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Abstract
Cancers of the gastrointestinal tract, including the liver,
bile ducts, and pancreas, constitute the largest group of
malignant tumors. Colorectal cancer is one of the most
common neoplastic diseases in Western countries and
one of the leading causes of cancer-related deaths. Inac-
tivation of the adenomatous polyposis coli (APC) tumor-
suppressor gene during early adenoma formation is
thought to be the first genetic event in the process of
colorectal carcinogenesis followed by mutations in onco-
genes like K-Ras and tumor-suppressor genes like p53.
Identification of the interaction of APC with the proto-
oncogene ß-catenin has linked colorectal carcinogenesis
to the Wnt-signal transduction pathway. The main func-
tion of APC is thought to be the regulation of free ß-cate-
nin in concert with the glycogen synthase kinase 3ß
(GSK-3ß) and Axin proteins. Loss of APC function, inacti-
vation of Axin or activating ß-catenin mutations result in
the cellular accumulation of ß-catenin. Upon transloca-
tion to the nucleus ß-catenin serves as an activator of T-
cell factor (Tcf)-dependent transcription leading to an
increased expression of several specific target genes
including c-Myc, cyclin D1, MMP-7, and ITF-2. While APC
mutations are almost exclusively found in colorectal

cancers, deregulation of Wnt/ß-catenin/Tcf signaling is
also common in other gastrointestinal and extra-gas-
trointestinal human cancers. In a fraction of hepatocellu-
lar carcinomas the Wnt pathway is deregulated by inacti-
vation of Axin or stabilizing mutations of ß-catenin. The
majority of hepatoblastomas and a group of gastric can-
cers also carry ß-catenin mutations. Clearly, this pathway
harbors great potential for future applications in cancer
diagnostics, staging, and therapy.

Copyright © 2002 S. Karger AG, Basel

Introduction

The Wnt pathway plays key roles in development, tis-
sue homeostasis, and cancer [1–5]. It was originally de-
scribed in Drosophila as Wingless pathway and is highly
conserved among flies, frogs, and mammals. The com-
bined effort of genetic, biochemical and developmental
research has led to the comprehensive understanding of
the Wnt pathway as it is known today. The most exten-
sively studied part of this pathway leads to transcriptional
activation of specific genes and is referred to as the canon-
ical Wnt pathway (fig. 1): Extracellular Wnt proteins bind
to and activate membrane-bound Frizzled receptors
which in turn mediate phosphorylation of Dishevelled.
Through binding to Axin Dishevelled inhibits phosphory-
lation of ß-catenin by disrupting a complex consisting of
the adenomatous polyposis coli (APC), Axin, and glyco-
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Fig. 1. Wnt-signaling and regulation of free ß-catenin. a Under phys-
iological conditions the largest fraction of ß-catenin (ß) is bound to
the cell–cell adhesion molecule E-cadherin (E-cad). Thereby it links
the cell membrane via ·-catenin (·) to the actin cytoskeleton. After
priming phosphorylation by CKI, free ß-catenin is bound by the
APC/Axin/GSK complex and phosphorylated amino terminally.
Phosphorylated ß-catenin binds to the F-box protein ß-TrCP and,
after ubiquitination (Ub), is degraded by the proteasome. b Binding
of Wnt ligands to a serpentine Frizzled receptor (Frz) results in phos-

phorylation of Dishevelled (Dsh). Upon binding to Axin the APC/
Axin/GSK-complex dissociates and ß-catenin bypasses the destruc-
tion machinery. After translocation to the nucleus ß-catenin binds to
T-cell factors (Tcf) and recruits the chromatin-remodeling proteins
p300 and Brg-1 to responsive promoters, thereby activating the tran-
scription of specific target genes, including c-Myc, cyclin D1, matri-
lysin, gastrin, and ITF-2. Soluble Frizzled-related proteins (sFRP)
bind to Wnt factors and exert a Wnt-antagonistic effect.

gen synthase kinase 3ß (GSK-3ß) proteins. Unphosphory-
lated ß-catenin then binds to transcription factors of the
T-cell factor/lymphoid-enhancer factor (Tcf/Lef) family
and activates the transcription of specific target genes
including c-Myc, cyclin D1, MMP7, gastrin and ITF-2 [6–
11]. However, binding of some Wnt factors to certain
Frizzled receptors can also result in Ca2+ release and pro-
tein kinase C activation, which does not lead to activation
of ß-catenin/Tcf signaling. In contrast to the canonical
Wnt pathway this signal transduction cascade has been
named the Wnt/Ca2+ pathway [12].

70–80% of colorectal cancers have defects in the Wnt
pathway [13, 14]. Most frequently APC mutations are

found, but a subset of tumors wild-type for APC carry ß-
catenin mutations. The current model of colorectal carci-
nogenesis predicts that at least four mutations in critical
genes are required for the evolution of colorectal cancer
[15, 16]. The earliest adenomatous stages are associated
with inactivating APC mutations, followed by mutations
of the oncogene K-Ras and inactivation of tumor-sup-
pressor genes including p53. Roughly 20–30% of hepato-
cellular carcinomas (HCCs) carry mutations in the Axin
or the ß-catenin gene [5] also resulting in deregulation of
Wnt signaling. The epidemiological importance of can-
cers associated with defects in the Wnt pathway is evi-
dent. Colorectal cancer is one of the leading causes of can-
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cer-related morbidity and mortality in Western countries.
In Europe alone more than 210,000 new cases and
110,000 deaths are reported each year [17] and the risk of
developing colorectal cancer during a lifetime is about 5–
6%. While colorectal cancer is much more common in
developed than in developing countries, HCC is the most
frequent cancer in some regions of the world [17].

Components of the Wnt Pathway and Their
Contribution to Gastrointestinal Tumors

The First Steps in the Wnt-Signaling Cascade:
Wnt Factors, Frizzled Receptors and Dishevelled
Wnt proteins constitute a large family of at least 16

secreted cysteine-rich glycoproteins, some of which have
been shown to promote neoplastic transformation in ani-
mal models and tissue culture systems [18]. However, in
contrast to down-stream components of the pathway,
their direct involvement in human carcinogenesis has
never been demonstrated. Wnt proteins bind to the extra-
cellular domain of the Frizzled family of seven transmem-
brane receptors. So far more than 11 different Frizzled
genes have been identified in vertebrates, but little is
known about their specific functions and ligand specifici-
ties. Recently, the low-density lipoprotein receptor-relat-
ed proteins, LRP5 and LRP6, have been found to act as
co-receptors for Wnt signal transduction [19–21]. In addi-
tion to membrane-bound Frizzled receptors, a group of
secreted Frizzled-related proteins has been described.
Through binding of Wnt proteins they seem to exert an
antagonistic effect on Wnt signaling [22–24]. However,
some of the Frizzled-related proteins also seem to bind to
classical membrane-bound Frizzled receptors [25] and
some even seem to activate Wnt signaling [26]. Whether
Frizzled receptors or Frizzled-related proteins directly
contribute to carcinogenesis is not clear yet, but it has
been reported that the Frizzled receptor E3 (FzE3) is
expressed in many esophageal cancers but not in matched
normal tissues [27]. Interestingly, this expression of FzE3
correlates with nuclear translocation of ß-catenin.

Binding of a Wnt ligand to a member of the Frizzled
receptor family results in its activation. Activated Frizz-
led receptors recruit the cytoplasmic protein Dishevelled
to the inner cell membrane and mediate its phosphoryla-
tion [28–31]. It is unknown, whether Dishevelled directly
binds to Frizzled receptors or whether its binding is
mediated through other so far unknown proteins. To date,
two main functions of Dishevelled have been identified.
Through distinct domains Dishevelled transduces Wnt

signals [32] and activates the jun-N terminal kinase (JNK)
pathway [33–35]. Wnt signals are transduced by direct
binding of Dishevelled to Axin [30, 36]. This results in the
inhibition of GSK-3ß-dependent phosphorylation of ß-
catenin. Most likely this occurs through disintegration of
the APC/Axin/GSK-3ß complex [36]. In addition, protein
kinase CK2 (casein kinase II), a protein serine/threonine
kinase, is also able to phosphorylate Dishevelled indepen-
dent of Frizzled [37, 38]. How far Dishevelled and CK2
directly promote neoplastic transformation via ß-catenin/
Tcf is unknown. So far no mutations of these proteins
have been reported in human cancers.

GSK-3ß, Axin, Casein Kinase I, and ß-TrCP:
Regulators of ß-Catenin
Tight regulation of the free cytoplasmic pool of ß-cate-

nin is the central switch of the Wnt pathway. The current
view predicts that in the absence of a Wnt-signal degrada-
tion of ß-catenin is initiated by priming phosphorylation
of serine residue 45 (S45) by casein kinase I (CKI) [39,
40]. Phosphorylation of S45 is dependent on binding of
CKI to axin [40]. The next step involves a multi-protein
complex consisting of ß-catenin, APC, Axin, and the ser-
ine/threonine kinase GSK-3ß [13]. In this complex GSK-
3 facilitates further phosphorylation of ß-catenin’s amino
terminus: starting at threonine 41, and walking down-
stream to S37 and S33. The aim of this cascade is the gen-
eration of the canonical ß-TrCP recognition site around
S33/S37 (DS*GXXS*; S* = phosphoserine; fig. 2c) [41].
Then ß-catenin isoforms phosphorylated at all four criti-
cal serine/threonine residues are bound by the F-box pro-
tein ß-TrCP [42–44], a subunit of the SCF-type E3 ubi-
quitin ligase complex [45]. This complex facilitates ubi-
quitination and subsequent proteasome degradation of
phosphorylated ß-catenin [46]. The finding that priming
phosphorylation of S45 is required for further phosphory-
lation by GSK-3ß solves the longstanding mystery why
mutation of one of the four serine and threonine residues
is sufficient for inhibition of ß-catenin degradation: muta-
tion of one single of the four phosphorylation targets
inhibits further downstream phosphorylation. And phos-
phorylation of serines 33 and 37 is required for binding of
ß-catenin to ß-TrCP. In addition to mutations of the
aforementioned serine and threonine residues, mutations
of asparagin 32 or glycin 34, which are also common in
human cancers [5], likewise destroy the ß-TrCP recogni-
tion motif site, resulting in stabilization of ß-catenin. In
contrast, mutation of serines 25 and 29 does not affect the
stability of ß-catenin since both residues are located ami-
no terminally to the ß-TrCP-binding region. The signifi-
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Fig. 2. Components of the Wnt pathway found to be mutated in gas-
trointestinal cancers. a Mutation of Axin-1 in hepatocellular carcino-
ma results in loss of regions responsible for binding to GSK-3 and
ß-catenin. b APC forms homodimers with itself by the oligomeriza-
tion domain (oligo). The armadillo repeat region is made up of a 42-
amino acid motif that is repeated 13 times. The regions for binding
and downregulation of ß-catenin and the binding region of Axin/con-
ductin partly overlap. Microtubules bind to the basic region (basic)
and the binding regions of Siah-1 and EB1 are confined to the car-
boxy terminus. The mutation cluster region (MCR) is located amino

terminal to the Axin/conductin-binding sites. Most mutant APC pro-
teins can no longer bind to Axin and are therefore incapable of down-
regulating ß-catenin. c The amino and carboxy termini of ß-catenin
serve as transcriptional activators. The central part is made up of 12
highly homologous armadillo repeats (boxes 1–12) which mediate
most interactions with other proteins. Serine and threonine residues
33, 37 and 41 (insert) are the GSK-3 phosphorylation sites. Serine 45
is the target of priming phosphorylation by CKI. Mutation of one of
these residues prevents degradation of ß-catenin.

cance of these mutations for carcinogenesis remains to be
determined [47].

Besides ß-catenin, GSK-3ß also phosphorylates other
members of the Wnt pathway, including Axin [48] and
APC [49], thereby regulating the stability of Axin and the
binding efficiency of APC to ß-catenin, respectively. For
phosphorylation of ß-catenin by GSK-3ß the presence of
Axin is required [50, 51]. Axin, or its homolog conductin
(also called Axil or Axin-2), serves as a scaffold protein

allowing assembly of the APC/Axin/GSK-3ß/ß-catenin
complex [52]. Interaction of Axin proteins with APC,
GSK-3ß, and Axin as well as with Dishevelled occurs by
non-overlapping regions. Binding to APC is facilitated
through the RGS domain [53, 54] and binding to Dishe-
velled occurs through a domain called DIX which is simi-
lar to a region also found in Dishevelled [30, 55] (fig. 2a).
Based on its function to downregulate oncogenic Wnt sig-
naling Axin could be viewed as a tumor-suppressor gene.
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In fact, this view is supported by several findings. In a
subset of HCCs Axin is biallelically mutated leading to
Axin proteins lacking the ß-catenin-binding site [56]. And
in 11 of 45 colorectal cancers with defective DNA mis-
match repair, lacking mutations in both ß-catenin and
APC, the Axin-2 gene was found to be mutated [57]. Inter-
estingly, Axin-2 was just recently identified to be a target
gene of ß-catenin/Tcf signaling (see below).

Due to their central function as regulators of ß-catenin,
generally all proteins of the APC/Axin/GSK-3ß complex
would qualify as tumor suppressor genes. But, however, in
contrast to APC and Axin, so far no mutations or dele-
tions in the GSK-3ß gene have been reported [58]. This
might be explained by the fact that GSK-3ß also phos-
phorylates other key regulatory proteins outside the Wnt
pathway, such as proteins in insulin and growth factor sig-
naling pathways [59]. Direct inhibition of GSK-3ß func-
tion with the consequence of cellular accumulation of ß-
catenin has also been reported for the proteins Frat-1 [60],
Akt/protein kinase B (PKB) [61], the ßII isoform of pro-
tein kinase C (PKC-ßII) [62], and polycystin-1 [63]. The
proto-oncogene Akt/PKB is an extensively studied down-
stream target of insulin-like growth factor, integrin-linked
kinase, and PI3-kinase signaling [64, 65]. Involvement of
Akt/PKB in gastrointestinal carcinogenesis seems likely
since insulin-like growth factor receptor has been found to
be overexpressed in colorectal cancers [66]. PKC-ßII has
also been shown to be upregulated in colorectal cancer
[67] and intracellular PKC-ßII levels are increased after
exposure to secondary bile acids, which are thought to be
carcinogenic to the colonic epithelium [68].

APC: Gatekeeper of Colorectal Tumorigenesis
The APC gene was identified on chromosome 5q by

genetic analysis of familial adenomatous polyposis (FAP)
families [69–71]. In their early adulthood patients with
FAP develop multiple adenomatous polyps of the colorec-
tal epithelium, some of which progress to invasive carci-
nomas. Some FAP patients also suffer from extracolonic
tumors, such as desmoid tumors, ampullary carcinomas,
and hepatoblastomas [72, 73]. The sequence of the APC
gene spans 15 exons and encodes a 2,843-amino acid pro-
tein of 310 kD. Subsequent studies defined the critical
role of APC in the genesis of inherited and sporadic colo-
rectal cancer and its main function as a regulator of free
ß-catenin [74–76]. While germline inactivation of APC
mutations occurs throughout the entire gene, somatic mu-
tations are clustered at the 5) end of exon 15 between
codons 1280 and 1500 (mutation cluster region, MCR;
fig. 2b) [77] resulting in a frame shift or a premature stop

codon and a truncated APC protein. Biallelic inactivation
of APC usually results from a truncating mutation cou-
pled with a deletion of the long arm of chromosome 5
[72]. Altogether, in 70–80% of all colorectal cancers APC
function is inactivated by loss of APC expression or
expression of a truncated protein [72].

The APC protein consists of multiple functional do-
mains that mediate oligomerization and interaction with
many cellular proteins including ß-catenin [76, 78], Á-
catenin [79–81], GSK-3ß [49], Axin/conductin [51–53],
tubulin [82, 83], EB1 [84], hDLG [85], Asef [86], and
Siah-1 [87, 88]. However, the main function of APC
seems to be the regulation of the free non-membrane-
bound pool of ß-catenin in concert with GSK-3ß and the
scaffold protein Axin/conductin. Truncated APC proteins
loose their ability to bind to Axin which results in the
inability to downregulate ß-catenin, which then in turn
accumulates in the cytoplasm and the nucleus [54, 89].
However, it has recently been shown that APC is also
involved in the downregulation of non-phosphorylated,
oncogenic forms of ß-catenin which escape the aforemen-
tioned ß-TrCP-dependent destruction [87, 88]. For this
alternative pathway of destruction a different F-box pro-
tein, Ebi, is recruited. This alternative pathway requires
the interaction of APC with Siah-1, a p53-inducible gene,
which is also involved in the regulation of the tumor-sup-
pressor gene, DCC [90]. As Siah-1 binds to the carboxy
terminus of APC and most colorectal cancers carry trun-
cating mutations lacking the carboxy terminus, both the
Axin/GSK-3ß/ß-TrCP and the Siah-1/Ebi destruction
pathways are abrogated. Consequently, only in tumors
carrying ß-catenin mutations and expressing wild-type
APC, the Siah-1/Ebi system can have a functional role in
regulating ß-catenin.

As loss of APC function and oncogenic activation of
ß-catenin seem to be equally potent in terms of Tcf-tran-
scriptional activation [91], it is surprising that APC muta-
tions are found in the vast majority of colorectal cancers,
whereas ß-catenin mutations are only found in a subset of
colorectal cancers wild-type for APC [58, 92–96]. This is
particularly curious in light of the fact that both APC
alleles need to be mutated versus only one ß-catenin allele
in order to deregulate Tcf signaling. One hypothesis to
account for the highly discordant frequencies of APC and
ß-catenin mutations is that APC loss may provide the cell
with a stronger growth advantage than activation of ß-
catenin, implying that APC has other vital functions
besides promoting ß-catenin degradation. Interestingly, ß-
catenin mutations are more frequent in small than in
invasive adenomas, and tumors carrying mutated ß-cate-



136 Digestion 2002;66:131–144 Kolligs/Bommer/Göke

nin are less aggressive than tumors showing loss of APC
[96]. Of note, biallelic inactivation of APC outside colo-
rectal tumors has only been reported for desmoid tumors
[97]. These benign soft tissue tumors occur with an
increased incidence in FAP patients. Up to 50% of spo-
radic desmoid tumors which are wild-type for APC carry
ß-catenin mutations [98, 99].

In addition to regulation of free ß-catenin, APC has
also been shown to have Wnt-independent functions me-
diated through its carboxy terminus, the region common-
ly lost in colorectal cancer. APC directly associates with
the microtubule cytoskeleton and binds to microtubule-
associated proteins of the EB/RP family [82–84, 100,
101]. Most recently APC has also been suggested to be
involved in the maintenance of chromosomal stability
through localization to the kinetochore of metaphase
chromosomes, a function most likely dependent on the
interaction with EB1 [14, 102, 103].

ß-Catenin: Central Oncogene of the Wnt Pathway
ß-Catenin and its close relative Á-catenin are the verte-

brate homologs of the Drosophila gene armadillo [104,
105]. ß-Catenin was first identified because of its binding
to the cytoplasmic domain of the cell–cell adhesion pro-
tein E-cadherin [106, 107]. Under physiological condi-
tions most cellular ß-catenin is bound to E-cadherin, a
process regulated by tyrosine kinases and tyrosine phos-
phatases [108]. Promotion of tyrosine phosphorylation of
ß-catenin by treatment of cells with epidermal growth fac-
tor or hepatocyte growth factor [109, 110] leads to its dis-
sociation from the adherens junctions and to its transfer
to the cytosol. Whether the phosphorylation is performed
by the growth factor receptors themselves or by soluble
tyrosine kinases is unknown. However, it has been shown
in vitro that the hepatocyte growth factor receptor c-Met
and the epidermal growth factor receptor c-erbB-2 bind to
ß-catenin [111, 112]. As described above, in the absence
of a Wnt signal free ß-catenin is then subsequently phos-
phorylated and degraded.

More recently, ß-catenin has been implicated in hu-
man cancer [113] and its oncogenic potential has been
extensively studied in in vitro tissue culture models [114,
115] and in vivo animal models [116–119]. Three sepa-
rate mechanisms have been found to lead to accumulation
of ß-catenin in the cytoplasm and nucleus of cancer cells:
inactivation of the APC tumor suppressor gene in colorec-
tal cancer; Axin mutations in subsets of hepatocellular
and colorectal cancers [56, 57], and mutations of ß-cate-
nin’s amino terminus in a variety of cancers (fig. 2c, 3).
In as many as 50% of colon tumors with intact APC gain-

of-function mutations in the ß-catenin gene have been
identified [58, 91–94]. The highest frequencies of ß-cate-
nin mutations in colorectal tumors have been found in the
presence of microsatellite instability [94, 120]. It is impor-
tant to note that inactivating of APC mutations and acti-
vating of ß-catenin mutations never seem to coexist in a
tumor.

Besides colorectal cancers, liver malignancies are the
gastrointestinal tumors with the second highest incidence
of mutations in the Wnt pathway. Hepatoblastoma, the
most common primary malignant liver neoplasm in child-
hood, occurring more frequently in FAP patients than in
the general population, is probably the human tumor har-
boring the highest rate of ß-catenin mutations with re-
ported frequencies ranging from 52 up to 89% [121–123].
In HCC Wnt signaling can be activated through either ß-
catenin [124–127] or Axin mutations [56]. The rate of ß-
catenin mutations in HCC has been reported to be about
20% and higher. In HCCs associated with hepatitis C the
rate of ß-catenin mutations may even exceed 40% [128].

In esophageal cancers so far no ß-catenin, APC or Axin
mutations have been reported [129, 130]. But, as men-
tioned above, overexpression of FzE3 in squamous cell
esophageal cancers correlates with nuclear translocation
of ß-catenin [27]. Nuclear accumulation of ß-catenin has
also been observed in Barrett’s esophagus, a precursor of
adenocarcinoma of the distal esophagus [131–133], sug-
gesting an involvement of Wnt signaling in the genesis of
both adenocarcinomas and squamous cell carcinomas of
the esophagus. In intestinal-type gastric cancer ß-catenin
mutations have been reported to occur in 7 of 26 cases
analyzed, but no ß-catenin mutations were found in dif-
fuse-type gastric cancer [134]. In 29 of 45 sporadic fundic
gland polyps activating ß-catenin mutations have been
reported, whereas fundic gland polyps associated with
FAP harbor germline APC mutations [135].

ß-Catenin seems to play a minor role in the genesis of
tumors of the pancreas, gallbladder, and biliary tract. So
far no mutations of the ß-catenin gene have been reported
in pancreatic ductal cancer [136, 137], except for two
mutations in pancreatic cancer cell lines [136]. However,
just recently it was reported that three rare entities of pan-
creatic neoplasms, pancreatoblastomas, acinar cell carci-
nomas, and solid pseudopapillary tumors, frequently car-
ry mutations in the ß-catenin or APC genes [138–140]. In
gallbladder adenomas ß-catenin mutations have been de-
scribed in about 60% of the cases analyzed, but interest-
ingly ß-catenin mutations are rare or absent in carcinomas
or dysplasias of the gallbladder [141, 142]. No ß-catenin
mutations have been reported for intrahepatic cholangio-
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Fig. 3. Deregulation of Wnt signaling in gastrointestinal tumors. a Under physiological conditions free ß-catenin (ß)
is rapidly degraded. Three different mechanisms can lead to deregulation of Wnt/ß-catenin/Tcf signaling. Inactiva-
tion of the tumor suppressor APC (b) or the scaffold protein Axin (c), and activating mutations of ß-catenin itself (d)
result in cellular accumulation of ß-catenin. After nuclear translocation and binding to Tcf, transcription of specific
target genes is activated.

carcinoma [143]. In a study on biliary tract cancers only 8
of 107 cases had a ß-catenin mutation [144].

In addition to gastrointestinal tumors, ß-catenin muta-
tions also occur with varying frequencies in gynecological
tumors such as endometrial carcinoma [94, 145] and
endometrioid ovarian carcinoma [146–148], in neopla-
sias of the skin such as melanoma [149] and pilomatrico-
ma (with 75% of tumors harboring ß-catenin mutations)
[119], anaplastic thyroid carcinoma [150], prostate cancer
[151], Wilms’ tumor [152], lung cancer [153], and medul-
loblastoma [154].

Á-Catenin is structurally and functionally a close rela-
tive of ß-catenin. Both proteins bind to E-cadherin in
adherens junctions, but only Á-catenin is also present in
desmosomes [155]. Like ß-catenin, Á-catenin also binds to
APC [81, 156], Axin/conductin [157], and Tcf/Lef factors
[158], carries a carboxy terminal transcriptional activa-
tion domain [159, 160], is regulated by APC [160], and its
deregulated expression results in neoplastic transforma-
tion [160]. However, so far no Á-catenin mutations have
been described in human cancers, except in one gastric
cancer cell line [136].

The Final Step in Wnt Signaling: Activation of
Tcf-Dependent Transcription
Cytosolic accumulation of ß-catenin leads to the for-

mation of complexes with Tcf/Lef transcription factors
[161, 162]. After nuclear translocation of these com-
plexes, Tcf/Lef factors facilitate gene-specific DNA bind-
ing while ß-catenin serves as transcriptional activator.
The histone acetyltransferases p300/CBP have been
found to serve as transcriptional coactivators of Tcf/Lef
target gene expression through interaction with ß-catenin
[163–165]. Moreover, Brg-1, a component of the mam-
malian SWI/SNF chromatin-remodelling complex, was
also found to be indispensable for ß-catenin/Tcf-target
gene expression [166]. By binding of p300/CBP and Brg-1
to ß-catenin’s carboxy terminus, the chromatin of regula-
tory regions of specific target gene promoters is remodeled
facilitating the binding of the transcriptional machinery.
The TATA-binding protein, Pontin52, is thought to me-
diate the contact between the ß-catenin/Tcf-4 complex
and the basal transcriptional machinery [167].

Of all Tcf isoforms Tcf-4 is the only Tcf protein being
consistently expressed in colorectal epithelial cells [168].
Tcf-4 itself has been reported to carry mutations in a sub-
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set of colorectal cancers [169–171]. But, as all of these pri-
mary cancers and cancer cell lines also carry either inacti-
vating APC or activating ß-catenin mutations, these mu-
tations of the Tcf-4 gene are not thought to substitute for
APC or ß-catenin mutations. A subset of the mutations
affects the carboxy terminal region of Tcf-4 required for
binding to CtBP, a member of the Groucho family of tran-
scriptional repressors [172]. These repressors bind to Tcf-
4 in the absence of ß-catenin and hereby tightly control
Tcf-4 activity [173, 174]. Therefore, Tcf-4 mutations are
thought to have an additive rather than an initiating effect
on neoplastic transformation. Once transformation of the
colorectal epithelium has occurred, expression of Lef-1, a
close homolog of Tcf-4, is upregulated. Only expression of
the ß-catenin-sensitive isoform of Lef-1 is upregulated
and can support the activation of Tcf/Lef target genes
[175].

Several ß-catenin/Tcf target genes are supposed to con-
tribute to tumor initiation and progression in mice and
humans. Identification of c-Myc and cyclin D1 as ß-cate-
nin-regulated genes solved several longstanding puzzles.
c-Myc is a proto-oncogene that has long been known to be
overexpressed at the mRNA and protein levels in colorec-
tal tumors [176–180]. But, however, the reason for c-Myc
overexpression in colon tumors remained unknown. Un-
like many other tumors c-Myc gene rearrangements or
amplifications are rare in colon tumors [181]. The identi-
fication of c-Myc as a Tcf-4 target gene linked deregulated
expression of the proto-oncogene c-Myc to APC and ß-
catenin [6]. Unlike in most other human tumor types,
genetic alterations in the p16INK4a growth-inhibitory
pathway, which includes Rb, cdk4, and cyclin D1, were
only rarely found in colon tumors [182–185]. The discov-
ery of cyclin D1 as a target of the ß-catenin/Tcf pathway
also linked this pathway to colorectal carcinogenesis [7,
8].

Matrilysin/MMP-7 is another target gene with sup-
posedly critical functions in cancer promotion [9, 186]. In
the absence of the metalloproteinase MMP-7, intestinal
tumorigenesis is strongly suppressed in APC mutant mice
[187]. WISP-1 is a ß-catenin/Tcf-4 target gene belonging
to the CCN family of growth factors [188] and cells over-
expressing WISP-1 reveal characteristics of transformed
cells including induction of tumor growth in nude mice.
Deregulated expression of the Tcf target gene gastrin in
APC–/+ mice leads to an increase in polyp number, while
gastrin-deficient APC–/+ mice exhibit a reduction in intes-
tinal polyp formation [10]. The basic helix-loop-helix
transcription factor ITF-2 is expressed in two different
splice variants ITF-2A and ITF-2B. The expression of the

longer protein ITF-2B was found to be directly regulated
by ß-catenin/Tcf and, when overexpressed, to induce
transformation of epithelial cells [11].

Tcf-1 [189] and Axin-2/conductin [190–193] have
been identified as ß-catenin/Tcf-4-regulated genes which
negatively regulate Tcf signaling. Certain splice forms of
Tcf-1 act as naturally occurring dominant-negative Tcf/
Lefs which directly interfere with transcription of ß-cate-
nin/Tcf-target genes by specifically binding to Tcf sites in
gene-regulatory regions. These proteins lack the amino
terminal-binding domain for ß-catenin, but still bind to
DNA. The access for functional ß-catenin/Tcf complexes
to responsive promoters is therefore blocked. In vivo
studies have found that mutational inactivation of Tcf-1
leads to formation of multiple adenomas in the organs of
mice including the gut. Loss of Tcf-1 expression in mice
heterozygous for APC enhances the growth of intestinal
adenomas. Tcf-1 therefore seems to exert a tumor-sup-
pressive function [172]. Axin-2/conductin, but not the
homologous protein Axin, is induced by ß-catenin. Via a
negative feedback loop activated ß-catenin/Tcf-4 signal-
ing is downregulated by targeting ß-catenin for degrada-
tion. Other genes proposed as targets of ß-catenin/Tcf
include the gap junction protein connexin 43 [194], the
inhibitory basic helix-loop-helix factor Id2 [195], peroxi-
some proliferator-activated receptor-‰ [196], survivin
[197], as well as the genes c-jun, fra-1, uPAR, ZO-1 [198],
NBL-4 [199], DRCTNNB1A [200], MDR1 [201], and
brachyury [202].

Clinical Implications of Basic Research

Much interest focuses on the Wnt/APC/catenin/Tcf
signal-transduction cascade. So far this research has
yielded little clinical impact. However, based on the
knowledge that most APC gene mutations result in a trun-
cated protein, a so-called protein truncation test has been
developed [203, 204]. This test, based on the in vitro tran-
scription and translation of genomic PCR products of the
APC gene, is used to prescreen FAP patients and their
family members at risk. In case of a truncating mutation
the detected protein is smaller in size than the corre-
sponding wild-type product. By direct sequencing of the
mutated DNA fragment APC mutations can be verified.
As deaths from colorectal cancer can be avoided by early
detection of colorectal adenomas and localized tumor
stages much work has been invested into the development
of DNA-based stool tests. Based on the large proportion of
colorectal cancers with deregulation of Wnt signaling and



Wnt Signaling and Gastrointestinal
Tumorigenesis

Digestion 2002;66:131–144 139

the involvement of loss of APC function in very early
steps of colorectal carcinogenesis, recently two molecular
approaches to screen for colorectal cancer have been pre-
sented [205, 206]. In both studies APC mutations were
reliably detected by either DNA sequencing or a digital
protein truncation test. Future studies will have to show
how useful these tests finally are to screen for colorectal
cancer. But searching for APC mutations only will proba-
bly not be sufficient as the only marker indicating a colo-
rectal neoplasm.

A correlation of ß-catenin expression and cellular local-
ization with the prognosis of several gastrointestinal tu-
mors has been described. It has been found that strong
nuclear or cytoplasmic ß-catenin staining in colorectal
cancer correlates with more invasive tumor growth, a
higher susceptibility of disease recurrence after surgery,
and a lower survival rate [207–209]. In HCCs, however,
analysis of many cases revealed that mutation and nuclear
staining of ß-catenin correlated with less aggressive tumor
growth and better survival rates [210, 211]. In contrast, in
gastric cancers no correlation of ß-catenin nuclear stain-
ing with tumor differentiation, tumor type, invasiveness
or survival was found [212]. In esophageal carcinoma loss
of proteins of the E-cadherin/ß-catenin adhesive complex
correlated with poor prognosis [213, 214].

In contrast to diagnostic and prognostic applications
therapeutic approaches targeting the Wnt/APC/catenin
pathway are even farther from clinical practice. Downreg-
ulation of ß-catenin in order to inhibit ß-catenin/Tcf sig-
naling by adenovirus-based or antisense-based ap-
proaches has been shown to be critical for tumor cell
growth in in vitro and in vivo models [215, 216]. Instead
of downregulating ß-catenin two approaches utilized syn-
thetic Tcf-responsive promoters to drive expression of the
apoptosis-inducing gene FADD or an enzyme catalyzing
the activation of a cytotoxic prodrug, and both resulted in
the selective death of colon cancer cells [217, 218]. How-
ever, all approaches targeting tumor cells with deregulated
Tcf transcription are hampered by the fact that ß-catenin/
Tcf signaling also plays a critical role in tissue homeostasis
as known from knock-out experiments with mice carrying
a homozygous deletion of the Tcf-4 gene. These mice are
incapable of maintaining a proliferative stem cell com-
partment in the small intestine and die shortly after birth
[219]. Many questions remain unanswered, but un-
doubtedly the Wnt/APC/catenin pathway harbors great
potential for future applications in cancer diagnosis, stag-
ing, and therapy.
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