2,063 research outputs found

    TopoGraph: an end-to-end framework to build and analyze graph cubes

    Get PDF
    Graphs are a fundamental structure that provides an intuitive abstraction for modeling and analyzing complex and highly interconnected data. Given the potential complexity of such data, some approaches proposed extending decision-support systems with multidimensional analysis capabilities over graphs. In this paper, we introduce TopoGraph, an end-to-end framwork for building and analyzing graph cubes. TopoGraph extends the existing graph cube models by defining new types of dimensions and measures and organizing them within a multidimensional space that guarantees multidimensional integrity constraints. This results in defining three new types of graph cubes: property graph cubes, topological graph cubes, and graph-structured cubes. Afterwards, we define the algebraic OLAP operations for such novel cubes. We implement and experimentally validate TopoGraph with different types of real-world datasets.Peer ReviewedPostprint (author's final draft

    Graph BI & analytics: current state and future challenges

    Get PDF
    In an increasingly competitive market, making well-informed decisions requires the analysis of a wide range of heterogeneous, large and complex data. This paper focuses on the emerging field of graph warehousing. Graphs are widespread structures that yield a great expressive power. They are used for modeling highly complex and interconnected domains, and efficiently solving emerging big data application. This paper presents the current status and open challenges of graph BI and analytics, and motivates the need for new warehousing frameworks aware of the topological nature of graphs. We survey the topics of graph modeling, management, processing and analysis in graph warehouses. Then we conclude by discussing future research directions and positioning them within a unified architecture of a graph BI and analytics framework.Peer ReviewedPostprint (author's final draft

    Foundations and modelling of dynamic networks using Dynamic Graph Neural Networks: A survey

    Full text link
    Dynamic networks are used in a wide range of fields, including social network analysis, recommender systems, and epidemiology. Representing complex networks as structures changing over time allow network models to leverage not only structural but also temporal patterns. However, as dynamic network literature stems from diverse fields and makes use of inconsistent terminology, it is challenging to navigate. Meanwhile, graph neural networks (GNNs) have gained a lot of attention in recent years for their ability to perform well on a range of network science tasks, such as link prediction and node classification. Despite the popularity of graph neural networks and the proven benefits of dynamic network models, there has been little focus on graph neural networks for dynamic networks. To address the challenges resulting from the fact that this research crosses diverse fields as well as to survey dynamic graph neural networks, this work is split into two main parts. First, to address the ambiguity of the dynamic network terminology we establish a foundation of dynamic networks with consistent, detailed terminology and notation. Second, we present a comprehensive survey of dynamic graph neural network models using the proposed terminologyComment: 28 pages, 9 figures, 8 table

    Multidimensional process discovery

    Get PDF

    Mining Query Plans for Finding Candidate Queries and Sub-Queries for Materialized Views in BI Systems Without Cube Generation

    Get PDF
    Materialized views are important for optimizing Business Intelligence (BI) systems when they are designed without data cubes. Selecting candidate queries from large number of queries for materialized views is a challenging task. Most of the work done in the past involves finding out frequent queries from the past workload and creating materialized views from such queries by either manually analyzing workload or using approximate string matching algorithms using query text. Most of the existing methods suggest complete queries but ignore query components such as sub queries for creation of materialized views. This paper presents a novel method to determine on which queries and query components materialized views can be created to optimize aggregate and join queries by mining database of query execution plans which are in the form of binary trees. The proposed algorithm showed significant improvement in terms of more number of optimized queries because it is using the execution plan tree of the query as a basis of selection of query to be optimized using materialized views rather than choosing query text which is used by traditional methods. For selecting a correct set of queries to be optimized using materialized views, the paper proposes efficient specialized frequent tree component mining algorithm with novel heuristics to prune search space. These frequent components are used to determine the possible set of candidate queries for creation of materialized views. Experimentation on standard, real and synthetic data sets, and also the theoretical basis, proved that the proposed method is able to optimize a large number of queries with less number of materialized views and showed a significant improvement in performance compared to traditional methods

    Scalable analysis of movement data for extracting and exploring significant places

    Get PDF
    Place-oriented analysis of movement data, i.e., recorded tracks of moving objects, includes finding places of interest in which certain types of movement events occur repeatedly and investigating the temporal distribution of event occurrences in these places and, possibly, other characteristics of the places and links between them. For this class of problems, we propose a visual analytics procedure consisting of four major steps: 1) event extraction from trajectories; 2) extraction of relevant places based on event clustering; 3) spatiotemporal aggregation of events or trajectories; 4) analysis of the aggregated data. All steps can be fulfilled in a scalable way with respect to the amount of the data under analysis; therefore, the procedure is not limited by the size of the computer's RAM and can be applied to very large data sets. We demonstrate the use of the procedure by example of two real-world problems requiring analysis at different spatial scales
    • …
    corecore