525 research outputs found

    Hybrid Imaging of the Autonomic Cardiac Nervous System

    Get PDF
    Cardiac autonomic innervation is an integrative part of the physiology of the heart. This chapter reveals an overview of SPECT and PET application in cardiac sympathetic nervous system imaging in various cardiovascular diseases, including acquisition techniques and data analysis.</p

    Application of artificial intelligence in nuclear medicine and molecular imaging: a review of current status and future perspectives for clinical translation.

    Get PDF
    Artificial intelligence (AI) will change the face of nuclear medicine and molecular imaging as it will in everyday life. In this review, we focus on the potential applications of AI in the field, both from a physical (radiomics, underlying statistics, image reconstruction and data analysis) and a clinical (neurology, cardiology, oncology) perspective. Challenges for transferability from research to clinical practice are being discussed as is the concept of explainable AI. Finally, we focus on the fields where challenges should be set out to introduce AI in the field of nuclear medicine and molecular imaging in a reliable manner

    The role of myocardial innervation imaging in different clinical scenarios: an expert document of the European Association of Cardiovascular Imaging and Cardiovascular Committee of the European Association of Nuclear Medicine

    Get PDF
    Cardiac sympathetic activity plays a key role in supporting cardiac function in both health and disease conditions, and nuclear cardiac imaging has always represented the only way for the non-invasive evaluation of the functional integrity of cardiac sympathetic terminals, mainly through the use of radiopharmaceuticals that are analogues of norepinephrine and, in particular, with the use of I-123-mIBG imaging. This technique demonstrates the presence of cardiac sympathetic dysfunction in different cardiac pathologies, linking the severity of sympathetic nervous system impairment to adverse patient's prognosis. This article will outline the state-of-the-art of cardiac I-123-mIBG imaging and define the value and clinical applications in the different fields of cardiovascular diseases.Cardiolog

    Functional Imaging of Malignant Gliomas with CT Perfusion

    Get PDF
    The overall survival of patients with malignant gliomas remains dismal despite multimodality treatments. Computed tomography (CT) perfusion is a functional imaging tool for assessing tumour hemodynamics. The goals of this thesis are to 1) improve measurements of various CT perfusion parameters and 2) assess treatment outcomes in a rat glioma model and in patients with malignant gliomas. Chapter 2 addressed the effect of scan duration on the measurements of blood flow (BF), blood volume (BV), and permeability-surface area product (PS). Measurement errors of these parameters increased with shorter scan duration. A minimum scan duration of 90 s is recommended. Chapter 3 evaluated the improvement in the measurements of these parameters by filtering the CT perfusion images with principal component analysis (PCA). From computer simulation, measurement errors of BF, BV, and PS were found to be reduced. Experiments showed that CT perfusion image contrast-to-noise ratio was improved. Chapter 4 investigated the efficacy of CT perfusion as an early imaging biomarker of response to stereotactic radiosurgery (SRS). Using the C6 glioma model, we showed that responders to SRS (surviving \u3e 15 days) had lower relative BV and PS on day 7 post-SRS when compared to controls and non-responders (P \u3c 0.05). Relative BV and PS on day 7 post-SRS were predictive of survival with 92% accuracy. Chapter 5 examined the use of multiparametric imaging with CT perfusion and 18F-Fluorodeoxyglucose positron emission tomography (FDG-PET) to identify tumour sites that are likely to correlate with the eventual location of tumour progression. We developed a method to generate probability maps of tumour progression based on these imaging data. Chapter 6 investigated serial changes in tumour volumetric and CT perfusion parameters and their predictive ability in stratifying patients by overall survival. Pre-surgery BF in the non-enhancing lesion and BV in the contrast-enhancing lesion three months after radiotherapy had the highest combination of sensitivities and specificities of ≥ 80% in predicting 24 months overall survival. iv Optimization and standardization of CT perfusion scans were proposed. This thesis also provided corroborating evidence to support the use of CT perfusion as a biomarker of outcomes in patients with malignant gliomas

    My colourful sketches from scratch: molecular imaging

    Get PDF
    Have you heard the story about the tortoise? Only through perseverance did it manage to get to the boat. It is up to you how much you are willing to sacrifice and how long you want to fight before you obtain your goals. If you decide to pursue a road, then make sure you stick with it until the very end. I believe that these life lessons are the key to fulfillment. PET, CT, and MR are molecular imaging tools. Combined PET-CT has evolved into an established clinical tool in diagnostic imaging. The facility need to be optimized and standardized to help improving the clinical management of patients. “MY COLORFUL SKETCHES FROM SCRATCH” Molecular Imaging is about the struggle on establishing the specialized field of Molecular Imaging, PET-CT in particular, through academia and international networking. I hope my story will inspire those out there looking for their own niche be it academic or non-academic encounter

    Review of Journal of Cardiovascular Magnetic Resonance 2012

    Get PDF
    corecore