
C e n t r u m v o o r W i s k u n d e e n I n f o r m a t i c a

 Software ENgineering

When and how to develop domain-specific languages

M. Mernik, J. Heering, A.M. Sloane

REPORT SEN-E0309 DECEMBER 8, 2003

SEN
Software Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301655561?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CWI is the National Research Institute for Mathematics and Computer Science. It is sponsored by the
Netherlands Organization for Scientific Research (NWO).
CWI is a founding member of ERCIM, the European Research Consortium for Informatics and Mathematics.

CWI's research has a theme-oriented structure and is grouped into four clusters. Listed below are the names
of the clusters and in parentheses their acronyms.

Probability, Networks and Algorithms (PNA)

Software Engineering (SEN)

Modelling, Analysis and Simulation (MAS)

Information Systems (INS)

Copyright © 2003, Stichting Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333
Telefax +31 20 592 4199

ISSN 1386-369X

When and how to develop domain-specific
languages

ABSTRACT
Domain-specific languages (DSLs) are languages tailored to a specific application domain.
They offer substantial gains in expressiveness and ease of use compared with general purpose
programming languages in their domain of application. DSL development is hard, requiring both
domain knowledge and language development expertise. Few people have both. Not
surprisingly, the decision to develop a DSL is often postponed indefinitely, if considered at all,
and most DSLs never get beyond the application library stage. While many articles have been
written on the development of particular DSLs, there is very limited literature on DSL
development methodologies and many questions remain regarding when and how to develop a
DSL. To aid the DSL developer, we identify patterns in the decision, analysis, design, and
implementation phases of DSL development. Our patterns try to improve on and extend earlier
work on DSL design patterns, in particular by Spinellis (2001). We also discuss domain analysis
tools and language development systems that may help to speed up DSL development. Finally,
we state a number of open problems.

1998 ACM Computing Classification System: D.3.2
Keywords and Phrases: domain-specific language; application language; domain analysis; language development
system
Note: Submitted for publication to ACM Computing Surveys

When and How to Develop Domain-Specific

Languages

Marjan Mernik1, Jan Heering2, Anthony M. Sloane3

1 University of Maribor, Slovenia, marjan.mernik@uni-mb.si
2 CWI Amsterdam, The Netherlands, Jan.Heering@cwi.nl

3 Macquarie University, Australia, asloane@comp.mq.edu.au

Abstract

Domain-specific languages (DSLs) are languages tailored to a specific
application domain. They offer substantial gains in expressiveness and
ease of use compared with general purpose programming languages in
their domain of application. DSL development is hard, requiring both
domain knowledge and language development expertise. Few people have
both. Not surprisingly, the decision to develop a DSL is often postponed
indefinitely, if considered at all, and most DSLs never get beyond the
application library stage.

While many articles have been written on the development of partic-
ular DSLs, there is very limited literature on DSL development method-
ologies and many questions remain regarding when and how to develop
a DSL. To aid the DSL developer, we identify patterns in the decision,
analysis, design, and implementation phases of DSL development. Our
patterns try to improve on and extend earlier work on DSL design pat-
terns, in particular by Spinellis (2001). We also discuss domain analysis
tools and language development systems that may help to speed up DSL
development. Finally, we state a number of open problems.

1 Introduction

1.1 General

Many computer languages are domain-specific rather than general purpose.
Domain-specific languages (DSLs) are also called application-oriented, special
purpose, task-specific, problem-oriented, specialized, or application languages.

DSLs trade generality for expressiveness in a limited domain. By providing
notations and constructs tailored toward a particular application domain, they
offer substantial gains in expressiveness and ease of use compared with general
purpose programming languages (GPLs) for the domain in question. These in
turn lead to gains in productivity and reduced maintenance costs. While GPLs
yield an order of magnitude productivity improvement over assembly languages,

1

DSL Application domain
BNF Syntax specification
Excel macro language Spreadsheets
HTML Hypertext web pages
LATEX Typesetting
Make Software building
SQL Database queries
VHDL Hardware design

Table 1: Some widely used domain-specific languages.

DSLs give another order of magnitude improvement over GPLs in their domain
of application.

The use of DSLs is by no means new. APT, a DSL for programming nu-
merically controlled machine tools, was developed in 1957–1958 [78]. BNF, the
well-known syntax specification formalism, dates back to 1959 [4]. So-called
fourth-generation languages (4GLs) are usually DSLs for database applications.
Little languages are small DSLs that do not include many features found in
GPLs [10, p. 715]. Some widely used DSLs with their application domains are
listed in Table 1. Many others will be mentioned in later sections. Visual DSLs,
such as UML, are important, but are beyond the scope of this article.

We will not try to give a definition of what constitutes an application domain
and what does not. Some people consider Cobol to be a DSL for business
applications, while others would argue this is pushing the notion of application
domain too far. Leaving matters of definition aside, it is natural to think of
DSLs in terms of a gradual scale with very specialized DSLs such as BNF on
the left and GPLs such as C++ on the right. On this scale, Cobol would be
somewhere between BNF and C++, but much closer to the latter. Similarly, it
is hard to tell if command languages like the Unix shell or scripting languages
like Tcl are DSLs. Clearly, domain-specificity is a matter of degree.

In combination with an application library, any GPL can act as a DSL, so
why were DSLs developed in the first place? Simply because they can offer
domain-specificity in better ways:

• Appropriate or established domain-specific notations are usually beyond
the limited user-definable operator notation offered by GPLs. A DSL
offers appropriate domain-specific notations from the start. Their impor-
tance should not be underestimated as they are directly related to the
productivity improvement associated with the use of DSLs.

• Appropriate domain-specific constructs and abstractions cannot always be
mapped in a straightforward way on functions or objects that can be put
in a library. This means a GPL in combination with an application library
can only express these constructs indirectly or in a cumbersome, repeti-
tious way. Again, a DSL would incorporate domain-specific constructs

2

from the start.

• Unlike GPLs, DSLs need not be executable. There is some confusion on
this in the DSL literature. For instance, the importance of non-executable
DSLs is emphasized in [99], while DSLs are required to be executable in
[29]. We discuss DSL executability in Section 1.2.

Despite their shortcomings, application libraries are formidable competitors to
DSLs. It is probably fair to say that most DSLs never get beyond the application
library stage. These are sometimes called domain-specific embedded languages
(DSELs). Even with improved DSL development tools, application libraries
will remain the most cost-effective solution in many cases, the more so since the
advent of component frameworks has further complicated the relative merits of
DSLs and application libraries.

Consider Microsoft Excel, for instance. Its macro language is a DSL for
spreadsheet applications which adds programmability to Excel’s fundamental
interactive mode. Using COM, Excel’s implementation has been restructured
into an application library or toolbox of COM components. This has opened it
up to general purpose programming languages such as C++, Java and Basic,
which can access it through its COM interfaces. This is called automation [19].
Unlike the Excel macro language, which by its very nature is limited to Excel
functionality, general purpose programming languages are not. They can be
used to write applications transcending Excel’s boundaries by using components
from other “automated” programs and COM libraries in addition to components
from Excel itself.

1.2 Executability of DSLs

DSLs are executable in various ways and to various degrees, even to the point
of being non-executable. Accordingly, DSL programs are often more properly
called specifications, definitions, or descriptions. We identify some points on the
“DSL executability scale”:

• DSL with well-defined execution semantics (Excel macro language, HTML).

• Input language of an application generator [21, 86]. These languages are
also executable, but they usually have a more declarative character and a
less well-defined execution semantics as far as the details of the generated
applications are concerned. The application generator is a compiler for
the DSL in question.

• DSL not primarily meant to be executable, but nevertheless useful for
application generation. The syntax specification formalism BNF is an
example of a DSL with a purely declarative character that can also act as
input language for a parser generator.

• DSL not meant to be executable [99]. Just like their executable relatives,
such non-executable DSLs may benefit from various kinds of tool sup-

3

port such as specialized editors, prettyprinters, consistency checkers, and
visualizers.

1.3 DSLs as enablers of reuse

The importance of DSLs can also be appreciated from the wider perspective of
the construction of large software systems. In this context the primary contri-
bution of DSLs is to enable reuse of software artifacts [11]. Among the types of
artifact that can be reused via DSLs are syntax, source code, software designs,
and domain abstractions.

In his definitive survey of reuse [61], Krueger categorizes reuse approaches
along the following dimensions: abstracting, selecting, specializing, and inte-
grating. In particular, he identifies application generators as an important reuse
category. As already noted, application generators often use DSLs as their input
language, thereby enabling the reuse of domain semantics. Krueger identifies
definition of domain coverage and concepts as a difficult challenge for imple-
mentors of application generators. We identify patterns for domain analysis in
this paper.

DSLs also play a role in other reuse categories identified by Krueger. For
example, software architectures are commonly reused when DSLs are employed
because the application generator or compiler follows a standard design when
producing code from a DSL input. DSLs implemented as application libraries
clearly enable reuse of source code and DSLs can play a role in the formal
specification of software schemas.

Reuse of syntax may take the form of reuse of (parts of) an actual grammar
already available in an existing GPL or DSL processor or reuse of a notation
already in use by domain experts, but perhaps not yet available in a computer
language.

1.4 Scope of this article

There are no easy answers to the “when and how” question in the title of this
article. The above-mentioned benefits of DSLs do not come for free:

• DSL development is hard, requiring both domain and language develop-
ment expertise. Few people have both.

• DSL development techniques are more varied than those for GPLs, requir-
ing careful consideration of the factors involved.

• Depending on the size of the user community, development of training ma-
terial, language support, standardization, and maintenance may become
serious and time-consuming issues.

These are not the only factors complicating the decision to develop a new DSL.
Initially, it is often far from evident that a DSL might be useful or that de-
veloping a new one might be worthwhile. This may become clear only after

4

a sizable investment in domain-specific software development using a GPL has
been made. The concepts underlying a suitable DSL may emerge only after a
lot of GPL programming has been done. In such cases, DSL development may
be a key step in software reengineering or software evolution [9].

To aid the DSL developer, we provide a systematic survey of the many
factors involved by identifying patterns in the decision, analysis, design, and
implementation phase of DSL development (Section 2). The DSL development
process can be facilitated by using domain analysis tools and language develop-
ment systems. These are surveyed in Section 3. Our patterns try to improve on
and extend earlier work on DSL design patterns, in particular by Spinellis [88].
This is discussed in Section 2.6. Other related work is discussed at appropriate
points throughout rather than in a separate section. Finally, conclusions and
open problems are given in Section 4. As mentioned before, visual DSLs are
beyond the scope of this article.

1.5 Literature

Until recently, DSLs received relatively little attention in the computer science
research community and there are few books on the subject. [64] is an exhaustive
account of the state of 4GLs at the time it was written, [12] is a two-volume
collection of articles on software reuse including DSL development and program
generation, [72] focuses on the role of DSLs in end-user programming, [79] is
a collection of articles on little languages (not all of them DSLs), [6] treats
scripting languages (again, not all of them DSLs), [25] discusses domain analysis,
program generators, and generative programming techniques, and [22] discusses
domain analysis and the use of XML, DOM, XSLT, and related languages and
tools to generate programs.

Proceedings of recent workshops and conferences partly or exclusively de-
voted to DSLs are [55, 76, 30, 48, 49, 50]. Several journals have published
special issues on DSLs [101, 66, 67]. There are many workshops and confer-
ences at least partly devoted to DSLs for a particular domain, for example,
description of features of telecommunications and other software systems [37].
The annotated DSL bibliography [29] (78 items) has limited overlap with the
references in this article because of our emphasis on general DSL development
issues. Finally, articles on DSL patterns and DSL development methodologies
are [23, 51, 86, 88, 99].

2 DSL Patterns

2.1 Pattern classification

The following DSL development phases can be distinguished:

• decision,

• analysis,

5

When/ Pattern class Description
How
When Decision pattern Common situations suitable for

designing a new DSL (or use of
an existing one)

How Analysis pattern Common approaches to domain
analysis

How Design pattern Common approaches to DSL de-
sign

How Implementation pattern Common approaches to DSL im-
plementation

Table 2: Pattern classification.

• design,

• implementation,

• deployment.

DSL development is not a simple sequential process of (positive) decision fol-
lowed by domain analysis, followed by DSL design, and so on. In practice, the
decision process may be influenced by preliminary analysis, analysis in turn may
have to supply answers to unforeseen questions arising during design, and design
is often influenced by implementation considerations.

As shown in Table 2, we associate classes of patterns with each of the above
development phases except deployment, which is beyond the scope of this article.
Patterns in different classes are independent. For a particular decision pattern
virtually any analysis or design pattern can be chosen, and the same is true for
design and implementation patterns. Patterns in the same class, on the other
hand, need not be independent, but may have some overlap.

We discuss each development phase and the associated patterns in a separate
section. Inevitably, there may be some patterns we have missed.

2.2 Decision

The decision phase corresponds to the “when”-part of DSL development. De-
ciding in favor of a new DSL is usually not easy. The investment in DSL
development (including deployment) has to pay for itself by more economical
software development and/or maintenance later on. In practice, short-term con-
siderations and lack of expertise may easily cause indefinite postponement of the
decision.

Obviously, adopting an existing DSL is much less expensive and requires
much less expertise than developing a new one. Finding out about available
DSLs may be hard, since DSL information is scattered widely and often buried

6

Pattern Description
Notation The availability of appropriate (new or existing)

domain-specific notations is the decisive factor. Im-
portant subpatterns:
• Make existing visual notation available in textual
form. There are many benefits to such a visual-
to-textual transformation, such as easier composi-
tion of large programs or specifications, etc. The
pre-eminent example of this subpattern is probably
VHDL [2]. Another one is MSF [42].
• Add domain-specific notation beyond the limited
user-definable operator notation offered by GPLs to
an existing application library.

Task automation Programmers often spend time on GPL program-
ming tasks that are tedious and follow the same pat-
tern. In such cases, the required code can be gen-
erated automatically by an application generator for
an appropriate DSL (e.g., SODL [69], proprietary
specification language [33]).

Data structure
representation

Data-driven code relies on initialized data structures
whose complexity may make them difficult to write
and maintain. These structures are often more easily
expressed using a DSL (e.g., Fido [60]).

Data structure
traversal

Traversals over complicated data structures can often
be expressed better and more reliably in a suitable
DSL (e.g., TVL [42]).

System front-end A DSL based front-end may often be used for han-
dling a system’s configuration and adaptation (e.g.,
Nowra [84]).

Interaction Text or menu based interaction with application soft-
ware often has to be supplemented with an appropri-
ate DSL for the specification of complicated or repet-
itive input. For example, Excel’s interactive mode
is supplemented with the Excel macro language to
make Excel “programmable”. Another example in
the context of web computing is discussed in [18].

GUI construction Often done using DSL (e.g., Visual Basic [44], AUI
[81]).

AVOT Domain-specific analysis, verification, optimization,
and transformation of application programs written
in a GPL are usually not feasible, because the source
code patterns involved are too complex or not well-
defined. Use of an appropriate DSL makes these op-
erations possible (e.g., Promela++ [7]).

Table 3: Decision patterns.

7

Pattern Description
Informal The domain is analyzed in an informal way.
Formal A domain analysis methodology is used.
Extract from code “Mining” of domain knowledge from GPL

code.

Table 4: Analysis patterns.

in more or less obscure documents. Adopting DSLs that are not well-publicized
might be considered too risky, however.

To aid in the decision process, we identify a number of decision patterns.
These are common situations that potential developers find themselves in for
which successful DSLs have been developed in the past. In such situations use
of an existing DSL or development of a new one is a serious option. Underlying
these patterns are general, interrelated concerns such as

• improved software economics,

• enabling of end-user programming or end-user specification,

• enabling of domain-specific analysis, verification, optimization, and/or
transformation.

More specifically, this occurs when there is a need to describe complicated data
structures, data structure traversals, system configurations, or interactions, and
furthermore in the case of tedious and repetitive tasks, GUI construction, to
enable domain-specific analysis and optimization, or when the use of a domain-
specific notation is important. These patterns are listed in Table 3.

2.3 Analysis

In the analysis phase of DSL development, the problem domain is identified
and domain knowledge is gathered. This requires input from domain experts
and/or the availability of documents or code from which domain knowledge
can be obtained. Most of the time, domain analysis is done informally, but
sometimes domain analysis methodologies such as DARE (Domain Analysis
and Reuse Environment) [35], DSSA (Domain-Specific Software Architectures)
[89], FODA (Feature-Oriented Domain Analysis) [57], or ODM (Organization
Domain Modeling) [83] are used. See also [25, Part I].

There is a close link with knowledge engineering, which is only beginning
to be explored. Knowledge capture, knowledge representation, and ontology
development [26] are potentially useful in the analysis phase. The latter is
taken into account in ODE (Ontology-based Domain Engineering) [32].

The output of formal domain analysis varies widely, but is some kind of
representation of the domain knowledge obtained. It may range from a fea-
ture diagram, which is a graphical representation of assertions (propositions,

8

Pattern Description
Language exploitation DSL is based on an existing language. Impor-

tant subpatterns:
• Piggyback: Existing language is partially
used.
• Specialization: Existing language is re-
stricted.
• Extension: Existing language is extended.

Language invention A DSL is designed from scratch with no com-
monality with existing languages.

Informal DSL is described informally.
Formal DSL is described formally using an existing

semantics definition method such as attribute
grammars, rewrite systems, or abstract state
machines.

Table 5: Design patterns.

predicates) about software systems in a particular domain, to a domain im-
plementation consisting of a set of domain-specific reusable components, or a
full-fledged theory in the case of highly developed scientific domains.

The analysis patterns we have identified are shown in Table 4. The last
pattern overlaps with the first two. Code may be used as a source of domain
knowledge informally or formally in the context of ODM or another methodol-
ogy. Tool support for formal domain analysis is discussed in Section 3.2.

2.4 Design

Approaches to DSL design can be characterized along two orthogonal dimen-
sions: the relationship between the DSL and existing languages, and the formal
nature of the design description (Table 5).

The easiest way to design a DSL is to base it on an existing language. One
possible benefit is familiarity for users, but this only applies if the domain users
are also programmers in the existing language, which as noted above is often
not the case.

We identify three patterns of design based on an existing language. First, we
can piggyback domain-specific features on part of an existing language. A related
approach restricts the existing language to provide a specialization targeted at
the problem domain. The difference between these two patterns is really a
matter of how rigid the barrier is between the DSL and the rest of the existing
language. Both of these approaches are often used where a notation is already
widely known. For example, many DSLs contain arithmetic expressions which
are usually written in the infix-operator style of mathematics.

Another approach is to take an existing language and extend it with new

9

features that address domain concepts. In most applications of this pattern the
existing language features remain available. The challenge is to integrate the
domain-specific features with the rest of the language in a seamless fashion.

At the other end of the spectrum to language extension is a DSL whose
design bears no relationship to any existing language. In practice, development
of this kind of DSL can be extremely difficult and is hard to characterize. Well-
known GPL design citeria such as readability, simplicity, orthogonality, etc.,
and Tennent’s design principles [90] retain some validity for DSLs. However,
the DSL designer has to keep in mind both the special character of DSLs as well
as the fact that users need not be programmers. Since ideally the DSL adopts
established notations of the domain, the designer should suppress a tendency
to improve them. We quote lesson 3 (of a total of 12 lessons learned from real
DSL experiments) from [100]:

Lesson 3: You are almost never designing a programming language.
Lesson 3 Corollary: Design only what is necessary. Learn to
recognize your tendency to over-design.
Most DSL designers come from language design backgrounds. There
the admirable principles of orthogonality and economy of form are
not necessarily well-applied to DSL design. Especially in catering
to the pre-existing jargon and notations of the domain, one must be
careful not to embellish or over-generalize the language.

Once the relationship to existing languages has been determined, a DSL de-
signer must turn to specifying the design before implementation. We distinguish
between informal and formal designs. In an informal design the specification is
usually in some form of natural language probably including a set of illustrative
DSL programs. A formal design would consist of a specification written using
one of the available semantic definition methods [85]. The most widely used
formal notations include regular expressions and grammars for syntax specifi-
cations, and attribute grammars, rewrite systems and abstract state machines
for semantic specification.

Clearly, an informal approach is likely to be easiest for most people. However,
a formal approach should not be discounted. Informal language designs can
contain imprecisions that cause problems in the implementation phase. They
typically focus on syntax, leaving semantic concerns to the imagination. The
discipline required by development of a formal specification of both syntax and
semantics can bring problems to light before implementation. Furthermore, as
we shall see, formal designs can be implemented automatically by tools, thereby
significantly reducing implementation effort.

2.5 Implementation

2.5.1 Patterns

When an (executable) DSL is designed, the most suitable implementation ap-
proach should be chosen. The implementation patterns we have identified are

10

Pattern Description
Interpreter DSL constructs are recognized and interpreted

using a standard fetch-decode-execute cycle.
This approach is appropriate for languages
having a dynamic character or if execution
speed is not an issue. The advantages of inter-
pretation over compilation are greater control
over the execution environment and easier ex-
tension.

Compiler/application
generator

DSL constructs are translated to base lan-
guage constructs and library calls. A complete
static analysis can be done on the DSL pro-
gram/specification. DSL compilers are often
called application generators.

Preprocessor DSL constructs are translated to constructs in
the base language. Static analysis is limited
to that done by the base language processor.
Important subpatterns:
• Macro processing: Expansion of macro def-
initions.
• Source-to-source transformation: DSL
source code is transformed (translated) into
source code of existing language (the base
language).
• Pipeline: Processors successively handling
sublanguages of a DSL and translating them
to the input language of the next stage.
• Lexical processing: Only simple lexical
scanning is required, without complicated
tree-based syntax analysis.

Embedding DSL constructs are embedded in existing GPL
(the host language) by defining new abstract
data types and operators. Application li-
braries are the basic form of embedding.

Extensible compiler/inter-
preter

GPL compiler/interpreter is extended with
domain-specific optimization rules and/or
domain-specific code generation. While inter-
preters are usually relatively easy to extend,
extending compilers is hard unless they were
designed with extension in mind.

Commercial Off-The-Shelf Existing tools and/or notations are applied to
a specific domain.

Hybrid A combination of the above approaches.

Table 6: Implementation patterns for executable DSLs.

11

shown in Table 6. We discuss some of them in more detail.
First, it should be noted that interpretation and compilation are as relevant

for DSLs as for GPLs, even though the special character of DSLs often makes
them amenable to other, more efficient, implementation methods, such as pre-
processing and embedding. This viewpoint is at variance with [88], where it
is argued that DSL development is radically different from GPL development,
since the former is usually just a small part of a project and hence DSL devel-
opment costs have to be modest. Development cost is not directly related to
implementation method, however, especially if a language development system
or toolkit is used to generate the implementation (Section 3). DSL compilers
are often called application generators.

Macros and subroutines are the classical language extension mechanisms
used for DSL implementation. Subroutines have given rise to implementation
by embedding (see below), while macros are handled by preprocessing. A recent
survey of macros is given in [15]. Macro expansion is often independent of the
syntax of the base language and the syntactical correctness of the expanded
result is not guaranteed, but is checked at a later stage by the interpreter or
compiler. This situation is typical for preprocessors.

C++ supports a language-specific preprocessing approach: template metapro-
gramming [25]. It uses template expansion to achieve compile-time generation
of domain-specific code. Significant mileage has been made out of this approach
to develop mathematical libraries for C++ which have familiar domain notation
using C++ user-definable operator notation and overloading, but also achieve
good performance.

In the embedding approach, a DSL is implemented by extending an existing
GPL (the host language) by defining specific abstract data types and opera-
tors. A problem in a domain then can be described with these new constructs.
Therefore, the new language has all the power of the host language, but an
application engineer can become a programmer without learning too much of
it.

To approximate domain-specific notations as closely as possible, the em-
bedding approach can use any features for user-definable operator syntax the
host language has to offer. For example, it is common to develop C++ class
libraries where the existing operators are overloaded with domain-specific se-
mantics. While this technique is quite powerful, pitfalls exist in overloading
familiar operators to have unfamiliar semantics.

Although the host language in the embedding approach can be any general-
purpose language, functional languages are often appropriate, as shown by many
researchers [51, 56]. This is due to functional language features such as ex-
pressiveness, lazy evaluation, higher-order functions, and strong typing with
polymorphism and overloading.

Extending an existing language implementation can also be seen as a form
of embedding. The difference is usually a matter of degree. In an interpreter or
compiler approach the implementation would usually only be extended with a
few features, such as new data types and operators for them. For a proper em-
bedding, the extensions might encompass full-blown domain-specific language

12

features. In both settings, however, extending implementations is often very dif-
ficult. Techniques for doing so in a safe and modular fashion are still the subject
of much research. Since compilers are particularly hard to extend, much of this
work is aimed at preprocessors and extensible compilers allowing addition of
domain-specific optimization rules and/or domain-specific code generation. We
mention user-definable optimization rules in the CodeBoost C++ preprocessor
[5] and in the Simplicissimus GCC compiler plug-in [82], the IBM Montana
extensible C++ programming environment [87], and user-definable optimiza-
tion rules in the GHC Haskell compiler [74]. Some extensible compilers, such
as OpenC++ [20], support a metaobject protocol. This is an object-oriented
interface for specifying language extensions and transformations.

The COTS-based approach builds a DSL around existing tools and nota-
tions. Typically this approach involves applying existing functionality in a
restricted way, according to domain rules. For example, the general-purpose
Powerpoint tool has been applied in a domain-specific setting for diagram edit-
ing [99]. The current prominence of XML-based DSLs is another instance of
this approach [39].

Many DSL endeavors apply a number of these approaches in a hybrid fashion.
Thus the advantages of different approaches can be exploited. For instance,
embedding can be combined with user-defined domain-specific optimization in
an extensible compiler.

2.5.2 Implementation trade-offs

Advantages of the interpreter and compiler/application generator approaches
are:

• DSL syntax can be close to notations used by domain experts,

• good error reporting possible,

• domain-specific analysis, verification, optimization, and transformation
(AVOT) possible,

while some of its disadvantages are:

• the development effort is high because a complex language processor must
be implemented,

• the DSL is more likely to be designed from scratch, often leading to inco-
herent designs compared with exploitation of an existing language,

• language extension is hard to realize because most language processors are
not designed with extension in mind.

However, these disadvantages can be minimized or eliminated altogether when
a language development system or toolkit is used, so that much of the work
of language processor construction is automated. This presupposes a formal
approach to DSL design and is discussed further in Section 3.

We now turn to the embedded approach. Its advantages are:

13

• development effort is modest because an existing implementation can be
reused,

• often produces a more powerful language than other methods since many
features come for free,

• reuse of host language infrastructure (development and debugging envi-
ronments: editors, debuggers, tracers, profilers etc.),

• user training costs might be lower since many users may already know the
host language.

Disadvantages of the embedded approach are:

• syntax is far from optimal because most languages do not allow arbitrary
syntax extension,

• overloading existing operators can be confusing if the new semantics does
not have the same properties as the old,

• bad error reporting because messages are in terms of host language con-
cepts instead of DSL concepts,

• domain-specific optimizations and transformations are hard to achieve,
so efficiency may be affected, particularly when embedding in functional
languages [56, 84].

Advocates of the embedded approach often criticize DSLs implemented by
the interpreter or compiler approach in that too much effort is put into the
syntax, whereas the language semantics tends to be poorly designed and cannot
be easily extended with new features [56]. However, the syntax of a DSL is
extremely important and should not be underestimated. It should be as close
as possible to the notation used in a domain.

In the functional setting and in particular if Haskell is used, some of these
shortcomings can be reduced by using monads [51] or user-defined optimiza-
tions in the GHC compiler [74] for domain-specific optimizations, and by using
a form of program transformation called partial evaluation for overall optimiza-
tion [52, 51, 23]. In C++ template metaprogramming can be used and user-
defined domain-specific optimization is supported by various preprocessors and
compilers. See the references in Section 2.5.1.

The decision diagram on how to proceed with DSL implementation (Fig. 1)
shows when a particular implementation approach is more appropriate.

If in the DSL design phase the exploitation pattern is used then the pig-
gyback, language extension, and language specialization subpattern can be im-
plemented using various implementation patterns. Figure 2 shows the imple-
mentation cost-benefit trade-off associated with applying the implementation
patterns to realize various design patterns.

Note, that if the existing language is just partially used then the embedding
pattern or extensible compiler/interpreter pattern are not suitable. Further-
more, the embedding pattern is not suitable if the existing language has to be

14

Is DSL designed using
"Language exploitation"

design pattern?

Are domain-specific
optimizations and
transformations

required?

no

yes Follow implementation
guidelines for "piggyback",

"extension" and "specialization"
subpatterns (figure 2)

Must domain-specific
notations be

strictly obeyed?

Following implementation patterns
are recommended: "interpreter",

"compiler/application generator",
"preprocessor" and "extensible

compiler/interpreter"

no

yes

yes

Will user comunity
be large

(good error-reporting
is needed,...)?

yes

no

no

"Embedding" implementation
pattern is recommended

"Compiler/application generator"
or "interpreter" implementation

patterns are recommended

Figure 1: Implementation guidelines.

15

Low

Low

Medium

Medium

High

High

.EE
.XE,X s

.CP,CE,CS

Implementation effort

B
e
n
e
f
i
t
s

.PP,PE,PS

Figure 2: Implementation cost-benefit trade-off for feasible pairs of design and
implementation pattern. Pairs are denoted IJ where I is an implementation
pattern (interpreter/compiler (C), preprocessor (P), embedding (E), and exten-
sible compiler/interpreter (X)), and J is a design subpattern (piggyback (P),
specialization (S), and extension (E)).

16

restricted. Such language specialization can be implemented using an extensible
compiler/interpreter approach in some languages (e.g., Smalltalk). In general,
with the extensible compiler/interpreter approach it is much easier to extend
the language rather than restrict it.

2.6 Comparison with other classifications

We start by comparing our patterns with those proposed in [88]. Closely fol-
lowing [36], Spinellis distinguishes three classes of DSL patterns as shown in
Table 7. The specific patterns for each class are summarized in Tables 8, 9, and
10. Most patterns are creational. The piggyback pattern might be classified
as creational as well, since it is very similar to language extension. This would
leave only a single pattern in each of the other two categories.

First, it should be noted that Spinellis’s patterns do not include traditional
GPL design and implementation techniques, while ours do, since we consider
them to be as relevant for DSLs as for GPLs. Second, Spinellis’s classification
does not correspond in an obvious way to our classification in decision, analysis,
design, and implementation patterns. The latter are all basically creational, but
covering a wider range of creation-related activities than Spinellis’s patterns.

The correspondence of Spinellis’s patterns with ours is shown in Table 11.
Since our patterns have a wider scope, many of them have no counterpart in
Spinellis’s classification. These are not shown in the right-hand column. As can
be seen, we have retained the terminology used by Spinellis whenever appropri-
ate.

Another classification of DSL development approaches is given in [99], namely,
full language design, language extension, and COTS-based approaches. Since
each approach has its own pros and cons, the author discusses them with respect
to three kinds of issues: DSL specific, GPL support, and pragmatic support is-
sues. Finally, the author shows how a hybrid development approach can be
used.

3 DSL Development Support

3.1 Design and implementation support

As we have seen, DSL development is hard, requiring both domain knowledge
and language development expertise. The development process can be facili-
tated by using a language development system or toolkit. Some systems and
toolkits that have actually been used for DSL development are listed in Table
12. They have widely different capabilities and are in widely different stages of
development, but are based on the same general principle: they generate tools
from language descriptions [46]. The tools generated may vary from a consis-
tency checker and interpreter to an integrated development environment (IDE)
consisting of a syntax-directed editor, a prettyprinter, an (incremental) consis-
tency checker, an interpreter or compiler/application generator, and a debugger

17

Pattern class Description
Creational pattern DSL creation
Structural pattern Structure of system involving a DSL
Behavioral pattern DSL interactions

Table 7: Pattern classification proposed by Spinellis.

Pattern Description
Language extension DSL extends existing language with new

datatypes, new semantic elements, and/or
new syntax.

Language specialization DSL restricts existing language for purposes of
safety, static checking, and/or optimization.

Source-to-source transfor-
mation

DSL source code is transformed (translated)
into source code of existing language (the base
language).

Data structure representa-
tion

Data-driven code relies on initialized data
structures whose complexity may make them
difficult to write and maintain. These struc-
tures are often more easily expressed using a
DSL.

Lexical processing Many DSLs may be designed in a form suit-
able for recognition by simple lexical scanning.

Table 8: Creational patterns.

Pattern Description
Piggyback DSL has elements, for instance, expressions in

common with existing language. DSL proces-
sor passes those elements to existing language
processor.

System front-end A DSL based front-end may often be used for
handling a system’s configuration and adapta-
tion.

Table 9: Structural patterns.

Pattern Description
Pipeline Pipelined processors successively handling

sublanguages of a DSL and translating them
to input language of next stage.

Table 10: Behavioral patterns.

18

Spinellis’s pattern Our pattern
Creational: language extension Design: language exploitation

(language extension)
Creational: language specializa-
tion

Design: language exploitation
(language specialization)

Creational: source-to-source
transformation

Implementation: preprocessing
(source-to-source transforma-
tion)

Creational: data structure repre-
sentation

Decision: data structure repre-
sentation

Creational: lexical processing Implementation: preprocessing
Structural: piggyback Design: language exploitation

(piggyback)
Structural: system front-end Decision: system front-end
Behavioral: pipeline Implementation: preprocessing

(pipeline)

Table 11: Correspondence of Spinellis’s patterns with ours. Since our patterns
have a wider scope, many of them have no counterpart in Spinellis’s classifica-
tion. These are not shown in the right-hand column.

for the DSL in question (assuming it is executable). As noted in Section 1.2,
non-executable DSLs may also benefit from various kinds of tool support such
as syntax-directed editors, prettyprinters, and consistency checkers. These can
be generated in the same way.

Some of these systems support a specific DSL design methodology, while
others have a largely methodology-independent character. For instance, Sprint
assumes an interpreter for the DSL to be given and then uses partial evaluation
to remove the interpretation overhead by automatically transforming a DSL
program into a compiled program. Other systems would not only allow an
interpretive definition of the DSL, but would also accept a transformational or
translational one. On the other hand, they might not include partial evaluation
of a DSL interpreter given a specific program among their capabilities.

The input to these systems is a description of various aspects of the DSL to
be developed in terms of specialized meta-languages. Depending on the type of
DSL, some important language aspects are syntax, prettyprinting, consistency
checking, execution, translation, transformation, and debugging. It so happens
that the meta-languages used for describing these aspects are themselves DSLs
for the particular aspect in question. For instance, DSL syntax is usually de-
scribed in something close to BNF, the de facto standard for syntax specification
(Table 1). The corresponding tool generated by the language development sys-
tem is a parser.

Although the various specialized meta-languages used for describing lan-
guage aspects differ from system to system, they are often (but not always) rule

19

System Developed at
ASF+SDF [16] CWI/University of Amsterdam
AsmL [38] Microsoft Research, Redmond
Draco [73] University of California, Irvine
Eli [43] University of Colorado, University of Paderborn,

Macquarie University
Gem-Mex [1] University of L’Aquila
InfoWiz [71] Bell Labs/AT&T Labs
JTS [8] University of Texas at Austin
Khepera [31] University of North Carolina
Kodiyak [47] University of Minnesota
LaCon [58] University of Paderborn

(LaCon uses Eli as back-end — see above)
LISA [70] University of Maribor
metafront [14] University of Aarhus
Metatool [21] Bell Labs
POPART [98] USC/Information Sciences Institute
smgn [59] Intel Compiler Lab/University of Victoria
SPARK [3] University of Calgary
Sprint [23] LaBRI/INRIA
Stratego [97] University of Utrecht
TXL [95] University of Toronto/Queen’s University

at Kingston

Table 12: Some language development systems and toolkits that have been used
for DSL development.

Development phase/ Support provided
Pattern class
Decision None
Analysis Not yet integrated — see

Section 3.2
Design Weak
Implementation Strong

Table 13: Development support provided by current language development sys-
tems and toolkits for DSL development phases/pattern classes.

20

System used DSL Application domain
ASF+SDF Box [17] Prettyprinting

Risla [27] Financial products
AsmL UPnP [96] Networked device protocol

XLANG [91] Business protocols
Eli Maptool [54] Grammar mapping

(Various) [75] Class generation
Gem-Mex Cubix [62] Virtual data warehousing
JTS Jak [8] Syntactic transformation
LaCon (Various) [58] Data model translation
LISA SODL [69] Network application
smgn Hoof [59] Compiler IR specification

IMDL [59] Software reengineering
SPARK Guide [63] Web programming

CML2 [77] System configuration
Sprint GAL [93] Video device drivers

PLAN-P [92] Application-specific protocols
Stratego Autobundle [53] Software building

CodeBoost [5] Domain-specific C++ optimization

Table 14: Examples of DSL development using the systems in Table 12.

based. For instance, depending on the system, the consistency of programs or
scripts may have to be checked in terms of attributed syntax rules (an extension
of BNF), conditional rewrite rules, or transition rules. See, for instance, [85] for
further details.

The level of support provided by these systems in various phases of DSL
development is summarized in Table 13. Their main strength lies in the imple-
mentation phase. Support of DSL design tends to be weak. Their main assets
are the meta-languages they support, and in some cases a meta-environment to
aid in constructing and debugging language descriptions, but they have little
built-in knowledge of language concepts or design rules. Furthermore, to the
best of our knowledge, none of them provides any support in the analysis or
decision phase. Analysis support tools are discussed in Section 3.2.

Examples of DSL development using the systems in Table 12 are given in
Table 14. They cover a wide range of application domains and implementa-
tion patterns. The Box prettyprinting meta-language is an example of a DSL
developed with a language development system (in this case the ASF+SDF
Meta-Environment) for later use as one of the meta-languages of the system
itself. Similarly, the Jak transformational meta-language for specifying the se-
mantics of a DSL or domain-specific language extension in the Jakarta Tool
Suite (JTS), was developed using JTS itself. In this case, this involved boot-
strapping, since JTS not only requires language definitions to be written in Jak,
but is itself written in Jak.

21

3.2 Analysis support

The language development toolkits and systems discussed in the previous section
do not provide support in the analysis phase of DSL development. Separate
frameworks and tools for this have been or are being developed, however. Some
of them are listed in Table 15. We have included a short description of each
entry, largely taken from the reference given for it. The fact that a framework
or tool is listed does not necessarily mean it is in use or even exists.

As noted in Section 2.3 the output of formal domain analysis is some kind of
representation of the domain knowledge obtained. It may range from a feature
diagram (see FDL entry in Table 15) to a domain implementation consisting
of a set of domain-specific reusable components (see DARE entry in Table 15),
or a full-fledged theory in the case of highly developed scientific domains. An
important issue is how to link formal domain analysis with DSL design and
implementation. The possibility of linking DARE directly to the Metatool meta-
generator (that is, application generator generator) [21] is mentioned in [34].

4 Conclusions and Open Problems

DSLs will never be a solution to all software engineering problems, but their
application is currently unduly limited by a lack of reliable knowledge available
to (potential) DSL developers. To help remedy this situation, we distinguished
five phases of DSL development and identified patterns in each phase, except
deployment. These are summarized in Table 16. Furthermore, we discussed
language development systems and toolkits that can be used to facilitate the
development process, especially its later phases.

Our survey also implicitly or explicitly showed many opportunities for fur-
ther work. As indicated in Table 13, for instance, there are serious gaps in the
DSL development support chain. More specifically, some of the issues needing
further attention are:

Decision Can useful computer-aided decision support be provided? If so,
its integration in existing language development systems or toolkits (Table 12)
might yield additional advantages.

Analysis Further development and integration of domain analysis support
tools. As noted in Section 2.3, there is a close link with knowledge engineering.
Existing knowledge engineering tools and frameworks may be useful directly or
act as inspiration for further developments in this area. An important issue is
how to link formal domain analysis with DSL design and implementation.

Design and implementation How can DSL design and implementation be
made easier for domain experts not versed in GPL development? Some ap-
proaches are (not mutually exclusive):

22

Analysis frame-
work or tool

Description

Ariadne [83] ODM support framework enabling domain practi-
tioners to collaboratively develop and evolve their
own semantic models, and to compose and customize
applications incorporating these models as first-class
architectural elements.

DARE [35] Supports the capture of domain information from ex-
perts, documents, and code in a domain. Captured
domain information is stored in a domain book that
will typically contain a generic architecture for the
domain and domain-specific reusable components.

DOMAIN [94] DSSA [89] support framework consisting of a collec-
tion of structured editors and a hypertext/media en-
gine that allows the user to capture, represent, and
manipulate various types of domain knowledge in a
hyper-web. DOMAIN supports a “scenario-based”
approach to domain analysis. Users enter scenarios
describing the functions performed by applications in
the domain of interest. The text in these scenarios
can then be used (in a semi-automated manner) to
develop a domain dictionary, reference requirements,
and domain model, each of which are supported by
their own editor.

FDL [28] The Feature Description Language (FDL) is a tex-
tual representation of feature diagrams, which are a
graphical notation for expressing assertions (propo-
sitions, predicates) about systems in a particular
application domain. These were introduced in the
FODA [57] domain analysis methodology. (FDL is
an example of the visual-to-textual transformation
subpattern in Table 3.)

ODE editor [32] Ontology editor supporting ODE — see also [26].

Table 15: Some domain analysis frameworks and tools.

23

Development phase Pattern
Decision Notation
(Section 2.2) Task automation

Data structure representation
Data structure traversal
System front-end
Interaction
GUI construction
AVOT

Analysis Informal
(Section 2.3) Formal

Extract from code
Design Language exploitation
(Section 2.4) Language invention

Informal
Formal

Implementation Interpreter
(Section 2.5) Compiler/application generator

Preprocessor
Embedding
Extensible compiler/interpreter
COTS
Hybrid

Table 16: Summary of DSL development phases and corresponding patterns.

24

• Building DSLs in an incremental, modular, and extensible way from pa-
rameterized language building blocks. This is of particular importance for
DSLs, since they change more frequently than GPLs [13, 99]. Progress in
this direction is being made [1, 23, 51, 68].

• A related issue is how to combine different parts of existing GPLs and
DSLs into a new DSL. For instance, in the Microsoft .NET framework
many GPLs are compiled to the Common Language Runtime (CLR) [40].
Can this be helpful in including selected parts of GPLs into a new DSL?

• Provide “pattern aware” development support. The Sprint system [23], for
instance, provides partial evaluation support for the interpreter pattern
(see Section 3.1). Other patterns might benefit from specialized support
as well.

• Reduce the need for learning some of the specialized meta-languages of lan-
guage development systems by supporting description by example (DBE)
of selected language aspects like syntax or prettyprinting. The user-
friendliness of DBE is due to the fact that examples of intended behavior
do not require a specialized meta-language, or only a small part of it.
Grammar inference from example sentences, for instance, may be viable,
especially since many DSLs are small. This is certainly no new idea [24],
but it remains to be realized. Some preliminary results are reported in
[65].

• How can DSL development tools generated by language development sys-
tems and toolkits be integrated with other software development tools?
Using a COTS-based approach, XML technologies such as DOM and
XML-parsers have great potential as a uniform data interchange format
for CASE tools. See also [22].

Embedding GPLs should provide more powerful support for embedding DSLs,
both syntactically and semantically. Some issues are:

• Embedding suffers from the very limited user-definable syntax offered by
GPLs. Perhaps surprisingly, there is no trend toward more powerful user-
definable syntax in GPLs over the years. Java has no user-definable syntax
at all. This is a neglected aspect of GPL design. The discussion in [45] is
still relevant.

• Improved embedding support is not only a matter of language features,
but also of language implementation, and in particular of preprocessors
or extensible compilers allowing addition of domain-specific optimization
rules and/or domain-specific code generation. See the references given in
Section 2.5.1 and [41, 80]. Alternatively, the GPL itself might feature
domain-specific optimization rules as a special kind of compiler directive.
Such compiler extension makes the embedding process significantly more
complex, however, and its cost-benefit ratio needs further scrutiny.

25

Estimation

• In this article our approach toward DSL development has been qualitative.
Can the costs and benefits of DSLs be reliably quantified?

Acknowledgments Arie van Deursen kindly gave us permission to use the
source of the annotated DSL bibliography [29].

References

[1] M. Anlauff, P. W. Kutter, and A. Pierantonio. Formal aspects and devel-
opment environments for Montages. In M. P. A. Sellink, editor, 2nd Inter-
national Workshop on the Theory and Practice of Algebraic Specifications
(ASF+SDF ’97), Electronic Workshops in Computing. Springer/British
Computer Society, 1997.

[2] P. J. Ashenden. The Designer’s Guide to VHDL. Morgan Kaufmann,
1995.

[3] J. Aycock. The design and implementation of SPARK, a toolkit for im-
plementing domain-specific languages. In CIT-DSL-II [67], pages 55–66.

[4] J. W. Backus. The syntax and semantics of the proposed International Al-
gebraic Language of the Zurich ACM-GAMM conference. In Proceedings
of the International Conference on Information Processing, UNESCO,
Paris, 1959, pages 125–132. Oldenbourg, Munich and Butterworth, Lon-
don, 1960.

[5] O. S. Bagge and M. Haveraaen. Domain-specific optimisation with user-
defined rules in CodeBoost. In Proceedings of the 4th International Work-
shop on Rule-Based Programming (RULE 2003), 2003. To appear in Elec-
tronic Notes in Theoretical Computer Science.

[6] D. W. Barron. The World of Scripting Languages. Wiley, 2000.

[7] A. Basu, M. Hayden, G. Morrisett, and T. von Eicken. A language-based
approach to protocol construction. In Kamin [55], pages 1–15. http:
//www-sal.cs.uiuc.edu/~kamin/dsl/.

[8] D. Batory, B. Lofaso, and Y. Smaragdakis. JTS: Tools for implementing
domain-specific languages. In P. Devanbu and J. Poulin, editors, Proceed-
ings of the Fifth International Conference on Software Reuse (JCSR ’98),
pages 143–153. IEEE Computer Society, 1998.

[9] K. H. Bennett and V. T. Rajlich. Software maintenance and evolution: A
roadmap. In A. Finkelstein, editor, The Future of Software Engineering,
pages 73–87. ACM Press, 2000.

26

[10] J. L. Bentley. Programming pearls: Little languages. Communications of
the ACM, 29(8):711–721, August 1986.

[11] T. J. Biggerstaff. A perspective of generative reuse. Annals of Software
Engineering, 5:169–226, 1998.

[12] T. J. Biggerstaff and A. J. Perlis, editors. Software Reusability. ACM
Press/Addison-Wesley, 1989. Vol. I: Concepts and Models, Vol. II: Appli-
cations and Experience.

[13] J. Bosch and Y. Dittrich. Domain-specific languages for a changing world,
n.d. http://www.cs.rug.nl/~bosch/articles.html.

[14] C. Braband, M. I. Schwartzbach, and M. Vanggaard. The metafront
system: Extensible parsing and transformation. In B. R. Bryant and
J. Saraiva, editors, Proceedings of the Third Workshop on Language De-
scriptions, Tools and Applications (LDTA ’03), volume 82 of Electronic
Notes in Theoretical Computer Science. Elsevier, 2003.

[15] C. Braband and M.I. Schwartzbach. Growing languages with metamorphic
syntax macros. ACM SIGPLAN Notices, 37(3):31–40, March 2002.

[16] M. G. J. van den Brand, A. van Deursen, J. Heering, H. A. de Jong,
M. de Jonge, T. Kuipers, P. Klint, L. Moonen, P. A. Oliver, J. Scheerder,
J. J. Vinju, E. Visser, and J. Visser. The ASF+SDF Meta-Environment:
A component-based language development environment. In R. Wilhelm,
editor, Compiler Construction (CC 2001), volume 2027 of Lecture Notes
in Computer Science, pages 365–370. Springer-Verlag, 2001.

[17] M. G. J. van den Brand and E. Visser. Generation of formatters for
context-free languages. ACM Transactions on Software Engineering and
Methodology, 5:1–41, 1996.

[18] L. Cardelli and R. Davies. Service combinators for web computing. In
TSE-DSL [101], pages 309–316.

[19] D. Chappell. Understanding ActiveX and OLE. Microsoft Press, 1996.

[20] S. Chiba. A metaobject protocol for C++. In Proceedings of the ACM
Conference on Object-Oriented Programming Systems, Languages, and
Applications, pages 285–299. ACM, 1995.

[21] J. C. Cleaveland. Building application generators. IEEE Software, pages
25–33, July 1988.

[22] J. C. Cleaveland. Program Generators Using Java and XML. Prentice-
Hall, 2001.

27

[23] C. Consel and R. Marlet. Architecturing software using a methodology for
language development. In C. Palamidessi, H. Glaser, and K. Meinke, ed-
itors, Principles of Declarative Programming (PLILP ’98/ALP ’98), vol-
ume 1490 of Lecture Notes in Computer Science, pages 170–194. Springer-
Verlag, 1998.

[24] S. Crespi-Reghizzi, M. A. Melkanoff, and L. Lichten. The use of gram-
matical inference for designing programming languages. Communications
of the ACM, 16:83–90, 1973.

[25] K. Czarnecki and U. Eisenecker. Generative Programming: Methods,
Techniques and Applications. Addison-Wesley, 2000.

[26] M. Denny. Ontology building: A survey of editing tools. Techni-
cal report, XML.com, 2003. http://www.xml.com/lpt/a/2002/11/06/
ontologies.html.

[27] A. van Deursen and P. Klint. Little languages: Little maintenance? Jour-
nal of Software Maintenance, 10:75–92, 1998.

[28] A. van Deursen and P. Klint. Domain-specific language design requires
feature descriptions. In CIT-DSL-II [67], pages 1–17.

[29] A. van Deursen, P. Klint, and J. Visser. Domain-specific languages: An
annotated bibliography. ACM SIGPLAN Notices, 35(6):26–36, June 2000.

[30] Proceedings of the second USENIX Conference on Domain-Specific Lan-
guages (DSL ’99). USENIX Association, 1999.

[31] R. E. Faith, L. S. Nyland, and J. F. Prins. Khepera: A system for rapid
implementation of domain specific languages. In Ramming [76], pages
243–55.

[32] R. A. Falbo, G. Guizzardi, and K. C. Duarte. An ontological approach to
domain engineering. In Proceedings of the 14th International Conference
on Software Engineering and Knowledge Engineering (SEKE 2002), pages
351–358. ACM Press, 2002.

[33] K. Fertalj, D. Kalpič, and V. Mornar. Source code generator based on a
proprietary specification language. In HICSS-35 [49].

[34] W. Frakes. Panel: Linking domain analysis with domain implementation.
In Proceedings of the Fifth International Conference on Software Reuse,
pages 348–349. IEEE Computer Society, 1998.

[35] W. Frakes, R. Prieto-Diaz, and C. Fox. DARE: Domain analysis and reuse
environment. Annals of Software Engineering, 5:125–141, 1998.

[36] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

28

[37] S. Gilmore and M. Ryan, editors. Language Constructs for Describing Fea-
tures — Proceedings of the FIREworks Workshop. Springer-Verlag, 2001.

[38] U. Glässer, Y. Gurevich, and M. Veanes. An abstract communication
model. Technical Report MSR-TR-2002-55, Microsoft Research, Red-
mond, 2002.

[39] K. Gondow and H. Kawashima. Towards ANSI C program slicing using
XML. In M. G. J. van den Brand and R. Lämmel, editors, Proceedings of
the Second Workshop on Language Descriptions, Tools and Applications
(LDTA ’02), volume 65 (3) of Electronic Notes in Theoretical Computer
Science. Elsevier, 2002.

[40] J. Gough. Compiling for the .NET Common Language Runtime (CLR).
Prentice Hall, 2002.

[41] A. Granicz and J. Hickey. Phobos: Extending compilers with executable
language definitions. In HICSS-36 [50].

[42] J. Gray and G. Karsai. An examination of DSLs for concisely representing
model traversals and transformations. In HICSS-36 [50].

[43] R. W. Gray, S. P. Levi, V. P. Heuring, A. M. Sloane, and W. M. Waite.
Eli: A complete, flexible compiler construction system. Communications
of the ACM, 35(2):121–130, February 1992.

[44] M. Halvorson. Visual Basic.NET Step by Step. Microsoft Press, 2002.

[45] J. Heering and P. Klint. The syntax definition formalism SDF. In J. A.
Bergstra, J. Heering, and P. Klint, editors, Algebraic Specification, chap-
ter 6. ACM Press, 1989.

[46] J. Heering and P. Klint. Semantics of programming languages: A tool-
oriented approach. ACM SIGPLAN Notices, 35(3):39–48, March 2000.

[47] R. M. Herndon and V. A. Berzins. The realizable benefits of a language
prototyping language. IEEE Transactions on Software Engineering, SE-
14:803–809, 1988.

[48] Proceedings of the 34th Hawaii International Conference on System Sci-
ences (HICSS-34). IEEE (CDROM), 2001.

[49] Proceedings of the 35th Hawaii International Conference on System Sci-
ences (HICSS-35). IEEE (CDROM), 2002.

[50] Proceedings of the 36th Hawaii International Conference on System Sci-
ences (HICSS-36). IEEE (CDROM), 2003.

[51] P. Hudak. Modular domain specific languages and tools. In P. Devanbu
and J. Poulin, editors, Proceedings of the Fifth International Conference
on Software Reuse (JCSR ’98), pages 134–142. IEEE Computer Society,
1998.

29

[52] N. D. Jones, C. K. Gomard, and P. Sestoft. Partial Evaluation and Au-
tomatic Program Generation. Prentice Hall, 1993.

[53] M. de Jonge. Source tree composition. In C. Gacek, editor, Software
Reuse: Methods, Techniques, and Tools: 7th International Conference
(ICSR-7), volume 2319 of Lecture Notes in Computer Science, pages 17–
32. Springer-Verlag, 2002.

[54] B. M. Kadhim and W. M. Waite. Maptool — Supporting modular syn-
tax development. In T. Gyimóthy, editor, Compiler Construction (CC
’96), volume 1060 of Lecture Notes in Computer Science, pages 268–280.
Springer-Verlag, 1996.

[55] S. Kamin, editor. DSL ’97 — First ACM SIGPLAN Workshop on
Domain-Specific Languages, in Association with POPL ’97. University of
Illinois Computer Science Report, 1997. http://www-sal.cs.uiuc.edu/
~kamin/dsl/.

[56] S. Kamin. Research on domain-specific embedded languages and program
generators. Electronic Notes in Theoretical Computer Science, 14, 1998.

[57] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peter-
son. Feature-oriented domain analysis (FODA) feasibility study. Techni-
cal Report CMU/SEI-90-TR-21, Software Engineering Institute, Carnegie
Mellon University, 1990.

[58] U. Kastens and P. Pfahler. Compositional design and implementation of
domain-specific languages. In R. N. Horspool, editor, IFIP TC2 WG 2.4
Working Conference on System Implementation 2000: Languages, Meth-
ods and Tools, pages 152–165. Chapman and Hall, 1998.

[59] H. M. Kienle and D. L. Moore. smgn: Rapid prototyping of small domain-
specific languages. In CIT-DSL-II [67], pages 37–53.

[60] N. Klarlund and M. Schwartzbach. A domain-specific language for regular
sets of strings and trees. In TSE-DSL [101], pages 378–386.

[61] C. W. Krueger. Software reuse. ACM Computing Surveys, 24(2):131–183,
June 1992.

[62] P. W. Kutter, D. Schweizer, and L. Thiele. Integrating domain specific
language design in the software life cycle. In D. Hutter et al., editors,
Applied Formal Methods—FM-Trends 98, volume 1641 of Lecture Notes
in Computer Science, pages 196–212. Springer-Verlag, 1998.

[63] M. R. Levy. Web programming in Guide. Software — Practice and Ex-
perience, 28:1581–1603, 1998.

[64] J. Martin. Fourth-Generation Languages. Prentice-Hall, 1985. Vol. I:
Principles, Vol II: Representative 4GLs.

30

[65] M. Mernik, M. Črepinšek, G. Gerlič, V. Žumer, B. R. Bryant, and
A. Sprague. Learning context-free grammars using an evolutionary ap-
proach. Technical report, University of Maribor and The University of
Alabama at Birmingham, 2003.

[66] M. Mernik and R. Lämmel (editors). Special issue on domain-specific
languages, Part I. Journal for Computing and Information Technology,
9(4), 2001.

[67] M. Mernik and R. Lämmel (editors). Special issue on domain-specific
languages, Part II. Journal for Computing and Information Technology,
10(1), 2002.

[68] M. Mernik, M. Lenič, E. Avdičaušević, and V. Žumer. Multiple attribute
grammar inheritance. Informatica, 24(3):319–328, September 2000.

[69] M. Mernik, U. Novak, E. Avdičaušević, M. Lenič, and V. Žumer. Design
and implementation of Simple Object Description Language. In Proceed-
ings of the 2001 ACM Symposium on Applied Computing (SAC 2001),
pages 590–594. ACM Press, 2001.

[70] M. Mernik, V. Žumer, M. Lenič, and E. Avdičaušević. Implementation of
multiple attribute grammar inheritance in the tool LISA. ACM SIGPLAN
Notices, 34(6):68–75, June 1999.

[71] L. Nakatani and M. Jones. Jargons and infocentrism. In Kamin [55], pages
59–74. http://www-sal.cs.uiuc.edu/~kamin/dsl/.

[72] B. A. Nardi. A Small Matter of Programming: Perspectives on End User
Computing. MIT Press, 1993.

[73] J. M. Neighbors. The Draco approach to constructing software from
reusable components. IEEE Transactions on Software Engineering, SE-
10(5):564–74, September 1984.

[74] S. Peyton Jones, A. Tolmach, and T. Hoare. Playing by the rules: Rewrit-
ing as a practical optimisation technique in GHC. In Proceedings Haskell
Workshop 2001, 2001.

[75] P. Pfahler and U. Kastens. Configuring component-based specifications
for domain-specific languages. In HICSS-34 [48].

[76] J. C. Ramming, editor. Proceedings of the USENIX Conference on
Domain-Specific Languages. USENIX Association, 1997.

[77] E. S. Raymond. The CML2 language: Python implementation of a
constraint-based interactive configurator. In Proceeding of the 9th In-
ternational Python Conference, pages 135–142, 2001.

31

[78] D. T. Ross. Origins of the APT language for automatically programmed
tools. In R. L. Wexelblat, editor, History of Programming Languages,
pages 279–338. Academic Press, 1981.

[79] P. H. Salus, editor. Little Languages, volume III of Handbook of Program-
ming Languages. MacMillan, 1998.

[80] J. Saraiva and S. Schneider. Embedding domain specific languages in the
attribute grammar formalism. In HICSS-36 [50].

[81] K. A. Schneider and J. R. Cordy. AUI: A programming language for
developing plastic interactive software. In HICSS-35 [49].

[82] S. Schupp, D. P. Gregor, D. R. Musser, and S. Liu. User-extensible simpli-
fication — Type-based optimizer generators. In R. Wilhelm, editor, Com-
piler Construction (CC 2001), volume 2027 of Lecture Notes in Computer
Science, pages 86–101. Springer-Verlag, 2001.

[83] M. Simos and J. Anthony. Weaving the model web: A multi-modeling
approach to concepts and features in domain engineering. In Proceedings
of the Fifth International Conference on Software Reuse, pages 94–102.
IEEE Computer Society, 1998.

[84] A. M. Sloane. Post-design domain-specific language embedding: A case
study in the software engineering domain. In HICSS-35 [49].

[85] K. Slonneger and B. L. Kurtz. Formal Syntax and Semantics of Program-
ming Languages: A Laboratory Based Approach. Addison-Wesley, 1995.

[86] Y. Smaragdakis and D. Batory. Application generators. Technical report,
Department of Computer Science, University of Texas at Austin, n.d.
http://www.cc.gatech.edu/~yannis/generators.pdf.

[87] D. Soroker, M. Karasick, J. Barton, and D. Streeter. Extension mech-
anisms in Montana. In Proceedings of the 8th Israeli Conference on
Computer-Based Systems and Software Engineering (ICCSSE ’97), pages
119–128. IEEE Computer Society, 1997.

[88] D. Spinellis. Notable design patterns for domain-specific languages. The
Journal of Systems and Software, 56:91–99, 2001.

[89] R. N. Taylor, W. Tracz, and L. Coglianese. Software development using
domain-specific software architectures. ACM SIGSOFT Software Engi-
neering Notes, 20(5):27–37, 1995.

[90] R. D. Tennent. Language design methods based on semantic principles.
Acta Informatica, 8:97–112, 1977.

[91] S. Thatte. XLANG: Web services for business process design. Technical re-
port, Microsoft, 2001. http://www.gotdotnet.com/team/xml_wsspecs/
xlang-c/.

32

[92] S. A. Thibault, C. Consel, and G. Muller. Safe and efficient active net-
work programming. In Proceedings 17th IEEE Symposium on Reliable
Distributed Systems, pages 135–143, 1998.

[93] S. A. Thibault, R. Marlet, and C. Consel. Domain-specific languages:
From design to implementation — application to video device drivers gen-
eration. In TSE-DSL [101], pages 363–377.

[94] W. Tracz and L. Coglianese. DOMAIN (DOmain Model All INtegrated)
— a DSSA domain analysis tool. Technical Report ADAGE-LOR-94-11,
Loral Federal Systems, 1995.

[95] The TXL Programming Language, 2003. http://www.txl.ca/.

[96] Universal Plug and Play Forum, 2003. http://www.upnp.org/.

[97] E. Visser. Stratego — Strategies for program transformation, 2003. http:
//www.stratego-language.org.

[98] D. S. Wile. POPART: Producer of Parsers and Related Tools.
USC/Information Sciences Institute, November 1993. http://mr.
teknowledge.com/wile/popart.html.

[99] D. S. Wile. Supporting the DSL spectrum. In CIT-DSL-I [66], pages
263–287.

[100] D. S. Wile. Lessons learned from real DSL experiments. In HICSS-36 [50].

[101] D. S. Wile and J. C. Ramming (editors). Special issue on domain-
specific languages. IEEE Transactions on Software Engineering, SE-25(3),
May/June 1999.

33

