69 research outputs found

    Context Aware POI Recommendation using Bipartite Graph

    Get PDF
    With the swift proliferation of handheld mobile devices, location based social networking (LBSNs) services have gained immense attention allowing users to discover their point of interest (POI). Application of collaborative filtering techniques in POI recommendation becomes challenging due to the sparsity of large user-POI rating matrix. Further, in the context of LBSNs, the spatiotemporal information is pivotal to capture user\u27s real-time preferences. In this work we propose a graph based POI recommendation approach, Context Aware POI with Social Trust (CAST) which integrates the geographical influence of the POIs and the influence of the social connections with the user rankings derived from the weighted bipartite graph. Experiments have been conducted with six state-of-the-art baselines using two real-world LBSN data sets. Findings reveal that user ranking on bipartite graph is a significant contributor to the performance along with social, geographical and spatial influence

    SgWalk: Location Recommendation by User Subgraph-Based Graph Embedding

    Get PDF
    Popularity of Location-based Social Networks (LBSNs) provides an opportunity to collect massive multi-modal datasets that contain geographical information, as well as time and social interactions. Such data is a useful resource for generating personalized location recommendations. Such heterogeneous data can be further extended with notions of trust between users, the popularity of locations, and the expertise of users. Recently the use of Heterogeneous Information Network (HIN) models and graph neural architectures have proven successful for recommendation problems. One limitation of such a solution is capturing the contextual relationships between the nodes in the heterogeneous network. In location recommendation, spatial context is a frequently used consideration such that users prefer to get recommendations within their spatial vicinity. To solve this challenging problem, we propose a novel Heterogeneous Information Network (HIN) embedding technique, SgWalk, which explores the proximity between users and locations and generates location recommendations via subgraph-based node embedding. SgWalk follows four steps: building users subgraphs according to location context, generating random walk sequences over user subgraphs, learning embeddings of nodes in LBSN graph, and generating location recommendations using vector representation of the nodes. SgWalk is differentiated from existing techniques relying on meta-path or bi-partite graphs by means of utilizing the contextual user subgraph. In this way, it is aimed to capture contextual relationships among heterogeneous nodes more effectively. The recommendation accuracy of SgWalk is analyzed through extensive experiments conducted on benchmark datasets in terms of top-n location recommendations. The accuracy evaluation results indicate minimum 23% (@5 recommendation) average improvement in accuracy compared to baseline techniques and the state-of-the-art heterogeneous graph embedding techniques in the literature

    A study of neighbour selection strategies for POI recommendation in LBSNs

    Get PDF
    Location-based Recommender Systems (LBRSs) are gaining importance with the proliferation of location-based services provided by mobile devices as well as user-generated content in social networks. Collaborative approaches for recommendation rely on the opinions of liked-minded people, so called neighbors, for prediction. Thus, an adequate selection of such neighbors becomes essential for achieving good prediction results. The aim of this work is to explore different strategies to select neighbors in the context of a collaborative filtering based recommender system for POI (places of interest) recommendations. Whereas standard methods are based on user similarity to delimit a neighborhood, in this work several strategies are proposed based on direct social relationships and geographical information extracted from Location-based Social Networks (LBSNs). The impact of the different strategies proposed has been evaluated and compared against the traditional collaborative filtering approach using a dataset from a popular network as Foursquare. In general terms, the proposed strategies for selecting neighbors based on the different elements available in a LBSN achieve better results than the traditional collaborative filtering approach. Our findings can be helpful both to researchers in the recommender systems area as well as to recommender systems developers in the context of LBSNs, since they can take into account our results to design and provide more effective services considering the huge amount of knowledge produced in LBSNs.Fil: Rios, Carlos. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Tandil. Instituto Superior de IngenierĂ­a del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de IngenierĂ­a del Software; ArgentinaFil: Schiaffino, Silvia Noemi. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Tandil. Instituto Superior de IngenierĂ­a del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de IngenierĂ­a del Software; ArgentinaFil: Godoy, Daniela Lis. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Tandil. Instituto Superior de IngenierĂ­a del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de IngenierĂ­a del Software; Argentin

    Toward Point-of-Interest Recommendation Systems: A Critical Review on Deep-Learning Approaches

    Get PDF
    In recent years, location-based social networks (LBSNs) that allow members to share their location and provide related services, and point-of-interest (POIs) recommendations which suggest attractive places to visit, have become noteworthy and useful for users, research areas, industries, and advertising companies. The POI recommendation system combines different information sources and creates numerous research challenges and questions. New research in this field utilizes deep-learning techniques as a solution to the issues because it has the ability to represent the nonlinear relationship between users and items more effectively than other methods. Despite all the obvious improvements that have been made recently, this field still does not have an updated and integrated view of the types of methods, their limitations, features, and future prospects. This paper provides a systematic review focusing on recent research on this topic. First, this approach prepares an overall view of the types of recommendation methods, their challenges, and the various influencing factors that can improve model performance in POI recommendations, then it reviews the traditional machine-learning methods and deep-learning techniques employed in the POI recommendation and analyzes their strengths and weaknesses. The recently proposed models are categorized according to the method used, the dataset, and the evaluation metrics. It found that these articles give priority to accuracy in comparison with other dimensions of quality. Finally, this approach introduces the research trends and future orientations, and it realizes that POI recommender systems based on deep learning are a promising future work

    Improving Security and Privacy in Online Social Networks

    Get PDF
    Online social networks (OSNs) have gained soaring popularity and are among the most popular sites on the Web. With OSNs, users around the world establish and strengthen connections by sharing thoughts, activities, photos, locations, and other personal information. However, the immense popularity of OSNs also raises significant security and privacy concerns. Storing millions of users\u27 private information and their social connections, OSNs are susceptible to becoming the target of various attacks. In addition, user privacy will be compromised if the private data collected by OSNs are abused, inadvertently leaked, or under the control of adversaries. as a result, the tension between the value of joining OSNs and the security and privacy risks is rising.;To make OSNs more secure and privacy-preserving, our work follow a bottom-up approach. OSNs are composed of three components, the infrastructure layer, the function layer, and the user data stored on OSNs. For each component of OSNs, in this dissertation, we analyze and address a representative security/privacy issue. Starting from the infrastructure layer of OSNs, we first consider how to improve the reliability of OSN infrastructures, and we propose Fast Mencius, a crash-fault tolerant state machine replication protocol that has low latency and high throughput in wide-area networks. For the function layer of OSNs, we investigate how to prevent the functioning of OSNs from being disturbed by adversaries, and we propose SybilDefender, a centralized sybil defense scheme that can effectively detect sybil nodes by analyzing social network topologies. Finally, we study how to protect user privacy on OSNs, and we propose two schemes. MobiShare is a privacy-preserving location-sharing scheme designed for location-based OSNs (LBSNs), which supports sharing locations between both friends and strangers. LBSNSim is a trace-driven LBSN model that can generate synthetic LBSN datasets used in place of real datasets. Combining our work contributes to improving security and privacy in OSNs

    Location-Based Social Networks: Latent Topics Mining and Hybrid Trust-Based Recommendation

    Get PDF
    The rapid advances of the 4th generation mobile networks, social media and the ubiquity of the advanced mobile devices in which GPS modules are embedded have enabled the location-based services, especially the Location-Based Social Networks (LBSNs) such as Foursquare and Facebook Places. LBSNs have been attracting more and more users by providing services that integrate social activities with geographic information. In LBSNs, a user can explore places of interests around his current location, check in at these venues and also selectively share his check-ins with the public or his friends. LBSNs have accumulated large amounts of information related to personal or social activities along with their associated location information. Analyzing and mining LBSN information are important to understand human preferences related to locations and their mobility patterns. Therefore, in this thesis, we aim to understand the human mobility behavior and patterns based on huge amounts of information available on LBSNs and provide a hybrid trust-based POI recommendation for LBSN users. In this dissertation, we first carry out a comprehensive and quantitative analysis about venue popularity based on a cumulative dataset collected from greater Pittsburgh area in Foursquare. It provides a general understanding of the online population's preferences on locations. Then, we employ a probabilistic graphical model to mine the check-in dataset to discover the local geographic topics that capture the potential and intrinsic relations among the locations in accordance with users' check-in histories. We also investigate the local geographic topics with different temporal aspects. Moreover, we explore the geographic topics based on travelers' check-ins. The proposed approach for mining the latent geographic topics successfully addresses the challenges of understanding location preferences of groups of users. Lastly, we focus on individual user's preferences of locations and propose a hybrid trust-based POI recommendation algorithm in this thesis. The proposed approach integrates the trust based on both users' social relationship and users' check-in behavior to provide POI recommendations. We implement the proposed hybrid trust-based recommendation algorithm and evaluate it based on the Foursquare dataset and the experimental results show good performances of our proposed algorithm

    CoSoLoRec: Joint factor model with content, social, location for heterogeneous point-of-interest recommendation

    Full text link
    © Springer International Publishing AG 2016. The pervasive use of Location-based Social Networks calls for more precise Point-of-Interest recommendation. The probability of a user’s visit to a target place is influenced by multiple factors. Though there are several fusion models in such fields, heterogeneous information are not considered comprehensively. To this end, we propose a novel probabilistic latent factor model by jointly considering the social correlation, geographical influence and users’ preference. To be specific, a variant of Latent Dirichlet Allocation is leveraged to extract the topics of both user and POI from reviews which is denoted as explicit interest. Then, Probabilistic Latent Factor Model is introduced to depict the implicit interest. Moreover, Kernel Density Estimation and friend-based Collaborative Filtering are leveraged to model user’s geographic allocation and social correlation respectively. Thus, we propose CoSoLoRec, a fusion framework, to ameliorate the recommendation. Experiments on two real-word datasets show the superiority of our approach over the state-of-the-art methods
    • …
    corecore