
Noname manuscript No.
(will be inserted by the editor)

TopoGraph: An End-To-End Framework to Build
and Analyze Graph Cubes

Amine Ghrab · Oscar Romero · Sabri
Skhiri · Esteban Zimányi

Received: date / Accepted: date

Abstract Graphs are a fundamental structure that provides an intuitive ab-
straction for modeling and analyzing complex and highly interconnected data.
Given the potential complexity of such data, some approaches proposed ex-
tending decision-support systems with multidimensional analysis capabilities
over graphs. In this paper, we introduce TopoGraph, an end-to-end framwork
for building and analyzing graph cubes. TopoGraph extends the existing graph
cube models by defining new types of dimensions and measures and organiz-
ing them within a multidimensional space that guarantees multidimensional
integrity constraints. This results in defining three new types of graph cubes:
property graph cubes, topological graph cubes, and graph-structured cubes.
Afterwards, we define the algebraic OLAP operations for such novel cubes.
We implement and experimentally validate TopoGraph with different types of
real-world datasets.

Keywords Graph Cube; OLAP Cube; Graph Processing; Graph Mining;
Multidimensional Graph

A. Ghrab
EURA NOVA, Mont-Saint-Guibert, Belgium
E-mail: amine.ghrab@euranova.eu

O. Romero
Universitat Politècnica de Catalunya, Spain
E-mail: oromero@essi.upc.edu

S. Skhiri
EURA NOVA, Mont-Saint-Guibert, Belgium
E-mail: sabri.skhiri@euranova.eu

E. Zimányi
Université Libre de Bruxelles, Belgium
E-mail: ezimanyi@ulb.ac.be

This is a post-peer-review, pre-copyedit version of an article published in Information Systems Frontiers.
The final authenticated version is available online at: http://dx.doi.org/10.1007/s10796-020-10000-z

2 Amine Ghrab et al.

1 Introduction

In the growing data-driven market, organizations are thriving to improve their
decision-making using various data analytics frameworks. Graph analytics in
particular are emerging as a promising asset for the modeling and analysis of
highly complex network data generated by increasingly interconnected busi-
ness and social environments. Indeed, graphs are a fundamental structure that
provides an intuitive abstraction for modeling multiple complex domains such
as social/professional networks, transportation networks, and protein-protein
interaction networks. Graph algorithms have been used to address complex
business applications such as detecting frauds in financial transactions or im-
proving recommendation accuracy in retail (Russell, 2013; Akoglu, Tong, &
Koutra, 2015). To gain novel insights into complex graph structures, this paper
investigates the usage of multidimensional models and OLAP cubes to enable
complex ad-hoc querying of aggregated and consolidated graph data.

Currently, the majority of the existing multidimensional models and sys-
tems were designed to support relational data. Due to the fundamental differ-
ence between graph and relational data, these models and systems are not suit-
able for the efficient management and analysis of graphs. Analyzing a graph
from a relational perspective incurs in a potential loss of the graph struc-
ture and leads to limited analysis capabilities. Therefore, graph warehousing
is emerging as the field that extends current information systems with large
graph management and analytics capabilities. To effectively explore graph data
warehouses, graph cubes are the building-block that enables the synthesis and
complex interactive querying of large volumes of graph data. Yet, there is still
room for improving the current state of the art for designing and building
graph cubes, since most graph warehousing solutions ignore the topological
aspects of the graphs.

Many approaches were proposed to address the graph data warehousing
challenge (Ghrab, Romero, Jouili, & Skhiri, 2018; Queiroz-Sousa & Salgado,
2019). These efforts laid the foundation for multidimensional modeling and
analysis of graphs. They introduced the notion of graph cube, where a subset
of the graph attributes is considered as dimensions along which the graph is
aggregated, and the aggregate graph itself is the measure. They studied new
materialization techniques, and formalized new graph operations such as cross-
boids (Zhao, Li, Xin, & Han, 2011). In this work, we extend the state of the art
on graph warehousing by introducing new types of graph cubes that leverage
both the content and the topology of the graphs, and expose topological and
graph-structured insights. Most state-of-the-art papers consider the aggregate
graph as the only measure to be examined. A notable difference of our work
with regard to these paper is that we (1) capture new types of measures at a
finer granularity level, (2) represent them individually with numerical values
or graphs, and (3) position them within new types of graph cubes. Therefore,
these cubes embed new types of measures and dimensions not captured by
previous work. We discuss the required multidimensional integrity constraints
on graphs, completely overlooked by current approaches, and show that our

TopoGraph: An End-To-End Framework to Build and Analyze Graph Cubes 3

cubes guarantee them. To the best of our knowledge, our framework is the first
to define and guarantee the multidimensional integrity constraints on graphs.
We further discuss the correspondence between graph cubes and relational
OLAP cubes and identify the few specific cases where a graph cube could be
loaded into a ROLAP cube. We show that the integration of graph cubes with
the existing ROLAP systems is not a trivial task and motivate the need for
graph-specific warehousing systems.

The research questions we address in this paper are: given a graph, what
kind of new graph cubes could be extracted from it? When could a graph cube be
mapped and loaded to a ROLAP cube? And how could such novel graph cubes be
analyzed from a multidimensional perspective? As a result, we present Topo-
Graph, a graph data warehousing framework that extends current graph ware-
housing models with new types of cubes and queries combining graph-oriented
and OLAP querying. TopoGraph goes beyond traditional OLAP cubes, which
process value-based grouping of tables, by considering in addition the topo-
logical properties of the graph elements. And it goes beyond current graph
warehousing models by proposing new types of graph cubes. These cubes em-
bed a rich repertoire of measures that could be represented with numerical
values, with entire graphs, or as a combination of them. Moreover, we dis-
cuss the correspondence between the graph cubes proposed in this paper and
traditional OLAP cubes, and motivate the need for native graph warehous-
ing systems. Given the proposed cubes, TopoGraph aims at providing answers
to complex questions, asked in a business context, that require the analysis
of both the content and the topology of the graph. Relevantly, TopoGraph
is our proposal to overcome the current shortcomings of graph warehousing
approaches resulting from our experience in real-life enterprise settings. We il-
lustrate in the following example three typical questions to which TopoGraph
is designed to answer.

Example 1 (Social Network) Consider a social network such as Twitter where
a set of users are following each other, post and retweet a set of tweets as
illustrated in Figure 1. We distinguish three types of queries that could be
used for analyzing graph properties from a multidimensional perspective, and
illustrate them on a social network through the following examples.

Content Query Content query target content-based measures and are com-
puted by applying aggregation functions such as count and average. They are
used to answering queries such as (1) counting the total number of favorites a
tweet received from a certain user location, (2) the average number of followers
a community of users have, or (3) the total number of tweets on a given date
by users in a certain language. Existing OLAP frameworks are designed to
handle this type of queries.

Topological Query These queries focus on the topological properties of
graph elements, and are computed by applying graph algorithms that out-
put numerical values, such as node degree, graph diameter, and PageRank.

4 Amine Ghrab et al.

User

ID
Loc
Fol

Com

POST

Tweet

ID

Date
Lang
Fav

RETWEET

FOLLOW

User

ID: 3
Loc: ES
Fol: 310
Com: A

User

ID: 1
Loc: BE
Fol: 150
Com: A

User

ID: 4
Loc: BE
Fol: 60
Com: A

Tweet

ID: 1
Date: 2018
Lang: FR
Fav: 10

POST

FOLLOW

FOLLOW

Tweet

ID: 2
Date: 2019
Lang: FR

Fav: 2

RETWEET
POST

FOLLOW

Twitter Schema Twitter Instance

Fig. 1: Schema and Instance of a Social Network Property Graph

These queries take as input a graph and return a numerical value. They could
be used to answer questions such as finding the most influential (i.e., having
highest PageRank) users from a given community (i.e., after computing a com-
munity detection algorithm), who tweeted in a certain language. This kind of
queries is specific for graph cubes, and they cannot be naturally supported
by traditional OLAP frameworks. Graph analytics frameworks are the natural
choice to tackle this type of queries, but current graph warehousing methods
do not provide foundations on how to combine them with OLAP.

Graph-Structured Query Graph structured queries use graph patterns to
match and retrieve complex graph information. Both the input and the output
of these queries are graphs. These queries are computed by applying graph
algorithms that output graphs, such as frequent pattern mining and minimum
spanning tree to capture complex grouping of graph elements. They could be
used to answer questions such as (1) finding the most frequent communication
pattern in a network of users from a given location, or (2) retrieving the
shortest path between a pair of tweets during a certain period. Similar to the
previous case, current graph warehousing approaches do not support this kind
of queries. ut

Our main contributions are summarized as follows:

TopoGraph: An End-To-End Framework to Build and Analyze Graph Cubes 5

– We propose TopoGraph, a novel graph warehousing model aware of the
topological properties of graphs, to support decision-making on graphs.
Thus, we formally define three novel categories of graph cubes: property
graph cubes, topological graph cubes, and graph structured cubes. These
cubes capture both content and topological properties of heterogeneous
graphs. They define new types of measures and dimensions specific for
graphs and place them within the multidimensional space while preserving
the multidimensional integrity constraints on graphs.

– We discuss the few cases where the information captured by the proposed
graph cubes could be loaded into a corresponding OLAP cubes. We show
that there is a big gap between graph cubes and relational OLAP cubes,
and motivate the need for dedicated graph warehousing systems.

– We define the algebraic OLAP operations for the new graph cubes, and
illustrate their application for querying the topological information em-
bedded in the graphs. These operators enable complex graph querying and
OLAP analysis of the topology and content of graph cubes from different
perspectives and through different aggregation levels.

– We implement the novel graph cube computation and aggregation approach
proposed by TopoGraph, and experimentally validate its efficiency with
different types of real-world datasets. We further describe the architecture
and the API of a social network analysis framework built with TopoGraph.

We organize the rest of the paper as follows. In Section 2 we formally
define the property graph cube and its related multidimensional concepts. In
Section 3, we define the concept of topological graph cubes and detail the
particular process of deriving OLAP Cubes containing topological measures.
Section 4 introduces graph structured cubes. We define OLAP operations on
graph cubes in Section 5. In Section 6, we describe the architecture of a graph
warehousing system using TopoGraph and evaluate its performance on Neo4j
using multiple datasets. Section 7 discusses the related work. Finally, Section 8
discusses open challenges and concludes the paper.

2 Graph Cubes on Property Graphs

In this section, we discuss the graph data model, and we introduce the mul-
tidimensional model for graphs, used for building and analyzing the graph
cubes.

2.1 Property Graphs

We use the property graph model to represent the input graph data. Property
graphs are widely used by industrial graph databases. The model describes a
directed, labeled and attributed multi-graph (Rodriguez & Neubauer, 2010).
Each real-world entity is represented by a node. Relationships between entities
are represented using edges. We formally define a property graph as follows:

6 Amine Ghrab et al.

Definition 1 [Property Graph] A property graph is defined as G =
(V, E ,L,A), where:

– V is a finite set of nodes.
– E ⊆ V × V is a finite set of edges.
– L = {l1, ..., li} is the set of labels of the graph elements. The label denotes

the ”type” of the node/edge (i.e., the class to which it belongs). L : (V ∪
E)→ L is a total function that returns the label of the graph element. For
example, if v ∈ V, then the label l of v is given by l = L(v).

– A = {A1, .., Aj} is the set of attributes of the graph elements. For each
node v ∈ V (resp. edge e ∈ E) the set of its k attributes is A(v) =
{A1(v), A2(v), ..., Ak(v)}. ut

Figure 1 shows an example of a social network property graph. The graph
represents a set of Twitter user nodes and their tweets. In addition to its at-
tributes (e.g., Location or Language), each graph element has a label, which is
the distinctive attribute that defines the type of the graph element (e.g., User,
Tweet, FOLLOW etc.). To be uniquely identified, each node has an identifier
attribute, while edges are identified by the triple 〈source, label, target〉.

2.2 Property Graph Cubes

Using the property graphs and their aggregations, we introduce in this sec-
tion the definitions of the multidimensional concepts in the context of graph
data. These definitions are based on and extend the graph cube definitions
presented in the previous works (Zhao et al., 2011). We formalize the concept
of dimension, measure, and graph cube. The multidimensional concepts intro-
duced in the section focus on capturing the content-based information of the
graph and are therefore similar to the traditional multidimensional concepts
used by relational frameworks.

Definition 2 [Dimension] A dimension provides the possible perspectives
for the multidimensional analysis of the graph topology and content. It is
defined as Di ∈ D, where D ⊆ A is a subset of the attributes of the
graph elements. Dimension attributes have to belong to a discrete domain.
Given a graph element u ∈ V ∪ E , the set of its n dimensions is D(u) =
{D1(u), ..., Dn(u)}. ut

Definition 3 [Dimension Hierarchy] A set of dimensional attributes might
be linked by a hierarchy defined by the triple 〈name,Hdim,R〉. Hdim =
{Di, ..., Dn, Apex} represents the set of the hierarchical dimensional levels of
a dimension dim. R is a partial order on the elements of Hdim and describes
a directed acyclic graph defining the hierarchy between the dimension’s levels.
The base level and highest level Apex (denoted with ∗) are located at the end
of the partial order. ut

Definition 4 [Measure] A measure is the basic unit of data that is placed
in the multidimensional space and is examined through the dimensions. It is

TopoGraph: An End-To-End Framework to Build and Analyze Graph Cubes 7

Activity

TotalTweets

User

City
Country

Tweet

Year
Language

Star Schema

Tweet

Date
Language

User

City

Country

POST
Total Tweets

Dimensional
attributes

Traditional Measure
RETWEETFOLLOW

Multidimensional Graph Schema

Fig. 2: Tweeting Activity Multidimensional Graph and Star Schema

defined as Mi ∈ M, where M ⊆ A, and each Mi is the result of applying
an aggregation function F (e.g., SUM, AVG etc.) on a set of attributes of
the graph. Given a graph element u ∈ V ∪ E , the set of its n measures is
M(u) = {M1(u), ...,Mn(u)}. ut

Multiple classification for measures were proposed in the literature
(Vaisman & Zimányi, 2014), such as the classification by the aggregation func-
tion. Depending on the aggregation function a measure could be (1) distribu-
tive (i.e., the function could executed in a distributive way such as count or
sum), (2) algebraic (i.e., the function is a combination of distributive ones such
as average), or (3) holistic (the measure needs to be recomputed from scratch
such as the median).

Definition 5 [Multidimensional Graph]
A multidimensional graph G = (V, E ,L,D,M) is a property graph annotated
with multidimensional concepts. That is, dimensional semantics are added to
the aggregated graph elements by selecting the attributes that are considered
as dimensions, and those considered as measures such that D ∪M = A and
the set of dimension and measure attributes are disjoint D ∩M = ∅. ut

An aggregate graph G′ of a multidimensional graph G is obtained by merg-
ing a subset of the nodes and/or the edges of G. Only nodes (resp. edges) with
the same labels can be merged together. The measures of the aggregate nodes
(resp. edges) are computed using an aggregation function applied on the cor-
responding attributes of the nodes (resp. edges) of the initial graph. Formally,
multidimensional graph aggregation is defined as follows:

Definition 6 [Multidimensional Aggregate Graph] A multidimensional
aggregate graph is obtained by aggregating a multidimensional graph along

8 Amine Ghrab et al.

<City>
User

<Year, Language>
TweetX

(<*>, <*, *>)

(<City>, <Year, Language>)

(<City>, <*, Language>) (<City>, <Year, *>) (<Country>, <Year, Language>)

(<City>, <*, *>) (<Country>, <*, Language>) (<Country>, <Year, *>) (<*>, <Year, Language>)

(<Country>, <*, *>) (<*>, <Year, *>) (<*>, <*, Language>)

Fig. 3: Tweeting Activity Lattice

a subset of its dimensions D′. The aggregate multidimensional graph G′ =
(V ′, E ′,L′,D′,M′) is defined as follows:

– V ′ is the set of nodes, where each node v′ ∈ V ′ is an aggregate node
associated with a group of vertices Gv ⊆ V such that ∀v ∈ Gv = {vi, .., vk}
there exists one and only one v′ corresponding to the set of nodes Gv.

– E ′ ⊆ V ′ × V ′ is the set of edges, where each edge e′ = (u′, v′) ∈ E ′ is an
aggregate edge associated with a group of edges Ge = {ei, .., ek} such that
∀e(u, v) ∈ Ge, there exists one and only one e′ corresponding to Ge.

– The dimensions of the aggregate graph are D′ ⊂ D. D′
i = Di if the at-

tribute Di was not aggregated (e.g. community remains the same after
grouping users by community), and D′

i = ∅, often represented with a ∗ in
the literature, if the dimension Di is removed after the aggregation (e.g.,
user ages are removed after grouping users by community)

– The measures of the aggregate graph are M′. ∀M ′
i ∈ M′ =

{M1
′,M2

′, ...,Mn
′}, the value of the attribute M ′

i of an aggregate node
(resp. edge) v′ is computed by applying an aggregation function F on the
corresponding attribute values of all the nodes of Gv (corresponding to v′)
with M ′

i(v
′) = Fi(Gv) (e.g., computing the total number of followers per

community node after grouping users by community). ut

Definition 7 [Property Graph Cube] A property graph cube is the fun-
damental structure supporting the multidimensional modeling and analysis
of the graph data. It consists of multiple graph cuboids, each of which is
a multidimensional aggregate graph built by aggregating the original multi-
dimensional property graph along the dimensional attributes. The lattice is
used to represent and organize all the possible multidimensional aggregations
of the graph. Graphs cuboids relate between them when a cuboid contains

TopoGraph: An End-To-End Framework to Build and Analyze Graph Cubes 9

an attribute with a roll-up relationship, i.e., belong to the same dimension
hierarchy and are directly related. Given n dimensional attributes, the graph
cube contains 2n graph cuboids that could be aggregated following the lattice
structure. We distinguish two particular graph cuboids: (1) the base graph
cuboid (where the multidimensional graph is at the base level), and (2) the
apex graph cuboid (where the multidimensional graph is aggregated to the
top level). ut

Multidimensional aggregation of a property graph is the operation of con-
solidating a set of graph elements into a single one located at a higher level of
the lattice. Two constraints need to be enforced when building graph cubes:
(1) correct aggregation of the graph cuboids, and (2) correct placement of the
graph measures within the multidimensional space. To ensure a correct aggre-
gation of cube measures along dimension hierarchies, the graph aggregation
should satisfy three constraints (Lenz & Shoshani, 1997):

– Completeness: Dimensional concepts are embedded within the graph.
Therefore, every graph element should be involved in at least one dimen-
sion hierarchy. During a multidimensional aggregation, all matched graph
elements should be aggregatable to a higher dimension hierarchy level. This
constraint is satisfied if every graph element is associated to at least one
dimension level.

– Disjointness: Each graph element is included at most once to create an
aggregate entity. This condition is satisfied if every graph element could
not belong to more than one dimension level at once.

– Compatibility: Compatibility between the aggregation algorithm and the
aggregate graph elements to prevent non-meaningful operations such as
computing the sum of user ages. The compatibility depends on the ap-
plication. For example, when aggregating a group of users, the designer
can decide whether applying an aggregation function such as average of
the PageRank is meaningful for the application. Typically, compatibility
requires additional external knowledge to know what metrics can be ag-
gregated with what functions.

Completeness and disjointness are guaranteed by a one-to-one relationship
between aggregatable and aggregate elements between consecutive cuboids.
TopoGraph cubes guarantee this constraint as there exist one and only one
node v′ ∈ V ′ (resp. edge) in an aggregate graph corresponding to any given
set of nodes Gv in the original graph. Compatibility cannot be automatically
checked unless additional information is provided. On the other hand, the
placement constraint is guaranteed given that the set of dimensional values
generating the multidimensional space is different for each graph measure.
Therefore, at most one graph element that contain a certain combination of
dimension values exist in a given graph cuboid. This constraint is enforced
by the statement that any pair of graph elements of the same class that have
the same A′

i are merged together when aggregating a graph. In the same
vein, the following types of graph cubes introduced in this paper satisfy the

10 Amine Ghrab et al.

multidimensional integrity constraint, as they follow a similar methodology for
building and aggregating the graph.

Example 2 (Popularity Graph Cubes) Given the Twitter property graph of
Figure 1, we design a possible multidimensional graph schema reflecting
the tweeting activity of users. Figure 2 depicts the multidimensional graph
schema and the corresponding star schema of the OLAP cube, while Fig-
ure 3 depicts its lattice. The dimensions for User and Tweet nodes are
D = {City, Country, Y ear, Language}, with the hierarchical levels Hlocation

= {City, Country}. The measure is computed on the POST edge M =
{TotalTweets}. ut

3 Topological Graph Cubes

The analysis of content-based properties of graph data (e.g., compute the
average number of favorites of tweets of a given user group) is similar to
the OLAP analysis of relational data in that it does not exploit the graph
structure. We focus therefore in the following sections on the two graph-specific
cubes introduced in Section 1: topological and graph-structured cubes.

3.1 Topological Cube Model

A rich repertoire of algorithms was developed to efficiently solve questions
such centrality of nodes, or community of users. These techniques can reveal
interesting properties about the graph topology and the connectivity between
graph elements. Indeed, modeling data as a graph is typically done when there
is an interest in exploiting such techniques. We define in this section the con-
cept of topological graph cubes, and use them to model and analyze topological
graph properties from a multidimensional perspective. As a consequence, this
kind of cubes merge graph analytics and OLAP. We define first the topological
concepts and discuss how to derive them from a given property graph.

Definition 8 [Topological Attribute] Given a graph G = (V, E ,L,A), a
topological attributes is defined as Ai

t ∈ A. The value of the topological
attribute Ai

t for a node v ∈ V (resp. an edge e ∈ E) is given by Ai
t(u) = T (v, l)

where:

– T : is the function computing the topological attribute value for v (resp. e).
This function relies on a graph algorithm (such as Louvain for community
detection)to compute the value of the topological attribute Ai

t for the node
v.

– l ∈ L: most graph algorithms are designed to traverse a homogeneous graph
to compute the topological attributes. However, this paper addresses the
general case of heterogeneous graphs. The label l is used to guide the
algorithms through a homogeneous subgraph of the input graph. ut

TopoGraph: An End-To-End Framework to Build and Analyze Graph Cubes 11

Property Graph Schema Enriched Property Graph Schema

User

Country

Platform

Community
PageRank

Connected
Platform

Topological
attributes

User

Country

Connected
Platform Traversal

attribute

Fig. 4: Enriching Property Graph with Topological Attributes and Deriving
Multidimensional Schema

Given a property graph, an enriched graph could be obtained by applying
graph algorithms to add more topological properties to the nodes and edges
prior performing OLAP. For example, Figure 4 shows the schema of the initial
property graph, and an enriched version of it where two topological attributes
were computed and integrated into the graph. We distinguish three different
categories of attributes:

– Traditional attributes: reflect content-based properties of the graph ele-
ments such age Country of users.

– Topological attributes: reflect topological properties of the graph elements
such as community and PageRank of users.

– Traversal attributes: they contain the label of the edge traversed by the
graph algorithm to compute the topological attributes (e.g. Platform for
user nodes used for computing community and PageRank).

Definition 9 [Topological Dimensions] Given a graph G = (V, E ,L,A),
the topological dimensions Dt ∈ D are a subset of the topological attributes
Dt ⊆ At used for analyzing the topological graph properties from different
perspectives and at different granularities. ut

Definition 10 [Topological Measures] Given a graph G = (V, E ,L,A),
the topological measures M t ⊆ M are a subset of the topological attributes
M t ⊆ At analyzed in the graph cube. ut

The set of topological dimensions and measures form the set of topological
attributes: Dt ∪M t = At. The particularity of topological measures is that
they:

– require the graph structure to be computed.

12 Amine Ghrab et al.

User

Country
Community

Popularity

PageRank

Platform

name

Connected
Platform

Star Schema User Popularity Multidimensional Schema

User

Country

Platform

Community

PageRank

Connected
Platform

Traditional
dimensional

attribute

Topological
dimensional

attribute

Topological
measure attribute

Traditional
dimensional

attribute

Traversal attribute

Fig. 5: Mapping Between OLAP Cube and a Multidimensional Topological
Graph Schema

– are holistic, thus, they need to be recomputed after each aggregation, i.e.,
the graph algorithm to compute the topological attributes has to be ex-
ecuted after each graph aggregation, instead of applying traditional ag-
gregation functions. The topological dimensions, however, need the graph
structure only at the initial phase to compute the base graph cuboid.

– may need to be computed using a homogeneous subgraph of the multidi-
mensional graph (most algorithms to compute topological properties such
as centrality only make sense on homogeneous subgraphs).

Given a multidimensional graph, topological graph cubes are derived to
capture the topological properties of graphs and represent them with numerical
values (in contrast to traditional content-based properties that do not capture
the topological characteristics).

Definition 11 [Topological Graph Cube] A topological graph cube is a
graph cube that captures the topological properties of graphs and represent
them with numerical values. It is obtained by restructuring the topologi-
cal multidimensional graph G = (V, E ,L,D, M) in all possible aggregations
through the topological dimensions and/or by embedding and aggregating
topological measures. That is, ∃Dt ⊆ D ‖ ∃Mt ⊆M. ut

The model we propose in this paper could be mapped to a star schema
shown in Figure 5. If the cube has a topological measure, we note that in

TopoGraph: An End-To-End Framework to Build and Analyze Graph Cubes 13

Base	Graph	Cuboid

User
-	Country:	France

-Platform:	Facebook
-	Community:	A
*	PageRank:	0.7

User
-	Country:	Spain
-Platform:	Twitter
-	Community:	D
*	PageRank:	0.3

User
-	Country:	Belgium
-Platform:	Twitter
-	Community:	A
*	PageRank:	0.5

User
-	Country:	Belgium
-Platform:	Facebook
-	Community:	C
*	PageRank:	0.6

User
-	Country:	Spain

-Platform:	Facebook
-	Community:	B
*	PageRank:	0.5

Connected
Platform:	Facebook

User
-	Country:	Belgium
-Platform:	Linkedin
-	Community:	A
*	PageRank:	0.4

User
-	Country:	France
-Platform:	Twitter
-	Community:	A
*	PageRank:	0.8

Connected
Platform:	Twitter

Connected
Platform:	Twitter

Connected
Platform:	Twitter

Connected
Platform:	Facebook

Connected
Platform:	Twitter

Connected
Platform:	Facebook

Connected
Platform:	Linkedin

Connected
Platform:	Twitter

Connected
Platform:	Facebook

User
-	Country:	France
-Platform:	Linkedin
-	Community:	B
*	PageRank:	0.7

Connected
Platform:	Twitter

Connected
Platform:	Twitter

Connected
Platform:	Twitter

Connected
Platform:	Facebook

Connected
Platform:	Twitter

Connected
Platform:	Linkedin

Fig. 6: Base Graph Cuboid Instance

order to guarantee a correct cube summarizability, roll up operations cannot
be applied directly to OLAP cuboids to produce cuboids at higher aggrega-
tion levels, as typically done in OLAP. The reason is that following each roll
up operation, the graph structure changes and so the topological values do.
Specifically, given two cuboids Ci and Cj such that Ci ⊂ Cj , Cj results from
aggregating Ci according to the multidimensional information stored in the
topological multidimensional graph. However, the graph structure resulting
cannot be expressed as a transitive function in terms of the input graph struc-
ture, as typically done in traditional OLAP cubes. Thus, topological graphs
need to be computed once the cuboid they belong to has been created.

Example 3 (Popularity Graph Cubes) Given a property graph, we suggest a
process to enrich the graph with topological attributes, and derive a poten-
tial multidimensional schema and later its corresponding OLAP cube. We
consider the example of a property graph representing a social network as
in Figure 4. A single type of nodes and a single type of edges are consid-
ered: L = {User, Connected}. This graph is enriched to capture topologi-
cal properties of users such as their community and PageRank. We design a
possible multidimensional graph schema that embeds topological dimensions
and measures. Three dimensions are considered: D = {Country, Community,
P latform}, and the analyzed measure is PageRank. The measure is computed
using the PageRank algorithm that traverses each time the edges that have

14 Amine Ghrab et al.

Platform

Country

15 16

0.4 0.5

0.1 0.3

0.2 0.2

Community
(Topological Dimension)

 A

 B

|

 |

0.4 0.5 0.6

0.6 0.3 0.4

0.2 0.4 0.6

0.2

 0
.3

 0

.6

 0.
4

 0
.6

 0.

2

PageRank
(Topological Measure)

Spain

France

Belgium

Fig. 7: Popularity Topological OLAP Cuboid

the same value on their platform attribute (the traversal attribute). Figure 5
shows the mapping between the multidimensional popularity graph and its
corresponding star schema. An instance of the popularity multidimensional
graph at the base level is shown in Figure 6. Figure 7 shows an example of the
popularity OLAP Cube corresponding to the graph cuboid of Figure 6, where
community, platform and country are the dimensions, and the PageRank is
the topological measure. ut

3.2 Topological Graph Cuboid Processing

In this section we describe the topological cuboid aggregation algorithm 1.
This algorithm is used to build topological graph cuboids. It takes as input a
topological multidimensional graph, perform its aggregation along the given
dimensions, and then applies the chosen aggregation function to compute the
new measure values. The main phases of the algorithm are the following (note
that this algorithm guarantees the multidimensional integrity constraints dis-
cussed in Section 2.2):

1. Create a hash structure ϕ mapping each set of dimensional attributes from
D′ to an aggregate node/edge u ∈ V ′ ∪ E ′ (Line 2).

2. Create the set of aggregate nodes V ′: traverse the nodes of the multidimen-
sional graph and create a node in V ′ corresponding to each subset of nodes
in V sharing the same dimensional attribute values D′ (Line 2-12). That
is, for each node u ∈ V create its corresponding aggregate node u′ ∈ V ′

TopoGraph: An End-To-End Framework to Build and Analyze Graph Cubes 15

Algorithm 1: Topological Cuboid Aggregation
Input :
– A topological multidimensional graph G = (V, E,L,D,M)
– Dimensions of the aggregate cuboid: D′ ⊂ D

Output: An aggregate topological graph cuboid G′ = (V ′, E ′,L,D′,M′)
1 begin
2 Initialize a hash structure ϕ : D′ → V ′ ∪ E ′
3 for u ∈ V do
4 if ϕ(D′(u)) = NULL then
5 Create an aggregate node u′ ∈ V ′

6 L(u′)← L(u)
7 D′(u′)← D′(u)
8 M′(u′)← 0
9 ϕ(D′(u))← u′

10 for M ′
i ∈M′ do

11 if M ′
i is NOT topological then

12 M ′
i(u

′)← compute(M ′
i(u

′),Mi(u))

13 for e(u, v) ∈ E do
14 u′ ← ϕ(D′(u))
15 v′ ← ϕ(D′(v))
16 if ϕ(D′(e)) = NULL then
17 Create an aggregate edge e′(u′, v′) ∈ E ′
18 L(e′)← L(e)
19 D′(e′)← D′(e)
20 M′(e′)← 0
21 ϕ(D′(e))← e′

22 for M ′
i ∈M′ do

23 if M ′
i is NOT topological then

24 M ′
i(e

′)← compute(M ′
i(e

′),Mi(e))

25 for M ′
i ∈M′ do

26 if M ′
i is topological then

27 for u′ ∈ V ′ do
28 M ′

i(u
′)← compute(u′,M ′

i ,G′)
29 for e′ ∈ E ′ do
30 M ′

i(e
′)← compute(e′,M ′

i ,G′)

31 return G′ = (V ′, E ′,L,D′,M′)

(that has the dimensional attributes D′(u)) if it was not already created
in V ′ (Line 3-5). u and u′ share the same label and dimensional attributes,
and the measures are initialized (Line 6-8). The newly created node u′ is
stored as the value of the hash function corresponding to the dimensional
attributes D′(u) (Line 9). Otherwise, if an aggregate node corresponding
to u was already created, the non topological measure attributes M′(u′)
are updated using a user-defined function compute (Line 10-12).

3. Create the aggregate edges E ′: for each edge on e(u, v) ∈ E , we retrieve the
aggregate nodes in u′, v′ ∈ V ′ corresponding to its adjacent nodes u, v ∈ V
(Line 13-15). If e′(u′, v′) was not yet created, then a new edge e′(u′, v′) ∈ E ′

16 Amine Ghrab et al.

is created (Line 16-17). e and e′ share the same label and dimensional at-
tributes, and the measures are initialized (Line 18-20). The newly created
edge e′ is stored as the value of the hash function corresponding to the
dimensional attributes D′(e) (Line 21). Otherwise, if an aggregate node
corresponding to e was already created, the non topological measure at-
tributes M′(e′) are updated using a user-defined function compute (Line
22-24).

4. If a measureMi is topological, then it needs the whole aggregate graph G′ to
be built. The topological values for the nodes and edges are computed using
the aggregate graph G′ by applying a user-defined function compute (Line
25-30). The computation of topological values involves usually iterative
graph algorithms that traverse the whole graph G′.

3.3 Deriving OLAP Cubes from Graph Cubes

In this section, we detail our approach to derive OLAP cubes from multidimen-
sional graphs, and precisely from their corresponding graph cubes. Most of the
state-of-the-art techniques focus either on building traditional OLAP cubes,
or building graph cubes. Here we propose to establish the link between the
two. Thus, designing OLAP cubes that leverage the content and the topology
of the graph, and expose both numerical and graph-structured insights.

The main current assumption is that each graph cuboid can be loaded into
a relational OLAP cube. This is true for content-based graph cubes. However,
loading a graph cuboid into a relational cube causes the loss of the graph
structure. This loss of the graph structure have a direct consequences for graph
cube computation and analysis as follows:

– Graph cube computation: particularly roll up cannot be applied to get
cuboids at higher lattice levels. The reason is that following each roll up
operation, the graph structure changes. Therefore, the topological measures
on the aggregate graph need to be recomputed.

– Graph cube analysis: operations such as subgraph matching and traversal
could no longer be executed on the extracted OLAP Cube. Therefore, as
discussed in the previous section, the ability to deal with topological graph
cubes is lost.

Example 4 (Deriving Popularity OLAP cube from the Graph cube) Given the
multidimensional graph model in Figure 4, we design a lattice, as shown in
Figure 8. Each point in the lattice corresponds to a graph cuboid. For simplic-
ity, we consider the dimension attributes: {Location, Community, P latform},
while ignoring the hierarchies of the location dimension. We highlight
two particular aggregations: (1) node-only aggregations (i.e., only dimen-
sional attributes from user nodes are kept not fully aggregated as in
(〈Location, Community, ∗〉, 〈Location, ∗, ∗, ∗〉, and 〈∗, Community, ∗〉), and
(2) edge-only aggregation as in (〈∗, ∗, P latform〉). The fact analyzed is
the popularity of users. The measure is PageRank, computed by applying

TopoGraph: An End-To-End Framework to Build and Analyze Graph Cubes 17

| | |
BE FR SP

| | |
BE FR SP

| | |
BE FR SP

A -

B -

C -

Community

Location

Location

Community

Location

A -

B -

C -

 P
latform

0.3

0.3 0.6 0.4

0.3 0.4 0.1

0.3 0.5 0.4

0.2 0.6 0.7

Cuboids cannot be derived
directly from each other

0.3 0.5 0.2

0.6 0.5 0.3

0.4 0.6 0.8

OLAP Cubes generation
from graph cuboids

<Community>

<*>

<Community, Platform>

<Platform>

<Platform, Location>

<Community, Platform, Location>

U

U
UK
L

U
BE
F

U
SP
T

U
FR
L

U
BE
L

U
SP
F

U
UK
F

U
UK
T

U
SP
L

U
FR
T

U
FR
F

U
BE
L

U
FR
L

U
SP

U
FR U

FR
U
BE

U
SP

U
BE

U
UK

U U

UU

U

U
T

U
L

U
F

U
T

U
F

U
L

U
L

U
BE
L

U
SP
L

U
BE
T

U
BE
F

U
FR
T

U
FR
F

U
T

U
F

U
L

U
FR

U
BE

U
UK

U
SP

<Community, Location>

<Location>

Fig. 8: OLAP Cube Generation form Graphs

the PageRank algorithm in the social network following the edges labeled
Connected.
The figure depicts the coupled processes of (1) aggregation of graph cubes, and
(2) generation of corresponding OLAP cubes and the mapping kept between
them. This mapping is important, as the graph topology corresponding to
each OLAP cuboid needs to be preserved in order to compute the topological
measures such as PageRank. The measures could afterwards be loaded into
the OLAP cubes for further multidimensional analysis. ut

The mapping discussed in this section could help in the integration of
graph data and graph analytics within current data warehouses. However, the
link is pretty limited when graph analytics are combined with OLAP. This
has been the main assumption behind current graph OLAP tools, but this
is not realistic given the relevance of graph-specific algorithms when dealing
with graph data. Thus, given that most graph-derived cubes could not be

18 Amine Ghrab et al.

supported with current relational warehousing systems, this motivates the
need for building specialized graph OLAP warehousing systems.

4 Graph-structured Cubes

4.1 Graphs-structured Cube Model

Graph-structured cubes extend the traditional OLAP cubes with the capabil-
ity of having the dimension and measure values represented as graphs. Current
warehousing systems are not designed to support this type of cubes, which fur-
ther motivates the need for developing native graph warehousing systems. In
this section we formally define the concepts of graph-structured dimensions,
measures and cubes.

The graph-structured dimensions are dimensions whose values are repre-
sented as graphs. They express complex dimension values that could not be
represented by a simple value. This enables structuring the multidimensional
space in a novel way capturing graph elements that are connected in a complex
manner. Graph-structured dimensions provide therefore a powerful selection
mean to examine the behaviour of non-trivial grouping of nodes or edges.

The definition of graph-structured dimensions relies on graph patterns de-
fined as follows:

Definition 12 [Graph Pattern] A graph pattern P, over a property graph
G = (V, E ,L,A), is defined as P = (Vp, Ep, α, β), where:

– Vp is a finite set of nodes.
– Ep is a finite set of edges.
– β is the predicate applied on the labels li ∈ L of the graph elements. This

predicate is a conjunction of atomic predicates used to compare the label
specified on the pattern with the actual label of the node (resp. edge).
Given a label li and a string si, the comparison is of the form li op si, and
is performed using one of the two equality comparison operators =, 6=.

– α is the predicate applied on the attributes Ai ∈ A. This predicate is a
conjunction of atomic predicates that each of them compares a constant c
specified on the pattern with the value of the attributes on a given graph
elements (e.g., Ai(v)). The comparison is done using one of the following
comparison operators: <,≤,=,≥, >, 6=. ut

Definition 13 [Graph-structured dimension] A graph-structured dimen-
sion Di is a dimension represented with a graph pattern P used for selecting
a subset of the graph elements. The set of graph-structured dimensions is
Ds = {D1

s, D2
s, ..., Dn

s} ⊆ D. Each graph-structured dimension Di
s is rep-

resented by a graph pattern Pi. ut

The graph-structured measures are measures where the values are repre-
sented as graphs, which enables capturing and exposing insights and metrics
structured as graphs. Another main benefit of graph-structured measures is

TopoGraph: An End-To-End Framework to Build and Analyze Graph Cubes 19

User
-	Country:	Italy

User
-	Country:	Poland

User
-	Country:	Belgium

User
-	Country:	Austria

User
-	Country:	Portugal

Connected

User
-	Country:	Germany

User
-	Country:	Spain

Connected

Connected
Connected

Connected

Connected

Connected

Connected

User
-	Country:	Sweden

Connected

Connected

User
-	Country:	France

Connected

Connected

Fig. 9: Graph-structured Cuboid

Country

434 732 241

634 334 413

512 456 63

Spain

France

Belgium

Number of
Occurrences

2

3

1
5

1

2
5

1

2

4

Representative
Pattern

Fig. 10: Graph-structured Dimension

that they minimize the information loss, as they keep the graph structure after
being computed or aggregated.

Definition 14 [Graph-structured Measure] A graph-structured measure
M i

s is represented with a subgraph Gs. It is computed using a graph function
∆ that takes a graph as input and returns a graph, such as most frequent pat-

20 Amine Ghrab et al.

Platform

Twitter Facebook

Spain

Belgium

2

3

1

5

1

2

5

1

2
4

5

1

2

4

Most Frequent
Pattern

Country

Fig. 11: Graph-structured Measure

tern, or minimum spanning tree. An aggregation function F is used to compute
the graph-structured measure at different aggregation levels such as intersec-
tion or union of graphs. F and ∆ could be the same function (thereby recom-
puting the measure after each aggregation).Ms = {M1

s,M2
s, ...,Mn

s} ⊆ M
ut

Definition 15 [Graph-structured Cube] A graph-structured cube is a
graph cube that captures and represents the dimensional concepts using
graphs. Therefore, it contains either graph-structured dimensions or graph-
structured measures, or both. A graph-structured cube is obtained by restruc-
turing the multidimensional graph in all possible aggregations through the
graph-structured dimensions and/or by embedding and aggregating graph-
structured measures. ut

In the following example, we illustrate two graph-structured cubes, high-
lighting respectively graph-structured dimensions and measures. For each
cube, we show how graph-structured multidimensional structures could be
combined with the numerical ones defined in the previous sections.

Example 5 (Graph-structured Cubes) Consider the graph cuboid of Figure 9.
It represents a graph cuboid where users are grouped using the country di-
mension. Figure 10 shows a cube that highlights the case of graph-structured
dimensions. For this example, we assume that we can extract a set of patterns
that represent the graph elements, and we call these patterns the representa-
tive patterns. The horizontal axis of the cube is then populated by a set of
graph patterns depicting the representative patterns. Using this cube, the user
can analyze for example how often users from a given country are involved in

TopoGraph: An End-To-End Framework to Build and Analyze Graph Cubes 21

a representative pattern . Those are complex dimension values that could not
be represented by a numerical value, and need therefore to be defined by pat-
terns. To define the dimension values, the user could either find the pattern
using graph algorithms, or use his domain knowledge. The three patterns of
the graph-structured dimension of the cube of Figure 10 are represented on
the graph cuboid Figure 9 using different colors for each. Figure 11, on the
other hand, puts the focus on graph-structured measures. The measure stud-
ied here is the most frequent pattern, which could be obtained by applying the
graph algorithms. Each measure (i.e., frequent pattern) is then placed within
the graph-structured cube using two traditional dimensions: country and plat-
form. This cube could be used to analyze the most frequent pattern observed
by country and platform. ut

4.2 Graph-structured Cuboid Processing

Graph-structured cuboid aggregation is similar to topological cuboids’ aggre-
gation. It is performed along the lines of Algorithm 1, while adapting the
selection and aggregation to handle the graph patterns. It takes as input a
multidimensional graph and performs its aggregation along a given set of di-
mensions, then applies a chosen graph aggregation function to compute the
new measure values. Considering a cube with graph structured dimension and
measures, the main steps of the algorithm are:

1. Create a hash structure ϕ : P ′ → V ′ ∪ E ′, mapping each pattern (corre-
sponding to a graph-structured dimension) to an aggregate node/edge.

2. Create the set of aggregate nodes V ′: traverse the nodes of the multidi-
mensional graph and create a node in u′i ∈ V ′ corresponding to the subset
of nodes in Gu = {u1, ..., un} ⊆ V. Gu is the set matching the pattern P ′

i

representing a dimensional value of D′
i. The aggregate node u′i ∈ V ′ is only

created if no nodes in V ′ corresponding to P ′
i was already created. u and u′

share the same label and non-structured dimensional attributes, and it gets
assigned its graph-structured dimension D′

i. The newly created node u′ is
stored as the value of the hash function corresponding to the pattern P ′

i .
Otherwise, if an aggregate node corresponding to u was already created,
the non topological measure attributes M′(u′) are updated.

3. Create the aggregate edges E ′: this step is similar to the one in Algo-
rithm 1. That is, for each edge on e(u, v) ∈ E , if no corresponding edge
e′(u′, v′) ∈ E ′ was created, e′ is created and inherits the same label and
dimensional attributes of e. The aggregate edge e′ is stored as the value
of the hash function corresponding to P ′

i . Otherwise, the non topological
measure attributes M′(e′) are updated.

4. Topological and graph-structured measures are computed for the aggregate
graph.

22 Amine Ghrab et al.

Base	Graph	Cuboid

User
-	Country:	France

-Platform:	Facebook
-	Community:	A
*	PageRank:	0.7

User
-	Country:	Belgium
-Platform:	Facebook
-	Community:	C
*	PageRank:	0.6

User
-	Country:	Spain

-Platform:	Facebook
-	Community:	B
*	PageRank:	0.5

Connected
Platform:	Facebook

User
-	Country:	Belgium
-Platform:	Facebook
-	Community:	A
*	PageRank:	0.4Connected

Platform:	Facebook
Connected

Platform:	Facebook

Connected
Platform:	Facebook

Connected
Platform:	Facebook

Fig. 12: Slice on the Facebook Platform Dimension

5 OLAP Analysis of Graph Cubes

OLAP analytics supports interactive and complex queries over large volume
of data, from different perspectives and through different hierarchical levels.
They, enabling analysts to highlight the data item of interest, and then drill
down to the underlying data from which it has been created. This could help in
decision support scenarios such as the measurement or comparison of the busi-
ness performance across the different dimensions. In this section, we describe
a set of algebraic operators for OLAP querying of multidimensional graphs.
We consider the graph cubes defined and computed in the previous sections as
the fundamental construct of the multidimensional model. The graph cubes
are the operand and the return type of all OLAP operations. We illustrate
the application of each operation on a graph cuboid and on its corresponding
OLAP cube. In addition to cuboid and crossboid operations that were defined
in the literature (Zhao et al., 2011), we present the major OLAP operations
applied on graph and OLAP cubes.

Multidimensional Selection Multidimensional selection (also called a
slice) (denoted as σP (G)) restricts the graph G to a subgraph G′ ⊆ G where
all nodes and edges match the selection pattern P. The selection pattern could
be a conjunction of (1) atomic predicates applied to one or more dimension
attributes in the case of property and topological cubes, or (2) graph patterns
in the case of graph-structured cubes, or (3) a combination of both. The result
G′ is a set of nodes and edges that are matched by the selection pattern P.
The algebra of the selection operator is defined as follows:

– Input: A graph cuboid G and a selection pattern P.

TopoGraph: An End-To-End Framework to Build and Analyze Graph Cubes 23

User
-Platform:	Facebook
-	Community:	C
*	PageRank:	0.5

User
-Platform:	Twitter
-	Community:	D
*	PageRank:	0.4

User
-Platform:	Twitter
-	Community:	A
*	PageRank:	0.3

User
-Platform:	Facebook
-	Community:	B
*	PageRank:	0.2

Connected
Platform:	Facebook

User
-Platform:	Twitter
-	Community:	C
*	PageRank:	0.8

Connected
Platform:	Twitter

Connected
Platform:	Twitter

Connected
Platform:	Twitter

Connected
Platform:	Twitter

Connected
Platform:	Twitter

Connected
Platform:	Facebook

User
-Platform:	Linkedin
-	Community:	C
*	PageRank:	0.6

Connected
Platform:	Twitter

Connected
Platform:	Twitter

Connected
Platform:	Twitter

Connected
Platform:	Twitter

Connected
Platform:	Linkedin

Fig. 13: Popularity Graph Cuboid Rolled up to 〈∗, Community, P latform〉

– Output: A graph cuboid G′ ⊆ G, that matches the selection pattern P.
– Example: The result of a selection applied on the graph cuboid of Figure 6

is shown on Figure 12, where only user nodes of the Facebook platform are
selected.

Roll-up and Drill-down Roll-up (denoted asRDi
(G)) aggregates the graph

G along the dimension Di. The graph is either aggregated to the next dimen-
sion hierarchy level if Di is part of a dimension hierarchy following the partial
order R, or to ALL. This operation modifies the granularity of the graph by
means of a many-to-one relationship which relates instances of two levels in
the same dimension hierarchy, corresponding to a part-whole relationship.
This operation performs structural changes to the graph, and generates a new
graph placed at the next level of the dimension hierarchy, while respecting the
summarizability integrity constraints. Roll-up is implemented in three phases
(1) first a selection of graph elements matching the aggregation pattern Pagg

24 Amine Ghrab et al.

R
ol

l u
p

C
ou

nt
ry

to

 A
LL

Country

Platform

15 16

0.4 0.5

0.1 0.3

0.2 0.2

Community

 A

 B

|

 |

0.4 0.5 0.6

0.6 0.3 0.4

0.2 0.4 0.6

0.2

 0
.3

 0

.6

 0.
4

 0
.6

 0.

2

Community

Platform

A B C

0.5 0.4 0.3

0.4 0.6 0.2

0.3 0.5 0.7

Facebook

Linkedin

Twitter

PageRank

D
ril

l d
ow

n
to

C

ou
nt

ry

Facebook

Linkedin

Twitter

Fig. 14: Roll-up and Drill-down on the Popularity OLAP Cube

that describes the graph elements at Leveli, then, (2) the graph aggregation
to shape the graph at Leveli+1, and finally (3) measures are (re)computed and
placed on the aggregate graph. The algebra of the roll-up operator is defined
as follows:

– Input: Initial graph cuboid: G; The dimension to aggregate Di.
– Output: A graph cuboid G′. All elements of the initial graph cuboid G that

contain the dimensional attributes of Di are grouped in their corresponding
node (resp. edge). The measure values on the aggregate nodes and edges
are computed according to their aggregation function F .

TopoGraph: An End-To-End Framework to Build and Analyze Graph Cubes 25

– Example: The result of a roll-up Country → ALL applied on the graph
cuboid of Figure 6 is shown on Figure 13, where user nodes are grouped
by community and platform, and the new page rank value is computed for
each node. Figure 14 shows the equivalent roll-up and drill down operations
applied on the corresponding OLAP cubes.

Roll-up is similar to the cuboid operation defined in the GraphCube paper
(Zhao et al., 2011). Drill-down is the inverse of roll-up, and can only be applied
if we previously performed a roll-up and did not lose the correspondences
between the graphs.

Drill-across and Projection This operation changes the subject of analy-
sis of the cube by means of a one-to-one relationship. The n-dimensional space
remains exactly the same, only the cells placed on it change. With this opera-
tion, different measures are placed on the same multidimensional space. This
operation translates to a join between two graph cuboids put on the same
multidimensional space, at the same aggregation level. The join condition for
nodes is their identifiers. Projection is the reverse operation of a drill-across.
It selects a subset of measures of interest to be studied within the multidimen-
sional space. The algebra of the drill-across operator is defined as follows:

– Input: Initial graph cuboids: G1, G2, and the measures mi,mj .
– Output: A graph cuboid G3, union of G1, G2, where the concerned graph

elements embed both measures mi and mj .
– Example: Figure 14 shows an example of a drill-across between a topolog-

ical and a graph-structured cube. Both cubes are placed in a cube having
as dimensions (〈Community〉, 〈Country〉). The first is a graph-structured
cube containing representative communities, and the second is a topolog-
ical cube containing PageRank. Using drill-across, the measures from the
two cubes could be embedded in the same cells and analyzed within the
same cube. Inversely, a projection would for instance remove the measure
representative community from the cube to focus only on studying the
PageRank.

In the same way, further OLAP operators could be applied on the graph
cubes for richer or more intuitive analysis. For example, the difference between
graphs removes isomorphic subgraphs that exist in the two input graphs. Drill-
through enables direct access to the subgraph that was initially used for the
computation of the cube’s measures. It goes beyond drill-down to explore the
lowest aggregation level present in the physical graph, and non-necessarily
reached at the data mart level. In general, this paper opens the door to ad-
vanced operators combining graph-like and OLAP operators.

6 Implementation and Experiments

Current decision-support systems, and particularly data warehouses, were de-
signed to support relational data management and analysis. Due to the funda-
mental difference between graph and relational data, the existing systems are

26 Amine Ghrab et al.

Community

Country

 0.7 0.2

0.4 0.6

 Spain

Belgium

Pr
oj

ec
tio

n
on

 P
ag

eR
an

k

Community

Country

 Spain

Belgium

Community

Country

 A B

Spain

Belgium

- Representative Community
- PageRank

2

3

1

5

1

2

5

1

2
4

5

1

2

4
0.7 0.2

0.4 0.6

2

3

1

5

1

2

5

1

2
4

51

2 4

 A B

 A B

Drill-across
PageRank and Most

Frequent Pattern

Fig. 15: Drill-across and Projection

not suitable for efficient graph analysis. The structure-driven management and
analytics of graph data call for rethinking the architecture of data warehouses
to support graph analytics, and to the development of novel data models,
query processing paradigms and storage techniques.

6.1 Framework Architecture and Implementation

The architecture of the graph warehousing and analysis framework, is depicted
in Figure 16. To exemplify it, we use the same running example and take
Twitter as source data. The modules are described as follows:

– Graph Extraction: Graph data is extracted from the source. In our running
example, by means of the Twitter streaming API. A set of transformations
is then applied in order to cleanse the data and fit it within the envisioned

TopoGraph: An End-To-End Framework to Build and Analyze Graph Cubes 27

schema. The stream is parsed to identify the data entities and merge du-
plicates, and compute new attributes such as length of tweets and their
sentiment. For this purpose, any generic tool would suffice.

– Graph Construction: The clean data is loaded in the graph store. In this
case, we used Neo4j to store the graph data and Cypher queries to perform
the loading. The cleansed and integrated Twitter data is therefore natively
stored and managed as a multidimensional graph.

– Graph Cube Construction: Multiple multidimensional schemas could be
built from the same graph warehouse to satisfy the various analysis needs.
The semantic relativism inherent in graphs allows creating several views
from the same data and making them co-exist in a much simpler way
than any other data model. Therefore, given a graph lattice, the graph
cube framework enables the computation and the aggregation of the corre-
sponding graph cuboids. Each graph cuboid is computed, and persisted in a
graph store that resembles a graph mart. The graph cuboid stores natively
different graph measures (e.g., centrality, shortest paths, frequent patterns
etc.). An example of the graph cuboid computation is shown below.

– Graph Analysis: Complex and interactive analysis of graph cubes is per-
formed at this phase. In contrast to traditional OLAP analytics, graph
analytics enables BI-oriented analysis of graph metrics stored in the graph
cuboids. For example, analysts could examine at different levels of aggrega-
tion and from multiple perspectives graph measures such as influence (e.g.,
computed using centrality), or identifying communities and their connec-
tions (e.g., computed using graph clustering). Importantly, note that tra-
ditional visualisation tools do not suffice to deal with interactive graph
analysis, especially graph-structured cubes. Therefore, an ad-hoc graph
browser was implemented.

We implemented the architecture described above as a prototype graph
warehousing system. We used Neo4j for the graph data management and Neo4j
graph algorithms and JUNG (Java Universal Network/Graph Framework) for
the graph mining. The Java code below shows an example of cuboid computa-
tion to perform an aggregation on the dimensional attribute: sentiment. Here,
we specify the input dataset and output directory, the dimensions and their
dimensional attributes, the measures and their computation and aggregation
functions. The following code illustrates our API:

1 //Graph Cuboid Bui lder
2 GraphAggregator graphAggregator = GraphAggregator . b u i l d e r ()
3 // Input : Mul t id imensiona l Graph
4 . basePath (Paths . get (” data /MDTwitter”))
5 //Output : Graph Cuboids
6 . workPath (Paths . get (” data / TwitterCuboid ”))
7 //Ver t i ce s
8 . ver tex (”User”)
9 //Vertex dimensions

10 . dimension (”Date” , DimensionAgg .KEEP)
11 . dimension (”Language” , DimensionAgg .KEEP)
12 // Trad i t i ona l v e r t e x measure

28 Amine Ghrab et al.

...

D
at

a
So

ur
ce

G
ra

ph
 C

ub
e

C
on

st
ru

ct
io

n
A

pp
lic

at
io

ns

Tw
itt

er
 G

ra
ph

G
ra

ph

C
ub

oi
d

Graph Access API

G
ra

ph
 B

ro
w

se
r

V
is

ua
liz

at
io

n

Q
ue

ry
in

g

St
re

am
 P

ar
si

ng

&
Te

xt
 A

na
ly

tic
s

(E
nt

ity
 d

et
ec

tio
n,

 m
at

ch
in

g,
 se

nt
im

en
t

an
al

ys
is

 ..
.)

G
ra

ph

A
gg

re
ga

tio
n

&
M

ea
su

re

C
om

pu
ta

tio
n

Tw
itt

er

St
re

am
in

g
A

PI

G
ra

ph

C
ub

oi
d

G
ra

ph
 L

oa
di

ng

G
ra

ph
 E

xt
ra

ct
io

n
&

C

on
st

ru
ct

io
n

...

Su
bg

ra
ph

Se

le
ct

io
n

(M
D

 S
ub

gr
ap

h
Ex

tra
ct

io
n)

G
ra

ph
 M

in
in

g

Twitter Tracker

G
ra

ph
 E

nr
ic

hm
en

t
(S

im
ila

rit
y

C
om

pu
ta

tio
n

...
)

To
po

 &
 G

S
M

ea
su

re
s

C
om

pu
ta

tio
n

Fig. 16: Twitter Network Warehousing Architecture

TopoGraph: An End-To-End Framework to Build and Analyze Graph Cubes 29

13 . measure (” f o l l o w e r s ” , ” Tota lFo l lowers ” ,
14 AggFunction .COUNT)
15 . ver tex (”Tweet”)
16 //Vertex dimensions
17 . dimension (”Language” , DimensionAgg .KEEP)
18 . dimension (” Sentiment ” , DimensionAgg .IGNORE)
19 //Topo log i ca l v e r t e x measure
20 . s t ructura lMeasure (Structura lMeasure .SM.LOUVAIN,
21 ”RETWEETED”)
22 //Edges
23 . edge (”POSTED”)
24 . edge (”MENTIONED”)
25 . edge (”REPLIED TO”)
26 . edge (”RETWEETED”)
27 . bu i ld () ;
28 graphAggregator . aggregate () ;

6.2 Experiments

In this section, we present the experimental results of our graph OLAP frame-
work using multiple real-world datasets. We compare the cuboid generation
and aggregation time for each dataset at different aggregation levels.

Datasets We ran the experiments on two types of real world datasets. The
first are three Twitter datasets, of size 500K, 1M and 2M edges. The data is
collected using Twitter streaming API as depicted by the framework of Fig-
ure 16 described above. The original stream contained two types of nodes:
User and Tweet, and four types of edges: POSTED, RETWEETED, MEN-
TIONED, and REPLIED TO. We enriched the Tweet nodes by computing
the sentiment of the tweets. Table 1 provides a summary of the characteristics
of the multidimensional social network built using the Twitter datasets. The
code to build Twitter cuboids was shown in the previous subsection.

Dimensional Attributes Measures
User Language, Subscription Date Number of Followers, Number of persons

Tweet Language, Sentiment Number of tweets, Community
Edges none Number of edges

Table 1: Twitter Datasets

The second type of graphs uses four datasets from the SNAP collection
(Leskovec & Krevl, 2014). The original dataset contains only the graph struc-
ture between users. We use this dataset to experiment the computation and
aggregation of topological dimensions and measures of the multidimensional
graph. For the nodes, we computed three topological properties that we con-
sidered as dimensions (PageRank, triangles and clustering coefficient). For the
measures, we computed community by label propagation ad considered it as a

30 Amine Ghrab et al.

measure for the nodes. We consider the count of nodes and edges as a measure
each time we aggregate the graph. The ability to derive new multidimensional
measures and dimensions using only the graph structure shows an interesting
aspect of graphs and the potential of multidimensional graph analytics, even
when we have no content related information about the original data. Table 2
shows the evolution of the graph order and size through consecutive multidi-
mensional aggregations of the graph. Since the graph is homogeneous, we end
up always with a single node and edge that summarizes the graph at the apex
level.

Dataset
Original Base TR-PR PR Apex

#V #E #V #E #V #E #V #E #V #E
DBLP 317,080 1,049,866 40,598 869,814 13,926 741,466 275 16,552 1 1
Youtube 1,134,890 2,987,624 41,704 1,835,365 15,067 1,459,786 652 51,840 1 1
Skitter 1,696,415 11,095,298 164,462 7,865,009 55,430 5,994,331 1,176 119,731 1 1
LiveJournal 3,997,962 34,681,189 564,648 33,382,661 122,331 28,683,757 700 70,480 1 1

Table 2: Graph Cuboids Order and Size

To build the graph cuboid for the SNAP graphs, we use the following code:

1 //Graph Cuboid Bui lder
2 graphAggregator = GraphAggregator . b u i l d e r ()
3 . basePath (Paths . get (DB PATH))
4 . workPath (Paths . get (DB PATH + ” aggregatedbase ”))
5 . ver tex (node)
6 . dimension (” pagerank ” , DimensionAggregation .KEEP)
7 . dimension (” c o e f f i c i e n t ” , DimensionAggregation .KEEP)
8 . dimension (” t r i a n g l e s ” , DimensionAggregation .KEEP)
9 . s t ructura lMeasure (Structura lMeasure .SM.LABEL PROP, edge)

10 . edge (edge)
11 . bu i ld () ;

Framework Efficiency The graph extraction and construction algorithms and
the experimental setup were implemented in Java. For the first type of
datasets, the framework was tested on a single machine with 16 GB of RAM,
and an Intel(R) Core(TM) i5-7200U CPU@2.50GHz, running on Ubuntu
18.04. For the second type, with larger datasets, we used a machine with 256
GB of RAM, and an Intel(R) Xeon(R) Silver 4116 CPU @ 2.10GHz, running
on Ubuntu 18.04. The proposed system uses the centralized graph database
Neo4j. The graphs were implemented using adjacency lists as it is a more com-
pact representation. For the processing, hashmaps are used as described in the
algorithm.

Given that the Twitter dataset is a heterogeneous graph, with multiple
types of nodes and edges, we compute the time to build the cuboid at the
base and apex level, and at the end two aggregate cuboids that aggregate
the tweets(Tweet-Agg) and users(User-Agg) respectively. For the base level,
Base-C refers to cuboid computation with content measures only, while Base-
T refers to cuboid that has both topological and content measures. Figure 17

TopoGraph: An End-To-End Framework to Build and Analyze Graph Cubes 31

Base-C Base-T User-AggTweet-Agg Apex

0

10

20

30

40

2
1
.2

1

2
3
.0

9

6
.3

2
2
.2

9

5
.3

8

2
6
.6

5

2
7
.9

5

8
.6

5

2
2
.8

4

5
.9

9

3
5
.5

2 3
8
.0

9

1
2
.5

3

2
8
.1

2

7
.9

5

T
im

e
(s

)

500k 1M 2M

Fig. 17: Computation Time for Building the Graph Cuboids

shows the computation time with the JVM Xms and Xmx set to 8 GB. Fig-
ure 18 shows the aggregation of the SNAP networks. Given the raw datasets,
first the multidimensional graph is computed, then aggregated through differ-
ent dimensional levels. We run the experiment on the machine with 256 GB,
but we set the JVM Xms and Xmx to 32 GB, except for the livejournal aggre-
gations where we encounter an out of memory error. The results on Figure 18
show the computation time for the different graph cuboids. MD refers to the
computation of the multidimensional graph, given the raw input from SNAP.
Base refers to the base graph cuboid, PR-TR is the cuboid where the coeffi-
cient is aggregated, and PR is the cuboid where the graph is aggregated on
both coefficient and triangles dimensional attributes, and Apex to the highest
aggregation level.

Following these experiments, we notice that the processing time depends
on the size, order and volume of the input and output graphs. The order of the
graph is the number of its nodes and size refers to the number of its edges. As
we consider both content and structural information present in the graph, all
these properties have a direct effect on the efficiency of the aggregation. Given
that at the first aggregation level we have many possible dimension values for
the dimensional attributes, we end up with a graph close in size and order to
the base graph, therefore exhibiting similar computation time. This explains,
for example, why User-agg that aggregates users is faster than Twitter-agg.
We also notice that most of the computation time is spent on the two phases:
the I/O phase, where the graph is loaded from and to the disk, then the graph

32 Amine Ghrab et al.

MD Base PR-TR PR Apex

0

500

1,000

1,500

2
1
.4

3

4
5
.5

9

3
0
.6

6

3
.9

1

2
.8

1

5
9
.5

1

9
1
.8

6

5
7
.7

7

8
.9

3

6
.5

41
0
0
.5

3

4
4
4
.4

6

2
6
8
.3

1

3
5
.5

3

2
3
.0

8

2
6
6
.9

7

1
,3

9
9
.0

5

1
,1

2
8
.7

9

6
4
.7

2

9
2
1
.1

7

T
im

e
(s

)

dblp youtube skitter livejournal

Fig. 18: Cuboid Aggregation Time

aggregation phase, where the nodes and edges are merged. The overhead of
computing topological measures is very small as shown in Figure 17. This is due
in part to the fact that the graph algorithms are executed within the database
engine, without loosing I/O to export the graph to a processing library then
import it again. Therefore, we got performances order of magnitude better
than those when we used an external generic Java graph library such as JUNG
and jGraphT.

7 Related Work

Graph Warehousing. A lot of research has been devoted for extending data
warehousing and OLAP technology beyond the relational systems (Cuzzocrea,
Bellatreche, & Song, 2013; Cuzzocrea, Saccà, & Ullman, 2013). Various efforts
were led to support other data formats such as text (Lin, Ding, Han, Zhu, &
Zhao, 2008), multimedia (Jin et al., 2010), and graphs (Queiroz-Sousa & Sal-
gado, 2019). Multiple architectures and systems were proposed in the literature
to integrate graph data into business intelligence systems. BIIIG (Petermann,
Junghanns, Müller, & Rahm, 2014) is a framework for business intelligence on
graphs that focuses on the use of the graph’s flexibility in data integration. It
enables integrating and referencing heterogeneous data from different sources.
Li et al. (Li, Yu, Zhao, Xie, & Lin, 2011), proposed conceptual models for
designing and querying graph data warehouse systems. In (Skhiri & Jouili,
2013; Ghrab et al., 2018), authors suggested novel architecture for graph BI
systems that leverages large graph mining and warehousing. This paper goes

TopoGraph: An End-To-End Framework to Build and Analyze Graph Cubes 33

in-line with these research directions, and attempts to provide a foundation
for extending decision-making systems, and particularly OLAP, with graph
analytics capabilities, while paying particular attention to the few cases of
possible correspondence between graph and ROLAP cubes.

Graph OLAP. Early research in graph warehousing started with the Graph
OLAP model, which set the first foundations for multidimensional modeling
and analysis of graphs. Graph OLAP supports the multidimensional modeling
and analysis over a collection of homogeneous graph snapshots (Chen, Yan,
Zhu, Han, & Yu, 2009). Two types of modeling and analysis are performed:
(1) informational and (2) topological. In informational OLAP (I-OLAP), the
dimensions are attributes of the graph snapshot. The aggregation of the graph
is performed by overlaying and merging a set of graph snapshots that share the
same dimension values. The analysis consists in edge-centric snapshot overlay-
ing. Thus, only the edges are merged and changed, with no changes made to
the nodes. In topological OLAP (T-OLAP), the attributes of the nodes are
called topological dimensions. The aggregation consists of merging nodes and
edges by navigating through the nodes’ hierarchy. T-OLAP was discussed in a
more detailed framework for topological OLAP analysis of graphs (Qu et al.,
2011). The paper discussed the topological aggregation of the graph following
the OLAP paradigm. They presented techniques based on the properties of
the graph measures (T-Distributiveness and T-Monotonicity) for optimizing
measures computations through the different aggregation levels. Another mul-
tidimensional model (Berlingerio, Coscia, Giannotti, Monreale, & Pedreschi,
2013), similar to Graph OLAP, was proposed ad considered the dimensions
as the labels of the edges, and presented a set of analytical graph-based mea-
sures relevant for OLAP analysis of graph data. HMGraph introduced a data
warehousing model for heterogeneous graphs focusing on edge-based dimen-
sions (Yin, Wu, & Zeng, 2012). It enriched the informational and topological
dimensions with the entity dimension and the rotate and stretch operations
along with the notion of metapath to extract subgraphs based on edges traver-
sals.

Graph Cube. The second family of frameworks focused on the efficient compu-
tation and extending the querying of OLAP cubes derived from multidimen-
sional graphs. (Zhao et al., 2011) introduced the first framework that coined
the term GraphCube. The authors defined a multidimensional graph from a
single, homogeneous attributed graph, by choosing a subset of the attributes
of the nodes to be the dimensions. The aggregate graph itself is the measure.
The graph cube is obtained by restructuring the initial graph in all possible
aggregation. The framework introduced two types of queries: (1) the cuboid
query, which generates 2n aggregate graphs, and (2) the crossboid query, which
analyze the interrelationships between different graph cuboids. Many frame-
works were proposed afterwards to (1) support more general graph models,
(2) new types of multidimensional structures, (3) novel OLAP queries, and
(4) custom materialization strategies. Pagrol introduced a parallel graph cube

34 Amine Ghrab et al.

framework that extended the original GraphCube model by defining the Hy-
per Graph Cube model that considers the attributes of the nodes and edges
as dimensions (Wang et al., 2014). Both GraphCube and Pagrol designed
various materialization policies to speed up the computation and analysis of
graph cubes. However, both GraphCube and Pagrol were still limited to ho-
mogeneous graphs. The graph model was later extended with a framework for
building OLAP cubes supporting heterogeneous attributed graphs and dimen-
sion hierarchies (Ghrab, Romero, Skhiri, Vaisman, & Zimányi, 2015). TSMH
framework introduced the concept of relation path to guide the graph aggrega-
tion and building two new types of cubes: Entity Hyper Cube and Dimension
Cube (Wang, Wu, & Wang, 2015). P&D Graph Cube extended the graph cube
model by introducing the concept of path and dimension aggregate networks,
along with their materialization strategies (Wu, Wu, & Wang, 2017). A multi-
dimensional model for directed multi-hypergraphs and its query language were
proposed in the literature, along with an implementation using Neo4j (Gómez,
Kuijpers, & Vaisman, 2017). Other research lines focused on applying graph
warehousing for specific domains such as the analysis of bibliographic data
(Loudcher, Jakawat, Soriano-Morales, & Favre, 2015), or business process data
(van der Aalst, 2013; Benatallah, Motahari-Nezhad, et al., 2015). For example,
distributed OLAP analytics of process execution data represented as graphs
was tackled by designing a Hadoop-based framework (Benatallah et al., 2015).
Thus enabling, multi-level and multi-perspective analysis of large volumes of
business process data represented as graphs.

Comparison. Existing work for OLAP analysis on graph provided a foundation
for OLAP cubes computation and querying on graphs. Table 3 summarizes the
related work from a modeling and implementation perspectives. As shown in
the table, in most of state-of-the-art frameworks, the only measure that is ex-
amined is the aggregate graph itself, and the dimensions are a set of attributes
or paths. TopoGraph extended these frameworks by supporting the
general case of property graph model and proposing new types of
graph cubes that embed novel types of measures and dimensions.
For these new graph cubes, the algebraic OLAP operators required
for their analysis were defined and illustrated. Further, to the best of
our knowledge, this paper is the first to discuss the multidimensional integrity
constraints on graphs. These constraints are a key concept that guarantees the
correctness and soundness of graph cube construction aggregation. Moreover,
for each of the introduced cubes, the possible correspondence with ROLAP
cubes was discussed in an effort to bridge the gap between the two communi-
ties and favor the integration of graphs within relational OLAP frameworks.
However, as discussed, combining graph and traditional cubes is, in the gen-
eral case, difficult. For this reason, we highlighted the need to keep researching
into specific graph warehousing tools that preserve the graph structure and
benefit from graph-specific modeling and processing.
Finally, the framework proposed in this paper still requires further physical op-
timizations, such as custom graph indexing and materialization, that capture

TopoGraph: An End-To-End Framework to Build and Analyze Graph Cubes 35

the specific nature of topological and graph-structured cubes (He & Singh,
2006; Zhao, Yu, & Yu, 2007). In our future work, we will focus on the physical
optimization using distributed graph processing frameworks such as GraphX.

36 Amine Ghrab et al.

R
ef

er
en

ce
s

G
ra

p
h

M
o
d

el
M

u
lt

id
im

en
si

o
n

a
l

M
o
d

el
Q

u
er

y
in

g
S

ca
la

b
il
it

y
D

im
en

si
o
n

s
M

ea
su

re
s

C
u

b
e

IC

G
ra

p
h

O
L

A
P

(C
h

en
et

a
l.
,

2
0
0
9
)

C
o
ll
ec

ti
o
n

o
f

H
o
m

o
g
en

eo
u

s
L

a
b

el
ed

G
ra

p
h

S
n

a
p

sh
o
ts

In
fo

-D
im

s
&

T
o
p

o
-

D
im

s
T

ra
d

it
io

n
a
l,

T
o
p

o
-

lo
g
ic

a
l,

A
g
g
re

g
a
te

G
ra

p
h

G
ra

p
h

C
u

b
e

-
R

o
ll
-u

p
/
D

ri
ll
-

d
o
w

n
/
S

li
ce

-d
ic

e
C

en
tr

a
li

ze
d

G
ra

p
h

C
u

b
e

(Z
h

a
o

et
a
l.
,

2
0
1
1
)

H
o
m

o
g
en

eo
u

s,
N

o
d

e
A

t-
tr

ib
u

te
d

N
o
d

e
A

tt
ri

b
u

te
s

A
g
g
re

g
a
te

G
ra

p
h

G
ra

p
h

C
u

b
e

-
C

u
b

o
id

&
C

ro
ss

b
o
id

C
en

tr
a
li

ze
d

H
M

G
ra

p
h

(Y
in

et
a
l.
,

2
0
1
2
)

H
et

er
o
g
en

eo
u

s,
A

tt
ri

b
u

te
d

In
fo

rm
a
ti

o
n

,
T

o
p

o
-

lo
g
ic

a
l,

E
n
ti

ty
A

g
g
re

g
a
te

G
ra

p
h

H
M

G
ra

p
h

C
u

b
e

-
R

o
ta

te
,

S
tr

et
ch

,
R

o
ll
-

u
p

,
D

ri
ll
-d

o
w

n
C

en
tr

a
li

ze
d

(D
en

is
,

G
h

ra
b

,
&

S
k
h

ir
i,

2
0
1
3
)

H
o
m

o
g
en

eo
u

s,
N

o
d

e
A

t-
tr

ib
u

te
d

N
o
d

e
A

tt
ri

b
u

te
s

A
g
g
re

g
a
te

G
ra

p
h

G
ra

p
h

C
u

b
e

-
C

u
b

o
id

&
C

ro
ss

b
o
id

D
is

tr
ib

u
te

d
(S

p
a
rk

)

P
a
g
ro

l
(W

a
n

g
et

a
l.
,

2
0
1
4
)

H
o
m

o
g
en

eo
u

s,
A

tt
ri

b
u

te
d

N
o
d

e
a
n

d
E

d
g
e

A
t-

tr
ib

u
te

s
A

g
g
re

g
a
te

G
ra

p
h

H
y
p

er
G

ra
p
h

C
u

b
e

-
R

o
ll
-u

p
&

D
ri

ll
-d

o
w

n
D

is
tr

ib
u

te
d

(H
a
d

o
o
p

)

T
S

M
H

(W
a
n

g
et

a
l.
,

2
0
1
5
)

H
et

er
o
g
en

eo
u

s,
N

o
d

e
A

t-
tr

ib
u

te
d

N
o
d

e
A

tt
ri

b
u

te
&

M
et

a
-P

a
th

A
g
g
re

g
a
te

G
ra

p
h

E
n
ti

ty
H

y
p

er
C

u
b

e,
D

im
en

-
si

o
n

C
u

b
e

-
R

o
ll
-u

p
,

D
ri

ll
-d

o
w

n
,

A
tt

ri
b

u
te

T
ra

n
sf

o
rm

a
-

ti
o
n

D
is

tr
ib

u
te

d
(S

p
a
rk

)

(G
ó
m

ez
et

a
l.
,

2
0
1
7
)

L
a
b

el
le

d
D

i-
re

ct
ed

M
u

lt
i-

h
y
p

er
g
ra

p
h

s

D
im

en
si

o
n

G
ra

p
h

s
A

g
g
re

g
a
te

G
ra

p
h

G
ra

p
h

o
id

-
C

li
m

b
in

g
a
n

d
A

g
g
re

-
g
a
ti

o
n

,
R

o
ll
-u

p
,

D
ri

ll
-

d
o
w

n
,

S
li
ce

,
D

ic
e

C
en

tr
a
li

ze
d

P
&

D
G

ra
p

h
C

u
b

e
(W

u
et

a
l.
,

2
0
1
7
)

H
et

er
o
g
en

eo
u

s,
A

tt
ri

b
u

te
d

N
o
d

e
A

tt
ri

b
u

te
,

R
el

a
ti

o
n

P
a
th

S
et

A
g
g
re

g
a
te

G
ra

p
h

P
&

D
G

ra
p

h
C

u
b

e
-

E
n
ti

ty
,

E
d

g
e,

T
o
p

o
lo

g
-

ic
a
l

S
tr

u
ct

u
re

D
is

tr
ib

u
te

d
(H

a
d

o
o
p

,
S

p
a
rk

)

(K
a
n

g
,

L
ee

,
&

K
im

,
2
0
1
9
)

H
o
m

o
g
en

eo
u

s,
A

tt
ri

b
u

te
d

N
o
d

e
a
n

d
E

d
g
e

A
t-

tr
ib

u
te

s
A

g
g
re

g
a
te

G
ra

p
h

G
ra

p
h

C
u

b
e

-
C

u
b

o
id

D
is

tr
ib

u
te

d
(S

p
a
rk

)

T
o
p

o
G

ra
p

h
P

ro
p

er
ty

G
ra

p
h

C
o
n
te

n
t,

T
o
p

o
-

lo
g
ic

a
l,

G
ra

p
h

-
st

ru
ct

u
re

d

C
o
n
te

n
t,

T
o
p

o
-

lo
g
ic

a
l,

G
ra

p
h

-
st

ru
ct

u
re

d

C
o
n
te

n
t,

T
o
p

o
-

lo
g
ic

a
l,

G
ra

p
h

-
st

ru
ct

u
re

d

X
S

el
ec

ti
o
n

,
R

o
ll
-u

p
,

D
ri

ll
-d

o
w

n
,

D
ri

ll
-

a
cr

o
ss

C
en

tr
a
li

ze
d

T
a
b

le
3
:

C
o
m

p
a
ri

so
n

o
f

G
ra

p
h

C
u

b
e

F
ra

m
ew

o
rk

s

TopoGraph: An End-To-End Framework to Build and Analyze Graph Cubes 37

8 Conclusion and Open Challenges

In this paper, we extended the state of the art on graph warehousing by de-
signing a multidimensional graph model that leverages the content and the
topology of the graph. We proposed for the first time a model that exposes
both numerical and graph-structured insights using graph cubes, while pre-
serving multidimensional integrity constraints. Furthermore, we proposed dif-
ferent analytical scenarios and formalized the OLAP querying of the graph
cubes. We also discussed the potential correspondence between graph cubes
and traditional ROLAP cubes. With regard to the implementation, we have
detailed the framework architecture and the system API, and evaluated its
efficiency with multiple real-world datasets.

As future research direction, our target is to improve the performance of
TopoGraph using a distributed graph engine and combine existing graph cube
materialization techniques with our novel cube definitions. We also plan to ex-
tend our work on dynamic graphs to support continuous update and analysis
of real-time graph data. Further work needs to be done on defining a multi-
dimensional query language for graphs, and designing efficient optimization
strategies. Machine learning algorithms could also be used to enable advanced
mining scenario such discovery of interesting patterns in the graph cube, and
the prediction of the graph cube evolution.

References

Akoglu, L., Tong, H., & Koutra, D. (2015). Graph-based Anomaly Detection
and Description: A Survey. Data Mining and Knowledge Discovery ,
29 (3), 626–688.

Benatallah, B., Motahari-Nezhad, H. R., et al. (2015). Scalable graph-based
OLAP analytics over process execution data. Distributed and Parallel
Databases, 1–45.

Berlingerio, M., Coscia, M., Giannotti, F., Monreale, A., & Pedreschi, D.
(2013). Multidimensional Networks: Foundations of Structural Analysis.
World Wide Web, 16 (5-6), 567–593.

Chen, C., Yan, X., Zhu, F., Han, J., & Yu, P. S. (2009). Graph OLAP: a
multi-dimensional framework for graph data analysis. Knowl. Inf. Syst.,
21 (1), 41–63.

Cuzzocrea, A., Bellatreche, L., & Song, I.-Y. (2013). Data Warehousing and
OLAP over Big Data: Current Challenges and Future Research Direc-
tions. In Proceedings of the Sixteenth International Workshop on Data
Warehousing and OLAP (pp. 67–70). ACM.

Cuzzocrea, A., Saccà, D., & Ullman, J. D. (2013). Big Data: a Research
Agenda. In Proceedings of the 17th International Database Engineering
& Applications Symposium (pp. 198–203). ACM.

38 Amine Ghrab et al.

Denis, B., Ghrab, A., & Skhiri, S. (2013). A distributed approach for graph-
oriented multidimensional analysis. In 2013 IEEE International Confer-
ence on Big Data Workshops (pp. 9–16). IEEE.

Ghrab, A., Romero, O., Jouili, S., & Skhiri, S. (2018). Graph BI & Analytics:
Current State and Future Challenges. In International conference on big
data analytics and knowledge discovery (pp. 3–18). Springer.

Ghrab, A., Romero, O., Skhiri, S., Vaisman, A., & Zimányi, E. (2015). A
Framework for Building OLAP Cubes on Graphs. In East European
Conference on Advances in Databases and Information Systems (pp.
92–105). Springer.

Gómez, L., Kuijpers, B., & Vaisman, A. (2017). Performing olap over graph
data: Query language, implementation, and a case study. In Proceedings
of the International Workshop on Real-Time Business Intelligence and
Analytics (pp. 1–8). ACM.

He, H., & Singh, A. K. (2006). Closure-Tree: An Index Structure for Graph
Queries. In Proceedings of the 22Nd International Conference on Data
Engineering (pp. 38–). IEEE.

Jin, X., Han, J., Cao, L., Luo, J., Ding, B., & Lin, C. X. (2010). Visual
Cube and On-Line Analytical Processing of Images. In Proceedings of
the 19th ACM International Conference on Information and knowledge
management (pp. 849–858). ACM.

Kang, S., Lee, S., & Kim, J. (2019). Distributed Graph Cube Generation
using Spark Framework. The Journal of Supercomputing , 1–22.

Lenz, H.-J., & Shoshani, A. (1997). Summarizability in OLAP and Statistical
Data Bases. In Proceedings of the Ninth International Conference on
Scientific and Statistical Database Management (pp. 132–143). IEEE.

Leskovec, J., & Krevl, A. (2014, june). SNAP Datasets: Stanford large network
dataset collection. http://snap.stanford.edu/data.

Li, C., Yu, P. S., Zhao, L., Xie, Y., & Lin, W. (2011). InfoNetOLAPer:
Integrating InfoNetWarehouse and InfoNetCube with InfoNetOLAP.
PVLDB , 4 (12), 1422–1425.

Lin, C. X., Ding, B., Han, J., Zhu, F., & Zhao, B. (2008). Text Cube: Comput-
ing IR Measures for Multidimensional Text Database Analysis. In Data
Mining, 2008. ICDM’08. Eighth IEEE International Conference on (pp.
905–910). IEEE.

Loudcher, S., Jakawat, W., Soriano-Morales, E.-P., & Favre, C. (2015). Com-
bining OLAP and information networks for bibliographic data analysis:
a survey. Scientometrics, 103 , 471-487.

Petermann, A., Junghanns, M., Müller, R., & Rahm, E. (2014). Graph-based
Data Integration and Business Intelligence with BIIIG. Proc. VLDB
Endow., 7 (13), 1577–1580.

Qu, Q., Zhu, F., Yan, X., Han, J., Philip, S. Y., & Li, H. (2011). Efficient
Topological OLAP on Information Networks. In Database Systems for
Advanced Applications, pages=389–403. Springer.

Queiroz-Sousa, P. O., & Salgado, A. C. (2019, December). A review on
olap technologies applied to information networks. ACM Trans. Knowl.

http://snap.stanford.edu/data

TopoGraph: An End-To-End Framework to Build and Analyze Graph Cubes 39

Discov. Data, 14 (1), 8:1–8:25.
Rodriguez, M., & Neubauer, P. (2010). Constructions from Dots and Lines.

Bulletin of the American Society for Information Science and Technol-
ogy , 36 (6), 35–41.

Russell, M. A. (2013). Mining the Social Web: Data Mining Facebook, Twitter,
LinkedIn, Google+, GitHub, and More. O’Reilly Media, Inc.

Skhiri, S., & Jouili, S. (2013). Large graph mining: Recent developments, chal-
lenges and potential solutions. In M.-A. Aufaure & E. Zimányi (Eds.),
Business intelligence (Vol. 138, p. 103-124). Springer.

Vaisman, A., & Zimányi, E. (2014). Data warehouse systems: Design and
implementation. Springer.

van der Aalst, W. M. (2013). Process cubes: Slicing, dicing, rolling up and
drilling down event data for process mining. In Asia-pacific conference
on business process management (pp. 1–22).

Wang, P., Wu, B., & Wang, B. (2015). TSMH Graph Cube: A Novel Frame-
work for Large Scale Multi-dimensional Network Analysis. In 2015
IEEE International Conference on Data Science and Advanced Analytics
(DSAA) (p. 1-10). IEEE.

Wang, Z., Fan, Q., Wang, H., Tan, K.-l., Agrawal, D., & El Abbadi, A. (2014).
Pagrol: Parallel graph OLAP over large-scale attributed graphs. In Data
Engineering (ICDE), 2014 IEEE 30th International Conference on (pp.
496–507). IEEE.

Wu, X., Wu, B., & Wang, B. (2017). P&D Graph Cube: Model and Parallel
Materialization for Multidimensional Heterogeneous Network. In 2017
International Conference on Cyber-Enabled Distributed Computing and
Knowledge Discovery (CyberC) (pp. 95–104). IEEE.

Yin, M., Wu, B., & Zeng, Z. (2012). HMGraph OLAP: a Novel Framework for
Multi-dimensional Heterogeneous Network Analysis. In Proceedings of
the 15th International Workshop on Data Warehousing and OLAP (pp.
137–144). ACM.

Zhao, P., Li, X., Xin, D., & Han, J. (2011). Graph cube: on warehousing
and OLAP multidimensional networks. In Proceedings of the 2011 ACM
SIGMOD International Conference on Management of data (pp. 853–
864). ACM.

Zhao, P., Yu, J. X., & Yu, P. S. (2007). Graph Indexing: Tree + Delta <=
Graph. In Proceedings of the 33rd International Conference on Very
Large Data Bases (pp. 938–949). VLDB Endowment.

	Introduction
	Graph Cubes on Property Graphs
	Topological Graph Cubes
	Graph-structured Cubes
	OLAP Analysis of Graph Cubes
	Implementation and Experiments
	Related Work
	Conclusion and Open Challenges
	References

