of determinisation and complementation of finite automata on infinite words. We focus on two classes of automata that occur naturally: generalised Büchi automata and nondeterministic parity automata. Generalised Büchi and parity automata occur naturally in model-checking, realisability checking and synthesis procedures. We first review a tight determinisation procedure for Büchi automata, which uses a simplification of Safra trees called history trees. As Büchi automata are special types of both generalised Büchi and parity automata, we adjust the data structure to arrive at suitably tight determinisation constructions for both generalised Büchi and parity automata. As the parity condition describes combinations of Büchi and CoBüchi conditions, instead of immediately modifying the data structure to handle parity automata, we arrive at a suitable data structure by first looking at a special case, Rabin automata with one accepting pair. One pair Rabin automata correspond to parity automata with three priorities and serve as a starting point to modify the structures that result from Büchi determinisation: we then nest these structures to reflect the standard parity condition and describe a direct determinisation construction. The generalised Büchi condition is characterised by an accepting family with 'k' accepting sets. It is easy to extend classic determinisation constructions to handle generalised Büchi automata by incorporating the degeneralization algorithm in the determinisation construction. We extend the tight Büchi construction to do exactly this. Our determinisation constructions go to deterministic Rabin automata. It is known that one can determinise to the more convenient parity condition by incorporating the standard Latest Appearance Record construction in the determinisation procedure. We determinise to parity automata using this technique. We prove lower bounds on these constructions. In the case of determinisation to Rabin automata, our constructions are tight to the state. In the case of determinisation to parity, there is a constant factor ≤ 1.5 between upper and lower bounds reducing to optimal(to the state) in the case of Büchi and 1-pair Rabin. We also reconnect tight determinisation and complementation and provide constructions for complementing generalised Büchi and parity automata by starting withour data structure for determinisation. We introduce suitable data structures for the complementation procedures based on the data structure used for determinisation. We prove lower bounds for both constructions that are tight upto an O(n) factor where 'n' is the number of states of the nondeterministic automaton that is complemented
    corecore