2,224 research outputs found

    An Asynchronous Simulation Framework for Multi-User Interactive Collaboration: Application to Robot-Assisted Surgery

    Get PDF
    The field of surgery is continually evolving as there is always room for improvement in the post-operative health of the patient as well as the comfort of the Operating Room (OR) team. While the success of surgery is contingent upon the skills of the surgeon and the OR team, the use of specialized robots has shown to improve surgery-related outcomes in some cases. These outcomes are currently measured using a wide variety of metrics that include patient pain and recovery, surgeon’s comfort, duration of the operation and the cost of the procedure. There is a need for additional research to better understand the optimal criteria for benchmarking surgical performance. Presently, surgeons are trained to perform robot-assisted surgeries using interactive simulators. However, in the absence of well-defined performance standards, these simulators focus primarily on the simulation of the operative scene and not the complexities associated with multiple inputs to a real-world surgical procedure. Because interactive simulators are typically designed for specific robots that perform a small number of tasks controlled by a single user, they are inflexible in terms of their portability to different robots and the inclusion of multiple operators (e.g., nurses, medical assistants). Additionally, while most simulators provide high-quality visuals, simplification techniques are often employed to avoid stability issues for physics computation, contact dynamics and multi-manual interaction. This study addresses the limitations of existing simulators by outlining various specifications required to develop techniques that mimic real-world interactions and collaboration. Moreover, this study focuses on the inclusion of distributed control, shared task allocation and assistive feedback -- through machine learning, secondary and tertiary operators -- alongside the primary human operator

    Activities of the Center for Space Construction

    Get PDF
    The Center for Space Construction (CSC) at the University of Colorado at Boulder is one of eight University Space Engineering Research Centers established by NASA in 1988. The mission of the center is to conduct research into space technology and to directly contribute to space engineering education. The center reports to the Department of Aerospace Engineering Sciences and resides in the College of Engineering and Applied Science. The college has a long and successful track record of cultivating multi-disciplinary research and education programs. The Center for Space Construction is prominent evidence of this record. At the inception of CSC, the center was primarily founded on the need for research on in-space construction of large space systems like space stations and interplanetary space vehicles. The scope of CSC's research has now evolved to include the design and construction of all spacecraft, large and small. Within this broadened scope, our research projects seek to impact the underlying technological basis for such spacecraft as remote sensing satellites, communication satellites, and other special purpose spacecraft, as well as the technological basis for large space platforms. The center's research focuses on three areas: spacecraft structures, spacecraft operations and control, and regolith and surface systems. In the area of spacecraft structures, our current emphasis is on concepts and modeling of deployable structures, analysis of inflatable structures, structural damage detection algorithms, and composite materials for lightweight structures. In the area of spacecraft operations and control, we are continuing our previous efforts in process control of in-orbit structural assembly. In addition, we have begun two new efforts in formal approach to spacecraft flight software systems design and adaptive attitude control systems. In the area of regolith and surface systems, we are continuing the work of characterizing the physical properties of lunar regolith, and we are at work on a project on path planning for planetary surface rovers

    MIT Space Engineering Research Center

    Get PDF
    The Space Engineering Research Center (SERC) at MIT, started in Jul. 1988, has completed two years of research. The Center is approaching the operational phase of its first testbed, is midway through the construction of a second testbed, and is in the design phase of a third. We presently have seven participating faculty, four participating staff members, ten graduate students, and numerous undergraduates. This report reviews the testbed programs, individual graduate research, other SERC activities not funded by the Center, interaction with non-MIT organizations, and SERC milestones. Published papers made possible by SERC funding are included at the end of the report

    Design and Control Modeling of Novel Electro-magnets Driven Spherical Motion Generators

    Get PDF

    Proceedings of the NASA Conference on Space Telerobotics, volume 5

    Get PDF
    Papers presented at the NASA Conference on Space Telerobotics are compiled. The theme of the conference was man-machine collaboration in space. The conference provided a forum for researchers and engineers to exchange ideas on the research and development required for the application of telerobotics technology to the space systems planned for the 1990's and beyond. Volume 5 contains papers related to the following subject areas: robot arm modeling and control, special topics in telerobotics, telerobotic space operations, manipulator control, flight experiment concepts, manipulator coordination, issues in artificial intelligence systems, and research activities at the Johnson Space Center

    DEVELOPMENT OF A KINETIC MODEL FOR STEERABLE CATHETERS FOR MINIMALLY INVASIVE SURGERY

    Get PDF
    The steerable catheters have demonstrated many advantages to overcome the limitations of the conventional catheters in the minimally invasive surgery. The motion and force transmission from the proximal end to distal tip of the catheter have significant effects to the efficiency and safety of surgery. While the force information between the catheter and the body (e.g., vessel) can be obtained by mounting sensors on the distal tip of the catheter, this would be more intrusive and less reliable than the one without the sensors, which is described in this disseration. In addition, the small diameters of the catheters may also restrict the idea of mounting sensors on the distal tip. The other approach to obtain the force information is to infer it from the information outside the body. This will demand an accurate mathematical model that describes the force and motion relation called kinetic model, and unfortunately, such a kinetic model is not available in the literature. In this dissertation, a kinetic model for steerable catheters is presented wich captures the following characteristics of the steerable catheter, namely (1) the geometrical non-linear behavior of the catheter in motion, (2) the deformable pathway, (3) the friction between the catheter and the pathyway, and (4) the contact between the catheter and pathway. A non-linear finite element system (SPACAR) was employed to capture these characteristics. A test-bed was built and an experiment was carried out to verify the developed kinetic model. The following conclusions can be drawn from this dissertation: (1) the developed kinetic model is accurte in comparison with those in literature; (2) the Dahl friction model, the LuGre friction model and the simplified LuGre friction model are able to capture the friction behavior between the catheter and the pathway but the Coulomb friction model fails (as it cannot capture the hysteresis property which has a significant influence on the behavior of the catheter); (3) the developed kinetic model has the potential of being used to optimize the design and operation of steerable catheters with several salient findings that (3a) the maximal contact force between the catheter and the pathway occurs on the tip of the distal part or the connecting part between the distal part and catheter body of the catheter and (3b) the rigidity and length of the distal part are crucial structural parameters that affect the motion and force transmission significantly. There are several contributions made by this dissertation. In the field of the steerable catheter, biomechanics and bio-instrumentation, the contributions are summarized in the following: (1) the approach to develop the kinetic model of the steerable catheter in a complex work environment is useful to model other similar compliant medical devices, such as endoscope; (2) the kinetic model of the steerable catheter can provide the force information to improve the efficiency and safety of MIS (minimally invastive surgery) and to realize the “doctor-assisted” catheter-based MIS procedure; (3) the kinetic model can provide accurate data for developing other simplified models for the steerable catheters in their corresponding work environments for realizing the robotic-based fully automated MIS procedure. (4) The kinetic model of the steerable catheter and the test-bed with the corresponding instruments and methods for the kinetic and kinematic measurements are a useful design validation in the steerable catheter technology as well as for the training of physicians to perform the catheter-based interventional procedure by adding more complex anatomic phantoms. In the field of continuum manipulator and continuum robots, the approach to develop the kinetic model is useful to model other manipulators and robots, such as snake-like robots

    Global Feed-Forward Adaptive Fuzzy Control of Uncertain MIMO Nonlinear Systems

    Get PDF
    This study proposes a novel adaptive control approach using a feedforward Takagi-Sugeno (TS) fuzzy approximator for a class of highly unknown multi-input multi-output (MIMO) nonlinear plants. First of all, the design concept, namely, feedforward fuzzy approximator (FFA) based control, is introduced to compensate the unknown feedforward terms required during steady state via a forward TS fuzzy system which takes the desired commands as the input variables. Different from the traditional fuzzy approximation approaches, this scheme allows easier implementation and drops the boundedness assumption on fuzzy universal approximation errors. Furthermore, the controller is synthesized to assure either the disturbance attenuation or the attenuation of both disturbances and estimated fuzzy parameter errors or globally asymptotic stable tracking. In addition, all the stability is guaranteed from a feasible gain solution of the derived linear matrix inequality (LMI). Meanwhile, the highly uncertain holonomic constrained systems are taken as applications with either guaranteed robust tracking performances or asymptotic stability in a global sense. It is demonstrated that the proposed adaptive control is easily and straightforwardly extended to the robust TS FFA-based motion/force tracking controller. Finally, two planar robots transporting a common object is taken as an application example to show the expected performance. The comparison between the proposed and traditional adaptive fuzzy control schemes is also performed in numerical simulations. Keywords: Adaptive control; Takagi-Sugeno (TS) fuzzy system; holonomic systems; motion/force control
    • …
    corecore