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AND HYBRID TRUST-BASED RECOMMENDATION

Xuelian Long, PhD

University of Pittsburgh, 2015

The rapid advances of the 4th generation mobile networks, social media and the ubiquity of

the advanced mobile devices in which GPS modules are embedded have enabled the location-

based services, especially the Location-Based Social Networks (LBSNs) such as Foursquare

and Facebook Places. LBSNs have been attracting more and more users by providing services

that integrate social activities with geographic information. In LBSNs, a user can explore

places of interests around his current location, check in at these venues and also selectively

share his check-ins with the public or his friends. LBSNs have accumulated large amounts

of information related to personal or social activities along with their associated location

information. Analyzing and mining LBSN information are important to understand human

preferences related to locations and their mobility patterns. Therefore, in this dissertation,

we aim to understand the human mobility behavior and patterns based on huge amounts of

information available on LBSNs and provide a hybrid trust-based POI recommendation for

LBSN users.

In this dissertation, we first carry out a comprehensive and quantitative analysis about

venue popularity based on a cumulative dataset collected from greater Pittsburgh area in

Foursquare. It provides a general understanding of the online population’s preferences on

locations. Then, we employ a probabilistic graphical model to mine the check-in dataset to

discover the local geographic topics that capture the potential and intrinsic relations among

the locations in accordance with users’ check-in histories. We also investigate the local geo-

graphic topics with different temporal aspects. Moreover, we explore the geographic topics
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based on travelers’ check-ins. The proposed approach for mining the latent geographic top-

ics successfully addresses the challenges of understanding location preferences of groups of

users. Lastly, we focus on individual user’s preferences of locations and propose a hybrid

trust-based POI recommendation algorithm in this dissertation. The proposed approach

integrates the trust based on both users’ social relationship and users’ check-in behavior

to provide POI recommendations. We implement the proposed hybrid trust-based recom-

mendation algorithm and evaluate it based on the Foursquare dataset and the experimental

results show good performances of our proposed algorithm.
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1.0 INTRODUCTION

Recently, the rapid advances of high-speed wireless mobile networks, the ubiquity of the

advanced mobile devices (e.g., smart phones) in which GPS modules are embedded and the

powerful interfaces supporting map services such as Google Maps, Microsoft Bing Maps and

Yahoo! Maps have greatly enabled and promoted various location-based services. As a com-

bination of the location-based services and social media, Location-Based Social Networks

(LBSNs, also called Geographic Social Networks or GeoSocial Networks), such as Facebook

Places [2] and Foursquare [3] have been growing rapidly and attracting a huge number of

users. For instance, by April 2012, there were 200 million Facebook users posting informa-

tion including location information [4]. Foursquare community has more than 55 million

people worldwide with over 6 billion check-ins [5]. People use such LBSNs as they integrate

the functionalities of both social networking and location-based services. LBSN users can

explore interesting venues such as restaurants, museums, popular bars, department stores

with specials (e.g., discounts, coupons), etc., around their current locations. In a LBSN,

users can also add other users as their friends just as they do in traditional social networks

and they can also create friendship links with users in the nearby venues.

One of the most popular LBSNs is Foursquare. Foursquare users can create and add a

venue/Point of Interest (POI; we use both terminologies in this dissertation) in Foursquare

and they can click “Check in” at the venues where they currently are by using a Foursquare

mobile App and share such information with others. Users can choose either public “Check

in” or private “Check in”, and they can earn points by checking in. A user can explore

venues around him to find interesting ones and view other people who are checked in there.

Users can also easily add friends as they usually do in traditional social networks such as

Facebook. They can also choose to post their Foursquare check-ins on Facebook or Twitter

1



in order to share their location information or activity information with more users. They

can choose to be notified of their friends’ check-ins. Users can get coupons, discounts and

badges [6] by checking in, and this strategy greatly motivates users to check in [7]. Thus,

Foursquare accumulates large amounts of information related to the users’ personal activities

with associated location information.

Exploring and analyzing the Foursquare dataset is very helpful for Foursquare users–both

business owners and customers. It is expected that 59% users will search Foursquare for new

local businesses [8], thus a business owner will likely miss good opportunities to reach out

to customers if his business is not integrated with Foursquare. That is, he may not view

his venue statistics of the check-ins on the basis of a certain time period (e.g., one day, last

week or last 30 days, etc.). He may also lose valuable data such as social reach (i.e., how

many users post their check-ins to their Twitter or Facebook account) and the gender and

age information of the customers, etc. [9]. However, such information is very important and

valuable for a business owner to design special offers or prepare for the rush hours. Creating

a venue in Foursquare and claiming the ownership of the business will enable the owner to

directly obtain the statistics of his own business but the owner still cannot get the statistics

of the other venues and user check-ins around his venue. Besides, it is still unknown if there

are some features could promote the venue popularity. For LBSN users who would like to

explore interesting venues, overall venue popularity also implies good reputation, so it is a

very important and valuable feature for customers to choose venues. Thus, the quantitative

analysis of the Foursquare dataset will help to understand the general preferences of the

Foursquare users. Moreover, sometimes we are more interested in the popular venues among

a certain group of users, e.g., a university freshman may be very interested in the cafes that

are particularly popular among the freshmen in the same University. Thus, investigating the

venue popularity among certain group of users is also an interesting topic. Last but not the

least, studying and exploring the interesting venues for individual users are also crucial.

In this dissertation, we first study the overall venue popularity based on the information

from the online population, i.e., we employ empirical approaches to analyze the popular

venues, popular categories, the temporal and spatial features of the popular venues. Then, we

use the probabilistic graphical model to mine the dataset to investigate the latent geographic
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topics of users’ check-ins; the venues in the same latent topic reflect the preferences of

a certain group of users. Lastly, we propose a hybrid trust-based venue recommendation

approach for an individual user to find venues that may be interesting for him.

1.1 CHALLENGES

In this dissertation, we aim to validate the following hypothesis:

• Users’ check-in activities and venue information in LBSNs can be used to understand

users’ general preferences about locations and can be used to evaluate the venue popu-

larity.

• Users’ check-in activities indicate the human mobility pattern and by appropriately min-

ing the users’ check-ins we can discover the human mobility-driven geographic topics,

which indicate preferences of location for different groups of users.

• Users’ social relationship and check-in behavior can be used to provide good POI recom-

mendation.

Towards this, we work on understanding the users’ preferences of locations from the view-

points of the entire online population, certain groups of users and individual users, respec-

tively. We address research challenges corresponding to the three different types of demo-

graphic information (i.e., entire online population, groups of users and individual users) in

this dissertation. Since the geographic distance will limit the user activities and most users’

activities are within a certain geographic region, the analysis of a local city’s dataset can tell

more about user activities than the analysis of a general globalized dataset. Therefore, in

this dissertation, we focus on the Foursquare dataset pertaining to the greater Pittsburgh

area to explore the challenges as follows.
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1.1.1 Challenge I: Understanding local venue popularity in LBSNs from the

viewpoint of entire online population

Understanding the local venue popularity is important, as it reflects the entire population’s

preferences regarding the geographic locations. With the LBSN dataset, we are interested

in the questions such as “what are the popular venues?”, “what are the popular venue

categories?” and “what are the temporal and spatial features of the popular venues and

what features make the popular venues popular?”. These are very common questions related

to understanding the human preferences of locations. Thus, in this dissertation, we first

would like to answer such questions through the quantitative analysis based on the real

dataset, towards understanding human preferences of locations. Moreover, with regard to

the popular venues, we are interested to see if there are similar spatial properties among

them, or whether there are some specific features that make them more popular, and so

on. Thus, analyzing and mining the LBSN data to find out the spatial properties and the

features promoting venue popularity are also important. Besides, answering such questions

is helpful for designing business and marketing strategies for business owners.

Therefore, the first challenge towards understanding human preferences of geographic

locations is to study the venue popularity based on the entire online population’s activities,

and we will present our work in addressing this challenge in Chapter 3.

1.1.2 Challenge II: Exploring latent geographic topics based on the movements

of unobserved groups of users

Our work corresponding to the aforementioned challenge will provide a general overview of

the human preferences of locations. However, a further question is how can we understand

location preferences of various groups of users? This is because sometimes the users belonging

to the same community may have similar tastes and preferences with regard to locations.

However, the overall venue popularity derived from the entire online population’s check-

ins cannot provide a lot of useful information about it. For examples, the overall venue

popularity can not tell us what are the clusters of venues that college students like to visit,

or what venues sports fans usually visit after watching a sports game? With only the overall

4



venue popularity, it is very hard to answer such questions. Thus, towards understanding

the human preferences of geographic locations, the next challenge is to understand certain

groups of users’ preferences of locations. The clusters of venues in accordance with the

crowd level implies the groups of users’ preferences of location and such clusters of venues

should not be formed based on the category information or spatial information, but the users’

trajectories/check-ins. Thus, the second challenge we would like to address is to employ the

probabilistic graphical model to investigate LBSN users’ trajectories/check-ins to mine the

latent geographic topics of the venues. Also, we are interested in the latent geographic topics

formed at different temporal aspects (i.e., on weekdays and at weekends) and those based

on the trajectories/check-ins of some special users (i.e., travelers).

1.1.3 Challenge III: Personalized hybrid trust-based POI recommendation

The empirical analysis of the LBSN dataset helps in understanding the venue popularity

and the latent geographic topics present a dynamic approach to cluster venues based on the

users’ check-in data. Both approaches can benefit LBSN users in finding their interesting

venues. Furthermore, as LBSN systems usually have heterogeneous venues but there is no

straightforward rating mechanism1 for such venues in most LBSNs [10], it is not easy for users

to identify the right venues with good reputation in LBSNs. Even in some platform with the

rating of venues, the ratings are not personalized, thus the personal preference of venues are

still unavailable. Venue recommendations in LBSNs, thus, has become a challenging research

topic in the literature [11] and is the last challenge we address in this dissertation.

1.2 DISSERTATION OVERVIEW AND CONTRIBUTIONS

In order to address the aforementioned challenges, we propose a quantitative analysis to

understand the venue popularity in LBSNs, a probabilistic graphical model to mine the

geographic topics based on the user check-in records, and a hybrid trust-based POI recom-

1In Foursquare, some venues have a rating, but not all the venues have such features.
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mendation approach in LBSNs in this dissertation. In particular, the main contributions

corresponding to the proposed approaches are as follows:

• We analyze the overall popularity of venues and the overall popularity of venue categories

by examining the cumulative number of check-ins and the cumulative number of users

who checked in at the venues. Intuitively, the larger the cumulative number of check-ins

at a venue or the cumulative number of users who have checked in at the venue, the more

popular the venue would be and our first empirical study is based on it. Since Foursquare

defines a hierarchical structure of the venue category, we also investigate such category

information of the venues to see what kind of venues are popular in LBSNs. Moreover,

we investigate Foursquare features such as specials, web presence and menu to analyze if

they help attract more check-ins or more users to check in. We also study the influence of

the specials on trending venues. After that, we choose the venues in Food and Nightlife

Spot categories as examples to examine if the attributes such as URL, Twitter ID and

Menu are helpful in making trending venues. Lastly, we explore if the trending venues

remain popular during a certain period of time. The proposed quantitative approach to

investigate the venue popularity on LBSN dataset implies the entire online population’s

preferences of the venues on LBSNs. The results could be used to help business owners

to improve their business strategies on LBSN as a social media platform.

• We propose to adopt Latent Dirichlet Allocation (LDA) approach to mine the latent

geographic topics in LBSNs. A geographic topic is a set of venues that co-exist in many

users’ check-in records, which implies a certain kind of intrinsic relationship among these

venues. These relationships do not depend on the category information or physical

geographic distances, but only depend on users’ trajectories. The latent topics are very

helpful in discovering the clusters of venues based on users’ mobility behavior, and can

be used in venue recommendation and check-in prediction. By employing the proposed

probabilistic graphical model on the Foursquare dataset related to the greater Pittsburgh

area, the user mobility-driven geographic topics are obtained. Since the human mobility

pattern is expected to be different on weekdays and at weekends, we also investigate the

topics on these two different temporal aspects. We study the differences of the latent

geographic topics that are based on weekday data and those based on weekend data.
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Beside that, we are also interested in the geographic topics formed by travelers. Thus,

we extract travelers from the dataset and we study the latent geographic topics based

only on travelers’ check-ins. The results of this study would help city design center better

understand the mobility patterns of local users and travelers and then design/plan better

services for them, respectively.

• We propose and implement a hybrid trust-based POI recommendation for LBSN users

in this dissertation. The proposed trust-based model is a hybrid trust model, which

is based on both the graph-based trust model and the interaction-based trust model.

The graph-based trust model illustrates how the trust is affected by the social network

structure. The trust computation between users over the social network is done through

the unweighted/weighted edges of the graph. Moreover, the check-in activities in LBSNs

will also impact the trust of the LBSN users to POIs. The proposed hybrid trust-

based POI recommendation will recommend POIs based on the reputation of the POIs

from both social and interactions aspects. It is a personalized approach since for each

person, the recommendation will be made based on his social network and his check-in

history. We also implement the proposed approach and evaluate it using our Foursquare

dataset pertaining to the greater Pittsburgh area. The experimental results show the

effectiveness of the proposed approach. The proposed recommendation approach can

be integrated into the existing LBSN platforms for recommending POIs to LBSN users.

Also, the approach can be used in predicting the users’ check-in by considering the

temporal features.

1.3 SCOPE OF THE DISSERTATION

As we mentioned earlier the users’ mobility pattern and mobility behavior will be limited

by the geographic distances, thus the work in this paper is focused on a limited geographic

area. Although our work is based on the Foursquare dataset of greater Pittsburgh area, the

approaches and methods can be used in other local datasets. However, more work needs to

be done and more features should be considered when employing the proposed work in a
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global dataset, which is out of scope of this dissertation.

1.4 ORGANIZATION

The remainder of this dissertation is organized as follows. In Chapter 2 we review the closely

related work in the literature to this dissertation. In Chapter 3, we present the results of the

quantitative analysis about venue popularity of our dataset pertaining to Greater Pittsburgh

area. We also explore the relation between Foursquare features and the venue popularity,

as well as the temporal and spatial properties of the popular venues. Such analysis and

result are very helpful in understanding the preferences of the entire online population. In

Chapter 4, we introduce how to employ the Latent Dirichlet Allocation model in our LBSN

dataset and present the results of latent geographic topics by exploring the users’ check-in

data. The latent topics reflect the location preferences of unobserved groups of users. We also

discuss the latent topics and how to use these topics in applications. In Chapter 5, we present

the hybrid trust-based POI recommendation approach for individual users. We implement

the approach, evaluate it by using our dataset and present the results. In Chapter 6, we

present contributions, limitations and future directions related to the dissertation .
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2.0 BACKGROUND AND RELATED WORK

In this chapter, we first describe the terminology used in the proposal. Then we present

closely related work to LBSNs in the literature.

2.1 TERMINOLOGY

The terminology used in this proposal is summarized in this section.

Venue/POI. A Foursquare venue/POI is a physical location. It can be a place of business

office or private residence where Foursquare users can check in.

Venue Category. Foursquare defines a hierarchical list of categories applied to venues.

There are 9 top categories in the hierarchical structure and they are: Arts & Entertainment,

College & University, Food, Professional & Other Places, Nightlife Spot, Great Outdoors,

Shop & Service, Travel & Transport and Residence. There are some venues in Foursquare

which do not have category information and we do not consider these venues in this disser-

tation.

Specials. There are eight different types of specials provided by Foursquare and they

are: mayor, count, frequency, regular, friends, swarm, flash and other. They could be used

for specific promotions to get new customers or give rewards to the most loyal customers

[12]. Third parties, e.g. American Express which provides specials like “get $5 off using

your American Express card”, also can be providers of Specials in Foursquare, but we do

not consider them in the dissertation. The provider of the specials in this dissertation is

Foursquare.

Trending venue. The trending venues in Foursquare are defined as the venues near the
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user’s current location with the most people currently checked in [3]. They are usually the

popular venues at a certain time. The trending venues are provided by Foursquare API

and during our data crawling period we found that a venue in Greater Pittsburgh area was

considered a trending venue if there were at least 5 users currently checked in.

Menu. It is a Foursquare feature that provides the menus in venues in Food and Nightlife

Spot categories to users.

Web Presence (URL and Twitter ID). In Foursquare, a venue’s owner can provide a URL

of his website and a Twitter ID that links the owner’s tweets in Twitter. Thus, Foursquare

users can view the website to get more information about the venue. They can also tweet

messages about the venue or view the tweets about the venue.

2.2 RELATED WORK

2.2.1 Analysis related to Human Mobility

Understanding the human mobility has recently become a hot research area, e.g., exploring

the scales of human mobility [13], mobility and migration patterns [14], the geographic

constraints on social groups [15] and human mobility’s impact on social relationships [16],

etc.. A lot of work employ mobile phone datasets to investigate the human mobility [17,

18, 19]. González et al. study the six-month mobile phone users’ trajectories in [20]. Their

results show that human trajectories have a high degree of temporal and spatial regularity.

That is, human mobility follows simple reproducible patterns, in spite of the diversity of

their travel history.

Noulas et al. analyze the user activity patterns using Foursquare dataset in [21]. Then,

in [22], they study the urban mobility patterns of people in several metropolitan cities.

Although the human movements vary in different cities, they identify a general pattern for

human mobility.

Li and Chen’s work is the first large-scale quantitative analysis of a real-word LBSN

service [23]. They investigate user profiles, update activities, mobility characteristics, social
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graphs, and attribute correlations. Their work is very general in these aspects and our

proposed work is different from theirs in that we focus on venues and users’ preferences of

the venues.

In [24], Allamanis et al. study the temporal evolution of LBSNs. They investigate the

Gowalla dataset to explore how the social links are created, how the social triangles are

created and how users’ mobility patterns affect their social influence. Based on the findings,

they also define network growth models to reproduce the spatial and social properties which

can describe the fundamental mechanisms affecting user behavior.

Noulas et al.’s work in [25] uses local dataset (i.e., New York) and analyzes the venues ac-

cording to different categories. However, this work aims to explore the semantic annotations

for clustering geographic areas and it still uses the data collected from Twitter.

Scellato and Mascolo’s work measures the user activity in a LBSN [26]. Their work studies

how Gowalla users connect with their friends and how users check in at different places.

Their work shows that the double Pareto-like distribution can describe the distribution of

the number of friends, and the log-normal distribution can describe the numbers of check-ins

and places. Their work is mainly based on the number of friends and the number of check-ins

of a venue, thus they do not study the venues in detail and they do not examine the popular

venues.

2.2.2 Data Mining in LBSNs

Cho et al. study the relationship between mobility and friendship by exploring the user

movements in LBSNs in [27]. Their work show close connection of them, e.g., 10% to 30%

of all human movements can be explained by social relationship and 50% to 70% human

movements are related to periodic behavior.

Cheng et al. explore the check-ins to analyze human mobility patterns in spatial, tem-

poral, social, and textual context [28]. First, their work uses the global data collected from

Twitter. They do not present the cumulative information and the category information of

the venues as in this dissertation. Thus, their analysis about check-ins in spatial-temporal

aspect is not as detailed as ours. Moreover, not every Foursquare user has a Twitter account.

11



In our dataset, only 28.44% of the users have Twitter IDs. Thus, many Foursquare users are

excluded in their dataset. Their work focus on the human mobility patterns and our work

is different from theirs as we focus on the users’ preferences of venues.

Gao et al. explore social-historical ties in LBSNs by studying the user check-in behavior in

[29]. They use both power-law distribution and short-term effect to capture users’ historical

check-ins. Their experimental results demonstrate how social and historical ties can help

location prediction.

Vasconcelos et al.’s work investigates the tips, dones and to-dos information in Foursquare

[30]. This work uses a global dataset and it focuses on the user interactions by posting tips

and by marking them as done or to-do.

Ferrari et al. employ LDA to extract the urban patterns from location-based social

networks in [31]. Our prposed work is different from theirs mainly in two ways. First, our

topics are based on the users’ check-ins, i.e., we use a user’s check-ins as a document and

a venue in a check-in as a word in the LDA model. However, their work uses a venue and

a time slot as a word and forms a document of all check-ins in a day in their LDA model.

Thus, their work focuses on the human mobility patterns at different times within a city and

our proposed work is more human centric than theirs as we investigate the topics based on

trajectories of large groups of users. The data set used in their work is crawled from Twitter

but not from Foursquare directly. In Foursquare, a user can use his Twitter account to login

and post his check-ins on Twitter, but not every user has a Twitter account and neither is

every user likely to post his check-ins on Twitter.

Ferrari and Mamei also investigate the topics based on the user’s trajectory in [32]. The

data set in [32] is the daily whereabouts of two persons over the period of almost one year.

They divide a day into 48 time slots and each time slot lasts for 30 minutes, so the 48 places

each day form a document. Thus, their work is still time based topics, which focuses on a

single user’s mobility pattern at different times and is thus very different than our approach.

Farrahi and Gatica-Perez’s work in [33] also use LDA to discover the routine behaviors.

They use the Reality Mining data set [34, 35] that contains a one-year mobile phone sensor

data recording 97 subjects from 2004 to 2005. The routine behaviors in their work are still

time based topics, which are different from ours, as we do not consider the temporal factors
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in our model. Besides, the locations in their work are simply labeled by “Home”, “Work”,

“Other” and “No Reception”. Thus, the rich POI information is lost in their work.

Yuan et al. also propose a framework to discover regions of different functions in a city

by using human mobility with regard to both regions and POIs in the region in [36]. Their

topic model is based on LDA and Dirichlet Multinomial Regression. In their work, they use

the GPS trajectory datasets. Besides, their work aims to discover the regional topics, which

is different from ours.

Cranshaw and Yano employ LDA to distill the proto-neighborhoods from Foursquare

data set in [37]. In their work, the word is the category of the venue and the document is

the check-ins in a region. Regions are small grids that divide space according to the latitude

and longitude space. Thus, each region can be described by the topics, which can help to

understand the neighborhood.

Chang and Sun analyze users’ check-ins in general in Facebook Places in [38] and LDA

is also used in their work to investigate the user membership in a low-dimensional represen-

tation of the places. Since their work is in general about the check-in analysis so the topic

model is only a small part and they only give three topics without analyzing the topics in

details as we do. Besides, they do not consider the differences in mobility patterns of users

in the weekdays and weekends.

In [39], Zheng et al. mine interesting locations and the classical trajectories based on

travelers’ GPS trajectories. Such information can be used to understand the correlation

between users and POIs, thus enabling POI recommendations to travelers. They first propose

to use the Hyperlink-Induced Topic Search (HITS) model to extract the location interests

[40]. However, their approach does not consider the social influences among the users, as they

use the GPS trajectories of individual users and it is very hard to track the social connections

among these users. Based on this work, Zheng et al. propose collaborative POI and activity

recommendation approaches with GPS data in [41]. By using the POI features and activity-

activity correlations in their proposed approach, they demonstrate improvements on both

POI and activity recommendations over the simple baseline. Nevertheless, they still do not

explore the social influences in their approach.

Joseph et al. also employ LDA to mine the LBSNs dataset to cluster users with latent
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topics in [42]. Their work employs the same mapping approach and LDA as our work in

Chapter 4 but we mine the different dataset compared with theirs1. Their work mine the

Foursquare dataset collected through Twitter and our dataset is collected from Foursquare

directly. Both of our work obtain the similar interesting results: they find interest factor

driven cluster–Sport Enthusiast cluster and we also find sports related topic; they find com-

munity driven clusters–Gay-bar cluster and we find the UPMC related topic; they find user

type factor driven cluster–a cluster seems to consist of Stanford students and we also fine the

clusters that consist of PITT and CMU students, respectively. Moreover, our work investi-

gates the latent geographic topics based on different temporal aspects (i.e., weekdays and

weekends), which characterizes the differences of human mobility patterns between weekdays

and weekends.

2.2.3 Trust in Online Social Networks and Location Recommendation in LBSNs

Sherchan et al. review trust models in social networks in [44]. In the survey, they present the

properties of trust and social capital. They roughly categorize the social trust computation

approaches as network-based trust models, interaction-based trust models and hybrid trust

models.

The network structure/graph-based trust models usually leverage the social network

structure to the level of trust in social networks [45, 46, 47, 48, 49]. In contrast to the

network structure/graph-based trust models, the interaction-based models only use inter-

actions within the network for trust computation [50, 51, 52, 53]. However, both social

network structure and interactions are very important and both of them should be consid-

ered in social trust computation. Trifunovic et al. propose such a hybrid trust model for

opportunistic networks in [54]. The literature on hybrid social trust models is limited and

in this dissertation our proposed trust-based recommendation approach is a hybrid trust

model.

Ye et al.’s work does an initial analysis about Foursquare in [55]. But the dataset

in this work is global, not the local one as in our proposal. They propose a friend-based

1Both of their work and our publication [43] about using the LDA to mine the human mobility-driven
geographic topics are published in LBSN 2012.
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collaborative filtering (FCF) approach and Geo-Measured FCF for location recommendation.

Another work from them also study the physical distance’s influence on the users’ check-ins.

But their main work is also the POI recommendation on global dataset [56] .

Berjani and Strufe propose a personalized regularized matrix factorization based rec-

ommendation for POIs in LBSNs [10]. They argue that the main challenge of POI rec-

ommendation in LBSNs is the lack of straightforward rating of POIs and propose a user

preference approach based on check-in counts to address this issue. They evaluate their

proposed scheme on Gowalla dataset and the results confirm the feasibility of making POI

recommendations by using CF-based techniques.

Leung et al. propose a collaborative location recommendation (CLR) framework based

on GPS data in [57]. They classify users into three categories: Pattern users, Normal users

and Travelers by the entropies of the locations that they have visited. They also employ the

Community-based Agglomerative-Divisive Clustering (CADC) algorithm to cluster users,

locations and activities. Based on the clusters, the CLR can generate more precise and

refined recommendations.

Zheng et al. propose to recommend friends and locations based on the location history

in [58].Their recommendation is based on calculating the similarity of the users’ location

histories and their work is based on the GPS dataset, which does not contain the social graph.

In [59], Bao et al. study the user preferences and social opinion in location recommendation.

They use the tips information on Foursquare to model the user preferences in their work.

However, their work still does not consider the social relationships among the users.

In [60], Ying et al. propose an Urban POI-Mine (UPOI-Mine) approach to recommend

POIs by considering users’ preferences and location features simultaneously. They consider

the social factors, personal preferences based on the category context, highlight context and

the popularity of the POIs in making recommendations.

Scellato et al. study the socio-spatial features in LBSNs and they investigate the place

features in link prediction in LBSNs in [61, 62]. Noulas et al.. extract and study the LBSNs

users’ mobility features for predicting next check-ins in [63]. They propose several features to

capture the factors which may drive users’ future check-ins. Then, they propose a random-

walk based new POI recommendations in LBSNs in [11]. They explore the frequency of visits
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to new POIs by LBSN users and study the assumptions of using web-filtering algorithms in

human mobility predictions in the proposal. Based on the analysis of the LBSN dataset, they

show that state-of-the-art filtering algorithms do not produce high quality recommendations

and propose personalized random walk based recommendations. Their experiments show a

5%-18% improvement using the proposed random-walk recommendation on Gowalla dataset.
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3.0 VENUE POPULARITY ANALYSIS

In this chapter, we study the venue popularity and the features that could impact the

venue popularity in Foursquare. Our quantitative analysis results could be used to help

business owners to improve their business strategies. We use an empirical approach to

analyze the popular venues of our dataset and we also investigate category information of

the venues to see what kind of venues are popular in LBSNs, since Foursquare defines a

hierarchical structure of the venue category. Moreover, we study the local hot spots that

indicate people’s preferences of geographic locations and we explore if the Foursquare features

such as special offers and web presence would help venues become more popular in general.

Then we focus on trending venues (i.e., the popular venues at a certain period) to investigate

the influence of these features on venue popularity at different times. In this chapter, we

present a comprehensive analysis of the venue popularity, in order to understand the entire

online population’s preferences of the venues.

The rest of this chapter is organized as follows. In Section 3.1, we introduce our data

collection strategy and the summary of the dataset used in this chapter. In Section 3.2, we

present our analysis of the overall venue popularity in details. In Section 3.3, we focus on

trending venues and investigate their spatial and temporal properties. We also study the

Foursquare features on promoting the temporal venue popularity and the hotness status of

the trending venues. In Section 3.4 we discuss some interesting findings and in Section 3.5

we summarize this chapter.
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3.1 DATA COLLECTION STRATEGY & SUMMARY

The data was collected in a square region that centered at Pittsburgh downtown and with

length of a side of around 40 miles. We first used Foursquare APIs [64] to discover as many

venues as possible in this region. In total we got 70,390 venues belonging to 9 top categories

and 271 second-level categories as defined by Foursquare. In this dissertation we collect

several different datasets for serving our goals by monitoring check-ins at these venues. We

briefly summarize our data collection strategy here and we will overview the datasets in each

corresponding chapters in detail.

• Venue Status Dataset and Trending Venue dataset : we collect the venue status infor-

mation daily and collect trending venues hourly. They are used for venue popularity

analysis in Chapter 3.

• User Check-in Dataset : we collect user check-ins by monitoring check-ins at venues

hourly and this dataset is used in mining latent topics in Chapter 4.

• User Check-in and User Friendship Dataset : Besides the user check-in information, we

also collect the user friendship information in LBSNs and we use both of them in Chap-

ter 5.

In this chapter, we collected the following venue status information in the period between

Feb. 23 and Apr. 24, 2012:

• Cumulative number of Check-ins in a venue: It represents the total number of check-ins

ever made at this venue till a specific date (i.e., data collection date).

• Cumulative number of Users in a venue: It represents the total number of users who

have ever checked in at this venue till a specific date (i.e., data collection date).

• Specials of a venue: When the venue has specials within a period, we collect the infor-

mation of these specials. Not every venue has such features.

• Menu, URL, Twitter ID of a venue: When the venue has any of these resources, we

collect the corresponding information. Not every venue has such features.

We are also interested in the trending venues in greater Pittsburgh area. In order to

collect such information we set Pittsburgh downtown as the center and define a circle with
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radius of 25 miles1. We then gathered the trending venues per hour in this circle. For a

trending venue at a certain time, we obtained the number of users who were currently at the

venue.

The summary of our dataset corresponding to the two strategies used in this chapter is

shown in Table 3.1. In essence, there are 66,993 venues with at least one check-in since they

were created and the other 3,397 venues have no users checked in after they were created. We

also get 10,087 records for the trending venues and these records are from only 603 distinct

venues. Please note that, in this dissertation, when we mention venues in Foursquare we

mean venues in Pittsburgh area in Foursquare, unless mentioned otherwise.

Table 3.1: Summary of our Foursquare dataset used in Chapter 3

Number of venues 70,390

Number of venues with at least one check-in 66,993

Number of trending venue records 10,087

Number of distinct trending venues 603

Number of specials records 6,501

Number of venues with specials 187

Number of venues with URL 2,779

Number of venues with Twitter ID 2,831

Number of venues with menu 1,217

3.2 OVERALL POPULARITY ANALYSIS

We are interested in the venue popularity based on the number of check-ins and the number

of visitors of a venue, as well as the category popularity. Towards this, we analyze the overall

popularity of different venues and different categories by examining the cumulative number

of check-ins and cumulative number of users in this section. Then we make a initial study

1We remove the trending venues that is not in the 70,390 venues.
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Figure 3.1: (a) CDF of CC and CU ; (b) CDF of UCF

about the Foursquare features such as special, web presence and menu to see their impacts

on improving the popularity of venues.

3.2.1 Overall Venue Popularity

It is natural to relate the number of check-ins or the number of visitors at a venue with the

popularity of a venue. Thus, we use the following measurements to investigate the popularity

of a venue:

a) cumulative number of check-ins at venue i (CCi)

b) cumulative number of unique users of venue i (CU i)

c) user check-in frequency of a venue i (UCF i)

20



We can get CCi and CU i from the venue information in our dataset and we calculate UCF i

as:

UCF i =
CCi

CU i

(3.1)

We plot the empirical cumulative distribution function (CDF) of these three measures2

in Figure 3.1 and we also list the basic statistical features of CC, CU and UCF in Table 3.2.

Since the maximum cumulative number of check-ins and maximum cumulative number of

users at a venue are large, e.g., 82,590 and 27,944, respectively, we use log scale in x axis.

In Figure 3.1, we can see that the CC of about 85% of the venues is no more than 100

and the CU of about 96% of the venues is no more than 100. Moreover, about 18% of the

venues have only one check-in and about 37% of the venues have only one user who checked

in there. From Table 3.2, we can see that the CC of 50% of the venues is no more than 10

and the CU of 50% of the venues is no more than 2, which indicates that the CC and CU in

Foursquare follows the long tail behavior [65]. We are using the cumulative data to analyze

the venue popularity as we aim to investigate the overall venue popularity but not limited to

the venue popularity during a certain time period. In [21], Noulas et al. analyze the check-ins

collected during their data collection period and the complementary cumulative distribution

function (CCDF) of the number of check-ins also exhibit heavy tail and power-law behavior.

We also study the check-ins for venues in Section 5.4 and show the CCDF of check-ins in

Figure 5.5; our results also show that a few venues obtain a large number of check-ins while a

larger number of venues have only few check-ins. Moreover, we will focus on trending venues

to investigate the venue popularity during a certain period time in Section 3.3.

Generally, the larger UCF indicates the more check-ins from a user on average. In

Table 3.2, the max UCF is 815, which is related to a resident address and there is only one

person checked in this venue 815 times. In Figure 3.1, the UCF of about 83% of the venues

is no more than 10, which means the average check-ins per user at these venues is at most

10. 50% venues have an average check-ins per person of less than 3.

The UCF also implies the users’ loyalty to a venue, especially for venues in Food, Shop

& Service and Nightlife Spots categories. Thus, UCF of such venues can not only help

the business owners to understand their customers, but also help customers to compare

2We remove the venues with zero users in calculating the UCF .
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Table 3.2: Statistics of the CC, CU and UCF

Min of CC 0

Max of CC 82,590

Mean of CC 94.70

Median of CC 10

Standard Deviation of CC 627.56

Min of CU 0

Max of CU 27,944

Mean of CU 26.87

Median of CU 2

Standard Deviation of CU 218.19

Min of UCF 1

Max of UCF 815

Mean of UCF 8.68

Median of UCF 2.5

Standard Deviation of UCF 21.99
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Table 3.3: Top 10 popular venues based on cumulative number of check-ins and cumulative

number of users

AC AU

1 Pittsburgh International Airport Pittsburgh International Airport

2 CONSOL Energy Center PNC Park

3 PNC Park CONSOL Energy Center

4 Ross Park Mall Heinz Field

5 Rivers Casino Rivers Casino

6 Heinz Field Ross Park Mall

7 Robinson Mall Hofbräuhaus Pittsburgh

8 Giant Eagle Market District Robinson Mall

9 Lowes Theatre IKEA

10 Cathedral of Learning Lowes Theatre

similar merchants which offer similar types of services. For example, if we define UCF as

the customer loyalty then the average customer loyalty in Food category in Foursquare is

about 3 and the customer loyalty of Tom’s bakery house is 5. Based on this, Tom can see

that there are many returning customers in his venue and he should offer specials to these

returning customers as rewards for their loyalty. Meanwhile, if a customer wants to find

a good nearby bakery house, he can compare the total number of customers and the user

check-in frequency of the venue with that of the corresponding average values. If both of

the parameters of Tom’s bakery house are higher than that of the similar other venues, then

it indicates that Tom’s bakery house is better than the average. However, the assumption

here is that all check-ins are honest.

Since the most popular venues attract most of the users, we list the name of the top 10

popular venues with the largest CC and CU in Table 3.3. The top 10 popular venues with

the largest UCF are all Residence venues, but we do not list them because of the privacy

concerns.
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Figure 3.2: Venue distribution in 9 top categories

3.2.2 Overall Category Popularity

In our dataset, there are more than 70 thousand venues, and most of the venues are associated

with one or more than one categories (this is because Foursquare defines a hierarchical

structure of categories). Thus, we are also interested in what categories people usually check

in at. In the Foursquare defined hierarchical category structure, there are 9 top categories

and we plot the venue distribution in these 9 top categories in Figure 3.2, in order to present

an overview of the venues and categories of our dataset. We can see that Residence has the

largest number of venues followed by Professional & Others and Shop & Service.

Based on the measures of the venue popularity, the overall popularity of the category C

can be measured by the sum of the cumulative number of check-ins of all the venues in the

category (SCC) and the sum of the cumulative number of users (SUC) of all the venues in

the category:

SCc =

NC∑
i

CCi (3.2)
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Figure 3.3: Distribution of SC and SU in 9 top categories

SU c =

NC∑
i

CU i (3.3)

Here NC is the total number of the venues in category C. We plot the SC and SU in Fig-

ure 3.3. We find that the distribution of SC and SU are different from the venue distribution

shown in Figure 3.2. From Figure 3.3, we can see that the Shop & Service category has the

largest number of user check-ins, and the Food category has the second largest number of

user check-ins. Although the number of venues in Residence category is the largest, the

number of check-ins in this category is just the third largest. Also, Table 5.2 based on our

user check-in dataset also shows that the most popular categories are Food, Shop & Service,

Professional & Other Places and Residence categories.

We also observe that the distribution of the SCC is different from that of SUC as shown

in Figure 3.3. It can be seen that the Food category has the most number of users checked

in followed by that of the Shop & Service category. An interesting observation here is that

the Residence category has the least number of users checked in, although it has the largest

number of venues. A possible reason is that Residence venues are usually private places,

thus people other than the owner of the venues just do not check in at these venues.
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Figure 3.4: Distribution of UCF in 9 top categories

We define the average user check-in frequency of category C as:

UCFC =

∑NC

i UCF i

NC

(3.4)

The distribution of UCFC is shown in Figure 3.4. The Residence category has the largest

average user check-in frequency followed by that of the College & University and Professional

& Others category. Zang et. al ’s work also shows that home and work are the top 2

locations of mobile users [66]. Since we use the cumulative data, our results imply the higher

probability of check-ins in the venues that users usually stay at.

3.2.3 Relation between Foursquare Features and Overall Venue Popularity

In Section 3.2.1 and Section 3.2.2 we quantitatively analyze the venue popularity and cat-

egory popularity. We are also interested in studying if there is a strong relation between

Foursquare features’ (e.g., specials, web presence and menu) and the venue popularity. Thus,

in this subsection we discuss three such features and investigate if they could help promote

overall venue popularity. The following four measures are used in this subsection:
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• Check-ins during a time period (CP ) with the first day m and the last day n: CP =

CCn − CCm−1

• Number of New Users during a time period (NUP ) with the first day m and the last

day n: NUP = CUn − CUm−1

• Average Daily Check-ins during the time period (DC) with the first day m and the last

day n: DC = CP
n−m+1

• Average Daily New Users during the time period (DNU) with the first day m and the

last day n: DNU = NUP
n−m+1

3.2.3.1 Specials During our data collection period, we obtain 6,501 specials records in

total. However, there are only 187 distinct venues in these records, thus the average special

period per venue is about 35 days (6501
187
≈ 35). Specials are not always continuous. The

venue owner can post specials for just one week or he can post such specials for one month,

and they can choose when to post the specials. We use the average daily check-ins (DC)

and the average daily new users (DNU) and compare them to see if there is any difference

between the venue’s promotion periods and the periods without promotions. If the DC and

DNU during the promotion periods are more than that in periods without promotions, it

indicates that the specials may help the venue in attracting more customers.

We show our methodology as follows. We first pick all the venues which have specials

from Mar. 19 to Mar. 25, 2012 in our dataset3. Then, we choose the venues which have no

specials lasting for one week from the previously picked venues and finally we get 23 venues

in total, as we would like to compare these venues in the same time period. Figure 3.5

shows the DC of the 23 venues and Figure 3.6 shows the DNU of 23 venues. In Figure 3.5,

we see that some venues have significant increase in average daily check-ins with specials.

The max difference between average daily check-ins with specials and that of one without

specials is 4.16 at venue seven. In some other venues, the specials do not seem to attract

more check-ins. In Figure 3.6, we can also see that some venues have increase in average

daily new users with specials, however the increase is not as obvious as that of the average

daily check-ins. In some other venues, the specials do not seem to attract more new users.

3We randomly pick this period as an example.
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Figure 3.5: Average daily check-ins
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Figure 3.6: Average daily users
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Table 3.4: Summary of the CP and NUP related to web presence

URL Twitter ID both All

Venues 2,779 2,831 1,591 70,390

Sum of the CP 205,557 207,312 142,206 1,432,059

Sum of the NUP 69,284 64,487 45,634 383,641

We can also see that some venues gain more in terms of both the check-ins and new

customers when they offer specials. For example, Bocktown Beer and Grill (venue seven)

gets both the maximum check-ins and maximum number of new customers. In Bocktown

Beer and Grill, the type of the specials provided is frequency and the special message is

“Have you gotten ‘FRIED’ lately? Add an extra topping to an order of our fresh-cut fries

today on us!”. Since users do not check in frequently, specials may be one positive factor for

improving the popularity of a venue in Foursquare.

3.2.3.2 Web Presence In this part, we investigate the CP and the NUP related with

the venue which has an URL or Twitter ID or both during our data collection period, which

is summarized in Table 3.4. We plot the CDF of the CP and the CDF of the NUP of the

venues with URL, Twitter ID, both URL and Twitter ID and all venues in Figure 3.7 and

Figure 3.8.

From Figure 3.7, we can see that the CP of over 52% of the venues with Twitter ID is

more than 10 and the CP of over 60% of the venues with URL or both features is more than

10 in our data collection period. However, the CP of only about 19% of the total venues is

more than 10. However, there is no such significant difference for the venues whose CP is

more than 1000. Figure 3.8 gives similar results about the NUP . NUP of over 32% of the

venues with Twitter ID is more than 10; NUP of over 40% of the venues with URL is more

than 10; NUP of more than 42% of the venues with both features is more than 10 in our

data collection period. However, NUP of only about 7% of the total venues is more than

10. Thus, there seems a correlation between the venues with good web presence and the
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Table 3.5: Summary of the CP and NUP related to menu

Food Nightlife Spot

Venues with menu 1,150 67

All venues 5,921 3,802

Sum of the CP in venues with menu 73,739 29,841

Sum of the NUP in venues with menu 11,636 5,087

Sum of the CP in all venues 101,793 33,164

Sum of the NUP in all venues 212,759 88,237

venue attracting more users. Moreover, There is still no such significant difference between

the cases with features and without features for a venue whose NUP is more than 1000.

3.2.3.3 Menu We explore the CP and NUP of venues which have menus in Food and

Nightlife Spot categories. Table 3.5 summarizes the information related to the web menu of

the venue. We also plot the CDF of the CP and the CDF of the NUP of the venues with

menu and all the venues in Food category and Nightlife Spot category in Figure 3.9 and

Figure 3.10.

In Figure 3.9, the CP of about more than 67% of the venues with menu in Food category

is more than 10 and the CP of more than 83% of the venues with menu in Nightlife Spot

category is more than 10 within our data collection period. However, the CP of only about

37% of the total venues in Food category is more than 10 and the CP of only about 22%

of the total venues in Nightlife Spot category is more than 10. However, there is no such

significant difference for the venues which have more than 1000 check-ins. In Figure 3.10,

the NUP of about more than 52% of the venues with menu in Food category is more than

10 and the NUP of more than 75% of the venues with menu in Nightlife Spot category is

more than 10 within our data collection period. However, the NUP of only about 24% of

the total venues in Food category is more than 10 and the NUP of only about 9% of the

total venues in Nightlife Spot category is more than 10. Thus, there seems a correlation

31



10
0

10
1

10
2

10
3

10
4

10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

 

 

Check−ins

Food−Menu
Nightlfe−Menu
Food−All
Nightlife−All

Figure 3.9: CDF of the CP of the venues with menu and all the venues in Food and Nightlife

Spot categories

10
0

10
1

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Users

C
D

F

 

 

Food−Menu
Nightlfe−Menu
Food−All
Nightlife−All

Figure 3.10: CDF of NUP of the venues with menu and all venues in Food and Nightlife

Spot categories

32



between the venues with menu and the venue attracting more users. Moreover, there is still

no such significant difference for the venues which have more than 600 new users.

3.3 POPULARITY AT DIFFERENT TIMES

In Section 3.2 we investigate the overall venue popularity, besides that we are also very

interested in the venue popularity during a certain time. In this section, we focus on trending

venues, e.g., popular venues during a certain time. We first investigate the trending venues

based on the spatial and temporal aspects, and then study the influence of the specials on

venue popularity over time. After that, we choose the venues in Food and Nightlife Spot as

examples to examine if the attributes such as the URL, Twitter ID and menu are helpful in

making trending venues. Finally, we explore if the trending venues remain popular over a

certain period of time.

3.3.1 Spatial and Temporal Analysis of Trending Venues

We show the physical geographic locations of the trending venues in our dataset in Fig-

ure 3.11. It is obvious that most of the trending venues are around Pittsburgh Downtown

area. There are also many trending venues along the main highways or the intersections of

the freeways.

We plot the distribution of the number of trending venues for each day on a weekly basis

in Figure 3.12. The number of trending venues on Saturdays is always the largest. This is

possibly because a lot of people may hang out on Saturdays. We can see that the largest

number of trending venues occurred on Mar. 17, which was St. Partrick’s Day, indicating

that more people would likely hang out during holidays. The number of trending venues on

Mondays is almost the fewest. There are no significant differences among the numbers of

the trending venues on other days. We also summarize the trending venues every hour in

Figure 3.13. We can see two peaks in Figure 3.13. One is at 2pm and the other is at 9pm.

We can also see that the top four hours with the largest number of trending venues are 9pm,
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Figure 3.11: Trending venues in Pittsburgh area

Feb 24 Mar 5 Mar 15 Mar 25 Apr 4 Apr 14 Apr 24
20

40

60

80

100

120

140

160

N
u
m

b
e
r 

o
f 
T

re
n
d
in

g
 V

e
n
u
e
s

 

 

Wednesday

Thursday

Friday

Saturday

Sunday

Monday

Tuesday

Figure 3.12: Trending venues VS time (day)
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Figure 3.13: Trending venues VS time (hour)

8pm, 10pm and 7pm.

We also count the number of distinct trending venues and the number of their appear-

ances in each category and list them in Figure 3.6. The Food category has the largest

number of distinct trending venues and Nightlife Spot category venues appear as trending

venues most frequently within the data collection period. None of the Residence category

venues appear as a trending venue.

Figure 3.14 plots the CDF of the trending venues’ frequency of occurrence. It shows that

26% of the trending venues appear only once. About 50% of the trending venues appear

no more than three times. However, about 25% of the trending venues appear at least ten

times. These trending venues are very popular and they appear on the trending venue list

frequently. For example, Pittsburgh International Airport (PIT) appears as a trending venue

almost every hour within our data collection period.
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Table 3.6: Statistics of trending venues on categories

Category Venues Records

Arts & Entertainment 57 1,845

College & University 57 1,243

Food 183 1,135

Great Outdoors 17 94

Nightlife Spot 149 2,103

Professional & Other Places 69 823

Shop & Service 59 1,537

Travel & Transport 12 1,307
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Figure 3.14: CDF of the trending venue appearance
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Table 3.7: Summary of the venues with URL, Twitter ID and Menu

Venues Trending Venues

URL 12.22% 45.18%

Twitter ID 6.65% 33.13%

Menu 12.52% 36.75%

3.3.2 Relation between Foursquare Features and Temporal Venue Popularity

In Section 3.2.3 we explore the relation between Foursquare features such as specials, web

presence and menu and the overall venue popularity. In this subsection, we would like to

study the relationship between features and trending venues.

3.3.2.1 Specials In this subsection, we investigate specials. For our data collection

period, we get 6,501 specials records in our dataset and there are only 406 trending venue

records with such specials (6.25%). However, given that there are only 603 trending venues

out of more than 70 thousand venues (<1%), it indicates that there is a correlation between

specials and the venues becoming trending venues.

3.3.2.2 Web Presence and Menu We choose the venues in Food category and Nightlife

Spot category to investigate the impacts of web presence and menu in making trending

venues, because these two categories have the most number of trending venues in our dataset.

From these two categories in our dataset, we have 9,723 venues and 332 trending venues.

Table 3.7 summarizes the venues and trending venues with Twitter ID, URL and Menu in

these two categories. In Food and Nightlife Spot categories, 12.22% of all the venues post

URLs and 45.18% of all the trending venues post URLs; 6.65% of all the venues have Twitter

IDs and 33.13% of all the trending venues have Twitter IDs; 12.51% of all the venues post

Menus and 36.75% of the trending venues have Menus. The higher ratios of trending venues

with menu indicate possible influence of the menu feature in promoting a venue to be a
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Figure 3.15: Hotness Status Remaning Rates of Trending Venues

trending venue.

3.3.3 Hotness Status

The previous analysis (Figure 3.13) shows that two trending venue peaks at 2pm and 9pm,

therefore we choose two two-hour periods (i.e. noon–2pm and 7pm–9pm) from Feb. 23 to

Apr. 23 to examine if the trending venues will keep their hotness status in the next two

hours. We chose the trending venues at noon and 7pm as the reference venues and we

examined how many of these venues are still trending venues in the next two hours. We

define the hotness status remaining rate (HSRR) between time k and time t (t > k) as:

HSRRk,t =
||Tt

⋂
Tt−1

⋂
...
⋂
Tk||

||Tk||
(3.5)

Here a
⋂
b stands for the intersection set of a and b. Tt is the trending venues at time t

and ||a|| denotes the number of elements in a. We plot the HSRR in Figure 3.15. Generally,

the trending venues can keep their hotness status with high probability. For instance, the
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average rate is 64.04% at 1PM and 68.10% at 8PM. After another hour, the average rate is

46.41% at 2PM and 45.46% at 9PM. That is, on average there are more than 60% of trending

venues which are able to keep their hotness status each subsequent hour and more than 45%

of trending venues remain trending venues after two hours. Moreover, eight trending venues

remained as trending venues in the next hour. Therefore, trending venues are able to keep

their hotness status during rush hours with high probability.

3.4 DISCUSSION

During the data analysis presented in Section 3.2 and Section 3.3, we observed some inter-

esting findings, which we discuss below.

The Always Popular Venue. We find only one venue which is almost always a trending

venue in our dataset–PIT. PIT is also the venue with the largest number of cumulative

check-ins and cumulative users in our dataset. In Cheng et. al ’s work [28], airports are also

the most popular venues. We also briefly examined the hometown information of the users

checked in at PIT during our crawling period and we found that most users are not from

Pittsburgh.

Correlation Between Features And Popular Venues. We investigate the Foursquare fea-

tures such as specials, web presence and menu to see if there is a correlation between these

features and overall and temporal popularity of venues (i.e., trending venues). We do not

find strong correlation between specials and attracting more check-ins or users. But there

seems a correlation between web presence and menu and venue popularity. When focusing

on trending venues, there seems a correlation between all the features and making a venue

a trending venue.

Hotness Status of Trending Venues. Our analysis about the hotness status of trending

venues shows that trending venues are able to keep their hotness status during a certain

time.
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3.5 SUMMARY

In this chapter, we have done a comprehensive analysis of the venue popularity about venues

in greater Pittsburgh area. We investigate the overall venue popularity, overall category

popularity and the trending venue popularity. We also explore the relationship between

various features available in Foursquare and venue popularity. Also we study the category

popularity based on the predefined category structure. The overall venue popularity analysis

are based on the cumulative number of check-ins and the cumulative number of visitors in

a specific venue in this chapter. By analyzing venue popularity based on the cumulative

dataset in greater Pittsburgh area, we obtain a general view of users’ activities regarding

local venues on LBSNs. To the best of our knowledge, we are the first to use the cumulative

data to investigate the venue popularity on LBSNs. Besides, we study the venue popularity

based on the trending venues, which are not cumulative data and collected during a certain

time period. Moreover, we briefly look into the spatial features of the trending venues.

Therefore, our venue popularity analysis is conducted based on both the cumulative data and

the data collected within a certain time period, which demonstrates a more comprehensive

overview about the venue popularity. This chapter enables us to understand the users’

general preferences of the venues. In the next chapter, we present our study focused on the

unobserved group of users’ preferences on the venues.
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4.0 EXPLORING LATENT GEOGRAPHIC TOPICS

In the previous chapter, we investigated the venue popularity from the entire online pop-

ulation’s viewpoint. The overall venue popularity indicates venue reputation based on the

entire online populations’ preferences. However, sometimes users are more interested in the

venues which are popular among similar users (i.e., users with similar tastes and preferences

on locations). For example, a freshman may like to know the popular cafes/restaurants

among the university students, or a user may be more interested in knowing which restau-

rants people usually go to after shopping at a mall/watching hockey game. Therefore, it is

important to understand the venue popularity based on the certain groups/a certain group

of users’ preferences on locations.

In this chapter, we would like to study the human preferences of locations based on the

movements of unobserved groups of users. That is, we mine the users’ check-in records and

cluster the venues based on the strong coherence among venues based on by the users’ check-

ins. The key premise is that the venues that appear together in many users’ trajectories will

probably be taken as a geographic topic. The venues in the same user mobility-driven geo-

graphic topic are potentially and intrinsically related by the human mobility. For example,

the university students’ check-ins may cause a cluster consisting of campus buildings and so

on. In this dissertation we call the clusters of venues mined from the users’ check-in records

as latent geographic topics and we propose a topic-model based approach for venue clustering

based on users’ historical record of check-ins. Topic models are very common and useful in

text mining and in this chapter we present how to mine the latent geographic topics based

on the topic model. These mined geographic topics can be used to:

• Understand a certain group of users’ preferences of venues : The topics are formed based
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on users’ check-in histories. Thus, the venues in the same geographic topic are the

venues that co-exist in check-in histories of a certain number of users. That is, such a

topic indicates the preferences of such an unobserved group of users.

• Recommend venues : For example, a freshman may be very interested in the most popular

cafes among the university students. If there is a geographic topic which includes many

University Buildings as well as some restaurants, the cafes in this topic are good venues

to be recommended to the freshman.

• Recommend friends : since the geographic topics indicate the preferences of the unob-

served groups of users, they can also be used in friend recommendation. This is because

the users with similar trajectories have higher probability of being friends.

The rest of this chapter is organized as follows. In Section 4.1 we present the summary

of the dataset used in this chapter. In Section 4.2 we first introduce the original LDA model

in text mining area and the motivation of employing LDA to mining the latent geographic

topics of venues. Then we show how we employ LDA in our LBSN data set to obtain the

user mobility-driven geographic topics. In Section 4.3, we run the LDA model on our dataset

and explain the geographic topics we obtained by using the LDA model. We also investigate

the geographic topics based on different temporal aspects, i.e., on weekdays and weekends.

In Section 4.4, we focus on travelers and explore their geographic topics. In Section 4.5 we

discuss the applications which could use the result of latent geographic topics. In Section 4.6

we explore further of using SVD-based matrix factorization to study the check-in dataset.

Lastly, we summarize this chapter in Section 4.7.

4.1 CHECK-IN DATASET

In this chapter, we use the check-in data related to Pittsburgh area collected from Foursquare

to explore the user mobility-driven local geographic topics. This dataset is different from

the cumulative dataset used in Chapter 3, since we use check-ins in this chapter. The

Foursquare check-in dataset is collected from Feb 24 to May 23, 2012. We have removed the

venues with only one check-in because such single check-ins are not useful for topic mining
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Check-ins Venues Users

All 813,221 16,461 32,113

Weekdays 574,372 16,222 26,224

Weekends 238,849 13,780 22,868

Table 4.1: Summary of the check-in dataset

and may introduce noise in the LDA model that we use. Our dataset used in this chapter is

summarized in Table 4.1.

Foursquare defines a hierarchical structure of categories and there are 9 top categories.

However, in our data set, there are 45,125 check-ins at the venues that do not belong to any

category. Figure 4.1 shows the venue distribution of the other 768,096 check-ins in the top

9 categories. From Figure 4.1, we can see that the number of check-ins in Food and Shop &

Service categories are always the largest for weekdays, weekends as well as overall. However,

the check-ins in College & University and Professional & Others categories on weekdays are

far more than those at weekends. This is not difficult to understand as users usually do not

work or study at weekends. The category information can be used to help explain the local

geographic topics as described in Section 4.3 and Section 4.4.

4.2 GEOGRAPHIC TOPIC MODELING

In this section, we first introduce the LDA model, which is typically used in text mining

area to find the latent topics of texts. Then we show our motivation and how to adopt this

model in LBSN area to discover the latent geographic topics.
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Figure 4.1: Check-ins distribution in top 9 categories

4.2.1 LDA Model

Blei et al. present a probabilistic graphical model–Latent Dirichlet Allocation (LDA) in

[1]. LDA is usually used to cluster documents based on the topics contained in a corpus

of documents. Generally, LDA is able to generate topics of words based on the document

inputs and the documents can be described by the generated topics. Thus, before reading

a document, we can have a brief idea of the document since we know what the topics are

about based on the words of the topics. In Figure 4.2 we briefly show the graphical model of

LDA. α and η are parameters of the Dirichlet prior on the per-document topic distributions

and per-topic word distributions, respectively. θi is the topic distribution for document

i. βk is the word distribution for topic k. wij is the jth word in document i and zij is

the topic for wij. In LDA, a word w is the basic unit of data, and there are in total M

documents. Each document can be viewed as a mixture of topics z and each topic is consists

of words associated to the probability p(w|z). For each document, the probability of a word
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η β
k

α θ z w

M

N

Figure 4.2: Graphical model representation of LDA [1]. The boxes are “plates” representing

replicates. The plate M represents documents, while the plate N represents the total words

in all documents and k is the number of topics

wij is given by p(wij) =
k∑

t=1

p(wij|zit)p(zit), here k is number of topics which can be defined

manually. LDA assumes p(wij|zit) and p(zit) have multinomial distributions. Once the model

is trained, the topics best describing the documents can be extracted (based on p(d|z)) and

we can present each topic by listing the top words (ranked by p(w|z)).

4.2.2 User Mobility-Driven Geographic Topic Modeling

Our motivation of employing LDA to mine the latent geographic topics in LBSNs mainly

comes from two aspects. On one hand, comparing to Latent Semantic Indexing (LSI ) [67]

which is based on Singular Value Decomposition (SVD), LDA could also be viewed as a

dimensionality reduction technique, but it demonstrates proper underlying generative prob-

abilistic semantics that make sense for the type of data that it models [1]. Moreover, LDA

also aims to achieve an illustrative way in which probabilistic models can be scaled up to

provide useful inferential machinery in domains involving multiple levels of structure, and it

advanced LSI as it can be embedded in a more complex model [1]. On the other hand, before

our work, LDA is successfully applied to location related areas in [31, 32, 33, 36, 37, 38].

Ferrari and Mamei present two reasons for choosing the LDA in analyzing users’ mobility

patterns and routine behaviors in [32]. One is that it is an unsupervised pattern discovering
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technique so it does not require labeled data and the other is that the topic results represent

meaningful probabilistic distributions over words and documents [32]. Thus, it is possible to

adopt the LDA model to identify the geographic topics in our LBSN dataset. However, our

work in this chapter is different with theirs. In [31, 32, 33], the focus is on discovering the

time-based topics of locations and in [36, 37] the work aims to explore the regional topics. In

[38], the study concentrates on analyzing the check-ins and topic model is only a small part

of it. In this chapter, we mine the latent geographic topics of venues based on users’ check-

ins, analyze the topics mined from two different temporal aspects (weekdays and weekends).

Besides, we also explore the topics formed by travelers’ check-ins.

Next, we explain how we adopt LDA in our LBSN dataset. The basic unit is word in

the LDA and, in this dissertation, the venue in a single check-in record represents a word. A

user’s check-in record consisting of all the venues of his check-ins (check-in history) represents

a document, which is a set of words. In this chapter, we focus on the local geographic topics;

so M users’ check-in histories within a specific city make up the corpus used in the model.

Each user’s check-in record can be described as a mixture of the geographic topics that are

essentially distributions over the geo-locations/venues. A word w which is the basic unit of

data represents a venue in a check-in. A set of N words defines the check-in record of the user

(i.e., a document). Since there are M users in the dataset, there are M documents. Each

user’s check-in record can be viewed as a mixture of latent geographic topics z and these

topics are distributions over words. k is the number of latent topics. Therefore, the LDA

model can be applied to LBSN dataset by using the aforementioned mapping mechanism

and an advantage of using LDA is that we do not need to predefine the topics and only need

to set the number of the topics.

4.3 EXPERIMENT

In this section, we first describe how we process the dataset to make it suitable for the

LDA model and then run the model to get the geographic topics. After that, we present

several geographic topics resulting from the experiments. In particular, we first investigate

46



the overall local geographic topics in our dataset. Since the users’ check-in patterns differ

from weekdays to weekends [68, 31], we also explore the geographic topics on weekdays and

at weekends, respectively. We use the MATLAB Topic Modeling Toolbox to run all our

experiments [69].

4.3.1 Data Preparation

In each check-in record, we have the user who created the check-in and the venue where

the check-in was created. Moreover, we can get the creation timestamp of the check-in.

We conduct three experiments in this section. In the first experiment, we do not consider

the creation timestamps of the check-ins. In the second and third experiments, we divide

our data set into two subsets according to the creation timestamps of the check-ins, i.e.,

the weekday subset consists of the check-ins created on weekdays and the weekend subset

consists of the check-ins created at weekends.

In these three experiments, the basic units in the user mobility-driven geographic topic

model are the venues of the check-ins. A user’s check-in history record consists of the venues

from a user’s check-ins, e.g., (venuecheck−in1,...,venuecheck−inN). We set the number of topics

k = 30, α = 50/k and η = 0.01 in all experiments in this section.

4.3.2 Local Geographic Topics

We present the results of the first experiment in this subsection. We get a total of 30 local

geographic topics and use OTopics to denote the topics based on overall dataset in the first

experiment. In Table 4.2, we list 8 OTopics derived from the first experiment. In each

OTopic, we also list top 10 venues. In addition, we discuss the spatial features of these

topics.

4.3.2.1 Overall Local Geographic Topics In Section 4.1, we plot the distribution of

check-ins in top 9 categories. From Figure 4.1, we can see that the check-ins in Food category

and Shop & Service category are the largest. In the generated OTopics, we find that many

of them are related to these two categories. For instance, OTopic 7, 9, 19 and 28 are topics
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related to Food and Shopping categories because most of the top 10 venues in these four

topics are venues in Food and Shopping categories. It may indicate that users would likely

go to restaurants when they go to shopping. The different topics give an overview of clusters

of the shopping venues and restaurants people usually check in at together.

We can also see there are OTopics related to higher education. In OTopic 3, most of

the top 10 venues are associated with University of Pittsburgh. OTopic 5 represents the

similar case with venues associated with Carnegie Mellon University. Both the universities

are located at Oakland neighborhood in Pittsburgh. The food venues in these two topics

indicate places that students, faculties and university staffs likely visit frequently.

Some OTopics are related to sports. OTopic 4 is a case in point. CONSOL Energy

Center is the home stadium of the hockey team–the Pittsburgh Penguins and PNC Park

is the home stadium of the baseball team–the Pittsburgh Pirates. There is also another

very famous football team in Pittsburgh–the Pittsburgh Steelers, whose home stadium is

Heinz Field. However, it is not in OTopic4 because our data collection period does not

overlap with the football season. Thus, the absence of the football stadium confirms that

local geographic topics are generated based on the user mobility behaviors rather than the

category information.

There are also OTopics that are related to businesses such as OTopic 11, since there

are several professional buildings out of the top 10 venues in this topic. An interesting

observation in this topic is that there are two tunnels in this topic, which are located in the

major route of Pittsburgh (I–376). The existence of these two venues indicates that many

users commute between work and home through these two tunnels.

In summary, the advantages of the user mobility-driven local geographic topics include

the following:

• the topics generated depend only on the users’ check-ins but not on the physical locations

or the pre-defined categories.

• the topics provide a novel view of the location clustering based on the human mobility.

That is, the venues in a geographic topic imply that people usually go there together

with high probability.
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Figure 4.3: The spatial features of the topics

4.3.2.2 Spatial Features of the Topics The spatial features of the generated local

geographic topics especially that of the top venues in the topics, are another very interesting

issue. We investigate this issue in this subsection, i.e., whether the venues in each topic are

geographically close to each other or not? Whether there are any spatial relations among

the venues in the same topic?

In Figure 4.3, we show the spatial distribution of the top 10 venues in the eight OTopics

illustrated in Table 4.2. We can see that the venues in some OTopics are geographically close,

e.g., the top 10 venues in OTopic 5 which are associated with Carnegie Mellon University.

The venues in some other OTopics are not very close, e.g., the top 10 venues in OTopic 4.

The reason is probably that this is a sports related topic so people may drive to different

venues after the the game or drive from different venues before the game. Considering the

category information of the topics, venues in the topics related to education (e.g., OTopic 3

and OTopic 5) are usually geographically closer. Venues in topics related to businesses or

entertainment may not be close to each other. It is not out of our expectation as people
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usually commute between home and work (e.g., OTopic 11) and the stadiums are usually

not close to the fans’ home (e.g., OTopic 4). However, the case is different for the OTopics

related to shopping. Some people would like to go shopping and dining at venues that are

not far away. For example, OTopic 9 and OTopic 7; the top 10 venues in these two topics

are very close geographically. Some people would like to go shopping and dining at venues

that are not that close, e.g., OTopic 19; the top 10 venues in this topic are not close but

they are along the freeway.

Figure 4.3 essentially indicates that venues in user mobility-driven local geographic topics

are not always geographically close to each other. Our work in this section is a strong

complement to the recent work based on the topic model or clustering of the venues in LBSNs

presented in [68, 31]. Moreover, our work is useful for business planning. For example, if

there is a store or restaurant that is not close to the majority of top venues in a topic, the

owner of the store or restaurant may need to consider if a branch office should be opened in

the area with the majority of venues in the topic.

4.3.3 Local Geographic Topics on Weekdays vs. Those at Weekends

Users’ mobility patterns should be different at weekdays and on weekends. Generally, it is

expected that the users’ mobility pattern at weekdays should be routine (e.g., commuting

between work and home). At weekends, the users’ mobility pattern should be diverse (e.g.,

various entertainment activities and so on). Thus, in this subsection, we present the two

experimental results based on different check-ins on weekdays and at weekends and also

compare the differences of the geographic topics .

4.3.3.1 Local Geographic Topics on Weekdays We expect that there would be local

geographic topics related to universities, professional work and businesses on weekdays and

we use WDTopics to denote the topics on weekdays. The results confirm our expectation. We

list some topics in Table 4.3. WDTopic 25 relates to University of Pittsburgh and WDTopic

26 relates to Carnegie Mellon University. The top 10 venues in these two topics are almost

the same with those in OTopic 3 and OTopic 5 in Section 4.3.2.
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We can see there are several WDTopics related to professional work and business. For

instance, WDTopic 5 is related to medical work, as 8 out of 10 top venues in this topic

are hospitals. We consider two possible reasons for forming this topic. One possible reason

could be that patients usually go to these hospitals for different purposes. This is because

University of Pittsburgh Medical Center (UPMC) is the largest medical center in western

Pennsylvania area, so patients may have been referred to different specialists who work in

different hospitals belonging to the UPMC. The other reason could be that the doctors,

nurses and other medical staff work at different locations at different times. There is no

topic related to the medical work in the overall set of topics.

We also have a topic (WDTopic 17) with two tunnels–Fort Pitt Tunnel and Squirrel Hill

Tunnel that are also included in OTopic 11 in Section 4.3.2. However, the top 10 venues in

WDTopic 17 are a little different from those in OTopic 11. Rivers Casino and IKEA are in

WDTopic 17 but not in OTopic 11. The reason may be that there are many people who work

at Rivers Casino and IKEA and usually commute on the main route I–376 on weekdays.

The WDTopics related to sports are also a little different from the OTopic related to

sports. We can see that CONSOL Energy Center and PNC Park are in two topics (one

in WDTopic 1 and the other is in WDTopic 18). In both topics the hotel venues in the

top 10 venues may imply that hockey fans or baseball fans go to Pittsburgh for a game on

weekdays. We can see University of Pittsburgh School of Information Sciences and Oakland

(University of Pittsburgh and Carnegie Mellon University are both at Oakland) in WDTopic

1, which indicates that university students are interested in watching the early hockey game

on weekdays through getting student discounts [70].

WDTopic 7 shows that the airport on weekdays are related to businesses, as there are

many conferences or events at the convention centers such as Westin Convention Center,

David L. Lawrence Convention Center and Wyndham Grand Pittsburgh Downtown.

WDTopic 9 gives an example of the topics in weekdays related to shopping and food.

The venues in WDTopic 9 are almost the same as the venues in OTopic 9 in Section 4.3.2.

4.3.3.2 Local Geographic Topics at Weekends At weekends, we expect the topics

are more related to entertainment and shopping activities. Besides, there would be very few
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topics related to education, business and professional work. Our results indeed confirm our

expectation. There is no topic related to any university in the 30 topics, which indicates that

there are not as many users at weekends checking in at universities as those on weekdays in

Foursquare. There is no topic about professional work or business, either. Almost all the

topics are related to food, shopping and entertainment. We use WETopics to denote the

local geographic topics at weekends and Table 4.4 lists some examples.

WETopic 4 shows the geographic topic related to airport. We do not see any convention

centers in the top 10 venues in this topic, which may imply that users usually do not take

flight for business reasons at weekends. WETopic 16 is mainly related to arts and enter-

tainment, as the top 10 venues are associated with such categories. Many concerts, operas

and stage shows are held in Heinz Hall. Carnegie Science Center and Carnegie Museum of

Natural History are very famous museums in Pittsburgh. Petersen Center is the sport center

of University of Pittsburgh, which usually hosts a lot of university sport events. WETopic

10 is related to shopping and food. The top 10 venues in this topic are very similar with

those in OTopic 9 in Section 4.3.2. WETopic 25 is mainly related to food, which is different

from the OTopics related to food, in which food venues usually appear together with the

venues in shopping or the venues in entertainment.

4.3.3.3 Comparisons Between WDTopics and WETopics We compare all the local

geographic topics on weekdays and those at weekends and we observe the following:

• We do not find any topic related to education, business or professional work out of all 30

WETopics. The reason for this maybe that people usually do not go to school or work

at weekends and they rather would like to engage in social, family events and recreations

at weekends. Thus, the topics at weekends are related to entertainment and recreation

activities. We also observe that the number of topics related to shopping and various

entertainment is more at weekends than that on weekdays.

• There are topics related to only food category at weekends. However, there is no such

topics on weekdays. On weekdays, Food venues usually appear together with shopping,

entertainment or business venues in the local geographic topics.

• On weekdays, there are only a few art and science center venues that appear in the
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geographic topics, however, there are many such venues in several geographic topics at

weekends. One possible reason could be that these art and science centers are usually

closed after 5pm on weekdays, thus people may have no time to visit such centers after

the work (Figure 3.13 indicates the main check-in peaks are after 5pm). Another possible

reason could be that people would like to visit them on weekends as it usually takes long

time to visit such museums and art centers.

In summary, the differences of the human mobility behavior on weekdays and at weekends

determine the differences between the local geographic topics on weekdays and those at

weekends.

4.4 EXPLORE THE TRAVELERS’ GEOGRAPHIC TOPICS

Intrinsically, travelers’ activities in LBSN are distinctive, when compared with local users’

activities. For instance, travelers usually prefer to visit the famous venues or landmarks. On

the contrary, local users’ check-ins may be more routine compared to the travelers’ check-

ins. Therefore, a study of travelers’ activities in LBSNs is important to understand traveler

behavior and also can help LBSNs provider to improve their services, e.g., location recom-

mendation service to travelers/new visitors, which is especially crucial for a new visitor in a

city. Thus, in this section, we focus on studying the check-ins of travelers in a specific city.

In particular, we first empirically investigate the temporal and spatial features of travelers’

check-ins. Then we employ the LDA model to mine the latent geographic topics from trav-

elers’ check-ins created in the greater Pittsburgh area. We believe our work can better help

to understand the travelers’ requirements and then improve the location recommendations

to them by analyzing latent geographic topics by the travelers.

4.4.1 Data Preparation

In Foursquare, users can create profiles and add their names, photos, hometowns, etc., to the

profiles. We define a traveler as a user whose hometown is more than about 310 miles away
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Figure 4.4: Word cloud based on travelers’ check-ins

from downtown Pittsburgh. Moreover, we have removed the venues with very few check-ins

as such check-ins may introduce noise in the LDA model that we use. We keep monitoring

the check-ins until July, 2012 and we extract the travelers’ check-ins. We finally have 104,887

check-ins created on 8,016 venues. These check-ins were created by 8,746 travelers. We show

the word cloud based on the check-ins of this data set in Figure 4.41. The size of each word

is proportional to the probability of its appearances in the data set. It is obvious that the

PIT Airport2 is the most visited venue by travelers3. King and Pozdnoukhov also report

the airports are very popular venues in [71]. Moreover, traveling by air is one of the main

transportations so it is not surprising that PIT Airport is the most popular venue.

4.4.2 General Analysis

We plot the distribution of the venues and check-ins in the top 9 categories in Figure 4.5 and

Figure 4.6. Figure 4.5 shows that the top 3 categories based on the number of venues are

Food, Shop & Service and Professional & Other Places categories. With regards to travelers’

1The figure is generated with http://www.wordle.net/.
2The full name of PIT Airport is Pittsburgh International Airport (PIT). However, the name is too long

to show in the figure, so we use a short name instead.
3Pittsburgh International Arprt is the same venue as the PIT Airport, however, their venueID are differ-

ent, so we do not merge these two venues into one.
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Figure 4.5: Venue distribution in top 9 categories of travelers’ check-in dataset
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check-ins shown in Figure 4.6, venues in Food category still attract the largest number of

check-ins. However, check-ins created at venues in Travel & Transport category are more

than that in Shop & Service category. Since the Food category and Shop & Service category

have more venues than others, it is not surprising that these two categories attract huge

number of check-ins. But comparing these two categories, we find that travelers prefer to

check in at venues in Food category other than those in Shop & Service category, as these

two categories have almost the same number of venues but there are much more check-ins

in Food categories.

4.4.3 Analysis of Check-ins

From the 8,016 venues, we plot the CCDF of the total check-ins of each venue in Figure 4.7.

It is obvious that 50% of the venues have no more than 4 check-ins and less than 10% of the

venues have more than 12 check-ins. However, there are some very popular venues (about

3%) which attract more than 100 check-ins.
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We also study the temporal feature of the check-ins for each category. We plot the

distribution of the check-ins on weekdays in each category by hour in Figure 4.8 and plot

the distribution of the check-ins at weekends in each category by hour in Figure 4.9. From

these two figures, we can see that the check-in peak on weekdays is at 8pm but the peak at

weekends is 2pm. We can also find that travelers usually visit Art & Entertainment venues

at weekends. Moreover, we find the check-ins exhibit a general rising trend from 5am until

8pm on weekdays and then drop quickly after 8pm. However, travelers’ check-in trends

are different at weekends. The check-ins increase rapidly and peak at 2pm; after that, the

check-ins show a very slow decrease from 2pm to 8pm. These two different trends indicate

that travelers usually hang out during the afternoon at weekends but on weekdays travelers’

activities spread out through the day.

Moreover, we investigate the spatial-temporal evolution of the venues that users have

checked in at in Great Outdoor category, Art & Entertainment category, Food category and

Travel & Transportation category. We use a three-hour time slot as the basic temporal unit

to study the evolution of travelers’ check-ins. We show the result in Figure 4.10. We can see

that generally the Pittsburgh Downtown area (the center of the map) is always a hot area

and the check-ins gradually spread out from the Downtown area over time. Such a trend

is especially remarkable with regards to the venues in Food category and Great Outdoor

category.

4.4.4 Latent Geographic Topics

In this subsection, we mine the traveler dataset using the LDA model to investigate the

latent geographic topics of the travelers’ check-ins. We set the latent topic number k = 10,

the parameter of the Dirichlet prior on the per-document topic distributions α = 50/k and

the parameter of per-topic word distributions η = 0.01 in the experiment in this subsection.

We present some of the interesting topics that we mined through the LDA model as follows.

4.4.4.1 Topics related to Sports Pittsburgh is a well-known sports city. Therefore,

we can expect that a lot of sports fans would visit Pittsburgh for watching games. The
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Table 4.5: Topic related to hockey

Venue Category

Pittsburgh International Airport (PIT) Airport

CONSOL Energy Center Hockey Arena

Pittsburgh Marriott City Center Hotel

DoubleTree Hotel Hotel

Linzer Apts Apartment

Baggage Claim Airport

Home Depot Store

F’n Nottingham Uncategorized

Fox & Hound English Pub & Grille Bar

The Steel Mill Residence

geographic topics related to the sports confirm it. Table 4.5 lists the top 10 venues of a topic

related to hockey. The top 2 venues in this topic are Airport and the hockey arena. Besides,

there are two hotels in this topic, which implies the travelers may stay at these hotels. Thus,

we can conclude that watching games is one of the main goals of the travelers to Pittsburgh.

4.4.4.2 Topics related to Higher Education University of Pittsburgh and Carnegie

Mellon University (CMU) are two very famous universities in Pittsburgh. We anticipate

that travelers will visit these two universities for academic reasons (academic conferences,

seminars and so on) or family reasons (parents visit their children who study at the univer-

sity). One latent geographic topic verifies it and we list the top 10 venues of this topic in

Table 4.6. In this table, we can see the majority of the venues are CMU buildings. The bar

and the coffee store indicate the preferences of the travelers who usually visit CMU.
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Table 4.6: Topic related to high education

Venue Category

Gates-Hillman Complex CMU

University Center CMU

Mario’s East Side Saloon Bar

Hamburg Hall CMU

Hunt Library CMU

Heinz Hall Concert Hall

Starbucks Coffee

Union Grill Restaurant

Tepper School of Business CMU

Wean Hall CMU

4.4.4.3 Topics related to Transportation & Hotels We also observe a topic related

to transportation and hotels, which is not out of our expectation. Table 4.7 shows this

topic and we can see that most of the top 10 venues are airports and hotels/lodges. The

transportation and hotels/lodges are very important to a traveler’s trip. Convenient trans-

portation and comfortable hotels/lodges could greatly improve the satisfaction of the travel.

This geographic topic implies that many travelers choose airplanes for their travel and many

travelers choose the hotels in this topic as the place to stay in Pittsburgh. Moreover, many

users who check in at both the airports and the hotels in this topic may visit the bar in the

same topic. Therefore, this topic is helpful in hotel or restaurant recommendations to the

travelers.
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Table 4.7: Topic related to Transportation & Hotels

Venue Category

Pittsburgh International Airport (PIT) Airport

Pittsburgh International Arprt Airport

The Westin Convention Center Hotel

Ho-Jo’s Uncategorized

Hyatt Regency Pittsburgh International Airport Airport

The Cat’s Pajamas Residence

Tonic Bar And Grill Bar

pittsburg airport Airport

Hamilton Abode Residence

The Hamiltons Travel

4.5 APPLICATIONS

We discuss how the proposed latent topic modeling and the latent geographic topics can be

used in different applications.

Location Recommendation: Our proposed latent topic model based approach can be very

helpful for location recommendation. The latent topic model is based on the users’ historical

check-ins, thus the venues in the same topic are the ones that many people usually go to.

For example, some parents would like to take their children to visit the museums or science

centers at weekends. Thus, the topics about entertainment could provide very valuable

references since many people like to visit such POIs.

Friend Recommendation Since each user’s historical check-in record can be described by

the topics, the similarity of the topics could be helpful in recommending friends to users

because of the similar interests of POIs (i.e., placefriends [72, 73]). For example, for two

PITT students who usually check in at Hillman Library, School of Information Sciences and

William Pitt Union (all are PITT buildings) and although they may not know each other
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right now, the probability for them being friends are high. This is because they may register

in the same class in the same building, or join the same student organization or interest

group and meet in the student center, thus the location information is also important in

friend recommendation.

Business Strategy Design: Users’ mobility-driven local geographic topics also benefit the

business strategy design. The geographic topics can help a business owner to find out whether

there is any complementary relationship between his venues and other venues and then help

him explore the potential locations for a new store. It is also helpful for the business owners

to identify his competitors to improve his own business.

4.6 MORE EXPLORATIONS AND DISCUSSION

We show how we use LDA to mine the LBSN check-in dataset to explore the groups of users’

preferences of locations in the previous sections. Here, we would like to explore more using

other models. In [74], Zheng et al. summarize the the typical technologies that can be used

to analyze multimodal data including location information and matrix factorization is one of

them. Therefore, in this section, we present our exploration of mining the check-in dataset

using the SVD-based matrix factorization.

4.6.1 Singular Value Decomposition

SVD is a method to decompose a matrix of interest into a product of matrices:

A[m×n] = U[m×r]Σr×r(V[n×r])
T (4.1)

In Equation 4.1, A is an m×n rank-r matrix. U(V ) is an m× r (n× r) matrix that includes

the left (right) singular vectors of A while Σ is a diagonal r × r matrix whose diagonal

elements are the singular values of A in descending order.

Each check-in record in our check-in dataset contains a user who created this check-in

and a venue where the check-in is created, thus the check-in dataset can be presented by
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a m × n matrix A, where m is the number of users and n is the number of venues in our

dataset. Therefore, the SVD could decompose A into the product of matrices as shown in

Equation 4.1. The left singular vectors U then maps each user to the geo-concept space and

right singular vectors V maps each venue to the geo-concept space. The singular values Σ

describe the strength of each geo-concept in the dataset. By using only the k-largest singular

values we can approximate the original matrix A with a rank-k matrix (by setting the (r−k)

smallest singular values in Equation 4.1 to zero). A rule-of-thumb for choosing k is to retain

90-95% of the total energy of the singular values (i.e.,

∑k
i=1 λ

2
i∑r

i=1 λ
2
i

> 0.9).

4.6.2 Exploring the check-in dataset by SVD

From Table 4.1 we can see that our user-venue check-in matrix is very sparse, thus we use the

MATLAB svds function to decompose the check-in matrix. We investigate the right singular

vectors V for possible latent features of the check-ins as the singular vectors V implies a

mapping from venues to the geo-concept space.

In Section 4.6.1 we introduce the approximation method of keeping the top k biggest sin-

gular values from Σ whose summation is larger than a threshold ratio of the total summation

of all the singular values. But MATLAB svds function provides to compute the k largest

singular values and associated singular vectors of matrix A. Therefore, in our experiment we

choose to run svds based on different k = 20, 30, 40 and 50, respectively. Then, we extract

the top 10 venues in each row in V T (by choosing the top 10 maximum abs value in each

row).

We list the first geo-concept and third geo-concept in Table 4.8. The first geo-concept

corresponds to the largest singular value in Σ. We carefully examine the venue “The Assassin

Tower” and we find that venue gets the most number of check-in from an individual user

ui. We then check the check-ins created by the user ui and we find that the top 5 venues

in geo-concept 1 are exactly the top 5 venues visited by the user ui based on the number

of check-ins. We also did the same for the third geo-concept 3 and the similar finding also

applies to this geo-concept. That is, a user uj who created the second largest number of

check-ins at the top 1 venue in geo-concept 3 and top 5 venues in geo-concept 3 are also top
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Table 4.8: Examples of SVD-based geo-concepts

Geo-concept 1 Geo-concept 3

The Assassin Tower Home

Bakery Cakery Brodega Missy’s House

Uptown mini-mart Lindsay’s House

Moon Jail Target

Primanti Bros. Longwood at Oakmont

Morewood Gardens Grandma’s House

Gates-Hillman Complex Walmart Supercenter

The Library Mcdonald’s

Fisher Hall Giant Eagle

Giant Eagle Home

venues visited by the user uj.

Given the large scale nature of our dataset and its sparsity–i.e., users perform few check-

ins on average–matrix A is of hight rank. Hence, the number of latent topics/concepts that

SVD will identify to capture 90-95% of the energy/variance in the original dataset is expected

to be high–and much higher than the 30 topics we manually set in LDA.

4.6.3 Discussions

LDA and SVD take a different approach on identifying latent patterns in the dataset. Since

the ground truth is not known we cannot compare the two models in absolute terms but

we can qualitatively compare them with respect to the information revealead by them. In

particular, one of the imporant aspects of the two models is the number of topics to be

identified.

With LDA the number of topics need to be manually set, while with SVD there is a

principled approach on the choice of k. However, as alluded to above, since our dataset
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is very sparse, in order to keep the majority of the information in our dataset SVD will

“generate” a large number of topics, which might be not practical/convenient in some case.

On the other hand with LDA, we are able to manually set the number of concepts we want to

identify and hence, we can obtain a small set of topics that potentially describe our dataset.

Nevertheless, there is no guarantee that the number we chose is an appropriate one. On

top of that, if we want to examine k′ > k topics, LDA might provide a totally different

set of topics. This is not the case of course with SVD and hence, it can create further

interpret-ability issues.

4.7 SUMMARY

In this chapter, we study further in understanding users’ preferences of venues through

mining the check-in data. In particular, we employ the LDA model to mine the check-in

dataset in order to get the latent geographic topics. We explain the LDA model and how to

use it in the LBSN check-in dataset to get the user mobility-driven geographic topics. The

mined geographic topics is very helpful in understanding certain groups/a certain group of

users’ preferences of locations. We also investigate the differences of the user mobility pattern

on weekdays and weekends. Moreover, we use the hometown information to filter the travelers

from the dataset and explore the traveler behavior in this chapter. We analyze the travelers’

check-in distribution of the top 9 venue categories and investigate the temporal and spacial

feature of the travelers’ check-ins. We also employ the LDA model on the travelers’ check-in

dataset and the obtained geographic topics can help to understand the travelers’ behavior.

After that, we briefly discuss some applications that can use the LDA model and geographic

topics. Lastly, we explore further about mining the latent patterns of the check-ind dataset

by SVD-based matrix factorization and discuss our results.
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5.0 HYBRID TRUST-BASED POI RECOMMENDATION

In Chapter 3 we studied the entire online population’s preferences on locations and in Chap-

ter 4 we explored the latent geographic topics derived from users’ check-in records, which

indicate the unobserved group of users’ location preferences. In this chapter, we mainly

focus on the individual user’s preferences of locations, i.e., we leverage the individual user’s

check-in records and his social network to propose a personalized hybrid trust-based POI

recommendation approach.

It is well known that existing web recommendation systems usually employ algorithms

such as item-based recommendation [75, 76, 77], matrix factorization techniques [78, 79],

collaborative filtering (CF)-based recommendation and recommendations based on social

links [80, 81, 82, 83]. There are several challenges of directly employing the current web

recommendation algorithms for POI recommendation in LBSNs. One challenge is how to

integrate geographic information related to the POIs into the recommendation. For example,

in a platform such as Netflix or Amazon recommending movies on Netflix to users or recom-

mending books to users do not consider the geographic information into the recommendation

algorithm. However, when recommending POIs to users, the geographic information should

be considered. For instance, recommending the Disney Theme Park in Florida to a user

who is now in Chicago is not a good recommendation. Thus, when making POI recommen-

dations, we should take the distances of the POIs into consideration. Another challenge is

that the rating systems are not generally supported by the current LBSNs; this adds diffi-

culties in measuring users’ preferences with regards to POIs in LBSNs. For example, when

recommending an item to a user in Amazon.com, the ratings of the similar items can be

used in recommendation. Moreover, in the platforms such as Amazon or Netflix, or even

in web search engines, when recommending the items the social influences is usually not
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considered. Social links are usually used in friend recommendation in social networks [84].

In such social network platforms, nodes represent users. Social reasons are crucial for users’

check-ins at various locations. For example, if a friend recommends a good restaurant to a

user, the user probably visits the restaurant as he would likely trust his friends. Besides, a

user may visit his relatives/friends and hang out with friends, so it is necessary to consider

the social aspects into the POI recommendation. Hence, employing just the state-of-the-art

recommendation approaches that are mainly based on users’ preferences of the items for

recommendations based on various contexts will not be adequate for POI recommendation

[11].

In LBSNs, users visit POIs for various reasons. As mentioned earlier, social reasons

play an important role in recommending POIs. User’s check-in behavior also plays a part in

POI recommendation. Our venue popularity analysis in Section 3.2.1 shows popular venues

attract a lot of users, thus we should also consider such a factor into POI recommendation.

Although it is not easy to capture such diverse reasons accurately and completely, it is

necessary to integrate such reasons into the POI recommendation. In this chapter, we mainly

focus on the users’ social networks and the check-in behavior and present our proposed

personalized hybrid trust-based POI recommendation. The contributions of the proposed

approach are as follows.

• The proposed trust-based recommendation provides a novel approach to evaluating the

POI reputation based on both users’ social networks and users’ check-in activities. It is a

novel hybrid trust-based model, that integrates graph-based model and interaction based

model; and contributes to this important area where there is limited work, as mentioned

in [44].

• The proposed approach is flexible as users can change the parameters of the proposed ap-

proach to make a personalized recommendation. Besides, the approach supports different

types of weight functions, which are easy to tailor to the specific applications. More-

over, although the proposed hybrid trust model is based on building trust through users’

check-in activities on POIs, it is applicable to other applications that allow interactions

between users and other items.
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The rest of this chapter is organized as follows. In Section 5.1, we present the motivation for

the proposed model and the problem definition. In Section 5.2, we introduce three models

which are closely related to our proposed model. In Section 5.3, we present the proposed

hybrid trust-based POI recommendation in detail. In Section 5.4, we present the dataset

used in this chapter. In particular, we analyze both the social graph information and check-

in information. In Section 5.5, we introduce the methodology and measures used to evaluate

the proposed model. We also present the experimental results. In Section 5.6, we discuss

the proposed approach and we present the summary in Section 5.7.

5.1 MOTIVATION & PROBLEM DEFINITION

In this section, we present the motivation of our proposed hybrid trust-based POI recom-

mendation approach for LBSNs and the problem definition.

5.1.1 Motivation

From the analysis of the previous chapters, we can see that popular POIs attract large

number of users and check-ins, i.e., users usually love to visit POIs with good reputation.

Hence, the POI reputations can be used to rank the POIs and we can recommend the

POIs based on their reputation to LBSN users. How to measure the POI reputation is

thus a crucial challenge. Since the popular POIs are determined by human activities, thus,

users’ check-in behavior should be considered in POI reputation calculation. Our goal is to

provide a personalized POI recommendation, thus we should consider social connections in

LBSNs which may impact an individual user’s location preferences. For example, if a friend

recommends a POI to a LBSN user, the user will visit the POI with higher probability since

he likely trusts his friends. Therefore, we propose to compute a POI’s reputation based on

its visitors’ trust values. In this way, we employ both the social information and check-ins

available in LBSNs to calculate the POI reputation.
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5.1.2 Problem Definition

We present the problem definition in this subsection. For POI recommendation in a LBSN,

we consider a set of users U = {u1, u2, . . . , uN} and a set of POIs P = {p1, p2, . . . , pM}. A

user ui can be a friend of another user uj and we define the edge between these two users

as ei,j = (ui ← uj) when they are friends of each other. We define the social graph of the

LBSN users as S(U,Eu) where Eu is the set of friendship links among the users in user set

U , ei,j = (ui ← uj) ∈ Eu. Here ui ∈ U links to uj ∈ U and 1 ≤ i, j ≤ N . In a LBSN,

a user ui’s check-in on a POI pk can be defined as an edge eui,pk = (ui → pk). Therefore,

users’ interaction/check-in graph can be defined as C(U, P,Ec) where Ec is the set of check-in

actions eui,pk = (ui → pk) ∈ Ec. Here ui ∈ U and 1 ≤ i ≤ N , pk ∈ P and 1 ≤ k ≤M .

Our key goal is to recommend POIs that have good reputation. Thus, the task of

personalized POI recommendation can be described as follows: Given a user u and a POI

p, if the reputation of p from the perspective of u is unknown, compute the reputation of

p for u. The reputation of p to user u is denoted by rp (rp is different for different users).

Figure 5.1 illustrates the personalized trust-based POI recommendation problem. As shown

in the figure, we know the social graph and available POIs. The check-in histories of the users

are also known. User A wants to get a recommendation of a POI which she has not visited.

Then the goal of the recommendation system is to find the POI with highest reputation

based on the social graph and the historical interactions between the users and POIs.

Although many disciplines have studied trust and each disciple defines trust from its own

perspective, a general understanding about trust is a measure of confidence of the expected

behavior of an entity or entities [44]. In this dissertation, we define trust as an individual

user’s perceived confidence of the authorities of other users’ check-in activities, which could

be characterized from two aspects–social relationship in a network and the check-ins created

by users on POIs. To a specific user, the other users’ trust values are determined by their

social relationship with him and the merits of their check-in histories. We will present how

to compute the users’ trust values and POI reputation in Section 5.3.
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Figure 5.1: Illustration of a LBSN network with users and users’ check-ins.

5.2 BACKGROUND

Our proposed hybrid trust-based POI recommendation approach is motivated by graph-

based trust model, interaction-based trust model and HITS (Hypertext Induced Topic Search)

model [85]. The graph-based trust model helps in addressing the issue of how to use the social

links in evaluating users’ trust value. The interaction-based trust model motivates using the

check-in activities created by users on POIs in evaluating users’ trust value. Although there

is only one kind of node in HITS model, the concepts of authorities and hubs inspires us to

combine the graph-based trust model and interaction-based trust model into the proposed

trust-based recommendation approach to calculate POIs’ reputations. We present the three

models in this subsection.

5.2.1 Graph-Based Trust Model

Generally, the graph-based trust model evaluates the users’ trust value based on the structure

of the social graph. For example, the concept such as Friend-Of-A-Friend (FOAF) is widely

used in graph-based trust model, which exploits the propagation property of the trust to
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compute trust among users in social network [44]. For example, if the social network is an

unweighted graph, to a user, the trust values of his friends are higher than those of non-friend

users. Also, trust will propagate along the friendship links. Thus, a friend’s trust value is

higher than the trust of the friends of this friend. Moreover, the social network can be a

weighted graph. For example, the weights of edges connecting the family members of a user

on the social network can be set higher than that of edges connecting with friends. The

trust value can be also propagated through such a weighted graph. There are also other

examples such as including the feedback to evaluate trust value [45]. All such approaches

leverage network structures to calculate user trust value, and they capture the trust on how

users are related to each other and how trust flows through their network [44].

LBSNs are also social networks and users can create friendship links with other users.

Besides, when a friend recommends a POI to a user, the user probably will visit the POI

because he trusts his friend. Thus, the social graph of the LBSN is helpful in the POI

recommendation and we consider the graph-based trust model in our proposed hybrid model.

5.2.2 Interaction-Based Trust Model

Besides the graph-based trust model, the interactions among the users can be also used in

computing the trust values and such a model is called as the interaction-based trust model.

The interactions can be the reviews, comments or ratings in the online community [52], or the

acceptance and approval of a member in the community and the engagement/involvement of

the member in the community [53], or the frequency and the duration of the communication

of two users [51]. The interactions among the users in a community are a significant factor

for evaluating trust. The users who contribute more to the community should have a higher

trust value compared to the other users who contribute less to the community. Also, two

users communicating frequently in the community indicates high mutual trust between them.

In LBSNs, users can check in at POIs and we leverage the check-in activities into the

recommendation. We will present the details about employing the check-in activities into

the proposed recommendation approach in Section 5.3.
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Figure 5.2: Hubs and authorities in HITS

5.2.3 HITS Model

Kleinberg proposed HITS algorithm for web search problem in [85]. HITS is also known as

hubs and authorities and aims to extract information from link structures. HITS identifies

good authorities and hubs for a topic by assigning two values to a page: an authority score

and a hub score. These two scores are defined recursively, i.e., the page’s authority score

is the sum of the hub values of the pages that point to it and its hub score is the sum of

the authority values of the pages that it points to. Therefore, hubs and authorities exhibit

a mutually reinforcing relationship and it is obvious that a good authority page is pointed

by many good hubs and a good hub page points to many good authority pages, as shown in

Figure 5.2. Let A be the adjacency matrix of a graph, At be the transpose of matrix A, a

be the authority score vector and h be the hub score vector. Then the update operations of

a and h are as follows [85]:

a = At · h

h = A · a
(5.1)

In the HITS model, all the nodes are the same, i.e., all are webpages. However, the

reference relations among the webpages can be taken as the interactions. The concepts of
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hub and authority inspire us to map the two different kinds of nodes in LBSNs to hub and

authority, respectively. That is, we can consider the users as hubs and POIs as authorities.

Thus, this model motivates us to employ the check-in activities in evaluating the reputation

of POIs. We will describes the details in Section 5.3.

5.3 THE HYBRID TRUST-BASED POI RECOMMENDATION

5.3.1 Preliminaries

In LBSNs, the interactions between the users and POIs are important for POI recommenda-

tions. We adopt the idea of interaction-based trust model in our proposed POI recommen-

dation. The idea behind this model is that a good POI must be a POI whose visitors’ trust

values are high. Also, if a user u visits many POIs with good reputation, then this user’s

trust value will also be high. Therefore, by exploiting the check-in records, we capture the

reputation of a POI by the trust values of its visitors, and at the same time the reputation

of a POI is also determine by the trust values of its visitors. This is very similar with the

nature of the HITS model. We define the trust value of a user u as tu. A simple and intuitive

model for this idea can be described as follows:Rp = Bt · Tu

Tu = B ·Rp

(5.2)

Here Rp is the vector of POI reputation values rps and Tu is the vector of user trust values

tus, B is the matrix defined based on the graph C(U, P,Ec) and Bt is transpose of B.

Using this model we can calculate the POI reputation based on the interactions between

users and POIs. However, the social impacts is not considered in this model. In fact, the

social aspects are important in the POI recommendation. For instance, if a friend recommend

a POI to a user, the user will visit the recommended POI with high probability. The reason

behind that is because the user trust his friends. Thus, we can extend the equation (5.2) to

incorporate the social information. Our idea is to use the trust propagation as used in the

graph-based trust model into the proposed model, i.e., the trust value is determined by both
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Figure 5.3: The proposed POI recommendation approach

the social graph and the reputation of the POI that the user visits. We show the model as

follows; D is a matrix built based on the social graph S(U,Eu).Rp = Bt · Tu

Tu = D · Tu +B ·Rp

(5.3)

This approach aligns with the proposed hybrid trust-based trust model, since it combines

the graph-based trust model and the interaction-based trust model. The graph based trust

model indicates the trust will be affected by the social network structure. Moreover, the

check-in activities in LBSNs will also impact the trust of the LBSN users to POIs.

In summary, Figure 5.3 illustrates our POI recommendation approach to recommend

the POIs based on their reputation. The POI’s reputation value is determined by the trust

values of the visitors. The trust values of the visitors are derived from two parts–the social

graph and the check-in interactions created by the visitors on POIs.

5.3.2 Hybrid Trust-Based POI Recommendation

In the previous subsection, we presented our approach to combine the graph-based trust

model and interaction-based trust model for a hybrid trust model for POI recommendation.
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Figure 5.4: LBSN graph.

In this subsection, we present the proposed personalized hybrid trust-based POI recommen-

dation in detail.

Before introducing our proposed hybrid trust-based POI recommendation approach,

we first present the network model used in this chapter. We use a graph to represent

a LBSN network. As shown in Figure 5.4, there are two different kinds of vertices in a

LBSN–users and POIs. Thus, there are also two different kinds of links in a LBSN–the

friendship links among users and check-in links at POIs created by users. Therefore, the

LBSN graph, as shown in the left side of Figure 5.4, can be defined as G = (V,E), where

V = {v1, v2, ..., vm, vm+1, ..., vm+n} and ei,j = (vi ← vj) ∈ E if vi ∈ V is linked to vj ∈ V for

1 ≤ i, j ≤ m+n. Here, m is the total number of the LBSN users and U = {v1, v2, . . . , vm} are

LBSN user vertex set; n is the total number of POIs in the LBSN and P = {vm+1, . . . , vm+n}

are POI vertex set. Therefore the total number of vertices is | V |= m + n. The two types

of edges in G is shown in the undirected social graph of Figure 5.4. In the social graph, the
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adjacency matrix among the users can be described by

Am×m
u

1, if ei,j ∈ E

0, otherwise

(5.4)

where 1 ≤ i, j ≤ m. Another type is the edges between the users and POIs, which is shown

in the directed check-in graph in Figure 5.4. In the check-in graph, the adjacency matrix of

the check-in graph can be described by

Am×n
c

1, if ei,j ∈ E

0, otherwise

(5.5)

where 1 ≤ i ≤ m and m+ 1 ≤ j ≤ m+ n.

Based on the idea presented in Section 5.3.1, in the proposed hybrid trust-based POI

recommendation approach,POI reputations and user trust values are computed as follows:rPOIs = (1− β)Wu-POItusers

tusers = (1− β)Wutusers + (1− β)WPOI-urPOIs + βt0users

(5.6)

where 0 < β < 1, Wu-POI is the weights of the edges from users to POIs, WPOI-u is the

weights of the edges from POIs to users and Wu is the weights of friendship edges. rPOIs is

the vector of the reputations of POIs and tusers is the vector of users’ trust values. t0users is

the initial trust value vector, and for a certain user, the initial user trust value for himself

is 1 and 0 for all others. The recommendation algorithm will recommend the POIs with the

top reputation values to users. Next, we describe two methods for defining the weights of

the proposed approach.

5.3.3 Weight Functions

In this section, we present two different weight functions that we use in the hybrid trust-

based trust POI recommendation. One is defined based on the uniform edge weights and

the other is defined on non-uniform weights.
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5.3.3.1 Uniform Edge Weights First, we consider the uniform distribution of the edge

weights in G, which is the simplest case. For the social graph, the weights of the friendship

edges are defined as:

Wu =



1− λ
deg(vi)

, if deg(vi) > 0 and Nvi > 0

1

deg(vi)
, if deg(vi) > 0 and Nvi = 0

0, otherwise

(5.7)

where 0 < λ < 1, deg(vi) is the degree of user vi in the social graph and Nvi is the number of

POIs that user vi has checked in at. The weights of edges from users to POIs in the check-in

graph are defined as:

Wu−POI =



λ

Nvi

, if deg(vi) > 0 and Nvi > 0

1

Nvi

, if deg(vi) = 0 and Nvi > 0

0, otherwise

(5.8)

In the same way, the weights of edges from POIs to users are defined as:

WPOI−u =
1

NPOIj

(5.9)

where NPOIj is the number of users who have checked in at POIj.
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5.3.3.2 Non-uniform Edge Weights For the social graph, the edge weights can be

defined based on the trust level of the friendship edge. That is:

Wu =



(1− λ)Ti,j∑
i Ti,j

, if deg(vj) > 0 and Nvj > 0

Ti,j∑
i Ti,j

, if deg(vj) > 0 andNvj = 0

0, otherwise

(5.10)

where 0 < λ < 1, Ti,j is the trust value indicating how much user j trusts user i. In

our dataset, such trust values between users are not available, so we still use the uniform

friendship edge weights in the experiment.

Regarding the weights of edges between the POIs and users, we propose two methods

for determining these weights. The first method employs the check-in counts to define the

weights and the second method employs the entropies to define the weights.

• Weights based on check-in counts : The weights of edges from users to POIs in the check-

in graph can be defined based on the number of check-ins at the POI created by the

users:

Wu−POI =



λCi,j∑
iCi,j

, if deg(vj) > 0 and Nvj > 0

Ci,j∑
iCi,j

, if deg(vj) = 0 and Nvj > 0

0, otherwise

(5.11)

where Ci,j is the number of check-ins created at POI i by user j. In the same way, the

weights of edges from POIs to users are defined as:

WPOI−u =
Ci,j∑
j Ci,j

(5.12)

• Weights based on entropies : We define the user set as U , and the set of the POIs in the

LBSN as P . We define Pi,j as the probability that user j checked in at POI i given all

of j’s check-ins; that is, it is the fraction of the number of check-ins of user j created at

POI i over the total number of check-ins of user j. So the user entropy of user j can be

defined as in Equation 5.13. We define P ′i,j as the probability that the user j checked in

at POI i given all the check-ins at i; i.e., it is the fraction of the number of check-ins of
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user j created at POI i over the total number of check-ins at POI i. So the POI entropy

of POI i can be defined as in Equation 5.14.

Euj
= −

∑
POIi∈P

(Pi,j)× logPi,j (5.13)

EPOIi = −
∑
uj∈U

(P ′i,j)× logP ′i,j (5.14)

Thus, the weights of edges from users to POIs in the check-in graph can be also defined

based on POI entropies:

Wu−POI =



λPi,j log(Pi,j)

Eu

, if deg(vj) > 0 and Nvj > 0

Pi,j log(Pi,j)

Eu

, if deg(vj) = 0 and Nvj > 0

0, otherwise

(5.15)

In the same way, the weights of edges from POIs to users are defined as:

WPOI−u =
P ′i,j log(P ′i,j)

EPOI

(5.16)

5.4 DATA ANALYSIS

The dataset used in this chapter is not the same as that in Chapter 3 and Chapter 4. First,

the check-in dataset used here are collected from March, 2012 to July, 2012. During this

period, we gather 1,226,769 check-ins created by 44,437 Foursquare users at 17,816 POIs.

Thus, the average check-ins per user (ACu) is 27.61 and the average check-ins per POI (ACp)

is 68.86. Moreover, the social network of the users are used in this chapter and we obtain

297,580 friendship links among the 44,437 users. We present the summarized dataset in

Table 5.1. We also summarize the POIs on the aspect of top 9 categories1 in Table 5.2.

Next, we investigate the complementary cumulative distribution function (CCDF) of

the check-ins created at the POIs of this dataset and show the result in Figure 5.5. From

1There are POIs whose category property is null.
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Table 5.1: Summary of check-in and social network dataset

Number of POIs 17,816

Number of Users 44,437

Number of Check-ins 1,226,769

Friendship Links 297,580

Average Friends per User 6.7

ACu 27.61

ACp 68.86

Table 5.2: Summary of POIs on the aspect of top 9 categories of dataset in Chapter 5

Category # of POIs # of Check-ins ACu ACp

Arts & Entertainment 462 60,685 3.62 131.35

College & University 753 62,740 11.31 83.32

Food 2,359 250,540 19.78 106.21

Professional & Other Places 2,940 156,239 9.34 53.14

Nightlife Spot 877 106,338 6.36 121.25

Great Outdoors 861 57,674 5.18 66.98

Shop & Service 3,273 227,382 12.25 69.47

Travel & Transport 1,233 78,709 4.01 63.84

Residence 2,846 147,076 36 51.68
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Figure 5.5 we can see that about 80% of POIs obtain at least 5 check-ins during our data

collection period. We also can observe that there are about 15% of POIs which have more

than 100 check-ins and these are popular POIs. Moreover, we find that there are around

0.1% of POIs with more than 2,000 check-ins. These numbers indicate that popular POIs

attract a lot of check-ins. Our overall venue popularity analysis in Section 3.2.1 based on

cumulative dataset also imply the similar result, thus in LBSNs, popular POIs seems to be

an important factor in attracting LBSN users. Therefore, we should consider this factor into

our proposed personalized POI recommendation. We also explore the CCDF of the check-ins

created by users. As shown in Figure 5.6, we can see that there is only about 30% of users

who have created more than 10 check-ins and there is only around 7% of users who have

created more than 100 check-ins. Such a result indicates that users do not frequently share

their check-ins in Foursquare. The social graph in our dataset contains 44,437 users and

297,580 friendship links among them, so we also study the properties of such social relations

and plot the CCDF of users’ friendship links in Figure 5.7. The average friend links in our

dataset is 6.7 and the maximum friend links is 773. Figure 5.7 shows that there is only

around 20% of users who have at least 10 friends.

We introduce the concepts of user entropy and POI entropy in Section 5.3.3.2 and we

study the user entropy based on the number of check-ins created by the user, as well as the

POI entropy based on the number of check-ins at the POI.

The average user entropy and average POI entropy based on the check-in counts are

shown in Figure 5.8 and Figure 5.9, respectively. Usually the concept of entropy is used to

measure the randomness of the activities [86]. Therefore, we employ the user entropy to

measure the diversity of the users’ check-in activities and use the POI entropy to measure

the diversity of the users who have checked in at a POI [87]. In Figure 5.8, we can see

that for users who have fewer than 100 check-ins, their user entropies keep rising with the

increase in the number of check-ins. For the users who have more than 100 check-ins, the

user entropies of some of them still keep rising, which indicates these users like exploring

new POIs. However, there are still some users whose user entropies do not increase with the

growth of the number of check-ins, which indicates that they prefer to check in at the POIs

they have been to before. We note that only around 7% users in the dataset have more than
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Figure 5.5: CCDF plot of the check-ins created at the POIs of check-in dataset in Chapter 5
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Figure 5.6: CCDF plot of the check-ins created by users of check-in dataset in Chapter 5
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Figure 5.7: CCDF plot of the Friendship of social network dataset
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Figure 5.8: Average user entropy based on the check-in counts
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Figure 5.9: Average POI entropy based on the check-in counts

100 check-ins, therefore, the majority of users exhibit diversity in their check-in activities.

From Figure 5.9 we can see that generally the POI entropy increases with the growth of the

number of check-ins created at the POI. This trend is especially notable for the POIs with

no more than 50 check-ins. According to Figure 5.5, around 70% of the POIs have no more

than 50 check-ins, therefore the POI entropies of most of the POIs exhibit an increasing

trend, which implies that POIs usually attract different users. Therefore, the data analysis

about the POI entropy tells us that in LBSNs, popular POIs always attract more users; the

data analysis about the user entropy implies that users tend to visit new POIs. Thus, in

POI recommendation it is very important to recommend new POIs to users.

5.5 EXPERIMENTS

In this section, we evaluate the proposed hybrid trust-based POI recommendation approach

on our Foursquare dataset presented in Section 5.4. We first introduce the methodology
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and measures that we use to evaluate the proposed hybrid trust-based POI recommendation

approach, and then we present our results.

5.5.1 Methodology and Measures

Table 5.1 summarizes our dataset that has more than one million check-ins but is very sparse

as many users checked in at a POI more than once. Thus, we first pre-process the dataset

by removing the users and POIs with very few check-ins, and then randomly divide the

remaining dataset into a training dataset (80%) and a testing dataset (20%) to evaluate the

approach. In particular, we run the proposed approach on the training dataset, and use the

reputation value of the POIs to rank the POIs. Since the entropy related analysis shows

that users like to visit new POIs, the POI recommendation in this section only recommend

the new POIs. That is, we recommend the POIs that the users haven’t visited before in this

section. We make the top-N POI recommendations based on the ranks of the POIs. Then

we compare the recommended top-N POIs with the testing dataset. We use the precision

(P@N ) and recall (R@N ) measures to evaluate the approach, which are defined as follows:

P@N =
|relevant documents ∩ retrived documents|

|retrived documents|
(5.17)

R@N =
|relevant documents ∩ retrived documents|

|relevant documents|
(5.18)

We first evaluate the P@N and R@N for the proposed POI recommendation on the

entire dataset and compare results with the random walk with restart (rwr) recommendation

approach proposed in [11]. The random walk with restart can provide a personalized view

of the network and can be adopted to personalized rankings [88]. As presented in [11], the

transition probabilities can be obtained by Q = αW + (1 − α)R. Here W is determined

based on the network structure, R presents a random probability of jumping to any other

node and α is a parameter to tune the behavior [11]. Then, the steady-state probability

vector p can be calculated by p = pQ and the recommendation is made based on p. We

choose to compare with rwr because rwr approach performs best as shown in [11] and we
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use the recommended parameter in [11] for rwr 2. Then, we also evaluate the two measures of

the proposed approach and rwr approach on the categorized dataset. Lastly, we investigate

the performance of the proposed approaches based on different parameters β and λ. In the

experiment, for the user i, the initial hub score vector is defined as a vector with all zeros

except the ith element, which is 1.

5.5.2 Results

5.5.2.1 Results using the entire dataset In this subsection, we use the entire dataset,

i.e., we do not consider the categories of POIs in the dataset. Here we choose β = 0.85 and

λ = 0.95 (we will study these parameters in Section 5.5.2.3). In Figure 5.10, we can see

the average P@N of the hybrid trust-based POI recommendation approach using entropy

weights is the highest, followed by that of the hybrid trust-based POI recommendation

approach using the uniform weights. In Figure 5.11, we can also see that the R@N of the

hybrid trust-based POI recommendation approach using entropy weights is the best, followed

by that of the hybrid trust-based POI recommendation approach using the uniform weights.

All the three proposed approaches perform better than rwr with regards to both P@N and

R@N. For all the four approaches, the performance of R@N gets better with increasing values

of N .

5.5.2.2 Results using categorized dataset In this subsection, we evaluate the P@N

and R@N in Nightlife Spot category dataset by using the same parameters as used in Sec-

tion 5.5.2.1. The average P@N results are shown in Figure 5.12. We can see that the average

P@N of the proposed approach using entropy weights is still the highest compared to that

of the others, followed by that of the proposed approach using the edge weights based on the

check-ins. As shown in Figure 5.13 for P@N, we can also see that the proposed approach

using entropy weights is the highest compared with the others, followed by the proposed

approaches using the edge weights based on the check-ins. Moreover, the R@N increases

with increasing values of N and there is little difference between the results for the pro-

2Changing the parameter of rwr will get better results, however, our proposed approach using entropy
weights is still better.
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Figure 5.10: Average P@N on the entire dataset
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Figure 5.11: Average R@N on the entire dataset
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Figure 5.12: Average P@N on the Nightlife Spot dataset

posed approaches using different edge weights. Both of them achieve better results than

the proposed approach using uniform weights. Note that when using the entire dataset, the

proposed approach using uniform weights performs better than that using weights based on

check-ins. The reason for such a difference may be that in the entire dataset, users’ check-ins

are more diverse than in the single categorized POIs and the category information brings

more unpredictable factors to the recommendation. Therefore, the uniform distribution of

the weights may achieve better results. However, regarding the dataset in a single POI cat-

egory, the number of the check-ins reflects the reputation of the POIs more accurately as we

are comparing the POIs in the same category. Thus, the approach with the weighted edge

will give better results than using the uniform weight. An example to explain the difference

is to consider an office building and a restaurant, as more check-ins in the building POI does

not indicate it is a better recommendation than the restaurant. Thus, it is not surprising to

see that the weighted edge approach performs better than the uniform edge approach if we

only use the categorized dataset.
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Figure 5.13: Average R@N on the Nightlife Spot dataset

5.5.2.3 Parameter Setting In the proposed hybrid trust-based POI recommendation

approach, there are two parameters β and λ. Generally, with different datasets, β and

λ should be set according to the properties of the dataset to get the best results. Here

we discuss the impacts of different values of parameters β and λ. We show results of P@N

using the proposed approach with weights based on entropy by changing β and λ on Nightlife

Spot category dataset in Figure 5.14. The best performance based on P@N is achieved by

β = 0.85 and λ = 0.95; β = 0.15 and λ = 0.95 give the worst performance. Generally, we can

see that larger β performs better than smaller β. The parameter β controls the importance

of the initial hub score vector. In our experiment, for a user i, the initial hub score vector

is all zeros but the ith element is 1, which indicates that the nodes which are closer to user i

contribute more to the hub score update. However, setting parameter λ is more complicated

than β. The parameter λ balances the impacts of social influence and the check-in behavior

in updating hub scores. The larger λ indicates that the check-in behavior contributes more

in hub score updates. When β is very small (e.g., β = 0.15), larger λ gives worse results;

however, when β is very large (e.g. β = 0.85), larger λ gives better results. In summary, the
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Figure 5.14: Average P@N on the Nightlife Spot dataset by different parameters.

optimal parameters of β and λ should be set based on the properties of the dataset.

5.6 DISCUSSION

In this chapter, we have proposed a hybrid trust model for POI recommendation in LBSNs.

The goal of the POI recommendation is to give the personalized POI recommendation to

individual users in LBSNs. We would like to recommend POIs with good reputation to the

LBSNs users thus we propose a trust-based POI recommendation approach to compute the

POI reputation for each individual users. The POI reputation is determined by the LBSN

users’ check-in behaviors, which can be considered as the interaction-based trust model.

Since our goal is a personalized recommendation, thus, we consider the social relationship

(graph-based trust model) in evaluation of the trust values of the LBSN users. The hybrid

trust model is one contribution of the proposed approach.

Another contribution of this proposed approach is that it proposed a generalized ap-
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proach to evaluate the reputation of nodes other than user nodes. In the graph-based trust

model, all the nodes are user nodes and the trust evaluation are based on all homogeneous

type of nodes (i.e., user nodes). Although the interaction-based trust model employ the

interactions between two different types of nodes (e.g., users nodes and email nodes), such

models still focus on trust evaluation of the user nodes. Obviously, evaluating and calcu-

lating trust of user nodes in social networks or other B2C platforms are important, as it

can be used in detecting and preventing various frauds or attacks. Moreover, evaluating the

reputation of object nodes other than user nodes can benefit many applications, especially

in recommendation systems. There is few work on evaluating the reputation of object nodes

by employing interactions between the object nodes and user nodes, as well as the social

relationship among the user nodes. Thus, the proposed work contributes in this area. Al-

though the proposed work aims at personalized POI recommendation, it can be extended

to many similar platforms or applications. For example, personalized item recommendation

in online shopping website. The purchase history can be taken as the interactions between

the users and items on the platform. With the social information among the users (if it is

available), the proposed model can be extended for personalized item recommendation.

Moreover, the proposed hybrid trust-based POI recommendation is also helpful for

event/location planning for a group of users. Assume a scenario that several friends want to

find a POI that all/most of them would be interested in to hang out together, the proposed

approach can be easily used in this case. By simply changing the initial user trust value

vector and then running the proposed approaches would get the ranked list of POIs. That

is, for recommending POIs to a set of users {vx1 , . . . , vxn}, the initial user trust value vector

should be t0i =


1
n

if i ∈ {x1, . . . , xn}

0 otherwise

. In this case, each user in the group has the same

level of preference in finding the common POI. If the scenario is that a group of people

would like to celebrate a birthday or other special event for a certain user or some users,

these certain users’ preferences should have higher priority than others. Our proposed model

can be also used in this case, by simply adjusting the initial users trust values from the same

value (e.g., 1
n
) to different values. That is, assign a higher number to the users whose opinion

are more important in making the decision.
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Therefore, the proposed hybrid trust-based model does not only cover the shortage of

trust model area, but also provides a generalized approach in evaluating the trust value of

heterogeneous nodes through social information and the interactions between the two types

of heterogeneous nodes. The experimental results show good performance of the proposed

approach in LBSNs field, however, it can be extend to other fields. Moreover, the personalized

recommendation is not limited in recommending POIs for an individual user, but provide a

possible solution and guidance to recommendations for a group of users.

5.7 SUMMARY

In this chapter, we first present the motivation of our proposed hybrid trust-based POI

recommendation. In particular, we describe how the graph-based trust model, interaction-

based trust model and HITS model inspire our proposed work in POI recommendations

in LBSNs. The HITS model provides a wonderful approach in evaluating the rank of the

webpages through the references among the hyperlinks. However, it cannot be directly used

in social platforms as it does not consider the social information. So we propose combining

the graph-based trust model and the interaction-based model for a hybrid trust-based model.

Then, we formalize the POI recommendation in LBSNs and explain our proposed hybrid

trust-based POI recommendation model in details. We also present several weight function

definitions related to POI recommendation scenarios in LBSN platform. Then, we analyze

our dataset and find that users trend to visit new POIs thus in our experiment we focus on the

performance of the proposed model in new POI recommendations in LBSNs. In Section 5.5,

we narrate our methodology and measures to evaluate the performance of the proposed

model on Foursquare dataset. We present the detailed experimental results of the proposed

model and compare it with another POI recommendation approach. The experiments show

good performance of our proposed model and better results than the other approach. We

also investigate the parameter setting in this section. Then, we discuss the contributions of

the proposed hybrid trust-based model. In particular, it provides a generalized approach to

evaluating the trust value in a network with heterogeneous nodes.
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6.0 CONCLUSIONS AND DISCUSSIONS

Recently, social media and mobile technology have become increasingly important parts

of our society. LBSNs, that combine mobile technology, location-based services and social

media, have been changing the way that users use location information in social life. Thus,

investigating LBSN dataset, especially the dataset of a specific city (due to the physical

geographic limitation of human activities), is extremely helpful and valuable to:

• Understand human preferences in POIs and then design better marketing strategies for

POIs.

• Understand the human mobility patterns to achieve better urban designs and plans.

• Understand the factors that impact human activities related to physical locations, in

order to design better POI recommendation approaches.

In this dissertation, we have carried out various studies towards fulfilling these objectives has

been done in this dissertation. That is, based on the real dataset collected from a popular

LBSN (Foursquare), we first analyze the entire online population’s location preferences based

on the cumulative dataset. Then, we mine the dataset through a probabilistic graphical

model (LDA) to investigate the human mobility patterns and lastly we propose a hybrid

trust-based model to recommend POIs for individual users.

In this chapter, we summarize the contributions of the proposed work and discuss how

they address the challenges proposed in Section 1.1 and the limitations. Moreover, we

enumerate some future research directions based on the work proposed in the dissertation.
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6.1 CONTRIBUTIONS

In this dissertation we focus on LBSN users’ behavior to investigate the users’ preferences

based on real LBSN data. Our study first examines the entire online population’s prefer-

ences of locations based on the cumulative number of check-in information, etc., from the

Foursquare dataset pertaining to the greater Pittsburgh area. Then, we focus on the users’

check-in records created on POIs and mine such dataset through LDA model to obtain the

geographic topics of the POIs based on users’ mobility behavior. The acquired geographic

topics indicate part of online users’ geographic preferences as a cluster of locations. Lastly,

we work on personalized POI recommendations for LBSN users based on their historical

check-in behavior, as well as the social relationship with their friends. The aforementioned

three parts of work in this dissertation successfully address the challenges proposed in Sec-

tion 1.1. Therefore, we will present below the contributions of the three parts of work and

how they address the challenges mentioned before.

• Challenge I: understanding local venue popularity in LBSNs from the view point of the

entire online population. We have done a comprehensive and quantitative analysis of

the venue popularity to address this challenge in Chapter 3. In particular, we study the

overall venue popularity and overall category popularity based on the cumulative dataset

collected from Foursquare. As far as we know, this is the first work to investigate the local

venue popularity in LBSN area based on the cumulative dataset. Current work in this

area usually employs the check-in data collected during a certain period, however, the lack

of the information before the data collection period could not provide a complete overview

of the overall venue popularity. Although our cumulative data is just about the number

of check-ins and the number of users visited at the venues, it shows the overall venue

popularity not just within a period. Therefore, the proposed analysis provides a more

complete understanding about venue popularity. Moreover, we explore the spatial and

temporal features of the trending venues and study the impacts of Foursquare features

such as specials, web presence and menu on promoting the venue popularity. The results

are very helpful for designing marketing strategy for the venue owners in LBSNs. Our

work presents a quantitative analysis about the local venue popularity in LBSNs, which
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is based on the entire online population’s check-in information. This analysis provides an

overview of the entire online population’s preferences on locations. Since the locations

are closely related to human activities, it is very valuable and helpful in understanding

human mobility behavior.

• Challenge II: exploring latent geographic topics based on the movements of unobserved

groups of users. Through the LDA model, we explore the user mobility-driven geographic

topics in this dissertation. The geographic topics exhibit a certain group of users’ prefer-

ences of locations. The topic results (e.g., the sports topic, two topics related to university

and so on) shown in our experimental results reveal clusters of locations based on some

unobserved groups of users’ trajectories (e.g., university students and sports fans). The

latent geographic topics successfully answers the questions asked in Section 1.1.2. For

example, the cafe found in the topic related to PITT is the popular one for the PITT

freshman who want to find the popular cafe among PITT community. The restaurants

in the topic related to shopping and entertainment show the popular dinning places after

shopping. Therefore, the latent geographic topics reveal the preferences of the unobserved

group of people on locations and the mined geographic topics are capable of advancing

venue recommendation and friend recommendation. In particular, we can recommend

users whose latent topics are very similar as friends because of the similar interests of

activities related to location or recommend the top but unvisited venues of a user’s la-

tent topic. Moreover, we explore the geographic topics formed on two different temporal

aspects (e.g., weekdays and weekends), and the topics especially the differences of the

topics exhibit the different human mobility behavior between weekdays and weekends.

Furthermore, we study the travelers’ mobility behavior and this, to our best knowledge,

is the first such research related to mining travelers’ behavior based on LBSNs. We

investigate the popular categories based on travelers’ check-ins, as well as the temporal

features of the check-ins as the distribution of the top 9 categories, which is helpful in

understanding travelers’ goals and then improve the services for travelers. Also, the la-

tent geographic topics based on the travelers’ check-ins can better help to understand

the travelers’ requirements and then improve the location recommendations to travelers.

Thus, our work by employing LDA to mine the latent geographic topics successfully
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address the challenge of understanding groups of people’s preferences of locations. Com-

pared to the work in Chapter 3, our work of mining the latent geographic topics in

Chapter 4 concentrates on investigating the mobility pattern of groups of users based

on their check-in records, thus exhibits deeper and further research in understanding the

user behavior in LBSNs.

• Challenge III: personalized hybrid trust-based POI recommendation. After exploring the

entire online population’s preferences of locations and the groups of users’ geographic

topics, we proposed a hybrid trust-based POI recommendation to address the POI rec-

ommendation challenge. Our proposed personalized recommendation approach does not

only consider the individual’s check-in behavior, but also integrates the social informa-

tion. Therefore, the performance of the proposed hybrid trust-based POI recommenda-

tion is very good as it captures both the social impact and user behavior impact. We

also present several weight functions used in the proposed hybrid model, and such weight

functions can be extended based on the specific applications. Thus, the proposed model

is very flexible and can be adapted to other applications. Besides, the hybrid trust-based

POI recommendation combines the graph-based trust model and interaction-based trust

model, advances the limited research in hybrid trust-based model. Motivated by the ex-

isting HITS model in web search area, our proposed model effectively integrates the social

impacts (graph-based model) and user historical behavior (interaction-based model) in

POI recommendation. Since the hybrid trust-based model has both the advantages in

graph-based model and interaction-based model and there is very limited work in this

area, our work presents first exploration in this area. Furthermore, the proposed model

provides a generalized approach to evaluate the reputation of object nodes other than

user nodes in a network consisting of two types of nodes through the interactions between

the user nodes and object nodes.

In summary, in this dissertation we have done a comprehensive work towards under-

standing the users’ preferences of location in LBSNs, from the entire online population’s

perspective, groups of users’ viewpoint and finally from an individual’s angle. The work of

this dissertation advances in exploring the user mobility behavior through the social media.
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6.2 LIMITATIONS

There are some limitations of the research conducted in this dissertation. We discuss them

in this section.

The online dataset may be biased by the demography information of the online population

(e.g., gender and age), which is a limit of using the online dataset to analyze the human

preferences of locations. Moreover, we simply take the check-in as a positive sign to the

location, which may not always true. The data analysis and mining about the human

preferences on locations are based on the dataset collected in the greater Pittsburgh area

in Foursquare, thus the scope of our work is limited by the size of the available dataset.

The analysis of the online population’s preferences of locations are limited to the greater

Pittsburgh area and the user mobility patterns are also based on the activities of people

in this area. Although the dataset used in Chapter 3 is cumulative data (e.g., cumulative

number of check-ins at a POI and etc.), which gives us an overview of the overall popularity

of the POIs; we still miss the temporal features of such data. If the check-in data are available

(we mean the check-ins from the POI being created), we could explore more features of the

online population’s preferences of locations.

Besides the limitation of the local dataset, another limitation is the data collection period.

The dataset is collected from February to July, 2012, hence we miss the user activities at the

beginning of 2012 and after July. Therefore, some important user mobility patterns are not

observed in our study. For example, as we mentioned in Section 4.3.2.1 we do not see Heinz

Field (American Football Stadium) as a top POI in Sports Topic because the data collection

period does not cover the football season. Another limitation of the proposed work is about

the definition of the travelers. In Section 4.4.1 we simply define a traveler as a user whose

hometown is more than about 310 miles away from downtown Pittsburgh. We believe the

definition of a traveler should consider more information about the user. However, we can

not get more information from the public data provided by Foursquare API, thus we could

not find a better way to differentiate travelers from local users. If more information about

the users are available to help categorize travelers, we will achieve a more comprehensive

and accurate study about the travelers’ behaviors.
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With regards to the proposed hybrid trust-based POI recommendation, our assumption

is that all the check-ins are honest. We do not consider any threat model in evaluating

users’ trust values and and POIs’ reputations. However, some attacks could subvert the

proposed approach and sybil attack is a case in point. That is, if a malicious user creates a

lot of fake accounts, cleverly creates friendship relations with other genuine accounts and also

creates a large number of fake check-ins, the POIs’ reputation can be impacted by such fake

check-ins from the fake accounts. Thus, more work is needed in preventing such attacks.

Moreover, another limitation of the proposed hybrid trust-based POI recommendation is

that its convergence is not mathematically proven. Our implementation about stopping the

reputation calculation is based on setting maximum iteration times and a small constant.

The calculation will be stopped if achieving the maximum rounds of iteration or the difference

between the current reputation value and the last value is smaller than the constant. Besides,

one may doubt that the recall and precision are not as high as the item recommendations

in other platforms such as Amazon. This is mainly caused by the sparse matrix of users’

check-ins. Table 5.1 shows that the average check-ins per user is about 27 within 5 months,

which indicates that a user engages in about one check-in per week. Thus, we can find

that on average LBSN users usually share very few check-ins, which is different from the

dataset collected from Amazon or Netflix. In the platform such as Amazon or Netflix, all

the purchase histories are recorded. However, in LBSN platform, only the user activities

shared by the users will be recorded and the most activities related to POIs are not shared

by the users on LBSN platform. Therefore, the sparse dataset limits the performance of the

proposed algorithm.

6.3 FUTURE WORK

In this section, we briefly enumerate the potential future research directions in the context

of this dissertation.

We mentioned in the previous section that our study are based on a local dataset per-

taining to the Greater Pittsburgh area. Thus, employing our data analysis and mining
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approaches on other local datasets or a global dataset will strengthen the work on explor-

ing human preferences of locations. Also, since some periods within a year are not covered

by our dataset, with more data especially collected during the missing period will give a

more comprehensive understanding of the human mobility patterns and more meaningful

geographic topics. Moreover, if more demographic information such as gender or age infor-

mation is available, employing the proposed approach to analyze and mining dateset on a

basis of such information is also very interesting.

More explorations of using the SVD-based approach or other models on the LBSN check-

in dataset are also interesting. In Section 4.6 we study our check-in dataset using the SVD-

based approach and we get some interesting results. However, our exploration about it is

still at an early stage. For example, we speculate that the sparse feature of our check-in

dataset and the many 1s in the matrix may cause the SVD-based approach to capture the

user behaviors or patterns related with the significant elements in the matrix, so it would be

interesting to investigate the results of using SVD-based approached on normalized matrix.

Moreover, the proposed POI recommendation approach proposed in this dissertation can

be extended to predict the LBSN users’ next check-ins. By carefully considering the temporal

aspects of the users’ check-ins, a novel approach to predict the human mobility based on the

social impacts and users’ previous behavior can be developed. Also, temporal features could

be used to extend the proposed POI recommendation approach to improve the performance

of the recommendation. For example, recommending a restaurant at the lunch/dinner time

is obviously better than recommending a bookstore at that time. In this dissertation we

do not consider the temporal feature in the proposed POI recommendation, which could be

an interesting direction in improving the approach. Furthermore, our evaluation result of

the proposed hybrid trust-based POI recommendation using the categorized dataset achieve

higher performance in both precision and recall. Another direction of improving the proposed

recommendation approach could be considering the category information of the POIs.

In Section 5.6 we mentioned how to simply employ the proposed approach in POI rec-

ommendations for a group of users. With regards to the POI recommendations, we believe

recommending POIs for a group of users is also important and will be the next hot research

area. This is because the traditional item recommendation requirement usually targets in-
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dividual users, e.g., recommending books on Amazon or movies on Netflix; there is limited

social activities involved in such requirements. However, social activities play a very impor-

tant role in human activities related to locations, therefore the POI recommendations which

are closely related to the human activity should be able to capture the social factors and

consider the location preferences of important users attending the activity. Although the

proposed hybrid trust-based POI recommendation leverage the social graph in evaluating

the reputation of POIs in making recommendations, it still focuses on the POI recommenda-

tions for individual users rather than for a group of users. Recommending POIs for a group

of users will be a very practical and interesting topic and our current work simply shows a

possible direction toward it.

Last but not the least, the proposed hybrid trust-based model may be extended to detect

the fake ratings. In some platforms, users can leave a rating of the items and it is possible

for some malicious users to leave fake and high ratings for some bad items. Using the idea

of the proposed hybrid trust-based model to compute the reputation of the items may be

helpful in detecting the suspicious items, as the reputation calculated based on the honest

interactions and social information (if available) will be different with the fake high ratings.

Therefore, it would be interesting to explore using the real and honest interactions and social

information to address such fake rating issues.
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