1,490 research outputs found

    Learning Language from a Large (Unannotated) Corpus

    Full text link
    A novel approach to the fully automated, unsupervised extraction of dependency grammars and associated syntax-to-semantic-relationship mappings from large text corpora is described. The suggested approach builds on the authors' prior work with the Link Grammar, RelEx and OpenCog systems, as well as on a number of prior papers and approaches from the statistical language learning literature. If successful, this approach would enable the mining of all the information needed to power a natural language comprehension and generation system, directly from a large, unannotated corpus.Comment: 29 pages, 5 figures, research proposa

    Modeling Graph Languages with Grammars Extracted via Tree Decompositions

    Get PDF
    Work on probabilistic models of natural language tends to focus on strings and trees, but there is increasing interest in more general graph-shaped structures since they seem to be better suited for representing natural language semantics, ontologies, or other varieties of knowledge structures. However, while there are relatively simple approaches to defining generative models over strings and trees, it has proven more challenging for more general graphs. This paper describes a natural generalization of the n-gram to graphs, making use of Hyperedge Replacement Grammars to define generative models of graph languages.9 page(s

    Extracting Biomolecular Interactions Using Semantic Parsing of Biomedical Text

    Full text link
    We advance the state of the art in biomolecular interaction extraction with three contributions: (i) We show that deep, Abstract Meaning Representations (AMR) significantly improve the accuracy of a biomolecular interaction extraction system when compared to a baseline that relies solely on surface- and syntax-based features; (ii) In contrast with previous approaches that infer relations on a sentence-by-sentence basis, we expand our framework to enable consistent predictions over sets of sentences (documents); (iii) We further modify and expand a graph kernel learning framework to enable concurrent exploitation of automatically induced AMR (semantic) and dependency structure (syntactic) representations. Our experiments show that our approach yields interaction extraction systems that are more robust in environments where there is a significant mismatch between training and test conditions.Comment: Appearing in Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16

    Using Natural Language as Knowledge Representation in an Intelligent Tutoring System

    Get PDF
    Knowledge used in an intelligent tutoring system to teach students is usually acquired from authors who are experts in the domain. A problem is that they cannot directly add and update knowledge if they don’t learn formal language used in the system. Using natural language to represent knowledge can allow authors to update knowledge easily. This thesis presents a new approach to use unconstrained natural language as knowledge representation for a physics tutoring system so that non-programmers can add knowledge without learning a new knowledge representation. This approach allows domain experts to add not only problem statements, but also background knowledge such as commonsense and domain knowledge including principles in natural language. Rather than translating into a formal language, natural language representation is directly used in inference so that domain experts can understand the internal process, detect knowledge bugs, and revise the knowledgebase easily. In authoring task studies with the new system based on this approach, it was shown that the size of added knowledge was small enough for a domain expert to add, and converged to near zero as more problems were added in one mental model test. After entering the no-new-knowledge state in the test, 5 out of 13 problems (38 percent) were automatically solved by the system without adding new knowledge

    How much hybridisation does machine translation need?

    Get PDF
    This is the peer reviewed version of the following article: [Costa-jussà, M. R. (2015), How much hybridization does machine translation Need?. J Assn Inf Sci Tec, 66: 2160–2165. doi:10.1002/asi.23517], which has been published in final form at [10.1002/asi.23517]. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.Rule-based and corpus-based machine translation (MT)have coexisted for more than 20 years. Recently, bound-aries between the two paradigms have narrowed andhybrid approaches are gaining interest from bothacademia and businesses. However, since hybridapproaches involve the multidisciplinary interaction oflinguists, computer scientists, engineers, and informa-tion specialists, understandably a number of issuesexist.While statistical methods currently dominate researchwork in MT, most commercial MT systems are techni-cally hybrid systems. The research community shouldinvestigate the bene¿ts and questions surrounding thehybridization of MT systems more actively. This paperdiscusses various issues related to hybrid MT includingits origins, architectures, achievements, and frustra-tions experienced in the community. It can be said thatboth rule-based and corpus- based MT systems havebene¿ted from hybridization when effectively integrated.In fact, many of the current rule/corpus-based MTapproaches are already hybridized since they do includestatistics/rules at some point.Peer ReviewedPostprint (author's final draft

    Prolegomena to a neurocomputational architecture for human grammatical encoding and decoding

    No full text
    The study develops a neurocomputational architecture for grammatical processing in language production and language comprehension (grammatical encoding and decoding, respectively). It seeks to answer two questions. First, how is online syntactic structure formation of the complexity required by natural-language grammars possible in a fixed, preexisting neural network without the need for online creation of new connections or associations? Second, is it realistic to assume that the seemingly disparate instantiations of syntactic structure formation in grammatical encoding and grammatical decoding can run on the same neural infrastructure? This issue is prompted by accumulating experimental evidence for the hypothesis that the mechanisms for grammatical decoding overlap with those for grammatical encoding to a considerable extent, thus inviting the hypothesis of a single “grammatical coder.” The paper answers both questions by providing the blueprint for a syntactic structure formation mechanism that is entirely based on prewired circuitry (except for referential processing, which relies on the rapid learning capacity of the hippocampal complex), and can subserve decoding as well as encoding tasks. The model builds on the “Unification Space” model of syntactic parsing developed by Vosse & Kempen (2000, 2008, 2009). The design includes a neurocomputational mechanism for the treatment of an important class of grammatical movement phenomena

    Learning Efficient Disambiguation

    Get PDF
    This dissertation analyses the computational properties of current performance-models of natural language parsing, in particular Data Oriented Parsing (DOP), points out some of their major shortcomings and suggests suitable solutions. It provides proofs that various problems of probabilistic disambiguation are NP-Complete under instances of these performance-models, and it argues that none of these models accounts for attractive efficiency properties of human language processing in limited domains, e.g. that frequent inputs are usually processed faster than infrequent ones. The central hypothesis of this dissertation is that these shortcomings can be eliminated by specializing the performance-models to the limited domains. The dissertation addresses "grammar and model specialization" and presents a new framework, the Ambiguity-Reduction Specialization (ARS) framework, that formulates the necessary and sufficient conditions for successful specialization. The framework is instantiated into specialization algorithms and applied to specializing DOP. Novelties of these learning algorithms are 1) they limit the hypotheses-space to include only "safe" models, 2) are expressed as constrained optimization formulae that minimize the entropy of the training tree-bank given the specialized grammar, under the constraint that the size of the specialized model does not exceed a predefined maximum, and 3) they enable integrating the specialized model with the original one in a complementary manner. The dissertation provides experiments with initial implementations and compares the resulting Specialized DOP (SDOP) models to the original DOP models with encouraging results.Comment: 222 page
    corecore