3,500 research outputs found

    (MU-CTL-01-12) Towards Model Driven Game Engineering in SimSYS: Requirements for the Agile Software Development Process Game

    Get PDF
    Software Engineering (SE) and Systems Engineering (Sys) are knowledge intensive, specialized, rapidly changing disciplines; their educational infrastructure faces significant challenges including the need to rapidly, widely, and cost effectively introduce new or revised course material; encourage the broad participation of students; address changing student motivations and attitudes; support undergraduate, graduate and lifelong learning; and incorporate the skills needed by industry. Games have a reputation for being fun and engaging; more importantly immersive, requiring deep thinking and complex problem solving. We believe educational games are essential in the next generation of e-learning tools. An extensible, freely available, engaging, problem-based game platform that provides students with an interactive simulated experience closely resembling the activities performed in a (real) industry development project would transform the SE/Sys education infrastructure. Our goal is to extend the state-of-the-art research in SE/Sys education by investigating a game development platform (GDP) from an interdisciplinary perspective (education, game research, and software/systems engineering). A meta-model has been proposed to provide a rigourous foundation that integrates the three disciplines. The GDP is intended to support the semi-automated development of collections of scripted games and their execution, where each game embodies a specific set of learning objectives. The games are scripted using a template based approach. The templates integrate three approaches: use cases; storyboards; and state machines (timed, concurrent, hierarchical state machines). The specification templates capture the structure of the game (Game, Acts, Scenes, Screens, Challenges), storyline, characters (player, non-player, external), graphics, music/sound effects, rules, and so on. The instantiated templates are (manually) transformed into XML game scripts that can be loaded into the SimSYS Game Play Engine. As a game is played, the game play events are logged; they are analyzed to automatically assess a player’s accomplishments and automatically adapt the game play script. Currently, we are manually defining a collection of games. The games are being used to ensure the GDP is flexible and reliable (i.e., the prototype can load and correctly run a variety of game scripts), the ontology is comprehensive, and the templates assist in defining well-organized, modular game scripts. In this report, we present the initial part of an Agile Software Development Process game (Act I, Scenes 1 and 2) that embodies learning objectives related to SE fundamentals (requirements, architecture, testing, process); planning with Gantt charts; working with budgets; and selecting a team for an agile development project. A student player is rewarded in the game by getting hired, scoring points, or getting promoted to lead a project. The game has a variety of settings including a classroom, job fair, and a work environment with meeting rooms, cubicles, and a water cooler station. The main non-player characters include a teacher, boss, and an evil peer. In the future, semi-automated support for creating new game scripts will be explored using a wizard interface. The templates will be formally defined, supporting automated transformation into XML game scripts that can be loaded into the SimSYS Game Engine. We also plan to explore transforming the requirements into a notation that can be imported into a commercial tool that supports Statechart simulation

    Application Software, Domain-Specific Languages, and Language Design Assistants

    Get PDF
    While application software does the real work, domain-specific languages (DSLs) are tools to help produce it efficiently, and language design assistants in turn are meta-tools to help produce DSLs quickly. DSLs are already in wide use (HTML for web pages, Excel macros for spreadsheet applications, VHDL for hardware design, ...), but many more will be needed for both new as well as existing application domains. Language design assistants to help develop them currently exist only in the basic form of language development systems. After a quick look at domain-specific languages, and especially their relationship to application libraries, we survey existing language development systems and give an outline of future language design assistants.Comment: To be presented at SSGRR 2000, L'Aquila, Ital

    SAGA: A DSL for Story Management

    Full text link
    Video game development is currently a very labour-intensive endeavour. Furthermore it involves multi-disciplinary teams of artistic content creators and programmers, whose typical working patterns are not easily meshed. SAGA is our first effort at augmenting the productivity of such teams. Already convinced of the benefits of DSLs, we set out to analyze the domains present in games in order to find out which would be most amenable to the DSL approach. Based on previous work, we thus sought those sub-parts that already had a partially established vocabulary and at the same time could be well modeled using classical computer science structures. We settled on the 'story' aspect of video games as the best candidate domain, which can be modeled using state transition systems. As we are working with a specific company as the ultimate customer for this work, an additional requirement was that our DSL should produce code that can be used within a pre-existing framework. We developed a full system (SAGA) comprised of a parser for a human-friendly language for 'story events', an internal representation of design patterns for implementing object-oriented state-transitions systems, an instantiator for these patterns for a specific 'story', and three renderers (for C++, C# and Java) for the instantiated abstract code.Comment: In Proceedings DSL 2011, arXiv:1109.032

    Applying MDE tools to defining domain specific languages for model management

    Get PDF
    In the model driven engineering (MDE), modeling languages play a central role. They range from the most generic languages such as UML, to more individual ones, called domain-specific modeling languages (DSML). These languages are used to create and manage models and must accompany them throughout their life cycle and evolution. In this paper we propose a domain-specific language for model management, to facilitate the user's task, developed with techniques and tools used in the MDE paradigm.Fil: Pérez, Gabriela. Universidad Nacional de la Plata. Facultad de Informática. Laboratorio de Investigación y Formación en Informática Avanzada; ArgentinaFil: Irazábal, Jerónimo. Universidad Nacional de la Plata. Facultad de Informática. Laboratorio de Investigación y Formación en Informática Avanzada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Pons, Claudia Fabiana. Universidad Nacional de la Plata. Facultad de Informática. Laboratorio de Investigación y Formación en Informática Avanzada; Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; ArgentinaFil: Giandini, Roxana Silvia. Universidad Nacional de la Plata. Facultad de Informática. Laboratorio de Investigación y Formación en Informática Avanzada; Argentin

    Engineering Enterprise Software Systems with Interactive UML Models and Aspect-Oriented Middleware

    Get PDF
    Large scale enterprise software systems are inherently complex and hard to maintain. To deal with this complexity, current mainstream software engineering practices aim at raising the level of abstraction to visual models described in OMG’s UML modeling language. Current UML tools, however, produce static design diagrams for documentation which quickly become out-of-sync with the software, and thus obsolete. To address this issue, current model-driven software development approaches aim at software automation using generators that translate models into code. However, these solutions don’t have a good answer for dealing with legacy source code and the evolution of existing enterprise software systems. This research investigates an alternative solution by making the process of modeling more interactive with a simulator and integrating simulation with the live software system. Such an approach supports model-driven development at a higher-level of abstraction with models without sacrificing the need to drop into a lower-level with code. Additionally, simulation also supports better evolution since the impact of a change to a particular area of existing software can be better understood using simulated “what-if” scenarios. This project proposes such a solution by developing a web-based UML simulator for modeling use cases and sequence diagrams and integrating the simulator with existing applications using aspect-oriented middleware technology

    When and how to develop domain-specific languages

    Get PDF
    Domain-specific languages (DSLs) are languages tailored to a specific application domain. They offer substantial gains in expressiveness and ease of use compared with general purpose programming languages in their domain of application. DSL development is hard, requiring both domain knowledge and language development expertise. Few people have both. Not surprisingly, the decision to develop a DSL is often postponed indefinitely, if considered at all, and most DSLs never get beyond the application library stage. While many articles have been written on the development of particular DSLs, there is very limited literature on DSL development methodologies and many questions remain regarding when and how to develop a DSL. To aid the DSL developer, we identify patterns in the decision, analysis, design, and implementation phases of DSL development. Our patterns try to improve on and extend earlier work on DSL design patterns, in particular by Spinellis (2001). We also discuss domain analysis tools and language development systems that may help to speed up DSL development. Finally, we state a number of open problems
    corecore