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Abstract  Cardiac Electrophysiology study is the origin and treatment of arrhythmia, which is an abnormality in 
the rate, regularity or sequence of cardiac activation. There has been considerable recent development in this field, 
where computational methods such as Imaging and Machine Learning for Cardiac Electrophysiology, provide the 
framework for cardiac re-modeling. In this research, we review various recent strategies currently available for the 
meeting the goal of structurally and functionally integrated models of cardiac function that combine data intensive 
cellular systems models with compute-intensive anatomically detailed multiscale simulations. 
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1. Introduction 

The human cardiovascular system is the naturally 
specialized system which circulates oxygenated blood to 
the other body parts and collects deoxygenated blood at 
the same time. The non-stop function of this system is the 
key to our existence. However, a major number of surprise 
deaths occur due to malfunction associated with the 
cardiac system and nowadays, electrophysiology related 
malfunctions are high in the count. Arrhythmia is one of 
the serious issues associated with the electrophysiology in 
which heartbeat deviates from its usual behavior and 
abnormal heartbeat occurs. It is seen that arrhythmia 
occurs by the formation of the combination of pro 
arrhythmic substrate, triggers, and modulators. To curb 
this problem, prior precaution and diagnosis are necessary, 
yet the human cardiac electrical system is not a  
plain-sailing task. Medication can be helpful at a certain 
stage but for a better cure, there should where we can do 
more. The issue is quite challenging and complex, 
however, Electrophysiologists are working hard to deal 
with the more complex organ constituents e.g. the left 
atrium and complex, often repaired, congenital heart 
disease, as well as more complex circuits, e.g. atypical 
atrial flutters, often after prior surgery or ablation 
procedures [1]. Electro physiologically related problems 
as a concern in imaging patients, heart rate, and ectopy are 
important factors [2]. A number of Imaging techniques are 
offering aid in diagnosing cardio electrophysiology 
pathologies. Apart from the other cardiac problems, 
electrophysiology issues must be corrected during live 

sessions of the cardiac anatomy. Most imaging techniques 
are majorly reliable on either invasive methods or 
exposure of radiations to depict the problem. A lot of 
other imaging techniques like standard fluoroscopy, 
computed tomography (CT) and magnetic resonance 
imaging (MRI) are helpful. There are also many other 
imaging modalities obtained during a procedure, such as 
those obtained utilizing catheter movement – the so-called 
non-fluoroscopic mapping systems, those obtained using 
some form of ultrasound, such as transesophageal (TEE) 
and intracardiac (ICE) echocardiography, in either 2D or 
3D form, and various forms of cardiac MRI, either 
intracardiac catheter-based MRI, or utilizing experimental 
MRI EP laboratories [1]. The non-invasive imaging 
techniques like Standard Electrocardiogram (ECG), 
Epicardial activation map, Integral maps and Non-invasive 
imaging of cardiac electro physiology (NICE) [3]. But to 
develop cost-effective real-time assessment techniques to 
diagnose the cardio electrophysiology pathologies can 
assist in disseminating the error-free information of the 
affected area of the patient for the further treatment 
procedure. Modern cardiac electrophysiology studies include 
catheter-based arrhythmia ablation and transvenous device 
implantation, which are highly dependent on accurate, 
real-time cardiac imaging and machine learning [4].  
This era has been led to an explosion of advance 
technology especially machine learning. Rapidly 
increasing in biological data dimension and acquisition 
rate is demanding conventional analysis strategies [5]. 
Modern machine learning methods are like deep learning 
and convolutional neural network, promise to influence 
very large data sets for finding hidden arrangement within 
them, and for making more precise predictions. Present 
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time, cardiac Electrophysiologists are handling more 
complex procedures that involve very complex anatomy. 
The goals of the newer techniques are varying to decrease 
radiation exposure to patient and physician, to improve the 
efficacy of the procedures, their outcomes, safety, and to 
allow Electrophysiologists to tackle more complex 
procedures [6,7]. In medical science, we usually prefer 
medical image dataset for a Machine learning application 
which is adequate data volume, annotation, and reusability. 
Each cardiac image data consist data elements and an 
identifier. Such combination exhibits an imaging 
examination. The dataset must have enough imaging 
examinations to answer the question being asked. To 
maximize algorithm development, both the dataset itself and 
each imaging examination must be described and labelled 
accurately [8,9]. Here in this paper, we tried to describe 
the already present techniques of imaging and what can be 
possible in the future in respect of machine learning with 
the cardiac image. 

2. Materials and Methods 

We reported the criteria used to identify the relevant 
works for the review performed in this domain. We followed 
the PRISMA statement for the design, implementation, 
analysis, and reporting of the results [10]. 

2.1. Selection Method 

A search was performed on Pub Med (827 Articles), 
Scopus (197 Articles), and ISI Web of Sciences databases 
(24 Articles) 2000 to 2017. The search used the exact 
expression "Cardiac electrophysiology." Only works 
published between 2000 and 2017 were considered. A 
total of distinct articles were obtained and evaluated and 
followed the same method using the keyword "Machine 
Learning on cardiac image". We got 128 articles on Pub 
Med, 6 articles on Scopus and 55 articles on ISI Web of 
Sciences databases.  

2.2. Data Collection and Processing 
The identification of the relevant works was performed 

through double-stage strategy, as explained below and 
previously reported in PRISMA guidelines. First, the title 
and the abstract of all articles obtained, analyzed by the 
first author of the current study [10].  Second, the obtained 
225 articles were completely read and analyzed, and the 
following criteria were used to identify the relevant 
studies: (1) the selected studies should focus on novel 
technical innovations of the cardiac electrophysiology, 
discarding small case-to-case adaptations of the traditional 
approach due to difficult intervention or strange anatomies; 
(2) About the current cardiac electrophysiology technique 
were also considered as valid for this review; (3) Short 
clinical reports, letters between editor, author or reader 
and short communications without technical description 
were discarded; (4) previously presented reviews about 
cardiac electro physiology and similar topics were also 
rejected. As such, a total of 123 articles were selected for 
the review. Note that the identification of the relevant 
works was done by the first author of this review [10]. 

2.3. Data Analysis 
The 123 selected articles were fully analyzed and 

classified into different categories: incidence studies, pre-
procedural planning methods, surgical instruments and 
machine learning approach. Each publication could be 
included in more than one category [10]. 

3. Results 

3.1. Study Characteristics 
Most reports suggest that machine learning and cardiac 

imaging has become effective technique at this time. A lot 
of applications of machine learning have been proposed 
for feature extraction and segmentation of cardiac images. 
This technique can be utilized for automatic detection of 
lesions on coronary computed tomography angiography 
images. Improvements for automatic lesion localization 
have been demonstrated by support vector machine 
method, which integrated many quantitative geometric 
and shape features (including stenosis, minimum luminal 
diameter, circularity, eccentricity), resulting in high 
sensitivity, specificity, and accuracy (93%, 95%, 94%). 
Very recently, machine learning techniques have been 
applied for the identification of calcified plaques on 
computed tomography angiography images, demonstrating 
improved accuracy over the existing methods (Table 1). 

3.2. Incidence Study  
Many researches contain heterogeneous populations 

that involve abnormal atria anatomy. The research shows 
that approximately 12% of the procedures require more 
than one complications/failures rate. It may be noted that 
since studies with different operator's expertise (i.e., 
expert and trainee), heterogeneous populations, and 
multiple surgical types of equipment were included in this 
analysis, high variation of complication and failure rate 
was found. 

3.3. Recent cardiac Imaging Techniques 
There are few cardiac imaging techniques are involved 

in cardiac electrophysiology which is the most effective 
way to discover and analyze the problem. A number of 
imaging techniques are available: Rotational angiography: 
This imaging technique is used to obtain 3D CT-like 
images using X-rays with a high-speed rotation of C-arm. 
It provides clear, accurate and high-quality images in 
preparation for surgery. This technique can be applied for 
pre-surgical imaging of various vascular anomalies [21]. 
Pre-operative CT or MRI: These two imaging techniques 
are quite similar in their processing part. They both 
provide the cross-sectional images of the body organs. 
However, the imaging techniques are non-identical. CT 
scanners use X-rays across the body part to obtain many 
cross-sectional view images while MRI scanners use 
strong magnetic fields and radio frequencies to obtain the 
detailed images of the organ. The obtained results help in 
diagnosis and what should be the next step to deal with the 
problem. 
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Table 1. Summary of Machine Learning Algorithms Applied in Cardiovascular Imaging Studies 

Author ' s 
Article (Years) Study Design Techniques Measures Major Findings 

Berchialla et al 
[11] (2012) 

Cross-sectional 
study 

Bayesian network/ Logistic       
Regression/Random forest/ 
Artificial Neural Network/ 
Support Vector  Machine 

Used data computed tomography 
angiography to predict future 
cardiovascular events 

Measurement of Left Ventricle 
dysfunction 

Isgum et al [12] 
(2012) 

Longitudinal 
study 

k- nearest neighbor/ Support 
Vector Machine 

Score of coronary calcium in 
low-dose, noncontrast enhanced 
chest computed tomography 
scans 

Classification with k- nearest 
neighbor  with selected features) 
Detected on average (sensitivity 
79.2%) of coronary Ca volume 
with average 4 mm false-positive 
volume 

Lee et al [13] 
(2013) 

Cross-sectional 
study 

Decision tree/ /k- nearest 
neighbor  /Support Vector 
Machine 

Analyze abdominal aortic 
aneurysm geometry on contrast 
CT images and wall surface 
curvatures predict rupture risk 

k- nearest neighbor demonstrated 
the more accuracy 85.5 %, an 
accuracy of Support Vector 
Machine, decision tree, and naive 
Bayes was 83.4%, 83.3%, and 
80.1%, respectively 

Mohammadpour 
et al [14] (2015) 

Cross-sectional 
study 

Fuzzy rule-based classifying 
system 

Myocardial perfusion scan and 
clinical variables to predict 
coronary artery disease 

Determined important risk factors 
for coronary artery disease 

Xiong et al [15] 
(2015) 

Cross-sectional 
study Naive Bayes/Random forest 

Determine physiologically a 
manifestation of coronary 
stenosis by assessing myocardial 
perfusion on computed 
tomography angiography images 

Diagnosis of obstructive coronary 
artery stenosis. Accuracy 0.70, 
Sensitivity 0.79, and Specificity 
0.64 

Knackstedt et al 
[16] (2015) 

Cross-sectional 
study 

Vendor independent software 
Auto LV 

Measure Left ventricle volumes, 
Ejection Fraction, and average 
biplane longitudinal strain using 
ultrasound images 

Left Ventricle Ejection Fraction 
and longitudinal strain assessment 

Arsanjani et al 
[17] (2015) 

Longitudinal 
study 

Machine learning an Logit 
Boost 

Single positron emission 
computed tomography perfusion 
data to predict early 
revascularization in patients with 
suspected coronary artery 
disease; 

Logit Boost  predict 
revascularization, total ischemic 
perfusion of the heart 

Berkel et al [18] 
(2016) 

Longitudinal 
study 

Artificial neural network 
/Naive Bayes/ Logistic 
regression 

Diagnose acute coronary 
syndrome and electro 
echocardiography findings 
 

Accuracy of artificial neural 
network, naive Bayes, logistic 
regression found 91.26%, 88.75%, 
and 90.1% 

Celutkiene et al 
[19] (2016) 

Longitudinal 
study 

Custom multiparametric 
mathematical model Detection of myocardial ischemia 

Myocardial ischemia in patients 
with coronary stenosis ≥50% with 
sensitivity 91.6% and specificity 
86.3%, compared with 76.8% and 
89%. 

Motwani et al 
[20] (2017) 

Longitudinal 
study 

Custom-built predictive 
classifier 

Predict 5-year all-cause mortality 
in patients with suspected 
coronary artery disease 
undergoing coronary computed 
tomography angiography 

Area Under Curve was 0.79 vs 0.61 
for Framingham risk score, 0.64 for 
segment stenosis score, 0.64 for 
segment involvement score 

 
Non-fluoroscopic mapping systems: A catheter 

introduced into the system to model 3D structures of heart 
chambers. The application of this non-fluoroscopic 
catheter visualization system (NFCV) reduces fluoroscopy 
time and dose by 90-95% in a variety of electrophysiology 
(EP) procedures. This can be of relevance not only to the 
patients but also to the nurses and physicians working in 
the EP lab [22]. Image fusion with non-fluoroscopic 
mapping systems: The images are fused by using 
anatomic information obtained pre- or intra-operatively to 
fuse with an anatomic model made with the use of a 
fluoroscopic mapping system so as to obtain a better 
representation of the true anatomy of a chamber [23]. 
Echocardiographic imaging: An echocardiogram is used 
to obtain the images of heart by using two-dimensional, 

three-dimensional and Doppler ultrasound. The 3D images 
are obtained in real time with Trans thoracic and 
transesophageal echocardiography and present off-line 
with intracardiac echocardiography [23]. The real-time 
and near real-time imaging of chambers and structures are 
also lesion discoveries [24]. Intracardiac MRI: A 
catheter is used to analyze the internal structure or any 
other difficulty in heart, likewise similar to intracardiac 
echocardiography [23]. 

3.4. Machine Learning Techniques 
The first important task is to acquire high-quality 

imaging data. No matter how flexible, all algorithms will 
require some interface customization with respect to 
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locale, institution, and modality-specific configurations 
and infrastructures. As cardiovascular imaging modality 
techniques continue to evolve, algorithms also need to 
accommodate measures (ie, variables) and layers of 
imaging data added over time; thus, highly customized 
algorithms may need substantial edits to handle new data 
types (Figure 1). With respect to optimizing image quality, 
filtering and other algorithms can be applied in real time 
even though inter-individual variation in clinical 
characteristics will always lead to variations in image 
quality. Traditionally, data analysis involves trained 
technicians selecting anatomic structures and performing 
measurements that are over-read by a cardiologist or 
radiologist who often adds diagnostic information to the 
record. The data are then combined with clinical data into 
a single dataset, and conventional statistics are used to 
determine whether a given measurement is relevant to a 
clinical outcome. Here I have mentioned few feature 
which helps in the study of cardiac electrophysiology 
study. Velocity features, Circumferential strain, Radial 
strain, Local and global Simpson Volume and Segmental 
Volume of the cardiac image are the features where we get 
information to study electrophysiology of the heart. 

 
Figure 1. Machine learning implementation on different kind of data 

There are few recent techniques of machine learning 
which is mentioned basically. 

3.4.1. Deep Learning 
This has become one of the most dynamic fields in 

machine learning that mimics the cognitive processing of 
the human brain using neural networks with multiple 
hidden layers. Deep architectures trained on millions  
of photographs can famously detect objects in pictures 
better than humans do. All current models in image 
classification, image retrieval and semantic segmentation 
make use of neural networks. At a pixel level, the 
convolution operation scans the image with a given 
pattern and calculates the strength of the match for every 
position [25,26]. There are also various medical imaging 
modalities obtained during a procedure, such as those 
obtained utilizing catheter movement the so-called non-
fluoroscopic mapping systems, those obtained using some 
form of ultrasound, such as transesophageal (TEE) and 
intracardiac (ICE) echocardiography, in either 2D or  
3D form, and various forms of cardiac MRI, either 
intracardiac catheter-based MRI, or utilizing experimental 
MRI EP laboratories [27,28,29,30]. Pooling confirms the 
existence of the pattern in a region, for example by 
calculating the maximum pattern match in smaller patches 
(max-pooling), thereby aggregating region information 
into a single number. The successive application of 
convolution and pooling operations is at the core of most 
network architectures used in image analysis [31]. 

3.4.2. Artificial Neural Network 
An artificial neural network consist layers of 

interconnected compute units. The depth of a neural 
network corresponds to the number of hidden layers and 
the width to the maximum number of neurons in one of its 
layers. As it became potential to train networks with 
numerous hidden layers, artificial neural networks were 
rebranded to "deep networks". In the canonical 
configuration, the network receives data in an input layer, 
which are then transformed in a nonlinear way through 
multiple hidden layers, before final outputs are computed 
in the output layer (Figure 2) [32,33]. 

 
Figure 2. Diagram of Artificial Neural Network 
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Figure 3. Diagram of Convolutional Network 

3.4.3. Convolutional Designs 
More recent work using convolutional neural networks 

(CNNs) allow to greatly reduce the number of model 
parameters compared to a fully connected network by 
applying convolutional operations to only small regions of 
the input space and by sharing parameters between regions 
(Figure 3) [34]. 

4. Seven-year Vision 

It is likely that in a seven year time the level of 
automation for study and interpretation will be extensively 
raised and compared to what is feasible Nowadays. It is 
likely, that entirely unsupervised extraction of all image 
parameters will be possible for nuclear cardiology, and 
minimal supervision will be required for other modalities. 
Greater standardization of acquisition protocols will be 
needed to maximize the potential gains from automation 
and machine learning. This goal will require significant 
support from the vendors but also from the medical 
centres - to facilitate data sharing. Fully quantitative 
diagnostic and risk stratification scores will be developed 
for clinicians and these will become integrated with the 
imaging software. Risk stratification will transition from 
oversimplified population-based risk scores to machine-
learning-based metrics incorporating a large number of 
clinical and imaging variables in real-time beyond the 
limits of human cognition - this will deliver highly 
accurate and individual personalized risk assessments and 
facilitate tailored management plans. However, the 
clinical translation of these exciting techniques will 
depend on many factors outside of technological progress, 
such as aspects related to logistical, legal, standardization, 
and reimbursement. 

5. Conclusion 

We hope to have given the readers an idea of why we 
need machine learning and what kind of data is available. 
The future of machine learning in cardiac electrophysiology, 
integrated with robotic catheter navigation systems, 
allowing for automated mapping and ablation, and perhaps 
eventually with real-time visualization of the lesions 
formed, to assist when complete lines of ablation lines 
have to be drawn. 
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