52,752 research outputs found

    Frequent Gain and Loss of Functional Transcription Factor Binding Sites

    Get PDF
    Cis-regulatory sequences are not always conserved across species. Divergence within cis-regulatory sequences may result from the evolution of species-specific patterns of gene expression or the flexible nature of the cis-regulatory code. The identification of functional divergence in cis-regulatory sequences is therefore important for both understanding the role of gene regulation in evolution and annotating regulatory elements. We have developed an evolutionary model to detect the loss of constraint on individual transcription factor binding sites (TFBSs). We find that a significant fraction of functionally constrained binding sites have been lost in a lineage-specific manner among three closely related yeast species. Binding site loss has previously been explained by turnover, where the concurrent gain and loss of a binding site maintains gene regulation. We estimate that nearly half of all loss events cannot be explained by binding site turnover. Recreating the mutations that led to binding site loss confirms that these sequence changes affect gene expression in some cases. We also estimate that there is a high rate of binding site gain, as more than half of experimentally identified S. cerevisiae binding sites are not conserved across species. The frequent gain and loss of TFBSs implies that cis-regulatory sequences are labile and, in the absence of turnover, may contribute to species-specific patterns of gene expression

    Formation of regulatory modules by local sequence duplication

    Get PDF
    Turnover of regulatory sequence and function is an important part of molecular evolution. But what are the modes of sequence evolution leading to rapid formation and loss of regulatory sites? Here, we show that a large fraction of neighboring transcription factor binding sites in the fly genome have formed from a common sequence origin by local duplications. This mode of evolution is found to produce regulatory information: duplications can seed new sites in the neighborhood of existing sites. Duplicate seeds evolve subsequently by point mutations, often towards binding a different factor than their ancestral neighbor sites. These results are based on a statistical analysis of 346 cis-regulatory modules in the Drosophila melanogaster genome, and a comparison set of intergenic regulatory sequence in Saccharomyces cerevisiae. In fly regulatory modules, pairs of binding sites show significantly enhanced sequence similarity up to distances of about 50 bp. We analyze these data in terms of an evolutionary model with two distinct modes of site formation: (i) evolution from independent sequence origin and (ii) divergent evolution following duplication of a common ancestor sequence. Our results suggest that pervasive formation of binding sites by local sequence duplications distinguishes the complex regulatory architecture of higher eukaryotes from the simpler architecture of unicellular organisms

    Dynamics of transcription factor binding site evolution

    Get PDF
    Evolution of gene regulation is crucial for our understanding of the phenotypic differences between species, populations and individuals. Sequence-specific binding of transcription factors to the regulatory regions on the DNA is a key regulatory mechanism that determines gene expression and hence heritable phenotypic variation. We use a biophysical model for directional selection on gene expression to estimate the rates of gain and loss of transcription factor binding sites (TFBS) in finite populations under both point and insertion/deletion mutations. Our results show that these rates are typically slow for a single TFBS in an isolated DNA region, unless the selection is extremely strong. These rates decrease drastically with increasing TFBS length or increasingly specific protein-DNA interactions, making the evolution of sites longer than ~10 bp unlikely on typical eukaryotic speciation timescales. Similarly, evolution converges to the stationary distribution of binding sequences very slowly, making the equilibrium assumption questionable. The availability of longer regulatory sequences in which multiple binding sites can evolve simultaneously, the presence of "pre-sites" or partially decayed old sites in the initial sequence, and biophysical cooperativity between transcription factors, can all facilitate gain of TFBS and reconcile theoretical calculations with timescales inferred from comparative genetics.Comment: 28 pages, 15 figure

    Does Notch play a tumor suppressor role across diverse squamous cell carcinomas?

    Get PDF
    The role of Notch pathway in tumorigenesis is highly variable. It can be tumor suppressive or pro-oncogenic, typically depending on the cellular context. Squamous cell carcinoma (SCC) is a cancer of the squamous cell, which can occur in diverse human tissues. SCCs are one of the most frequent human malignancies for which the pathologic mechanisms remain elusive. Recent genomic analysis of diverse SCCs identified marked levels of mutations in NOTCH1, implicating Notch signaling pathways in the pathogenesis of SCCs. In this review, evidences highlighting NOTCH's role in different types of SCCs are summarized. Moreover, based on accumulating structural information of the NOTCH receptor, the functional consequences of NOTCH1 gene mutations identified from diverse SCCs are analyzed, emphasizing loss of function of Notch in these cancers. Finally, we discuss the convergent view on an intriguing possibility that Notch may function as tumor suppressor in SCCs across different tissues. These mechanistic insights into Notch signaling pathways will help to guide the research of SCCs and development of therapeutic strategies for these cancers

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Wnt/beta-catenin/Tcf signaling: A critical pathway in gastrointestinal tumorigenesis

    Get PDF
    Cancers of the gastrointestinal tract, including the liver, bile ducts, and pancreas, constitute the largest group of malignant tumors. Colorectal cancer is one of the most common neoplastic diseases in Western countries and one of the leading causes of cancer-related deaths. Inactivation of the adenomatous polyposis coli (APC) tumor-suppressor gene during early adenoma formation is thought to be the first genetic event in the process of colorectal carcinogenesis followed by mutations in oncogenes like K-Ras and tumor-suppressor genes like p53. Identification of the interaction of APC with the proto-oncogene beta-catenin has linked colorectal carcinogenesis to the Wnt-signal transduction pathway. The main function of APC is thought to be the regulation of free beta-catenin in concert with the glycogen synthase kinase 3beta (GSK-3beta) and Axin proteins. Loss of APC function, inactivation of Axin or activating beta-catenin mutations result in the cellular accumulation of beta-catenin. Upon translocation to the nucleus beta-catenin serves as an activator of T-cell factor (Tcf)-dependent transcription leading to an increased expression of several specific target genes including c-Myc, cyclin D1, MMP-7, and ITF-2. While APC mutations are almost exclusively found in colorectal cancers, deregulation of Wnt/beta-catenin/Tcf signaling is also common in other gastrointestinal and extra-gastrointestinal human cancers. In a fraction of hepatocellular carcinomas the Writ pathway is deregulated by inactivation of Axin or stabilizing mutations of beta-catenin. The majority of hepatoblastomas and a group of gastric cancers also carry beta-catenin mutations. Clearly, this pathway harbors great potential for future applications in cancer diagnostics, staging, and therapy. Copyright (C) 2002 S. Karger AG, Basel

    Measuring microsatellite conservation in mammalian evolution with a phylogenetic birth-death model.

    Get PDF
    Microsatellites make up ∼3% of the human genome, and there is increasing evidence that some microsatellites can have important functions and can be conserved by selection. To investigate this conservation, we performed a genome-wide analysis of human microsatellites and measured their conservation using a binary character birth--death model on a mammalian phylogeny. Using a maximum likelihood method to estimate birth and death rates for different types of microsatellites, we show that the rates at which microsatellites are gained and lost in mammals depend on their sequence composition, length, and position in the genome. Additionally, we use a mixture model to account for unequal death rates among microsatellites across the human genome. We use this model to assign a probability-based conservation score to each microsatellite. We found that microsatellites near the transcription start sites of genes are often highly conserved, and that distance from a microsatellite to the nearest transcription start site is a good predictor of the microsatellite conservation score. An analysis of gene ontology terms for genes that contain microsatellites near their transcription start site reveals that regulatory genes involved in growth and development are highly enriched with conserved microsatellites

    Pancreatic cancer patient survival correlates with DNA methylation of pancreas development genes.

    Get PDF
    DNA methylation is an epigenetic mark associated with regulation of transcription and genome structure. These markers have been investigated in a variety of cancer settings for their utility in differentiating normal tissue from tumor tissue. Here, we examine the direct correlation between DNA methylation and patient survival. We find that changes in the DNA methylation of key pancreatic developmental genes are strongly associated with patient survival

    Dynamic GATA4 enhancers shape the chromatin landscape central to heart development and disease.

    Get PDF
    How stage-specific enhancer dynamics modulate gene expression patterns essential for organ development, homeostasis and disease is not well understood. Here, we addressed this question by mapping chromatin occupancy of GATA4--a master cardiac transcription factor--in heart development and disease. We find that GATA4 binds and participates in establishing active chromatin regions by stimulating H3K27ac deposition, which facilitates GATA4-driven gene expression. GATA4 chromatin occupancy changes markedly between fetal and adult heart, with a limited binding sites overlap. Cardiac stress restored GATA4 occupancy to a subset of fetal sites, but many stress-associated GATA4 binding sites localized to loci not occupied by GATA4 during normal heart development. Collectively, our data show that dynamic, context-specific transcription factors occupancy underlies stage-specific events in development, homeostasis and disease
    • …
    corecore