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Abstract

The field of surgery is continually evolving as there is always room for improvement

in the post-operative health of the patient as well as the comfort of the Operating

Room (OR) team. While the success of surgery is contingent upon the skills of

the surgeon and the OR team, the use of specialized robots has shown to improve

surgery-related outcomes in some cases. These outcomes are currently measured

using a wide variety of metrics that include patient pain and recovery, surgeons

comfort, duration of the operation and the cost of the procedure. There is a need

for additional research to better understand the optimal criteria for benchmark-

ing surgical performance. Presently, surgeons are trained to perform robot-assisted

surgeries using interactive simulators. However, in the absence of well-defined per-

formance standards, these simulators focus primarily on the simulation of the oper-

ative scene and not the complexities associated with multiple inputs to a real-world

surgical procedure. Because interactive simulators are typically designed for spe-

cific robots that perform a small number of tasks controlled by a single user, they

are inflexible in terms of their portability to different robots and the inclusion of

multiple operators (e.g., nurses, medical assistants). Additionally, while most simu-

lators provide high-quality visuals, simplification techniques are often employed to

avoid stability issues for physics computation, contact dynamics and multi-manual

interaction. This study addresses the limitations of existing simulators by outlining

various specifications required to develop techniques that mimic real-world interac-

tions and collaboration. Moreover, this study focuses on the inclusion of distributed

control, shared task allocation and assistive feedback – through machine learning,

secondary and tertiary operators – alongside the primary human operator.



Acknowledgements

I would like to acknowledge several people that have inspired, motivated and helped

me during my research. First, I would like to acknowledge my parents and siblings

for their unwavering support in all my endeavors. I would like to acknowledge my

advisors and peers from my time back in the School of Science and Engineering

(SSE); Dr. S. Masud and Dr. A. Muhammad, Dr. S. Athar, Dr. T. Manzoor, Dr.

H. Khan, Dr. Z. Ahmad and Dr. H. Nisar.

I would like to thank my friends and previous colleagues in North Carolina;

Alex Maret, Stefan Atay, Dustin Vaughan, Andrew McDaniel and many others for

their support during my internships and teaching me invaluable lessons that I have

applied in my research.

The number of people that I would like to thank at WPI and AIM lab are just too

many so I will name the ones I have most recently interacted with. My colleagues

and peers; Dr. Patel, Radian, Yan, Nishan, Anna, Farid, Druv, Vignesh, Nuttaworn,

Vishnu, Ehtisham, Ali Hussain, Ali Shah, Ayaz, Arsalan, Hammad, Saad, Ahmad,

Sami, Fatima, Najma, Sumeet, Satish, Kene, Tanmay, Katie, Paulo, Tess, Dr. Nycz,

Anastasia and many others that have made my time at WPI very memorable.

I would like especially to acknowledge Anton and Dr. Z. Chen from JHU for

inspiring me to develop AMBF.

I feel lucky to have been part of the 2012 Fulbright cohort. My peers from this

cohort; Mariam, Safyah, Dr. A. Usman, Fazli, Hira, Asma, Kiyas, Hera and many

others that have made my time in graduate school very enjoyable.

My committee members, Dr. P. Kazanzides, Dr. B. Calli and Dr. L. Fichera

have been phenomenal advisors and have helped me tremendously in achieving this

milestone.

Most important of all, I would like to thank Dr. G.S. Fischer for his guidance and

i



support throughout my M.S. and Ph.D. and allowing me to conduct this research.

I could not have asked for a better advisor or a better research lab.

ii



Contents

1 Introduction 1

1.1 The da Vinci Research Kit . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.4.1 Conceptual Contributions . . . . . . . . . . . . . . . . . . . . 26

1.4.2 Implementation Based Contributions . . . . . . . . . . . . . . 27

1.4.3 Community Impact . . . . . . . . . . . . . . . . . . . . . . . . 28

1.5 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.6 Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2 Review of Solvers for Dynamic Simulations 33

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2 Mathematical Formulation of Dynamic Simulations . . . . . . . . . . 34

2.3 Force Based Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4 Velocity Based Methods . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5 Position Based Methods . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.6 Indirect Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.6.1 The Combined Jacobian Method . . . . . . . . . . . . . . . . 42

iii



2.6.2 The Collision K Matrix Method . . . . . . . . . . . . . . . . . 43

2.7 Solving the Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.8 Articulated Body Methods . . . . . . . . . . . . . . . . . . . . . . . . 45

2.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3 Asynchronous Framework for Collaborative Interaction 49

3.1 Published Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Selection of Software Components . . . . . . . . . . . . . . . . . . . . 53

3.4 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4.1 Implementation of Real-Time Dynamic Simulation . . . . . . 55

3.4.2 Asynchronous Control of Multiple IIDs . . . . . . . . . . . . . 59

3.4.3 Contextual Viewport Control . . . . . . . . . . . . . . . . . . 63

3.5 Minimal Frame Representation for Input Mapping . . . . . . . . . . . 64

3.6 Plugin Based Interface for dVRK Masters . . . . . . . . . . . . . . . 78

3.7 Medium for Communication Pipeline . . . . . . . . . . . . . . . . . . 80

3.7.1 Bidirectional Communication Interfaces . . . . . . . . . . . . . 84

3.7.2 Communication Pipeline Payloads . . . . . . . . . . . . . . . . 84

3.7.3 Normalized Joint Control of Multi-Jointed SDEs . . . . . . . . 87

3.8 The Python Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.9 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4 Distributed Format for Robots, Environments and Devices 105

4.1 Published Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.3 The AMBF Description Format (ADF) . . . . . . . . . . . . . . . . . 109

iv



4.3.1 Anatomy of ADF . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.3.2 Interconnected Bodies . . . . . . . . . . . . . . . . . . . . . . 112

4.3.3 Convention of Constraint Definition . . . . . . . . . . . . . . . 113

4.3.4 Flexibility of Name-spacing and Resource Paths . . . . . . . . 116

4.3.5 Resolving Naming Conflicts . . . . . . . . . . . . . . . . . . . 117

4.3.6 Support for Soft Bodies . . . . . . . . . . . . . . . . . . . . . 120

4.3.7 Action Based Sensors for Reusability . . . . . . . . . . . . . . 120

4.3.8 Auto Generation of Communication Instances . . . . . . . . . 122

4.4 Compatibility of ADF with External Software . . . . . . . . . . . . . 123

4.4.1 URDF to ADF Conversion . . . . . . . . . . . . . . . . . . . . 123

4.4.2 Blender ADF Addon . . . . . . . . . . . . . . . . . . . . . . . 124

4.4.3 Implementation of Multiple View-ports using Camera Data . . 130

4.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5 Integration of Soft-Body Simulations 136

5.1 Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.5 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.5.1 Real-Time Simulation of Soft-Body Dynamics . . . . . . . . . 141

5.5.2 Representation of a Soft-Body . . . . . . . . . . . . . . . . . . 142

5.5.3 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.5.4 Manipulation of Soft-Body . . . . . . . . . . . . . . . . . . . . 148

5.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

v



6 Grasping in Simulation 156

6.1 Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.4 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6.4.1 Limitations Associated with Rigid-Body Collisions . . . . . . . 162

6.4.2 Limitations Associated with Geometric Representation of Rigid

Bodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.4.3 Dynamics Calculation in Physics Libraries . . . . . . . . . . . 164

6.5 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

6.5.1 Resistive Sensors for Preemptive Contact Computation . . . . 166

6.5.2 Anatomy of a Resistive Sensor . . . . . . . . . . . . . . . . . . 167

6.5.3 Visualization of Contact Forces . . . . . . . . . . . . . . . . . 171

6.5.4 Automating Sensor Placement . . . . . . . . . . . . . . . . . . 173

6.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

6.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

7 Applications and Use-Cases 182

7.1 Supervised Semi-Autonomous Control with Bayesian Optimization . . 183

7.1.1 Design of Training Puzzle . . . . . . . . . . . . . . . . . . . . 185

7.1.2 Study Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

7.2 Analysis of Collaborative Control for Surgical Training Tasks . . . . . 189

7.2.1 Setting up the Study . . . . . . . . . . . . . . . . . . . . . . . 191

7.2.2 Study Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . 196

7.2.3 Study Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

7.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

vi



8 Conclusion and Future Work 200

8.1 Review of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 200

8.2 Lessons Learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

8.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

8.3.1 Object Specific Communication Payloads . . . . . . . . . . . . 203

8.3.2 Extension of the Python Client . . . . . . . . . . . . . . . . . 204

8.3.3 Inclusion of More Sensors . . . . . . . . . . . . . . . . . . . . 204

8.3.4 Support for Application Program Interface . . . . . . . . . . . 205

8.3.5 Improved Softbody Simulation Framework . . . . . . . . . . . 205

8.3.6 Swappable Middleware . . . . . . . . . . . . . . . . . . . . . . 205

8.3.7 Incorporating CRTK Specification . . . . . . . . . . . . . . . . 206

8.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

vii



List of Figures

1.1 Traditional setup for Laparoscopy [1]. . . . . . . . . . . . . . . . . . . 2

1.2 The first robot (PUMA-200) to be used for brain biopsies [2]. . . . . . 2

1.3 A robotic system for prostate resection via the trans-urethral route. . 3

1.4 The commercial Robodoc intended for hip replacement surgeries . . . 4

1.5 (a) The ZEUS Slave Console.(b) The ZEUS system with Master and

Slave Console.(c) The automated endoscope called (AESOP) . . . . . 5

1.6 The da Vinci Surgical System with the surgeon operating the MTM

console and the helping nurse at the PSM station . . . . . . . . . . . 7

1.7 The da Vinci Research Kit at WPI Aimlab. . . . . . . . . . . . . . . 8

1.8 A lab setup for the Raven II surgical robot. . . . . . . . . . . . . . . 10

1.9 In 2019 the dVRK is present in 35 sites worldwide. . . . . . . . . . . 11

1.10 In 2019 the Raven II is present in around 20 sites worldwide. . . . . . 11

1.11 The open-source hardware controllers for interfacing with each indi-

vidual dVRK manipulator. . . . . . . . . . . . . . . . . . . . . . . . . 12

1.12 The peg transfer puzzle for surgical training. . . . . . . . . . . . . . . 17

2.1 The simplest form of constraint based on collision between two rigid

bodies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1 A conceptual view of the Asynchronous Framework . . . . . . . . . . 52

viii



3.2 The external components that have been selected to complement var-

ious part of the Asynchronous Framework and the AMBF. . . . . . . 54

3.3 (a) Time dilation between Application Clock & Simulation Clock us-

ing fixed time-step (dt=0.001) (b) Time tracking between Application

Clock & Simulation Clock using dynamic time-step . . . . . . . . . . 59

3.4 Input devices to interact with a dynamic simulation. . . . . . . . . . 60

3.5 A block diagram depicting the Design of Asynchronous Control Scheme,

the Simulated end-effectors and Devices maintain independent and

mutually exclusive Data Structures (DS) that are updated on succes-

sive writes and are capable of asynchronous reads . . . . . . . . . . . 62

3.6 These figures show the simulated end-effectors controlled by dVRK

Master with clutch/camera foot-pedals enabled. The clutch is used

to move the haptic device disengaged, and the camera foot-pedal is

used to re-orient the view-direction without affecting the end-effector. 71

ix



3.7 This flow chart represents the internal process of binding an IID to an

SDE and a Camera. These parameters are specified using the front

end format shown in Figure 3.8. The user has to specify at least one

of the two fields “simulated multi-body” or the “root link”. If both

the “simulated multi-body” and “root link” are defined, the root link

is searched for in the simulated multi-body file. If a “root link” is not

set, then the body with the least number of parents in the “simulated

multi-body” is treated as the root link. Lastly, in case, the “simulated

multi-body” is not defined, it is expected that the “root link” refers

to a body already present in the simulation. The field “cameras”

is optional and is used to define the controllable cameras from the

corresponding IID. If the “cameras” field is not defined, then all the

existing cameras in the simulation are added to the device’s cameras.

In any case, the first camera in the IIDs list of cameras is used as the

device’s FoR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.8 The specification of an IID and it’s simulation parameters using the

front-end specification format. The important parameters for this

discussion are the three fields namely “simulated multi-body”, “root

link” and the list of “cameras”. The “simulated multi-body” is a

description file that defines a proxy simulated multi-body that will

be controlled by this IID. The “root link” refers to a body in the

“simulated multi-body” or an existing body in the simulation that

will be bound to the IID. The “cameras” field is a list of cameras

controllable from this IID. The combined use of these three fields is

discussed in Flowchart 3.7 . . . . . . . . . . . . . . . . . . . . . . . . 73

x



3.9 A zoomed out view of the components involved in a unilateral or

multi-lateral control. The inclusion of the user frame U is important

as the user has to deal with the difference between the device base

frame and the simulation world’s (or camera’s) frame as a reference. . 74

3.10 A visual illustration of the SDE frames. These frames are defined for

each IID-SDE pair, in-case of multi-lateral control, each pair has its

own set of variables. The frames FSDE−TO and FSDE−BO are usually

defined at initialization and remain fixed throughout the simulation,

while FSDE−REF and FSDE−REF−O change based on the clutching of

device position control button. . . . . . . . . . . . . . . . . . . . . . . 75

3.11 The frames involved in a generalized representation of an IID. The

frames FIID−BO, FIID−TO, FIID−B and FIID−E are meant to handled

in the corresponding device drivers (dVRK Arm Plugin in case of

the dVRKs) while the frames FIID−CL, FIID−PRE−CL and FIID are

handled in the Asynchronous Framework. . . . . . . . . . . . . . . . . 76

3.12 The frames associated with the camera which are defined for all IID-

SDE-Cam triplets. Each triplet unit has its own set of these frames. . 76

3.13 A flowchart depicting the process of controlling an IID in uni-lateral

or multi-lateral control in single device thread. Each IID has its own

thread and this flow chart repeats asynchronously. . . . . . . . . . . . 77

3.14 This block diagram depicts a plugin based interface for dVRK ma-

nipulators using ROS as an IPC. The ROS functionality is sealed in

the Arm Bridge Class whereas the ARM Interface exposes API for

user applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

xi



3.15 A visual representation of the Asynchronous Framework with regards

to the C++ AMBF Simulator where each simulated dynamic object is

represented as an afObject. The afObjects utilize independent com-

munication pipelines by exposing State/Command interfaces which

allow isolated control . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.16 Generating grippers such that the joint axes between the left and right

fingers (and sub-links) are inverted. This allows a scalar variable to

map to multiple joints and allows a generic interface with IIDs having

only one pinch DOF. . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.17 The Python Client communicates with the AMBF Simulator using

ROS as a middle-ware, AMBF ENV retrieves the requested handles

for objects from Python Client and provides a GYM compatible in-

terface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.18 The Flowchart depicting the process of throttling the dynamic sim-

ulation based on setting the “Enable Throttle” flag by an external

application. Once the flag is set, the external application is respon-

sible for providing a clock as shown by the field “External Clock”.

The default value of “No. Skip Steps” is set to 5, which the number

of simulation steps the physics will take between each clock toggle.

This field can also be set dynamically. . . . . . . . . . . . . . . . . . . 92

3.19 Figure (a) and (b) show the haptic update-rate of 5 devices when

controlled ‘sequentially’ vs ‘asynchronously’, respectively. Figure (c)

and (d) show the corresponding rates for physics update-loops for

‘sequential’ vs ‘asynchronous’ control . . . . . . . . . . . . . . . . . . 94

3.20 Reponse of haptic controllers with degrading dynamic loops frequency 96

xii



3.21 These sub-figures show the progression (top to bottom) of a bi-manual

task using the AMBF Simulator. The two SDEs holding the green

multi-link puzzle piece are controlled by dVRK Masters (shown as

Picture in Picture on top right) and the other two SDEs are controlled

via Razer Hydra (shown as Picture in Picture on top left) . . . . . . . 97

3.22 Bi-Lateral SISO Control by using a pair to Novint Falcons and a pair

of dVRK MTMs to control the same SDEs. . . . . . . . . . . . . . . . 100

3.23 Communication speed of several afObjects for an overloaded dynamic

environment. The desired communication frequency is set to 2 kHz

Dynamic-Loop’s Frequency ∼ 300Hz, afObjComm frequency ∼ 2kHz 101

3.24 (a) The histogram showing the communication latency between the

C++ AF and the Python Client using message queue size of ∼ 10

(b) The green dots show the difference between every successive new

message received from the C++ AF by subtracting from the previous

packet’s embedded time. Similarly, the red dots show the difference

between the current time when the message was read from the previ-

ous time the last packet was read. . . . . . . . . . . . . . . . . . . . 102

3.25 The histogram showing the communication latency between the C++

AF and the Python Client using message queue size of ∼ 10. . . . . 103

3.26 Histogram of the time difference between the embedded time of a

received packet and the current time for synchronous communication

using Step Throttling . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

xiii



4.1 The anatomy of ADF. The yellow tile forms the header and consists

of global parameters and header lists which are highlighted with the

purple dotted border. The red tile represents a constraint, green

represents bodies and blue represents scene objects. The blue text

highlights optional parameters. . . . . . . . . . . . . . . . . . . . . . 111

4.2 Densely connected bodies with the corresponding lineage for each

body shown on the right. . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.3 A subset of robot models already implemented for the AMBF simu-

lator in Blender. These robots include the da Vinci Surgical Robot

with multiple parallel mechanisms. . . . . . . . . . . . . . . . . . . . 124

4.4 A few features of the Blender-to-AMBF add-on include copy pasting

robot models, scaling, altering the pose of any subset of robots/links,

visually setting constraints and inertial properties, creating collision

meshes and generating/loading created ADF files. . . . . . . . . . . . 125

4.5 In the sub-figures, the purple and turquoise bodies represent the par-

ent and child with the constraint axes marked with the black ring. In

(b), the child body is rotated to form a constraint by aligning ~axp and

~axc. (c) shows the adjustment required in Blender such that the child

body is rotated to adjust the constraint axis to default ~nz followed

by (d) to align the constraint axes with parent’s axis. . . . . . . . . . 127

4.6 A visual representation of plane offset between the plane formed by

shortest angle rotation between parent’s and child’s constraint axes

(purple disk) and the rotation plane of correction axis (green disk). . 128

4.7 A multi-port view of the underlying simulation using 3 frame-buffers

which output to separate windows and can be dragged around differ-

ent monitors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

xiv



4.8 A simulation with several manipulators running in real-time. The

labeled manipulators (ECM and PSM) have two connected closed-

loop mechanisms while the MTM has one closed-loop mechanism. . . 131

4.9 Each column shows the joint control of a different manipulator la-

beled underneath. The last row shows the dynamic update frequency

of physics simulation. The ECM’s and PSM’s 3rd graph depicts a

translational joint while all the joints of the MTM are rotational. . . 132

4.10 The loading vs unloading times for simulators with increasing number

of complex robot models. The simulators are loaded using the bash

terminal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.11 WPI’s Neuro Surgery Robot Model using the Blender-to-AMBF add-

on. The robot consists of a 6 bar linkage at the base and an inter-

connected 8 bar linkage at the top. The robot is controlled using ROS

topics at 1 kHz communication frequency. . . . . . . . . . . . . . . . 134

4.12 The dynamic selection and removal of links belonging to intercon-

nected mechanism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.1 Anatomy of the ADF. The blue tile forms the header and consists

of global parameters and header lists which are highlighted with the

purple dotted border. The red tile represents a constraint, green rep-

resents rigid bodies and yellow represents soft-bodies. The tunable

parameters for soft-body dynamics can be set using the config pa-

rameter highlighted in red. The defined parameters include kLST =

Linear Stiffness Coefficient, kDP = Node Damping Coefficient, kPR

= Internal Pressure Coefficient. . . . . . . . . . . . . . . . . . . . . . 141

5.2 Two meshes with similar surface geometry but different internal struc-

ture defined using the OBJ mesh format. . . . . . . . . . . . . . . . . 143

xv



5.3 Reference image for Algorithm 7. The soft-body fits in the boundary

box that is sub-divided into p, q and r blocks along x,y and z axes

respectively. Each block in then parsed individually by creating 5

sub-blocks which are a CHK, an IDX and 3 Vertex Triplet sub-blocks. 146

5.4 (a) The original vertex indices that do not account for repeated ver-

tices. (b) The reduced vertex list with the duplicate vertices unified

together into a new list. . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.5 Proximity sensors can be defined using the same method as bodies,

joints, and scene objects in Figure 5.1. The proximity sensor is par-

ented to the desired body with the relative location offset, direction,

and range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.6 Similar to convex hulls used for rigid-body dynamics, a complex soft-

body shape can be generated using a compound of simpler shapes.

These simpler shapes can be used to perform Boolean operations of

mesh subtraction or addition as shown from (a) → (b). Finally, (c)

shows the simulation and interaction of this mesh in AMBF. . . . . . 152

5.7 Sequential process of converting a cylindrical primitive to a mesh

with coarse surface, creating edges inside for structural stability, and

finally applying texture for visual realism. . . . . . . . . . . . . . . . 153

5.8 Examples of Soft-body manipulation using the dVRK MTMs . . . . . 154

5.9 Real Time Factor for tasks shown in Figure 5.8 (a), (b). . . . . . . . . 155

6.1 Natural method of grasping for fully-static or quasi-static dynamics.

The skin surface in the vicinity of contact points deforms according

to the underlying shape of object, thereby providing better surface

friction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

xvi



6.2 Natural Manipulation using either controlled slip, controlled slide or

both. The controlled slip and slide is usually assisted by either the

weight of the grasped body, using a second hand or leveraging the

collision with other objects in the environment. . . . . . . . . . . . . 159

6.3 The penetration depth Dp of three collision shapes (Spheres) with

mass = 50 Kg, radius 0.5 m, non static ground plane position at 0 m

and drop height = 2 m. The penetration depth was recorded as the

difference between the maximum fall distance and the resting position

after stabilization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.4 Visualization of the friction cone to model the natural friction re-

sponse. The coefficient ~nW is the contact normal in the world, ~FR is

the resultant force which is expressed as (~FR = µ ∗ ~FN), ~FIMP is the

impending friction and φs is the static friction ratio. . . . . . . . . . . 165

6.5 (a) A visual representation of an individual Resistive Sensor during

contact with an external body B (the blue torus). The coefficients are

defined in Table. 6.1. (b) Visualization of Resistive sensors mounted

on a body (blue cube) before and after penetration into another body

(green sphere). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

6.6 Grasping an object using a simple two finger gripper. The normal

force at the contact points is required to compute the normal force

~FN for static friction computation. . . . . . . . . . . . . . . . . . . . 169

xvii



6.7 Static friction response of body-mounted with Resistive sensors (trans-

parent blue box) sliding along the plane underneath (shown with the

wooden texture) subject to a constant force applied along the direc-

tion of the ground plane. The response is calculated as the tangential

error (i.e. the difference between the commanded and current position

of the blue box). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

6.8 (a) Primitive Patches for Resistive Sensor Placement. (b) The prim-

itive shapes can also be ”skin-wrapped” to match the contours of

the underlying complex shape. Figure (c) Sensor placement on the

simulated gripper with red spheres representing the PrayStart and the

green spheres representing PrayEnd. . . . . . . . . . . . . . . . . . . . 174

6.9 A simple prismatic gripper with two links, mounted with an array of

Resistive sensors at ends facing each other. The bottom two figures

show the grasping of a magenta cylindrical object with an asymmet-

ric posture and the grasping of a yellow object that is composed of

multiple collision meshes. . . . . . . . . . . . . . . . . . . . . . . . . . 176

6.10 Stability analysis on an inclined plane. m = 0.5Kg, Ks = 5000,

σa = 0.001, Kn = 1, KD = 50 and µv = 0.1. . . . . . . . . . . . . . . 177

6.11 Bi-manual manipulation of a screwdriver to rotate the cast assembly

underneath . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

6.12 Manipulation of a deformable thread around the gripper jaws and

around a puzzle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

6.13 The dynamic update frequency of real-time simulation for the two-

handed screw driver task and the real-time factor. . . . . . . . . . . . 180

xviii



7.1 (a) The study setup involves the human-subjects looking at the screen

where the interactable simulation is being displayed. (b) The goal of

the exercise is to pick the peg located at A using the right SDE,

handing it over to the left SDE and placing it at B. Then picking

back the peg at B and placing it at C using the left SDE. Finally,

switching hands to use the right SDE to pick and place the peg back

at A. [3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

7.2 The supervised semi-autonomous control scheme for assisting the hu-

man subjects in surgical task performance [3]. . . . . . . . . . . . . . 185

7.3 The box plots show the results of semi-autonomous control assistance

with and without optimization through Bayesian learning. [3]. . . . . 187

7.4 The training environment for getting the study subjects on a similar

footing for the user-study. The goal of the environment is to pick and

place the puzzle pieces (red, green, blue and yellow bodies) in the

purple cast with matching intrusions. The subjects learned the use

of clutching control and grasping to perform the task. . . . . . . . . . 188

7.5 (a) Similar to the first user-study, the test subject is required to pick

the pegs labeled 1 and 6 using the right SDE, then switching mid-air

to the left SDE and placing the blocks in the opposite corners. The

pegs can be transferred in any order. (b) This was a more involved

task requiring simultaneous control input from both SDEs. The goal

was to pick the yellow puzzle from the two handles (dark gray in

color) and place it on the base with matching extrusions. . . . . . . . 190

xix



7.6 The MTM’s wrist platform link is actuated to provide null space

control by affixing a virtual plane (translucent green plane) to the

platform link. Secondly, a virtual unit vector (red arrow) is affixed

to the tip roll link. The angle between the red arrow and the green

plane is used in a PD control law to rotate the wrist platform link. . . 193

7.7 The GUI for recording the user-study data. . . . . . . . . . . . . . . . 194

7.8 Task completion time between the two studies A and B and three

control modes each. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

7.9 A example of a human subject performing the collaborative user-study.196

7.10 Length of the path traversed by IIDs between the two studies A and

B and three control modes each. . . . . . . . . . . . . . . . . . . . . . 197

7.11 Clutching frequency between the two studies A and B and three con-

trol modes each. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

7.12 Average of Reduced NASA TLX questionnaire between the two stud-

ies A and B and three control modes each . . . . . . . . . . . . . . . 199

xx



List of Tables

3.1 The Description of Transformation matrices used for the XVII Rep-

resentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.3 The Description of Frames used for Minimal Frame Representation.

These Frames are shown in Figures 3.9, 3.11, 3.10, 3.12 . . . . . . . . 68

3.5 Equations for Multi-Lateral Control of Camera/SDEs with IIDs using

XVII Representation. These equations are indexed according to the

Flowchart 3.13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.6 afWorlds State Payload . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.7 afWorlds Command Payload . . . . . . . . . . . . . . . . . . . . . . . 85

3.8 afObjects State Payload . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.9 afObjects Command Payload . . . . . . . . . . . . . . . . . . . . . . . 86

4.1 Basic Comparison Between URDF and SDF . . . . . . . . . . . . . . 109

4.2 Simplifying redundant names using name-spaces rather than suffixes . 117

5.1 Population of Vertex Triplets for the example in Figure 5.4 . . . . . . 148

6.1 Symbols used in this Manuscript. . . . . . . . . . . . . . . . . . . . . 166

6.2 Parametric Data for Specified Tasks . . . . . . . . . . . . . . . . . . . 178

7.1 Comparison between the task performance of manual and semi-autonomous

supervisory control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

xxi



7.2 Comparison between the task performance of supervised semi-autonomous

control with and without Bayesian optimization. . . . . . . . . . . . . 188

xxii



Chapter 1

Introduction

The use of robots for surgical procedures has increased over the years [4] as they of-

fer enhanced precision, better vision and comfortable control for surgeons. As far as

the patients are concerned, depending on the type of surgery, they minimize the pro-

cedure area, which prevents unnecessary tissue damage and thus shortens hospital

stays, reduces drug dosage and thereby improves recovery times. These surgeries are

called robot-assisted minimally invasive surgeries (RMIS) or laparoscopic surgeries.

Not all laparoscopic surgeries are performed by robots though, in fact, according to

some estimates, robotic surgeries, in general, account for less than 3 % [5] of the

total surgeries performed each year in the US. Robot-assisted laparoscopies make

up an even lower percentage. Certainly, there is room for improvement.

In traditional MIS surgeries, long and slender shaped tools are pivoted at the

port of entry and inserted into the body as shown in Figure 1.1. The tools have

various types of end-effectors that include imaging tools, cutting, pinching, grasping

and cautery tools. These are the basic categories and within these categories there

exist many different types of sub-tools. Depending on the type of surgical procedure,

different sets of tools are used, however, all the different tools are inserted using small
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Figure 1.1: Traditional setup for Laparoscopy [1].

incisions on the patient’s body. These small incisions are what give laparoscopic

surgeries their advantages over open surgery. These advantages are however mostly

related to the well-being of the patient. Studies show, that in the surgeries performed

laparoscopically, there is less hemorrhaging which directly reduces the need for blood

transfusions [6]. Due to smaller and accurate incisions to just the affected area, other

organs are not exposed and there is a much lower risk of infection. This is primarily

the reason for shorter hospital stays and faster recovery.

Figure 1.2: The first robot (PUMA-200) to be used for brain biopsies [2].
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Since the tools are pivoted at the incision point and are controlled manually,

they result in a reflected and a scaled motion. In the context of surgical procedures,

this motion is called laparoscopic motion and alters the natural hand-eye or hand-

camera (endoscopic) coordination. Furthermore, the tools are usually connected to a

rigid shaft thus requiring uneasy motions by the surgeons. These motions are tiring

and the setup prevents the surgeons from taking momentary rest without having to

remove the tools from the body [7]. This limits the use of laparoscopy for longer

surgeries. Even for shorter surgeries, they can cause exhaustion, thereby inducing

hand tremors. These tremors are transmitted directly to the surgical area and can

be a nuisance at best and fatal in the worst case. These are some of the reasons for

which traditional laparoscopy is harder for surgeons.

Figure 1.3: A robotic system for prostate resection via the trans-urethral route.

The inclusion of robots, especially teleoperated ones, can mitigate many short-

comings associated with traditional laparoscopy. From a historical perspective, the

first robot used for surgery was the PUMA 200 [2], a general-purpose articulated ma-

nipulator shown in Figure 1.2. The robot performed a neurosurgical biopsy. A few
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years onwards, a similar setup was utilized in performing a transurethral resection

of the prostate [6]. Another robot, named Probot [8] (Figure 1.3), was developed at

Imperial College London to remove the soft tissues for prostate surgery. However,

the breakthrough in robotic laparoscopy happened a little later, in 1994, with a

teleoperated robotic setup for cholecystectomy [9].

Figure 1.4: The commercial Robodoc intended for hip replacement surgeries

Similar to soft-tissue surgery, the use of robots for hard-tissue related surgeries
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was also taking place. A system by the name of ROBODOC [10] (Figure 1.4) was

used to perform a hip replacement surgery in 1992. In general, this robot was

capable of performing both the revision and total knee and hip Arthroplasty [11].

This system has received several clearances over the years with the most recent

one being in 2019 for being able to be marketed for total knee arthroplasty [12].

Interestingly enough, Dr. Kazanzides who happens to be a committee member for

this dissertation was one of the co-founders of ROBODOC.

(a) (b)

(c)

Figure 1.5: (a) The ZEUS Slave Console.(b) The ZEUS system with Master and Slave Console.(c)
The automated endoscope called (AESOP)

While the initial robots used for surgery were mostly research projects, it was

the commercial enterprises that propelled the field forward. In that respect, a sur-
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gical robot by the name of Zeus (Figure 1.5) received FDA clearance for one of

its sub-components in 1994. This sub-component was an automated endoscopic

module called AESOP. Other than the endoscope, the Zeus system had two teleop-

erated robotic manipulators that were specialized for laparoscopic and thoracoscopic

surgery. The full Zeus system received the final FDA clearance in 2001 [13].

In parallel to the development of the Zeus system, a collaboration between re-

searchers at Ames Research Center (ARC) at NASA and Stanford Research Insti-

tute (SRI) [14] resulted in a product that has changed the course of robot-assisted

surgery. The project was also joined by the U.S military in its early stages. The

military aimed at developing a branched-off sub-project focusing on long-distance

teleoperated surgeries. The system resulting from this sub-project was called Mobile

Advanced Surgical Hospital (MASH). In terms of human studies, the project never

saw the light of day, however, several successful animal studies were conducted [15].

A company by the name of Intuitive Surgical (called Integrated Surgical Supplies

at the time) licensed the research project resulting from the collaboration between

ARC and SRI. The company filed for the FDA clearance of the system after massive

redesign [16]. After a few hiccups, the system finally received the clearance for

commercial use in 2001 as a Class-III medical device. This system was called the

da Vinci Surgical System and shown in Figure 1.6. The da Vinci Surgical System

has transformed the operating room (OR) for the patients, the surgeons as well

as the nursing staff. By some estimates, the da Vinci surgical systems have been

used to perform more than six million surgeries until 20191. While this is still a

small number compared to the total number of laparoscopic surgeries, it is quite

remarkable in the sense that a single platform (with evolutionary generations) is the

major factor in that small number. The da Vinci Surgical System is currently in

1https://www.davincisurgery.com/
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its fourth generation with the latest robot called the da Vinci X. Branching off the

traditional multi-port setup, the company also has a single port system called the

da Vinci SP2.

Since 2016, there have been many newcomers to the field of RMIS and surgical

robotics in general. Some notable systems include Senhance Surgical System [17] by

Transenterix (Morrisville, NC, USA), Hugo [18] by Medtronic (Medtronic Parkway,

MN, USA) and Versius [19] by Cambridge Medical (CMR Surgical Ltd, Cambridge,

UK) . Additionally, there are several big and small scale companies working towards

one or more aspects of surgical robotics which include companies like Verb Surgical

(Mountain View, CA, USA), Stryker (Corporate Dr, NJ, USA) and Auris (Redwood

City, CA, USA).

Figure 1.6: The da Vinci Surgical System with the surgeon operating the MTM console and the
helping nurse at the PSM station

2https://www.intuitive.com/en-us/products-and-services/da-vinci/systems
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1.1 The da Vinci Research Kit

The da Vinci Research Kit (dVRK) is an open-source version of the first generation

of the system. Each first-generation da Vinci surgical system has two master input

interfaces called the Master Tool Manipulators (MTMs). These two MTMs can si-

multaneously teleoperate two corresponding slave manipulators, called Patient Side

Manipulators (PSMs). However, the da Vinci system includes not two, but three

PSMs. These three PSMs are mounted on a cart which is called the Setup Joint

Cart (SUJ). Also on the cart, is an endoscopic manipulator called the Endoscopic

Camera Manipulator (ECM). The ECM carries the camera modules that take high-

resolution imagery from inside the patient’s body. The video from these cameras

is viewed by a stereoscopic head-mounted unit that is positioned on top of the

two MTMs. Altogether, the set of MTMs and the High Resolution Stereo Viewer

(HRSV) Head-Up Display (HUD) is called the Surgeon Console. These components

of the dVRK are shown in Figure 1.7.

High Resolution 
Stereo Viewer 

(HRSV) Display

Patient Side 
Manipulators 

(PSMs)

Master Tool 
Manipulators 

(MTMs)

Figure 1.7: The da Vinci Research Kit at WPI Aimlab.
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Having laid out the system description and naming terminology of the da Vinci

system, it is worth discussing the kinematic and dynamic design of the three dVRK

manipulators starting with the MTMs. The MTMs are 7 DOF robotic manipulators

with actuated joints. The base of the dVRK MTM has a 4 bar linkage and is also

suspended using an assortment of cables and pulleys for reduced distal weight. The

PSMs are 6 DOF manipulators with a mechanically constrained remote center of

motion (RCM). The mechanical RCM is achieved by the inclusion of two connected

4 bar linkages. Similar to the MTMs, the PSMs have a combination of cables and

pulleys that take off the major weight of the end-effector. Abiding by the medical

device design practices, the PSMs are designed such that they do not have any

actuators at the distal end. Instead, a network of cables, pulleys and couplers is

used to control the surgical tools. The ECM looks mostly similar to the PSMs but

is mechanically different. Firstly, there are no cables or pulleys to drive the different

joints, instead, geared actuators are used. The ECM has only 4 degrees of freedom

for spatial positioning and the roll of the camera.

A dVRK setup consists of either a subset of these components or all of these

components together.

1.2 Background

The research community focusing on robot-assisted surgery has continued to grow

over the years. Specifically for robot-assisted laparoscopic surgery, the main driver

behind this growing community is a dedicated effort led by several research insti-

tutions as well as companies like Intuitive Surgical (Sunnyvale, CA, USA3) and

Applied Dexterity (Seattle, WA, USA4). What sets this community apart is that

3https://www.intuitive.com
4http://applieddexterity.com/about/
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Figure 1.8: A lab setup for the Raven II surgical robot.

some form of informal communication and collaboration keeps happening between

different groups and even sub-groups of people working in them. This is on top of

the Principal Investigator’s (PI) and User Group meetings that are held throughout

the year at various robotics conferences.

At the moment, there are more than 50 institutions (> 30 for dVRK and ∼ 24

for Raven II) that use the two research platforms. These platforms share some com-

monalities between their design characteristics and the Raven II platform (shown in

Figure 1.8) can use the surgical tools from the da Vinci. In terms of the dVRK, In-

tuitive Surgical has generously donated the retired clinical da Vinci Surgical Robots

to universities not only in the North American region but to many universities in

Europe. A geographical map showing the sites is shown in Figure 1.9. Similarly, a

map depicting the Raven II sites is shown in Figure 1.10.

The dVRK systems at WPI consist of a pair of Master Tool Manipulators

(MTMs), a pair of corresponding Patient Side Manipulators (PSMs) and one En-

doscopic Camera Manipulator (ECM). The dVRK (da Vinci Research Kit) systems
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Figure 1.9: In 2019 the dVRK is present in 35 sites worldwide.

do not come with any hardware controllers or software support. This is where the

role of research institutions comes in and as such, researchers at Johns Hopkins

University (JHU) have spearheaded, and the ones at Worcester Polytechnic Insti-

tute (WPI) have assisted, in the development, distribution and support of both the

custom hardware controllers for interfacing the dVRK Manipulators and the soft-

ware infrastructure that connects everything. This has enabled all the participating

institutions to use the dVRK almost out of the box.

Figure 1.10: In 2019 the Raven II is present in around 20 sites worldwide.

The hardware controllers for interfacing the dVRK include an FPGA based con-
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trol unit that communicates with a Quad Linear Amplifier (QLA) board [20] (Figure

1.11). These controllers are open-source both in terms of the schematic design as

well as the embedded code that runs on the FPGA, moreover, they are not limited

to be used only with the dVRK. Currently, the controllers are in their sixth gener-

ation (or sixth revision cycle) which shows continued support over the years by the

JHU and WPI researchers.

Figure 1.11: The open-source hardware controllers for interfacing with each individual dVRK
manipulator.

To interact with the dVRK controllers, extensive software architecture is used.

This architecture primarily consists of two separate software packages, namely CISST

(Computer Integrated Surgical Systems and Technology) and SAW (Surgical As-

sistant Workstation). Each package itself contains many stand-alone libraries for

various purposes. These packages, similar to the hardware controllers, were devel-

oped at JHU as a generic software solution for medical devices, imaging systems and

scanners. The customization of these packages to support the dVRK Manipulators
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led to an application called sawIntuitiveResearchKit [21].

Although the core sawIntuitiveResearchKit application was sufficient for tele-

operated control of the dVRK Slaves via Master Tool Manipulators, much like the

proprietary control hardware and software, it was stumbling block for many nascent

researchers (slightly less experienced graduate and undergraduate students in terms

of software design) in customizing/extending the software for their specific use-cases

and applications. Fortunately, this was recognized early on at a time when dVRK

had only been disseminated to a few universities. This resulted in the prototype

implementation of a uni-directional bridge (saw-ROS Bridge) that allowed the trans-

mission of specific data to Robot Operating Systems (ROS).

These ROS interfaces were soon used in the implementation of the first da Vinci

related simulations in RViz (Robot Visualization) [22]. RViz is the default visualiza-

tion engine for ROS and used avidly among the ROS community. Apart from being

natively built to support ROS, a major reason for its popularity is the simplicity of

the interface and the gradual learning curve to visualizing multiple different types

of data, in addition to moving robots, all through ROS topics. To name a few, these

types include visual markers, point clouds, joint efforts and way-points.

The uni-directional bridge was great in representing the robot state data into

robot simulators and data-logging but naturally, this use-case was rather limiting.

Hence, not that long after the initial implementation of the uni-directional im-

plementation, the bridge was improved to allow bidirectional communication that

supported joint commands from ROS topics. Gradually the bidirectional commu-

nication of other types of state-command data was added, the data-types included

Cartesian poses, joint efforts and even Cartesian wrenches. The implementation of

this extensive bridge was carried out almost in parallel at both JHU and Worcester

Polytechnic Institute (WPI). The bridge was also renamed from saw-ROS bridge to

13



the cisst-ROS bridge.

The bidirectional ROS interfaces of “sawIntuitiveResearchKit” enabled the inte-

gration of more advanced libraries that were popular in the ROS/robotics commu-

nity beyond just mimicking simulators. For instance, a motion planning interface

[23], which used MoveIt [24] and Open Motion Planning Library (OMPL) [25],

was developed. Similarly, a Matlab interface [26], that utilized the Matlab-to-ROS

bridge [27] built for the Matlab [28] software was also integrated. Researchers at the

University of British Columbia (UBC) added a similar Matlab support [29] which

did not utilize ROS, but instead incorporated “sawIntuitiveResearchKit” directly.

This project, however, is now defunct. Nevertheless, the integration allowed the

bidirectional control of dVRK manipulators via task-based controllers implemented

in high-level software libraries. Despite all the developments happening in high-level

software libraries, the development of the core dVRK software continues to date.

Due to the size of the community, this multi-level development has the potential of

causing conflicts in every new release cycle. To circumvent these commonly encoun-

tered issues, a joint effort between the researchers at JHU, University of Washington

(UW) and WPI led to the design of a standardized Collaborative Robotics Toolkit

(CRTK) [30]. This toolkit provides a “grammar” of sorts for interfacing with robots

at all levels of control (low-level, mid-level and high-level). The specifications of this

toolkit can be found at [31].

In terms of simulation, RViz met the initial community needs for kinematic test-

ing and evaluation of the dVRK manipulators. However, there was a need for a

dynamic simulator to allow more realistic simulations and the implementation of

advanced dynamic controllers without putting the physical robots in harm’s way.

Although ROS does not have a de-facto dynamic simulator, Gazebo [32], was the

default choice for dynamic simulation in the ROS community. Gazebo has its own
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visualization interface and various kinds of sensors can be simulated using compiled

plugins. Gazebo integrates 4 state-of-the-art physics solver libraries (ODE [33],

Bullet [34], Dart [35] and Simbody [36]) for solving the underlying system of equa-

tions representing the dynamic bodies and articulated robots. These robots, and

environments are specified using an XML [37] based format called the Simulation

Description Format (SDF) (http://sdformat.org/spec).

The first replicated models for the dVRK robots were created partially, yet in-

dependently, at Western University (UWO) in Canada (by a research group headed

by Dr. Rajni Patel) and at WPI. More specifically, the models from UWO uni-

versity include the models for PSMs while the models at WPI included those for

MTMs as well as PSMs. While these models replicated the dVRKs visually, the

kinematic parameters were taken mostly from visual observations rather than em-

pirical measurements. Due to the innately complex design involving links within

links, measuring accurate kinematic data was not possible at the time since the

robots would first have to be disassembled and then each link separately measured.

Moreover, there was also a lack of publicly available inertial data, thus it was ar-

bitrarily specified in the SolidWorks models. These models were then converted to

Universal Robot Description Format (URDF) and from URDF to SDF. The URDF

models are XML based files, similar to SDFs, and are used by ROS, in general, to

load joint and Cartesian space kinematic representations, and by RViz for visual-

izations. The SDF models were then modified by hand to include various plugins.

Mostly, these plugins allowed the back and forth communication between ROS and

Gazebo, and thereby sawIntuitiveResearchKit through the cisst-ROS bridge. Even

though Gazebo is fully capable of visualizing all sorts of data using plugins, more

often than not, the relevant state data is ported back to RViz due to its simpler

ROS topic interface.
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With the developments of a working implementation of both kinematic and to

some extent a dynamic model for the da Vinci, more research groups started us-

ing these simulators with the developed models. However, the initial models of

the dVRK were outdated and inaccurate and could not be used in some of the re-

search being carried out in WPI at the time. This led to a re-evaluation of both

the kinematic and dynamic parameters. The first study was aimed at carefully

constructing, link by link and joint by joint, the accurate kinematic parameters to

achieve an implicit closed-loop mechanism, which when solved for, resulted in the

end-effector Cartesian pose, numerically identical to the pose calculated by placing

optical-tracking markers on the physical da Vincis. For this purpose, the arc lengths

of the rotatable links were measured by controlled actuation, while the lengths of

non-rotatable links were estimated using approximation techniques (Least Squares

Estimation LSE [38]). The results were published in [39] and were used to remake

the entire models in Solidworks, then URDF and finally SDF. These models are

available at a public repository called “dvrk env” [40].

Having successfully generated the fully functional closed-loop kinematic model

of the dVRK manipulators, attention was focused on calculating accurate dynamic

models. This was, of course, more challenging than the kinematic identification,

but the effort led by Wang and Gondokaryono at WPI resulted in the estimation

of accurate dynamic parameters for all the links of dVRK MTMs and PSMs. Not

only that, a generic package was created to allow the parameter identification of

other types of closed-loop robots and made publicly available [41]. This work was

published in [42].

As the community grew bigger, the need for more advanced simulation software

also increased. While the existing simulators (with the implementations of dVRK

manipulators) were more or less sufficient in simulating the simplified versions of
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dVRK robots, the challenge was that these simulators are not meant for complex

closed-loop robots such as the surgical robots. More than just that, a major simula-

tion component used with regards to surgical robotics is the emulation of intractable

training environments. While it is true that soft-body simulations are more appro-

priate for surgical robotics, most of the existing surgeon training tasks, both in

reality and proprietary simulators, involve the interaction and manipulation of rigid

puzzle pieces in and around rigid body bases. An example training puzzle is shown

in Figure 1.125. There are many factors such as reproducibility and lower cost for

employing such simpler training environments. More importantly, though, these

puzzles can be better for targeted training and evaluation.

Figure 1.12: The peg transfer puzzle for surgical training.

These limitations, along with several attempts to keep up-to-date with the sim-

ulators popular in the community, led to the implementation of a new framework

5https://www.simulab.com/products/laparoscopic-trainers/

peg-transfer-board-triangles
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called the Asynchronous Framework (AF). The associated simulator that makes use

of this framework is called the Asynchronous Multi-Body Framework (AMBF). A

more detailed motivation for the development of this framework is presented in the

next Section 1.3.

1.3 Motivation

As discussed in Section 1.2, the models for the dVRK were developed for some

popular community simulators (Gazebo and RViz). These models and the associ-

ated plugin-based software was kept updated throughout the years to keep in sync

with the API changes. The ROS based visualizer, RViz, is meant solely for serial

robots (with indirect ways of specifying closed-loop robots). Gazebo, on the other

hand, supports closed-loop robots through its specification, but the API for control-

ling the redundant joints (through various plugins) changed throughout the years

or simply dropped support for such robots. Even the core API of Gazebo which

was used to write specialized plugins, discussed above [40], changed in less than a

year after its release. To understand the support of or lack thereof for closed-loop

robots in simulators, one first has to understand the underlying design philosophy of

these simulators. One can, for instance, take a look at the popularly used Denavit

Hartenberg parameters [43]. DH parameters simplify the specification of articulated

robots by allowing a single D.O.F. along each joint axes. This specification works

great and is taught and understood commonly, however, it cannot be used for the

specification of closed-loop robots in its original form. Similarly, the TF library [44]

arguably forms the backbone of ROS and deploys a tree of connected bodies to form

a spatial structure. This philosophy mandates that a link (body) must have one and

only one parent link (similar to DH). RViz, MoveIt and “ros controllers” are only
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a few ROS packages that build upon TF. While this design choice makes sense for

the most common types of general-purpose robots, it is this exact design philosophy

that goes against the specification and simulation of closed-loop robots. Since most

of Gazebo’s user base utilizes it with ROS and ROS based tools, Gazebo is more or

less limited to the design philosophies adopted by these ROS packages. The same

is true for VRep.

While this in itself was motivating enough to develop a simulation platform

specialized for surgical robots, it was not the primary reason for the origination

of the Asynchronous Framework. That motivation was the result of the prevalent

need for improving the outcome of robot-assisted surgery. There are of course many

different pathways taken by different researchers to address this, all the way from the

better design of devices, smaller and more precise instruments, cooperative/shared

control and inclusion of force/tactile feedback to the input device. These different

research areas have made their way to the Operating Rooms and clinical trials in

one form or another.

There is a relatively newer trend of incorporating semi-autonomous agents trained

via Machine or Reinforcement learning (ML / RL) into the surgical workflow. Of

course, these cannot be applied directly to an actual surgical procedure but instead,

on mock setups that use non-clinical versions of actual surgical robots such as the

dVRK and Raven. Some notable research in this area includes autonomous algo-

rithms for performing soft-tissue suturing [45], an automated approach for sinus

surgery using computer navigation techniques [46], characterization and automa-

tion of soft-tissue suturing using a curved needle guide [47] and automation of cut-

ting/creasing sub-tasks while employing learning by observation [48]. Additionally,

[49] presents a holistic approach to simplifying the task of manipulator position-

ing prior to surgeon interaction, and [50] demonstrates a telemanipulated surgical
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simulation designed for heart surgery. A trainable infrastructure is presented in

[51] with controllable dominance and aggression factors for automating repetitive

surgical tasks. Lastly, a shared infrastructure for collecting da Vinci Research Kit

(dVRK) manipulators and vision data, primarily for training learning agents by

motion decomposition of sub-tasks is developed in [52].

The initial setup for performing these experiments requires the setup of many

external sensors including motion capture systems, depth sensors, and uni or stereo

vision cameras along with data-collection and labeling from these sensors. In ad-

dition to the effort required, these are extremely time-consuming tasks and neither

the time spent nor the effort undertaken, reflect in any way in the experimental

results. Moreover, in many instances, the experimental setups do not mimic the

actual surgical conditions anyway and thus the required time and effort becomes a

major stumbling block in repeatable research.

Specialized simulation software can simplify most of these tasks and allow re-

producible and shareable research. The state of the art of existing work for surgical

simulations is mostly limited to applications catering to specific operating envi-

ronments. Some notable products include Simbionix6, Mimic simulator7 and CAE

LapVR8. These are proprietary applications and designed for interfacing specific

surgical robots. A primary focus, in these applications, is the rendition of impres-

sive visuals that mimic the actual surgical scenes, and, the dynamics of soft-tissue

interaction for specific use-cases that are highly optimized.

There are also some open-source software that includes SOFA [53] and Open

SurgSim9 by Simquest (Silver Springs, MD, USA) that can simulate specific surgical

training sub-tasks, render visuals and perform soft-body interactions that are almost

6https://simbionix.com/simulators/robotix-mentor/da-vinci-surgery/
7https://mimicsimulation.com/da-vinci-skills-simulator/
8https://caehealthcare.com/surgical-simulation/lapvr/
9http://www.simquest.com/opensurgsim.html
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equivalent to the proprietary software mentioned above. While visual realism and

tissue interaction is a useful feature of the surgical training, since these applications

are use-case specific, they lack the basic set of tools required by researchers for

plugging generic input devices and creating custom environments for different use-

cases. What is needed is a simulation framework that is not only robust enough

for the specification and simulation of rapidly prototypeable environments but can

also handle the complexity associated with interfacing multiple users as well as AI

to interact with the simulated environments.

This was, in essence, the motivation behind the research and development of

the Asynchronous Framework. Although the motivation was clear, the challenges

to the implementation of such a framework had to be first understood and based

on these challenges, the requirements had to be specified. The explicit “require-

ments specification” was good practice not only from the perspective of “Systems

Engineering” but also gave a baseline design philosophy for the framework. This

design philosophy has been followed to date and all the additions since then have

been formulated accordingly.

The requirements for the Asynchronous Framework can be classified broadly

according to the following list:

1. Real Time Dynamic Simulation:

Humans perceive the kinematics of everyday objects in a constantly increment-

ing time-frame. As an example, a grasped body being moved with constant

velocity will appear as such to the user. Under non-real time simulated physics,

the simulation time does not track the real-world clock and hence from the

perspective of a human, the simulation may seem faster in some instances

and slower at others. This can also be referred to as “time slippage”. Cor-

respondingly, real-time dynamic simulation is required for interactive training
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tasks.

2. Real Time Multi-Device Control:

For the Asynchronous Framework, the user interaction encompasses the use of

input interface devices (IIDs) (such as hand controllers, haptics devices, mouse,

foot-pedals, etc.) to manipulate simulated bodies. To render the interaction

and manipulation more realistic, one can incorporate force feedback for devices

that support it. Since such feedback requires high-speed control loops (usually

≥ 1kHz), a framework that is capable of handling multiple high-speed devices

is required. Ideally, the framework should be able to handle a mix of haptic

and non-haptic devices, i.e., different drivers with faster and slower update

rates.

3. Contextual View Port Control:

In a multi-user training environment, not all users share the same view (cam-

era). This requirement focuses on allowing multiple view-ports to be defined

for different users and allowing the distributed control of these view-ports. For

example, a specific user can control (re-position or re-orient) their view-port

by using a specified button on their IID. Furthermore, multiple different users

can share a single view-port and then control the view-port independently.

Specifically for orientation control, this gets complicated as one has to make

sure that each user can orient the camera in their frame of reference (FoR)

(which could be different between the different users sharing the camera) and

the camera motion is both continual and smooth. Continual in this context

means the change in camera orientation starts from the camera’s current state

instead of resetting the camera transform to the controlling users FoR and

starting the rotation from thereon.
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4. Parametric Manipulation and Interaction:

Since interactive simulations have a component of manipulation and grasping,

it is important to understand and model contact-based friction in simulation.

Due to the underlying mathematical formulation of rigid body dynamics, ren-

dering contact-based friction is both difficult to model and inconsistent [54].

In the existing open-source applications that involve simulated manipulation,

the problem is addressed by imposing kinematic and dynamic constraints for

grasped objects in relatively simpler environments. For a general-purpose

framework, the main idea is to allow the extensible response of simulated

objects when interacted upon via IIDs. This response includes the grasping

dynamics of simulated bodies, cutting of soft-bodies and collision aided ma-

nipulation in and around fixtures. In light of all this, a generic and parametric

interaction component is required for the framework.

5. Simulation of Model Accurate Surgical Robots:

Surgical robots are usually the most complex forms of robots and a simulation

framework that can cater to requirements for such robots, if implemented

correctly, can be used to simulate general-purpose robots. The challenges to

the simulation of these robots begin at the specification level. For example,

how can an interconnected graph of links, usually true for surgical robots, be

represented in a sequential specification? Can such specification be simplified

and generalized such that robots that are only serially linked can also be easily

specified? Moving on from the specification, how can these robots be simulated

such that their constraints are satisfied in a real-time dynamic simulation?

These questions result in the requirements for a specialized robot simulator

that can also simulate everyday robots.
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6. Interface for Training Learning Agents:

A major goal of a developing a simulator targeting real-time, interactive ma-

nipulation, is to use this framework for training not only the human operators

but to also train artificial intelligence (AI) for performing semi-autonomous

tasks. There exist a large number of open-source software libraries for ma-

chine learning (ML) and reinforcement learning (RL) that can be used for

training purposes. Most of these libraries support the Python language and

therefore a compatible interface has to be developed to leverage their API.

Developing a Python interface for a real-time simulation framework that is

also asynchronous is challenging. One significant challenge is compensating

or accounting for the effect of the delay between reading the states, applying

a command (action) then re-reading the response (states) of the correspond-

ing command. Regardless of having the support for learning libraries, the

advantage of integrating a well designed Python interface is that it offers a

low barrier to entry for new users and provides the capability for accelerated

testing and deployment of control algorithms.

7. Visualization Engine:

This requirement is rather straight-forward to describe but arguably complex

to implement due to the inclusion of the above requirements. The major

challenge in the context of the asynchronous framework is to maintain the

speed of the visualization loop since the view-ports (cameras) are shared with

asynchronous IIDs. Other challenges include the use of advanced rendering

features such as textural mapping, multiple light sources and the simulation

of soft-bodies.

While existing software libraries cater to one or more of the aforementioned
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categories, it is the underlying design of these libraries that limits the inclusion of

all these subproblems into a single framework. This is explained in more detail in

the chapters to follow but an example is presented here.

Consider the first two items in the above list which are 1) Real-Time Multi-

Device Control and 2) Real-Time Dynamic Simulation. A real-time multi-device

control requires the consideration of real-time constraints for reading each devices’

states, computing the control laws, and feeding back commands (forces for haptic

devices). These constraints can be modeled as either hard real-time or soft real-time

depending on what Operating System is being used. The control law(s) can be a

simple error based force control for joint or task-space or more advanced controllers

such as impedance controllers.

These types of control laws can have deterministic compute times, which makes

the inclusion of multiple input devices in a sequential control loop (where one device

is addressed after the other) possible. Even a parallel implementation (where devices

run independently of each other) is trivial as the input devices do not depend on

each other for the computation of their control laws.

The addition of dynamic simulation in the mix complicates things since the

input devices are no longer independent, instead, they are all interconnected to

the dynamic simulation, as well as to each other through their proxy simulated

dynamic bodies. The computational time of each iteration of dynamic simulation is

never deterministic. This thwarts one’s choice of implementing a sequential control

approach as the device updates need to be deterministic (real-time) which can no

longer be guaranteed because of the iteration of the dynamic simulation. A parallel

approach is preferable instead, however, even that has its own set of problems. The

requirement number 3) “Contextual View Port Control” compounds these problems

further as it requires the sharing of the data from the visual loops in both the
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dynamic update and device update computations.

Due to the associated challenges to the requirements listed above, the Asyn-

chronous Framework (AF) (and the associate simulator AMBF) is a ground-up

implementation of a parallel design philosophy that allows asynchronous real-time

control of multiple input devices and communication interfaces in a real-time dy-

namic simulation. The list of contributions is presented in the next section.

1.4 Contributions

The work presented in this manuscript can be divided into both conceptual contri-

butions and implementation based contributions. Besides, the open-source nature

of the project has made a reasonable community impact. These contributions and

the impact on the community is presented in this section.

1.4.1 Conceptual Contributions

A list of conceptual contributions of this dissertation is as follows:

1. A conceptual asynchronous framework for control of multiple haptic and tracker

input devices with a real-time dynamic simulation.

2. A minimal frame representation for multi-lateral collaborative control in mul-

tiple, continuously varying, and shared frame of references (FoRs).

3. Design of an asynchronous and distributed communication pipeline and pay-

loads for online training with a real-time interactive dynamic simulation.

4. The design of a front-end specification format for robots, environments, input

devices and soft-bodies.
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5. A framework for the emulation of proximity, contact and resistive sensors using

user-specifiable parametric data. The user can also specify the desired contour

for the sensor population by providing corresponding mesh shapes. All this

data is specified through the front-end specification format.

6. Implementation of a case study to demonstrate and validate the proposed

simulation framework.

1.4.2 Implementation Based Contributions

The list of implementation based contributions is presented as follows:

1. The implementation of the Asynchronous Multi-Body Framework (AMBF).

AMBF is a versatile simulator for robot and soft-body simulation in addition

to being used for multi-user interaction and training.

2. Implementation of plugin based interfaces for the dVRK MTMs, Geomagic

Touch10, Novint Falcons11 and Razer Hydras12.

3. Design and Implementation of a robust Python client for the AMBF.

4. Implementation of plugins for animation software for the rapid development of

robots and environments and the implementation of a converter script that can

leverage the largest data-base of existing robot models specified in a different

format.

5. The implementation of friction-based grasping for natural manipulation using

the resistance based sensors discussed in the conceptual contributions.

10https://www.3dsystems.com/haptics-devices/touch
11https://github.com/libnifalcon/libnifalcon
12https://support.razer.com/console/razer-hydra/
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1.4.3 Community Impact

AMBF was publicly released for the surgical robotics community in April of 2019

with a BSD license (https://opensource.org/licenses/BSD-3-Clause). To the

extent of the author’s knowledge, AMBF has found active user-bases in more than

7 universities to date. These universities include the Univerity of Washington at

Seattle13, University of Virginia14, The Hamlyn Center at Imperial College Lon-

don15, University of Leeds16, University of California at Berkeley17, Politecnico di

Milano University18 and finally the home institution, Worcester Polytechnic Insti-

tute (WPI). At WPI, AMBF is being used by several groups of students for directed

research, course projects and thesis work. Apart from training applications, some

of the recent projects include 1) the control and validation of lower limb exoskele-

tons, 2) implementation of dynamic force based controllers for the simulated dVRK

robots, 3) a generic plugin for forward and inverse kinematics for the surgical robots

and 4) augmentation of robotic manipulators for upper limb rehabilitation therapy.

Some of these projects have also resulted in the contributions back to the AMBF.

The work presented in this manuscript has also received a couple of awards that

include the recognition for “Best for Research Community Award” at the Interna-

tional Hamlyn Symposium 2019 and the finalist for the “Best Application Paper”

at the conference for Intelligent Robots and Systems (IROS) 2019.

13https://www.washington.edu/
14https://www.virginia.edu
15https://www.imperial.ac.uk/hamlyn-centre/
16https://www.leeds.ac.uk/
17https://www.berkeley.edu/
18https://www.polimi.it/en/
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1.5 Organization

This manuscript is organized into 8 chapters including the introduction. The re-

maining 7 chapters are summarized as follows:

2. Review of Solvers for Dynamic Simulations The use of computer physics

simulation is an integral part of the Asynchronous Framework. There are

several different ways of computing the simulated dynamics for these physics

simulation problems. A general review of the basic methods is presented in

Chapter 2. The review leads to a discussion on which method is preferable

over others for being used in the Asynchronous Framework.

3. Asynchronous Framework for Collaborative Control This chapter starts

by discussing the underlying challenges towards the implementation of a dy-

namic simulation framework that interfaces multiple input devices, view-ports,

distributed controllers and learning agents. Addressing these challenges, the

Asynchronous Framework is presented and its implementation details are dis-

cussed. The extensive control interfaces are embedded into a novel repre-

sentation which is called “The XVII Representation” for collaborative and

multi-lateral control. The chapter then discusses the design specifications of

the communication interfaces for the learning agents in Python. Finally, the

evaluation of various performance characteristics along with the discussion of

the significance of the results is presented.

4. Distributed Format for Robots, Environments and Devices The focus

of this chapter is to present a novel description format for specifying and sim-

ulating rich environments for the Asynchronous Framework and its simulator,

AMBF. The results section of this chapter shows examples of some of the sur-

gical robots. The communication interfaces discussed in the previous chapter
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are also extended to the simulated robots and bodies using the description

format.

5. Integration of Soft-Body Simulations For most robot dynamics simula-

tors, soft-body simulations are an unrelated and therefore un-addressed prob-

lem, but for a simulation framework targeting the surgical robotic community,

this is not the case. The specification format for robots and environments from

the previous chapter is extended to allow the description of soft-bodies. This

description is used to simulate rapidly prototypeable soft-bodies in AMBF and

a theme of discussion of the chapter.

6. Grasping in Simulation A parametric approach for achieving two different

kinds of grasping is discussed in this chapter. One approach uses sensor-based

constraints to dynamically affix a grasped simulated body which is manipu-

lable by an IID while the second approach models sensor-based friction for a

more realistic grasping methodology. The chapter discusses the results of the

grasping approach on various multi-manual simulated tasks.

7. Application and Use-Cases This chapter discusses two user studies car-

ried out using the AMBF. The first user-study was performed at the Hamlyn

Center (Imperial College London) by Junhong Chen and Dan-Dan Zhang in

collaboration with researchers fromWPI and involved the evaluation of a semi-

autonomous control scheme for a simulated puzzle for surgical training. The

second user-study was carried out at WPI and analyzed the effect of various

forms of collaborative control, using the implementation of “XVII Represen-

tation” in the Asynchronous Framework, on the performance of a surgical

training puzzle.

8. Conclusion and Future Work This is the final chapter and concludes the
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manuscript by discussing the proposed future additions as well as the work

in progress for the Asynchronous Framework. It also discusses the lessons

learned during the development of the framework.
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Chapter 2

Review of Solvers for Dynamic

Simulations

2.1 Introduction

The work presented in this manuscript involves the integrations of Input Interface

Devices (IIDs) into a physics simulation with support for learning and training. The

inclusion of the physics simulation in the framework is a major attraction for being

used for learning, training, control and manipulation as well as a low barrier to

entry, simulation tool. However, the physics solver itself has not been developed as

part of this work. There are plenty of choices for competing open-source libraries

out there. Based on various considerations among these, the Bullet Physics library

[34] has been integrated.

The primary physics solver used in the Bullet Physics library is called the “Se-

quential Impulse” solver. This solver is a form of “velocity based method” which

uses “maximal coordinates”. It is useful to understand the selection of the sequen-

tial impulse solver over any other solvers that may exist out there. For this reason,
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this chapter briefly discusses the commonly used methods for physics simulation and

then compares them to make the case for the inclusion of velocity-based methods

for the Asynchronous Framework.

The chapter first outlays the equations of motions representing a free body acted

on by constraints and then presents the applications of force-based methods (Section

2.3), velocity-based methods (Section 2.4) and position-based methods (Section 2.5)

for solving the underlying system of equations. This is followed by the generalization

of these methods to indirect methods (Section 2.6). The limitations of these methods

for simulating articulated robots that can be modeled using reduced coordinates are

presented next. These limitations lead to the discussion of articulated body methods

(Section 2.8) and their shortcomings in modeling closed-loop robots. Finally, a

conclusion is presented in Section 2.9.

2.2 Mathematical Formulation of Dynamic Sim-

ulations

The simulation of rigid body dynamics has been an area of interest not only for

research and development for robotics research but also for entertainment purposes.

Due to the influence of the entertainment industry, quite often, the visualization of a

simulation is confused with the state of the underlying physics. The gaming industry

is the largest market for both physics simulation libraries and visualization libraries.

Due to the evolution of computer hardware and the push by the gaming industry,

the state-of-the-art for visualization engines has improved tremendously over the

years. On the contrary, the physics simulation libraries, especially for games, have

seen less drastic of a change. For physics simulation, there exist a large number of

libraries, which are all quite capable of rendering rigid-body dynamics. Despite a
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large number of libraries, the methods for computing the underlying physics can be

grouped into three to four categories, depending upon how the segregation is done.

Any rigid body in simulation is subject to the laws of Newtonian dynamics. The

goal is to compute the effective position of everybody at each time-step of the physics

simulation. The motion of bodies is restricted by various “constraints”. The term

“constraint” is used to broadly classify all the restrictions imposed on the motion

of a rigid body. These “restrictions” may include, constraints due to collision, joint

based constraints and even springs and dampers can be classified as constraints.

The modeling and solution of constraint-less physics simulation are quite trivial and

once can simply use the analytical methods [55] for the best results.

On the contrary, incorporating constraints into simulated physics makes the

modeling more challenging, and the computation, error-prone. The various methods

modeling these problems are 1) Force Based Methods, 2) Velocity Based Methods,

3) Position Based Methods and finally, 4) Indirect representation as Linear Com-

plementary Problems (LCP). LCPs are not always treated as a separate method, as

quite often, the velocity-based methods too, can be represented using mixed linear

complementary problems (MLCPs). Similarly, the position-based methods can also

be re-organized into an LCP formulation. The following sub-sections briefly review

these methods individually.

2.3 Force Based Methods

The force based methods are the simplest in terms of modeling the system of equa-

tions representing a constraint based physical system. Formulating the equation

of motion with the consideration for “constraints” separately from the forces and

moments applied by the external controllers, one can arrive at the following form of
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the Newton’s second law:

[~an, ~αn]
T = [(~Fext + ~Fconstraints)/m, (~τext + ~τconstraints)/I]

T (2.1)

Wherein ~an and ~αn are the linear and angular acceleration of a body at n time-

step. ~Fext and ~τext are the vectors of external force and torque and ~Fconstraints and

~τconstraints are the vectors of internal force and torque due to the constraints. m is

the mass and I is the inertia of the simulated body.

[~vn, ~ωn]
T = [~vn−1, ~ωn−1]

T + [δ~an, δ~αn]
T (2.2)

Here ~vn and ~ωn are the linear and angular velocity at time-step n. The linear

and angular acceleration ~a and ~α are the basis for solving the dynamics problem

using this approach. These accelerations can be integrated to compute the linear

and angular velocities and then, from the velocities, the position and orientation.

Both integration steps require the use of temporal states and a time step δt. The

integration itself can be carried out using numerical integration techniques which

can be divided into explicit and implicit Euler methods [56]. Implicit methods are

more accurate compared to explicit methods.

Although the computation of constraint-less dynamics can be carried out us-

ing implicit (backward) Euler method, the inclusion of constraints renders stiffness

[57] in the underlying ordinary differential equations. Stiffness in this regard refers

to the limitation in the choice numerical integration technique (either forward or

backward Euler method) to attain convergence without minimizing the time-step

δt. Consequently, while implicit methods are theoretically preferable due to their

greater flexibility in using a higher value of the time-step ∆t, the complexity of

implementation and the lack of guarantee for the existence of a solution [58] limits
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their use. The other alternative is explicit methods that have an inherent inaccu-

racy that is driven by a combination of factors including the types of constraint and

the length of the time-step dt. The use of the symplectic Euler method [59], also

referred to as the semi-implicit Euler method, is a proposed improvement which has

better convergence when compared to pure explicit methods. The symplectic Euler

method for our problem can be formulated as:

~vi+1 = ~ai∆t+ ~vi (2.3)

~xi+1 = ~vi+1∆t+ ~xi (2.4)

Due to the use of ~vi+1 in the computation of ~xi+1, this method is a mix between

implicit and explicit Euler method, with the added advantage of linear computation

time. Nonetheless, the only way of incorporating the “constraints” is to include

their exerted force. In specific cases, the use of numerical integration makes these

methods unstable. This can be observed in even the most simplistic scenarios such

as primitive shaped boxes being stacked on top of each other. There are some

proposed improvements to force-based methods that work marginally better but

overall, these methods are not usually employed by most physics simulators. GEL

(https://www.chai3d.org/forum/gel) is a soft-body simulation library that uses

direct force-based methods for soft-body simulation.

2.4 Velocity Based Methods

Velocity based methods are the most popular in terms of their use in physics compu-

tation libraries and as the name indicates, rather than manipulating the magnitude
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Figure 2.1: The simplest form of constraint based on collision between two rigid bodies.

of force applied by constraints, the change in velocity is calculated directly. The

change in velocity is related to the impulse of a dynamic body.

P = ma∆~vi =⇒ ∆~vi = P/ma (2.5)

L = Ia∆~wi =⇒ ∆~wi = L/Ia (2.6)

Here, P and L are the linear and angular momentum of the rigid body and Ia is

the inertia tensor expressed in body coordinates:

Ia = RaIR
T
a Ra ∈ 3× 3 (2.7)

The required change in velocities depends upon the application of the correction

impulses P and L. This is the main challenge to a stable implementation of velocity

Based Methods. This problem can be explored by using the simplest form of a

constraint, which is the collision between two rigid bodies shown in Figure 2.1. The

bodies have linear and angular velocities and happen to collide with each other at a
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certain time t. The goal of the velocity-based collision constraint is to generate the

required impulses that prevent penetration inside each other. This can be accom-

plished by leveraging the relative velocity between the contact points belonging to

each body.

~vca,cb = ~va + rca × ~ωa − ~vb − rcb × ~ωb (2.8)

Differentiating once to get the change in ~vca,cb:

∆~vca,cb =
~Pa

ma

+ rca ×
~La

Ia
−

~Pb

mb

+ rcb ×
~Lb

Ib
(2.9)

For the example illustrated in Figure 2.1, the angular momentum L can be

written as the cross product of the support vectors and the linear momentum L =

r×P . This ∆~vca,cb gives a hint towards the calculation of the correction momentum:

Pcorrection = Meffective∆~vcorrection (2.10)

The change in relative velocity ∆~vca,cb has the terms Pa and Pb in them. One

velocity based method, called Sequential Impulse (SI), applies a unit impulse along

the common normal between bodies A and B. For SI, the Equation 2.9 is re-written

as follows:

∆~vnca,cb =
~n

ma

+ rca ×
rca × ~n

Ia
−
−~n

mb

+ rcb ×
rcb × ~n

Ib
(2.11)

According to SI, the Meffective is written as:

Meffective = |P |/(∆~vnca,cb.~n) (2.12)

Here, the term |P | is normalized as the unit impulse is applied along the common
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normal. Likewise, the term ~vcorrection is the projection along the common normal

with a negative sign to result in repulsion rather than attraction. Based on this,

one can arrive at the following expression of Pcorrection:

Pcorrection =
−~n.∆~vca,cb

~n.( ~n
ma

+ rca ×
rca×~n
Ia
− −~n

mb
+ rcb ×

rcb×~n

Ib
)

(2.13)

This presents the basic formulation of the Sequential Impulse constraint solver.

This expression results in a correction impulse that prevents two bodies from pene-

trating each other.

2.5 Position Based Methods

While velocity based methods are promising and popularly used in most physics

engines, position-based methods have recently gained traction. Differently from

the indirect computation of the position using force or velocity, these methods di-

rectly control the position of the bodies at successive time-steps. The position-based

dynamics was first introduced by [60] and uses constraints projection to alter the

positions of bodies. Constraint projection can be done using the change in body

velocities and in that case, it resembles velocity based methods.

The original (PBD) method was used for simulation of soft-bodies however, as

stated in [60], the method can be adopted to compute rigid body dynamics. The

basic formulation of position based methods is as follows:

C(p) +∇pC(p).∆p = 0 (2.14a)

∆p = λ∇pC(p) (2.14b)
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The term C(p) is the constraint, ∆p is corrected projection and λ is the control

parameters. Similar to the velocity based methods, λ is weighted based on the mass

of the particles in contact.

∆pi = −swi∇piC(p) (2.15a)

s =
C(p)

∑

j wj|∇pjC(p)|2
(2.15b)

Here the term s is called the scaling term and the weighting terms wi = 1/mi

are the inverted masses of particles indexed by i.

For the example of collision correction 2.1, a soft-body particle colliding with a

rectangular face (v1, v2, v3, v4) can be formulated as follows:

C(p, v1, v2, v3, v4) = (p−

∑4
i=1 vi
4

).
(v2 − v1)× (v3 − v1)

|(v2 − v1)× (v3 − v1)|
− fd (2.16)

Position-based methods, although mathematically less accurate than velocity or

force-based methods, are reliable for extensive soft-body simulations. This is because

the constraint equation is directly specified for each particle and then enforced at

each dynamic update step. The enforcement of the constraint is called constraint

projection and essentially ensures that the particles obey the constraints rigidly

instead of applying corrective velocity or force and then iterating until convergence.

This results in dense soft-bodies with a multitude of inter collisions being simulated

in a stable simulation.
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2.6 Indirect Methods

The purpose of indirect methods is to formulate the problem of simulation dynam-

ics into a Linear Complimentary Problem (LCP). A more generalized expression

is called Mixed Linear Complimentary Problem (MLCP) which has the following

expression:

Aλ− b ≥ 0 A ∈ nxn, λ ∈ nxm, b ∈ nxm (2.17a)

λ(Aλ− b) = 0 (2.17b)

λ >= 0 (2.17c)

Here A and b are known and the goal is to solve for λ. Looking at equation

2.10, velocity based methods can easily be expressed as MLCPs by setting A :=

(Meffective)
−1, λ := Pcorrection and b := ∆~vcorrection. Additionally, there are other

ways to specify the A matrix. The Jacobian Jab with the mass matrix and the

Collision K method [61] are two such examples and discussed next.

2.6.1 The Combined Jacobian Method

This method computes the combined velocity Jacobian as such:

Ja,b = −[~n, rac × ~n, ~n,−rbc × ~n]T (2.18)

Based on this combined Jacobian method, the mass matrix is simply a sparse
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matrix consisting of masses and inertia of body A and body B.

M =



















Ma 0 0 0

0 Ia 0 0

0 0 Mb 0

0 0 0 Ib



















M ∈ 12× 12 (2.19)

Here the upper case Ma and Mb indicate a 3 × 3 diagonal matrix consisting of

ma and mb. The terms Ia and Ib can either be the principal moment of inertia in

which case the matrix M is diagonal, otherwise it is sparse. This resulting A matrix

is simply:

A = JT
a,bM

−1Ja,b (2.20)

2.6.2 The Collision K Matrix Method

The collision K matrix methods has a slightly different approach to modeling the A

matrix. This method converts the vectors ~rac and ~rbc to skew-symmetric matrices:

S(~r) =













0 −rz ry

rz 0 −rx

−ry rx 0













(2.21)

Based on the skew-symmetric matrices, the collision matrix K is as follows:

K = M−1
a − S(~rac)I

−1
a S(~rac) +M−1

b − S(~rbc)I
−1
b S(~rbc) (2.22)

And the A matrix is simply computed by cross multiplication of the normal n.

A = ~nK~nT (2.23)
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In can be seen that the resulting A matrix from both these methods is identical

to the direct specification using the sequential impulse method. Formulating the

problem is only part of the problem though, the next challenge to solve the system

of equations.

2.7 Solving the Constraints

Having formulated the constraints into a linear complementary problem, iterative

techniques such as the Jacobi [62] or Gauss-Seidel (GS) method [63] can be used

to solve the system of equations representing the constrained rigid body dynamics.

The Gauss-Seidel method is preferred over the Jacobi method as the successive

approximations can make use of the updated value of the prior λi. Furthermore,

since the trivial GS solver does not account for the inequality in the constraint

equation, a slight variation, called the Projected Gauss-Seidel, is used. The following

algorithm iterates over the λ at each iteration.

for itr ∈ Niterations do
Error := 0
for i = 1 to n do

for j = 1 to n do
if i 6= j then

Error = Error[i] +
∑

A(i, j)λ(j)
end if

end for
λ[i] = b[i]−Error

A(i,i)

λ[i] = Clamp(λ[i], min, max)
end for

end for

Situations that render the matrix A singular can result in infinite momentum

along the singular axes. This is mostly due to numerical approximations, and large

mass ratios are a primary contributing factor. There are various ways to prevent
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this from happening, the simplest being to explicitly prevent diagonal elements from

going to zero. This is one of the features of the Projected Gauss-Seidel solver.

During each update-step, a variable number of sub-iterations (the term sub-

iterations is used to distinguish between the use of iterations in later chapters) are

required for convergence to a solution. Increasing the number of sub-iterations pro-

longs the compute time of each update-step. Conversely, the length of the update-

step dt exponentially impacts the required number of iterations. This is a major

challenge to achieving a real-time dynamic simulation.

2.8 Articulated Body Methods

The formulation of rigid body dynamics using any of the Cartesian state-based meth-

ods (force, velocity and position) relies on the maximal coordinates [64]. The use of

maximal coordinates generalizes physics simulations that may involve a combination

of both free and connected bodies under generic external forces and moments. The

simulation of constraints based on these coordinates has an inherent “slop” in them.

Slop refers to the softness in constraints based on external forces. This slop occurs

due to the way the corrective impulse (discussed in Section 2.4) is applied. Since

the impulse is applied in the maximal coordinates, the convergence is required in

these coordinates as well.

Robot manipulators consist of linear and rotational joints which are stiff along

all axes except the axis of freedom. There are, of course, compound joints that have

multi-axes freedom but they can also be modeled using a combination of multiple

linear or rotational joints. Rendering the stiffness along the non-free axes is a

challenge for maximal coordinate solvers. To mitigate these problems, articulated

robots can be represented in terms of reduced coordinates. The Denavit Hartenberg
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(DH) [65] parameters used in robotics can easily be used to formulate the reduced

coordinates. Using this notation, each body (called a link in reduced coordinates)

is represented by only one free variable ~q. This free variable allows either rotation

or translation along the axis of freedom. Finally, the 6 DOF position of bodies can

be updated by accounting for the relation between ~q and ~x.

The DH formulation can be converted to transformation matrices between a

parent and a child body. These transformation matrices are hierarchical which al-

lows the calculation of connected bodies poses in the world frame. The algorithms

that treat the dynamic bodies using reduced coordinates are classified as Articu-

lated Body Algorithms (ABAs) or Articulated Body Methods (ABMs) [66] [67].

The reduced coordinate representation mathematically forces the bodies (links) to

obey stiff limits along the constrained axes. In Robotics literature, one often uses

the Euler-Lagrange or Newton-Euler method to compute the reduced coordinate

representation of articulated links.

M(~q)~̈q + C(~̇q, ~q)~̇q +G(~q) = ~τ + ~τext (2.24)

Here M(~q) is the n×n Inertia matrix, C(~̇q, ~q) is the Coriolis matrix and G(~q) is

the Gravity vector. The terms ~τ and ~τext can be separated to distinguish between

implicit torque and external torques. These terms also show that the input to the

system of equations in only via torques applied along the joint axes. The equation

can be re-arranged to calculated ~̈q as:

~̈q =
~τ + ~τext − (C(~̇q, ~q)~̇q +G(~q))

M(~q)−1
(2.25)

The resulting joint accelerations can be converted to Cartesian accelerations to

solve for body positions back in maximal coordinates. Using ABMs for articulated
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robot manipulators is preferable over maximal coordinate SI solvers. Some popular

libraries that use this reduced coordinate formulation include RBDL [68], Simbody

[36] and Dart [35].

2.9 Discussion

The mathematical formulation presented in the prior sections can be summed up as

follows. Of the three maximal coordinate-based methods, velocity-based methods

perform better than force-based methods in terms of stability and are more accurate

than position-based dynamics methods. For articulated bodies, ABAs (utilizing the

reduced coordinates) outperform velocity based methods both in terms of accuracy,

and stability.

However, all is not well with using purely reduced coordinates solvers. Free

bodies that can move along 6 DOF is a simple example which needs maximal repre-

sentation. More pertinent to this discussion are surgical robots, which often employ

closed-loop bodies for constrained motions. These robots cannot be generally spec-

ified using ABAs. While there are examples of closed-loop robots using reduced

coordinate solvers, these are not generalizeable implementations.

The point of this discussion is to emphasize that velocity-based methods (SI

solvers) are the better on average in terms of stability, accuracy and generalizability

when compared to other methods. Due to this reason, they can be used to specify

any type of environment. For articulated robots, the softness at the joints can be

alleviated by allowing a greater number of sub-iterations, reducing the length of the

update-step, and more importantly, making sure that two inter-constrained bodies

do not have an excessively large mass ratio (Equation 2.19). While these are among

several factors that have been discussed throughout this chapter for improving the
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stability and accuracy of the physics simulation, the most recurring factor is the

length of the update-step dt. Chapter 3 presents an extensive discussion on this

variable and the associated repercussions of controlling this variable in the pursuit

of real-time dynamic simulation.
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Chapter 3

Asynchronous Framework for

Collaborative Interaction

This chapter focuses on the challenges of achieving a real-time dynamic simula-

tion with the inclusion of multiple input devices and communication interfaces for

control via external applications (Section 3.4.1). To address these challenges, a new

framework is proposed which includes a variable number of input devices while main-

taining a real-time dynamic simulation (Section 3.4.2). The inclusion of multiple

input devices presents additional challenges such as common frame representation

and contextual control in a specific frame of reference. This is addressed by the

development of a set of 17 frames that are used to abstract the mapping of any

device and its corresponding simulated body (Section 3.5). Next, the design of

distributed and asynchronous communication pipeline is discussed which leverages

the real-time dynamic simulation (Section 3.7.1). To utilize these communication

interfaces, a complementary Python client is presented in Section 3.8. Finally, the

results and conclusions are presented in Chapter 3.9.
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3.1 Published Work

Some of the work presented in this chapter has been published as:

Munawar A, Fischer G, “An Asynchronous Multi-Body Simulation Framework

for Real-Time Dynamics, Haptics and Learning with Application to Surgical Robots”,

Intelligent Robots and Systems (IROS), Macao, China, 2019.

3.2 Introduction

The use of partial autonomy for performing manual tasks with robot collaboration

is a popular research area [69]. This area traditionally includes humanoids or nurs-

ing robots operating alongside humans to assist in certain tasks. Current research

focusing on improving the outcome of robot-assisted surgery, although different in

some aspects, has many parallels to traditional human-robot synergy as they both

involve collaborative assistance. Concerning robotic surgery, such assistance has a

vast scope, which includes, for example, the autonomous positioning of slave ma-

nipulators for better workspace, autonomous endoscopic control for improved field

of view and visual feedback using markers and visual queues. These examples are

forms of assistance that do not directly impact the operator’s control input. On the

other hand, examples affecting the user’s control input include active haptic feed-

back, virtual fixtures for guidance/boundary enforcement and control of a sub-set

of slave manipulators in coordination with the human operator. The example of

coordinated control is particularly interesting as it is a function of the surgeon’s

control input, the sub-task at hand and may require some form of training through

deterministic controllers and/or machine-learning. This collaboration may not only

affect the teleoperated slave manipulator but also impart forces on the operator’s

hand in addition to the feedback from interaction with the real/virtual environment.
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The unit carrying out the collaborative assistance can be called an Intelligent

Agent with the understanding that the agent can either be a software algorithm

trained via neural networks (NN) or another human. In case the agent is a deter-

ministic controller, the term “Intelligence” loses meaning and the agent can instead

be called an external or a distributed controller. This chapter focuses on the design

and implementation of a framework to achieve assistive collaboration by providing

the means to integrate modern surgical robots/haptics devices with high fidelity

asynchronous control and haptic feedback. The conceptual design of the framework

involves the segregation of the input interfaces into the basic building blocks which

can be combined or taken apart to let Intelligent Agents and distributed controllers

share the control with primary operators in complex and extensive physics-based

simulations.

Real-time simulators that can support collaborative assistance using physical in-

put interface devices (IIDs) can play an important role in improving the outcome of

surgical, as well as non-surgical training tasks. The requirements of such simulators

have been discussed in Section 1.3. This chapter deals with two of the fundamen-

tal requirements, namely, the implementation of real-time dynamic simulation and

generic yet extensive device control interfaces for allowing multi-device input. Re-

garding the simulator requirements, an additional point is addressed in this chapter

which is the support for machine learning algorithms through an extensive and dis-

tributed communication pipeline. This discussion includes the motivation behind

the choice of the underlying message payloads.

While several open-source simulators for robot dynamics such as Gazebo [32],

VRep [70] and MuJoCo support different feature-sets ranging from distributed con-

trollers to ML and RL support, these are not built for real-time training applications

with support for various haptic and non-haptic IIDs. Among other factors, this is
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primarily due to the implementation approach which is “sequential” in nature. As

the name indicates, the “sequential approach” performs the internal sub-routines

and external methods-calls for supported plugins one after the other. This approach

works well for non-real-time tasks that are done purely in simulation. Moreover, this

reduces implementation complexity (e.g. since program execution is sequential and

deterministic), improves maintainability (e.g. individual components can be blocked

or loaded for debugging as their methods are invoked from one point in the sequen-

tial code) and allows relatively modular feature expansion through future updates

(due to less “moving parts” that each component depends upon).
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Figure 3.1: A conceptual view of the Asynchronous Framework

On the other hand, a parallel design for heterogeneous simulators (support both

physical and simulated input devices and environments) allows the flexibility for
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achieving real-time dynamic simulation through asynchronous updates, albeit with

the complexity of implementation that spans many different levels. These levels

include the lowest building blocks for software development such as data integrity

and management, and also the higher levels such as API specification, and feature

expansion.

To develop such a heterogeneous simulator, these challenges first had to be un-

derstood, as there is limited prior work in this respect. Some of the challenges

were harder to identify than others and some were in-fact understood alongside

the implementation process. The final outcome resulted in the framework that

allows a variable number of IIDs to be included in the simulation with real-time

device updates as well as real-time physics simulation updates. The framework is

called the Asynchronous Framework (AF) and the underlying simulator that uti-

lizes this framework is conveniently called the Asynchronous Multi-Body Framework

(AMBF). This framework abstracts physical devices, simulated bodies, intelligent

agents and distributed controllers into independent asynchronous objects that are

then handled in a parallel fashion. A simplified description of the Asynchronous

Framework is shown in Figure 3.1. This Chapter is dedicated to the challenges

faced in the development of this framework in light of the limitations of existing

implementations.

3.3 Selection of Software Components

The control of multiple input interface devices alongside a simulated dynamic en-

vironment is an essential requirement of the proposed Asynchronous Framework.

Section 3.4.2 discusses the challenges associated with this multi-device control. The

second, but equally important requirement is the selection of the appropriate soft-
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ware components. The selection of these software components is driven by the

compatibility in our use-case (CISST-SAW and dVRK – an open-source research

kit based on the clinical da Vinci surgical robot – [71] [20]) and the popularity

and adoption of the components in the research community. As such, some of the

important components which have been chosen to complement the Asynchronous

Framework include CHAI-3D [72], Bullet Physics[34], GLFW [73], Boost [74], Yaml-

cpp [75], Yaml-py [76], Keras [77], Keras-RL [78], and Open-AI’s GYM [79]. Figure

3.2 shows a holistic view of the appropriate place these external components hold in

the pipeline leading from the hardware components to the Python libraries for ML

and RL.
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Figure 3.2: The external components that have been selected to complement various part of the
Asynchronous Framework and the AMBF.

The motivation behind the selection of each component emphasizes not only

the design philosophy of the Asynchronous Framework but also on the process of

breaking down a heterogeneous simulator into basic building blocks. In this regard,

Bullet Physics[34] and CHAI-3D [72] are the two integral components. Bullet’s

Physics is already used in some open-source robotic simulators, including Gazebo

- the preferred dynamic simulator for the Robot Operating System (ROS). While

Open Dynamics Engine (ODE) is another competitive physics library, Bullet pro-
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vides a built-in and general-purpose collision detection library and the support for

many different kinds of constraint solvers.

CHAI-3D is an open-source library that supports several commercial haptic de-

vices and offers a device-agnostic interface to applications rendered in Open-GL

[80]. CHAI-3D lacks a built-in physics computation library but has preliminary

support for Bullet and ODE in the form of basic demo applications. These demo

applications show the proof of the concept of integrating with CHAI-3D rather than

fully functional support. Yaml-cpp and Yaml-py are essential to the Asynchronous

framework but are used for meta-data specification and retrieval and discussed in

that context in Chapter 4.

Keras [77] was chosen because of its compatibility with currently popular NN,

ML and RL libraries which include Tensorflow, Theano, Keras-RL and OpenAI’s

GYM. Both Tensorflow and Theano can be used for defining and solving neural

networks. However, neither of them is directly related to the Asynchronous Frame-

work since they are used indirectly through Keras interfaces. Keras-RL [78] provides

the implementations of various Reinforcement Learning algorithms and newer algo-

rithms are continuously being added. OpenAI’s GYM allows for the creation of

environments and agents that expose an action-state interface for input and output

and is the default front-end for utilizing Keras-RL (and consequently Keras).

3.4 Implementation Details

3.4.1 Implementation of Real-Time Dynamic Simulation

Before delving into the implementation of a real-time dynamic (physics) simulation,

it is important to define the meaning of the term. A real-time physics simulation

means that the simulation clock tracks stepping of the real-world clock. This real-
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time clock tracking enables consistent motions of simulated bodies based on con-

tacts, constraints and environmental forces. Lack of a real-time simulation means

that some parts of the simulation will be faster than others. As a simplified exam-

ple, simulated bodies traversing along a trajectory with constant velocity will appear

faster at some times and slower at others. For simulations that involve human input

for learning and training, real-time simulation is important as humans expect con-

sistent interaction with everyday objects. The response due to interaction doesn’t

need to be exactly similar to real-world bodies, but it should be consistent within

the simulation concerning time. On the contrary, for simulations that require auto-

mated training, the real-time simulation doesn’t hold much value as the simulation

is often sped up for accelerated training. The mismatch between the simulation and

the real-world time, in that case, can be adjusted by using simulated time-stamps

that also store the actual value of the real clock.

A fundamental control parameter associated with a physics simulation is the

update-step. An update-step is the window of time between two discrete states (tn

and tn+1 ) of the simulated physics and is measured as dt = tn+1 − tn. Essentially,

at each step of the physics simulation, a new dt is provided to the underlying solver

which increments the time of the physics simulation and tries to solve the system

of equations. As discussed in the formulation of the system of equations in Chapter

2, a solver of the form of (Guass-Seidel or Jacobi) is used to successively iterate

(called sub-stepping, sub-steps or simply sub-iterations) the states of the bodies in

the simulation. The successive approximation to the system of equations tries to

update the solution such that the residual error between successive states falls below

a certain threshold ǫ. Each sub-step takes a certain amount of CPU time (and thus

real-world time). As a result, a larger dt, requires more sub-iterations and thus more

time to compute. Most offline and simple robot simulators can utilize a fixed time-
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step, which allows for stable performance of the underlying simulated dynamics by

allowing adequate time for computation of constraints and collisions.

Based on the aforementioned process of solving simulated dynamics, achieving a

generic real-time physics simulation is challenging. One major factor is the uncer-

tainty in the amount of time consumed by sequential processes that are sandwiched

between each update-step. Ideally, one wants to minimize these time-consuming

processes, which requires the understanding - both conceptually and empirically -

of factors that take up the most time during each update-step. That being said, not

all processes can be eliminated or isolated. Processes such as contact computation,

constraint solving and external force resolution are inherent to the physics solver.

Of these inherent processes, contact and collision computation can become a major

time-consumer. This is where the use of collision primitives comes into play. As such,

relatively advanced shapes can be created using a compound of collision primitives

(implicit collision). Implicit collision computation is significantly faster and more

reliable than explicit collision techniques (GJK [81] and Minkowski Difference [82]),

especially for relatively lower update-frequencies of the physics simulation. Some

corresponding results regarding this are shown in Chapter 6. While collision prim-

itives are computationally faster, creating collision primitives can be infeasible for

complex shapes and instead mesh decimation techniques may be preferred. Exam-

ples of external time-consuming processes include blocking delays caused by device

drivers, a large number of transform operations, loading plugins and performing

plugin method calls.

The Asynchronous Framework achieves real-time physics simulation by dynami-

cally changing more than just the magnitude of the time-step. A non-real-time sim-

ulation is also conveniently possible but it is not the focus of this discussion. Each

update step has 3 control parameters which include the magnitude of the time-step
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δt, maximum number of iterations Nmax and the magnitude of the default integra-

tion step δti. Usually, the default integration step δti is fixed, and the time-step δt

and Nmax are dynamically controlled. Moreover, Bullet Physics uses an interface

called Motion States, which allows access to the body states in-directly. This

interface saves computational time by interpolating states between the update-steps

rather than stepping the solver in case δt meets the following in-equality:

δt < δti ×N ; N ∈ Z
+ & N ≤ Nmax (3.1)

In the equation above N ∈ Z
+ stresses that N is a positive integer. Ideally, δt

should not exceed δtiNmax, but this condition can easily be violated, thus, Nmax

needs to be updated accordingly. However, increasing Nmax also increases the com-

putational time thereby causing higher values of Nmax in successive iterations. This

tends to cause circular deterioration. Based on the empirical evaluation, update

frequencies lower than 45Hz tend to have a noticeable impact on solution conver-

gence. Finding the right balance between Nmax and δt is challenging. To mitigate

this limitation, Nmax has to be capped to an upper limit.

The dynamic control of more than just the update step allows the Asynchronous

Framework to be more flexible in achieving real-time physics as compared to other

robot dynamic simulators. This, however, is just one of the many factors the makes

Asynchronous Framework more robust. The other factors include the mitigation of

external factors that consume time in between physics update steps. These factors

are discussed in Section 3.4.2. Figure 3.3 shows the difference in slippage of the

simulation time from the system time (Wall Clock) based on a comparison between

fixed and dynamic time-stepping for a simple peg and hole task using one input

device.
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(a) (b)

Figure 3.3: (a) Time dilation between Application Clock & Simulation Clock using fixed time-
step (dt=0.001) (b) Time tracking between Application Clock & Simulation Clock using dynamic
time-step

3.4.2 Asynchronous Control of Multiple IIDs

Any input device (with more than 2 degrees of freedom), haptic or not can be called

an Input Interface Device (IID). Devices with 2 DOF, for example, computer mice,

are not characterized as IIDs. Each IID is represented by a simulated dynamic

end-effector (SDE) comprising of links and joints. The term “root link” is a link

belonging to the SDE and refers to the base link (body) which is bound to the

IID with some transform mapping. In many cases, the root link does not have any

parents but can have child bodies such as fingers and child joints. The condition of

a parent-less root link is relaxed later in this chapter to present a generic interface

for binding any simulated body and its successors to an IID.

For multi-manual interactive collaboration, interfacing multiple IIDs with the

physics simulation is required. Each IID needs a recommended update-rate for read-

ing the state data for its device drivers. For haptic IIDs, an update rate of at least a

1 kHz [83] is preferred for reading and writing data (in addition to minimal commu-

nication latency). It can easily be seen that a “sequential implementation”, adopted

by existing simulators, can only execute the associated device methods in between

59



each dynamic simulation step. The device drivers for several commercial devices

– Geomagic Phantom/Touch (3D Systems Corp, Rock Hill, SC, USA) and Falcon

(Novint Technologies Inc., NY, USA) – impose a blocking delay while commanding

forces which further restricts the update-rate of the physics solver. Tracker devices

such as Razer Hydra (Razer Inc., CA, USA), usually operate at lower update-rates

(≤ 400Hz) and pointing devices, such as 3D Connexion’s Spacenav mouse1, operate

at even lower frequencies (≤ 100Hz). All these devices are shown in Figure 3.4.

dVRK MTM Novint Falcon

Razer Hydra

Geomagic Touch

Spacenav Mouse

Figure 3.4: Input devices to interact with a dynamic simulation.

To improve the update rate of the physics simulation, a partially distributed

implementation was tested. According to this implementation, the control laws for

the haptics devices were computed in the simulation loop but the commands were

withheld (to prevent blocking sub-routines), and instead, were applied concurrently

1https://www.3dconnexion.com/spacemouse_compact/en/
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in separate threads. This improved the simulation’s update frequency but resulted

in unstable control of the SDEs. This was possibly due to a non-deterministic delay

between the computation of control laws and the application of output forces as the

simulation loop inadvertently swayed back and forth based on the complexity of the

underlying physics. The problem was further aggravated when mixing devices with

different update-rates. It was concluded, therefore, that a “sequential approach”

makes the inclusion of multiple IIDs extremely difficult if not impossible. As a

result, an Asynchronous Control scheme was implemented, wherein the dynamic

update-loop runs in a separate thread and all of the device update-loops (haptic

and non-haptic), in separate threads with indigenous control laws. This control

scheme is the basis of the Asynchronous Framework.

An implementation where the IIDs uniquely control their corresponding SDEs

is rather straight forward. In such a scenario, the only exchange of data happens

between each physical device and its SDEs root link. This exchange can be managed

by using mutual exclusion (mutex) [84] locks to prevent race conditions. However,

this is not the case with the Asynchronous Framework as data from each thread

has to be shared between multiple different threads running at variable frequen-

cies. These threads include the graphics threads, multiple IIDs and communication

threads. This is discussed in detail in Section 3.5.

The root link of the SDE is controlled using a dynamic control law based on

the motions of the IID. Usually, the states of IID are in the reference frames of

the devices themselves, while the SDEs states are in the simulation world frame.

Therefore, before the computation of the control law, states have to be converted

to a common frame (usually the simulation world frame). Afterward, the control

law is used to compute output commands that are then multiplied by two different

sets of gains. One set of gains is for scaling the wrench for SDEs and can be called
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“controller gains”, while the other set of gains is for controlling the force feedback

on the IID and can be called the “haptic gains”. To achieve a truly asynchronous

setup, each IID owns a shared data-structure that allows for asynchronous reads and

writes. This data-structure maintains the device’s states and has fields to store the

commanded forces. A similar, but non-identical, data-structure is defined for each

SDE. The control laws are computed and executed independently in the dynamic

and haptic threads and applied to the SDE and the IID respectively. A simplified

block diagram representing this control scheme is shown in Figure 3.5.

Dynamics Update Loop

Update Dynamics by dt

 SDE N

APPLY COMPUTED 
WRENCH

SDE 2

APPLY COMPUTED 
WRENCH

SDE 1

COMPUTE 
OFF & CTRL 

LAW

APPLY COMPUTED 
WRENCH TO ROOT LINK

IID N Thread

APPLY COMPUTED 
WRENCH TO SD

IID 2 Thread

APPLY COMPUTED 
WRENCH TO SD

COMPUTE 
OFF & 

CTRL LAW
IID 1 Thread

READ ROOT 
LINK STATE 

COMPUTE OFF 
& CTRL LAW

SDE 1 
Data 

Structure

APPLY COMPUTED 
WRENCH TO IID

WRITE IID 
STATE 

READ IID 
STATE 

WRITE ROOT 
LINK STATE 

IID 1 
Data 

Structure

Figure 3.5: A block diagram depicting the Design of Asynchronous Control Scheme, the Simulated
end-effectors and Devices maintain independent and mutually exclusive Data Structures (DS) that
are updated on successive writes and are capable of asynchronous reads

Such indigenous controllers are used because the execution counters of each

thread are different and the commands calculated in one thread do not reflect the

state of the encapsulated object (IID or SDE) in another thread. The way a physics

simulation is set up, the commands for the simulated bodies are appended as exter-

nal wrenches. These external wrenches are mixed with wrenches from internal joints

and collision constraints. The storage of current states outside the haptic/dynamic

update-loops serves as “set-points”. These asynchronously accessible “set-points” al-

low for the instantaneous computation of control laws and application of commands,
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only once per simulation step, which prevents force saturation and instability of the

SDEs.

Both the SDE and the IID data-structures own indigenous communications in-

stances that allow input via external controllers and intelligent agents. The SDE is

constrained due to its connection with dynamic simulation solver while the IID to

its device drivers, however, they can both be commanded asynchronously using the

communication pipeline.

3.4.3 Contextual Viewport Control

Distinctive to the Multi-User control, different users may require different point-of-

views of the same underlying simulation. Moreover, users might want to control their

view direction and position. Thus in terms of visual elements, multiple cameras can

be defined and shared among different devices. What this translates to is that an IID

device can take exclusive control of multiple cameras (view-ports), share them with

other IIDs or even retain exclusive control of some cameras while sharing control

of others. Hand-eye coordination requires the definition of several transforms, some

of which include the camera pose, IIDs current pose, offset-transforms for clutch

engaging/disengaging, mapping transforms between the user and camera and motion

scaling. An extensive list of such transformations, in the context of multi-lateral

control, is presented in Table 3.1 and discussed further in Section 3.5. The associated

frames are described in Table 3.3.

The visualization loops run much slower than the device and simulation update

loops and direct data exchange causes concurrency issues. Due to a large number

of transforms involved (discussed in detail in Section 3.5), a race-condition is un-

desirable. This has been addressed, in somewhat a similar manner as the SDEs

and IIDs, by utilizing independent copies of a shared data-structure representing
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the state of each camera. One such copy encapsulates the communication pipeline

which allows the camera control externally. Other copies are paired with each IID

and SDE pair that request access to the specific camera. Activating camera position

control from any copy of the camera’s data-structure bypasses the other copies of the

corresponding camera from being commanded. At the same time, the other copies

can actively retrieve the camera’s state to make sure that the hand-eye coordination

is not only smooth but resumes from the latest valid pose. This is a unique feature

of the Asynchronous Framework.

3.5 Minimal Frame Representation for Input Map-

ping

The teleoperated control of SDEs using IIDs in a fixed frame of reference (FoR) is

rather trivial. The set of equations for a generalized representation for such cases is

shown below. Essentially, the linear velocities of the IIDs are mapped based on the

fixed orientation offsets for computing the scaled linear velocities for the SDEs, and

vice-versa. In terms of orientation control, the use of angular velocities is usually

avoided. Instead, the orientation is directly mapped between the IID and SDE with

appropriate offset rotation matrices (both pre and post multiplied) to adjust between

different FoRs. Contrary to a generalized representation, the similarity transforms

are often simplified in terms of raw joint angles and angular offsets, specialized

for specific devices. This is done to simplify the underlying complexity associated

with similarity transforms. To develop a generic device handling implementation

with different types of input devices (custom base transforms and tip rotation offset

for SDEs) and different teleoperated output bodies (varying FoRs and Tip Offset

frames) such simplifications cannot be applied.
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Figure 3.6 shows two IIDs controlling their proxy SDEs. Similar to the haptic

IIDs, the SDEs have inertial properties and require dynamic control laws. As dis-

cussed in Section 3.4.2, independent control laws are used for the SDE and the IID.

Both the control laws produce a 6 DOF Cartesian wrench ~F = [~f[SDE, IID], ~η[SDE, IID]]
T ,

where:

~∆P = (~PW
[SDE, IID] − (R

[SDE, IID]
OM )T ∗ ~Preference) (3.2)

∆R = R
[SDE, IID]
OM ∗ (RW

[SDE, IID])
T ∗Rreference ∗ (R

[SDE, IID]
OM )T (3.3)

[ ~axe,∆θ] = ToAxisAngle(∆Rn) (3.4)

∆2~θe = (( ~axe)n ∗ (∆θ)n)− (( ~ax)n−1 ∗ (∆θe)n−1)) (3.5)

~f[SDE, IID] = ~KL ∗ ~∆P n ∗ ts+ ~BL ∗ ( ~∆P n − ~∆P n−1)/dt (3.6)

~η[SDE, IID] = RW
[SDE, IID] ∗ ( ~KA ∗ ( ~axe ∗∆θ) + ~BA ∗∆

2~θe/dt) (3.7)

Here ~f and ~η are the force and torque, while ~K and ~B are Stiffness and Damp-

ing gains. As discussed in Section 3.4.2 different sets of gains are used for the SDE

and the corresponding haptic IID. The term ts =
dtf
dtd

scales the time-step for asyn-

chronous control by taking the fraction of fixed parametric time-step (dtf ) by the

dynamic time-step (dtd). This scaling term is only used in the SDE’s control law.

It is often the case that ts = 1 (such as the dynamic simulation running at intended
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speed), however, for significantly lower update frequencies the time step scaling pre-

vents the saturation of external forces on the SDEs. The term RMO is the mapping

offset for the SDE and the IID, while the terms Preference and Rreference are the

reference values for the control laws. It is the calculation of these reference quan-

tities which allows a flexible control interface by mixing cameras, SDEs and IIDs.

The multiple different control loops and contexts in which these reference values are

calculated is the basis of the distributed control formulation in the Asynchronous

Framework.

A basic set of coordinate frames have been identified that generalize the rep-

resentation of SDEs, IIDs and Cameras for teleoperated and collaborative control.

The underlying transformation matrices, representing these frames, can handle the

change in direction of commands based on the change in the cameras transform.

Further, these transformations can handle the complexity involved with the shared

device and shared view-port control. The use-cases that motivate this extensive

frame representation are discussed below:

• Multi View-Port Control:

In the context of hand-eye coordination, the control of an IID is usually w.r.t.

to a camera’s (view-ports) FoR. To make the implementation more general,

multiple IIDs can share a camera between themselves. Sharing in this context

means that the IIDs are controlled in the FoR of the camera and also con-

trol the camera itself using the appropriate switching mechanism. The change

in camera transform resulting from one IID should be reflected in the con-

trol of the camera sharing IIDs. A slightly similar implementation is used in

66



Table 3.1: The Description of Transformation matrices used for the XVII Representation

Idx. Expression Description

1 TU
IID−B Input Interface Device’s (IID) Base Frame in Users Frame

of Reference

2 T IID−B
IID−E IID’s End-Effector Frame in IID’s Base Frame

3 T IID−B
BO Base offset Frame for IID’s end effector, expressed in IID’s

base Frame. This is used to provide base offset between
the corrected IID Frame and the simulation world frame

4 T IID−E
TO IID’s Tip Offset Frame in IID’s End Effector Frame. This

is used to provide orientation offset between the corrected
IID Frame and the simulation world Frame

5 T S−W
IID−CL Clutch Frame of IID that moves with the IID when the

clutch button is pressed. This is expressed in the Simula-
tion World’s Frame.

6 T S−W
IID−PRE−CL Clutch Frame of IID prior to the clutch button press. After

the button press, the IID-CL Frame moves with the IID

7 T S−W
IID IID Expressed in the S-W Frame after all the IID offset

and similarity transforms have been applied
8 TU

S−W Simulation world Frame in user’s eye Frame

9 T S−W
SDE Current SDE Frame in S-W Frame

10 T S−W
SDE−B0 Frame used by the IID to impart base offset to the SDE.

Pre-multiplied to SDE Frame. Useful in defining an initial
offset between the IID and the SDE

11 T S−W
SDE−TO Frame used by the IID to impart tip offset, mostly rota-

tional, to the SDE. Post multiplied to the SDE and is useful
in assigning different orientation mapping between the IID
and the SDE

12 T S−W
SDE−REF Reference SDE frame expressed in S-W Frame. Used to

compute the control laws for the SDE

13 T S−W
SDE−REF−O Origin Reference SDE frame expressed in S-W Frame.

Used to anchor the FSDE−REF as multiple IIDs and Cam-
eras can share the SDE.

14 T S−W
CAM Camera Frame in S-W Frame

15 T S−W
CAM−CL Clutched Camera Transform. This transform only moves

with the movement of the IID if the clutch button on the
IID is pressed.

16 T S−W
CAM−PRE−CL Camera Clutch Transform prior to pressing Clutch, as af-

ter pressing the camera clutch, the CAM-CL Frame moves
with the IID
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Table 3.3: The Description of Frames used for Minimal Frame Representation. These Frames are
shown in Figures 3.9, 3.11, 3.10, 3.12

Idx. Frame Description

1 S −W Simulation world frame
2 U User’s frame
3 IID Input Interface Device’s (IID) frame
4 IID − B IID’s base frame
5 IID − E IID’s end effector frame
6 IID − BO IID’s base offset frame.
7 IID − TO IID’s tip offset frame
8 IID − CL IID’s clutched frame
9 IID − PRE − CL IID’s pre-clutch frame
10 SDE Simulated Dynamic End-Effector (SDE) frame
11 SDE − BO SDE’s base offset frame
12 SDE − TO SDE’s tip offset frame
13 SDE −REF SDE’s reference frame
14 SDE −REF −O SDE’s reference’s origin frame.
15 CAM Camera’s frame
16 CAM − CL Camera’s clutch frame
17 CAM − PRE − CL Camera’s pre-clutch frame
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multi-surgeon robot-assisted surgical procedures that use two da Vinci Master

Consoles. In such implementations, a secondary operator (surgical assistant)

may take control of the endoscopic camera using a separate set of IIDs. This

can be generalized further by allowing any IID to control more than just a

single camera with different initial positions, although the IID itself can only

be controlled in only one of the camera’s FoR.

• Multiple IIDs sharing the Control of an SDE

Another proposed addition to further generalize the shared multi-device con-

trol is allowing the possibility of multiple IIDs to share a single SDE. Such a

scenario might seem unlikely in the conventional teleoperation sense, however,

such scenarios are useful in the context of shared control and autonomy. The

user-study presented in Chapter 7 is one such example. Essentially, the ap-

plications involving the coordinated control of a single simulated end-effector

can be used for supervisory control. This supervisory control can be applied

for both teaching and training applications where the supervisor can be a sec-

ondary user, a machine learning agent or a deterministic controller interacting

in parallel with the primary user. Such a control scenario is more challenging

to implement as compared to Multi View-Port Control and naturally the

combined implementation is even more challenging. One major complication

associated with such an implementation is allowing the IIDs to independently

switch the control modes (using clutch buttons on the IID for position or

camera clutch). The switching essentially disengages the camera or the SDE

for the corresponding user, however, the other users are still able to control,

clutch and feel the force-feedback without any discontinuity.

The earlier limitation to the binding of the “root link” of an SDE to an IID can
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Table 3.5: Equations for Multi-Lateral Control of Camera/SDEs with IIDs using XVII Represen-
tation. These equations are indexed according to the Flowchart 3.13

No. Equation

1 P S−W
CAM = P S−W

CAM + SCAM ∗R
S−W
CAM ∗ δP

S−W
IID /dt

2 RW
CAM = RS−W

CAM−PRE−CL ∗ (R
S−W
IID−PRE−CL)

T ∗RS−W
IID

3 RS−W
CAM−PRE−CL = RS−W

CAM

4 RS−W
IID−PRE−CL = RS−W

IID

5 P S−W
IID−CL = P S−W

IID

6 RS−W
IID−CL = RS−W

IID

7 P S−W
SDE−REF−O = P S−W

SDE−REF ∗ (1/SIID−WS)

8 RS−W
SDE−REF−O = RS−W

SDE−REF

9 P S−W
SDE−REF = SIID−WS ∗ (PSDE−REF−O +RS−W

CAM ∗ (P
S−W
IID − P S−W

IID−CL)))

10 RS−W
SDE−REF = RS−W

SDE−REF−O ∗R
S−W
CAM ∗ (R

S−W
IID−CL)

T ∗RS−W
IID ∗ (RS−W

CAM)T

11 RS−W
SDE−REF = RIID−BO ∗R

S−W
IDD ∗RIID−TO

12 ∆PIID−(n) = P S−W
SDE−REF − P S−W

SDE

13 δ2PIID−(n) = (∆PIID−(n) −∆PIID−(n−1))/dt

14 ~F S−W
IID = KIID−L ∗∆PIID−(n) +BIID−L ∗ δ

2PIID−(n)

15 ∆RIID = (RS−W
SDE )T ∗RS−W

SDE−REF

16 ~τS−W
IID = KIID−A ∗ ToAxisAngle(∆RIID)
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(a) (b)

Figure 3.6: These figures show the simulated end-effectors controlled by dVRK Master with
clutch/camera foot-pedals enabled. The clutch is used to move the haptic device disengaged, and
the camera foot-pedal is used to re-orient the view-direction without affecting the end-effector.

also be relaxed such that any dynamic body, parent-less or not, can be paired to an

IID. There is not just a theoretical requirement but in fact there is a use-case for

this, which is the pairing of distal bodies (end-effector/graspers) of dexterous robots

(such as the PR2 and da Vinci PSMs) to an IID. The control of all the bodies and

joints after the root link is handled by the IID whereas the prior bodies and links

are controlled independently. The use of the term “independently” could mean ei-

ther through inverse kinematics, reactive or dynamic controllers. This relaxation

also allows the possibility of a chain of connected bodies to be controlled at different

points by different IIDs. In the case of humanoid robots, for instance, this can trans-

late to an IID controlling the elbow body while another IID can control the wrist

and fingers. Figure 3.7 illustrates a flowchart which is used in the Asynchronous

Framework for the selection of an SDE for each IID. The fields are specified in the

configuration file shown in Figure 3.8.

The required coordinate frames to carry out such an implementation are shown

in Figure 3.9. The subframes for the SDE, IID and Camera are shown in Figure

3.10, 3.11 and 3.12 respectively. The transformation matrices between these frames
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Figure 3.7: This flow chart represents the internal process of binding an IID to an SDE and a
Camera. These parameters are specified using the front end format shown in Figure 3.8. The
user has to specify at least one of the two fields “simulated multi-body” or the “root link”. If
both the “simulated multi-body” and “root link” are defined, the root link is searched for in the
simulated multi-body file. If a “root link” is not set, then the body with the least number of
parents in the “simulated multi-body” is treated as the root link. Lastly, in case, the “simulated
multi-body” is not defined, it is expected that the “root link” refers to a body already present
in the simulation. The field “cameras” is optional and is used to define the controllable cameras
from the corresponding IID. If the “cameras” field is not defined, then all the existing cameras in
the simulation are added to the device’s cameras. In any case, the first camera in the IIDs list of
cameras is used as the device’s FoR.

are elaborated in Table 3.5. The flowchart in Figure 3.13 shows the set of equations

carried out repeatedly in each IID’s thread. For clarity, the equations are re-written

in the Table 3.5 with matching equation indices.

For specific applications, some of the intermediate frames can coalesce together.

To achieve various control schemes for shared SDE control while using the general-

ized XVII frame representation, the controller and haptic gains in the file shown in

Figure 3.8 can be set accordingly. Based on the various ways in which theses gains

can be set, four different control schemes have been identified:
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Figure 3.8: The specification of an IID and it’s simulation parameters using the front-end specifi-
cation format. The important parameters for this discussion are the three fields namely “simulated
multi-body”, “root link” and the list of “cameras”. The “simulated multi-body” is a description
file that defines a proxy simulated multi-body that will be controlled by this IID. The “root link”
refers to a body in the “simulated multi-body” or an existing body in the simulation that will be
bound to the IID. The “cameras” field is a list of cameras controllable from this IID. The combined
use of these three fields is discussed in Flowchart 3.7

• Symmetric Control Input and Symmetric Force Output (SISO)

This refers to the position control of an underlying SDE via multiple IIDs, all

of which can control the position and thereby feel the haptic feedback resulting

from the interaction as well as the input from other operators sharing the SDE.

For this implementation, the controller and haptic gains need to be enabled for

the same axes for all the sharing operators. Examples of this implementation
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Figure 3.9: A zoomed out view of the components involved in a unilateral or multi-lateral control.
The inclusion of the user frame U is important as the user has to deal with the difference between
the device base frame and the simulation world’s (or camera’s) frame as a reference.

include two (or more) operators controlling the position (and orientation) of

the same SDEs and each operator can feel the interaction, as well as the force

input, of the other operators.

• Symmetric Control Input and Asymmetric Force Output (SIAO)

All the operators sharing the SDE can control the position of the SDE, how-

ever, not all users sense the forces in all the degrees of freedom. The force axes

can be separated by either linear forces and angular moments or even individ-

ual axes of forces and moments. For instance, one operator can sense the force

feedback, while the other can only feel the angular moments, or one operator

can sense forces in the x,y direction, while the other(s) can only feel the forces

along the z axes. The haptic gains are set to zero for axes along which one

operator does not sense haptic feedback while setting to some positive value

for the other operator(s).
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Figure 3.10: A visual illustration of the SDE frames. These frames are defined for each IID-SDE
pair, in-case of multi-lateral control, each pair has its own set of variables. The frames FSDE−TO

and FSDE−BO are usually defined at initialization and remain fixed throughout the simulation,
while FSDE−REF and FSDE−REF−O change based on the clutching of device position control
button.

• Asymmetric Control Input and Symmetric Force Output (AIS0)

The operators can only control some axes of freedom while feeling the force

feedback along all the freedom axes. The controller gains for some desired axes

are set to zero for one IID and set to some positive value for the same axes

for other IID(s). The haptic gains are set to some positive value for all the

common control axes between the IIDs. An example of this control scheme

is two (or more) operators sharing an SDE, such that, one operator can only

control position or orientation (or some position axes) while sensing the forces

along all the shared axes. The other operator(s) can control the remaining

axes and also sense the forces along all the shared axes.

• Asymmetric Control Input and Asymmetric Force Output (AIAO)

The operators can control and sense the forces only along some axes of freedom.
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Figure 3.11: The frames involved in a generalized representation of an IID. The frames FIID−BO,
FIID−TO, FIID−B and FIID−E are meant to handled in the corresponding device drivers (dVRK
Arm Plugin in case of the dVRKs) while the frames FIID−CL, FIID−PRE−CL and FIID are handled
in the Asynchronous Framework.

Figure 3.12: The frames associated with the camera which are defined for all IID-SDE-Cam
triplets. Each triplet unit has its own set of these frames.
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Figure 3.13: A flowchart depicting the process of controlling an IID in uni-lateral or multi-
lateral control in single device thread. Each IID has its own thread and this flow chart repeats
asynchronously.

The control and force feedback do not necessarily need to be along the same

axes. For this scheme, the controller and haptic gains are set to zero for

some desired axes for one IID, while the gains along the same axes are set to
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some positive value for other IID(s). This scheme can also be referred to as

the mixed control scheme, wherein, operators do not have a common set of

control and force-feedback axes among themselves.

Two additional control schemes are related to the above four schemes, namely,

5) Symmetric Force Input and No Force Output (SINO) and 6) Asymmetric Force

Input and No Force Output (AINO).

3.6 Plugin Based Interface for dVRK Masters

The sawIntuitiveResearchKit application [20] provides the state and command

data for dVRK manipulators via ROS topics. Due to the convenience of having ROS

topic interface, many use-case specific applications can be rapidly developed. Be-

fore the development of the Asynchronous Framework, several such implementations

were developed [85], [86]. While these applications were easy to prototype, they re-

quired the re-writing of mostly the same software in a slightly different manner to

cater to the new cases. This was redundant and ultimately a more time-consuming

task. This was also recognized by some of the core developers of sawIntuitiveRe-

searchKit and as a result, they developed a Python package called “dvrk python”

[87]. This implementation is specific to the dVRK and wraps the ROS functionality

internally to provide a method based interface. Due to its ease of use and minimal

setup, this package is used avidly by the dVRK community.

Moreover, the wrapping of ROS functionality as such allows the code to be

embedded inside various applications without explicitly using any ROS dependencies

or ROS launch files. By leveraging the ROS based network, the dVRK hardware

can be connected to a different PC in the local network and the target applications

can be launched on any other PC. This allows the reduction in system load and
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Figure 3.14: This block diagram depicts a plugin based interface for dVRK manipulators using
ROS as an IPC. The ROS functionality is sealed in the Arm Bridge Class whereas the ARM
Interface exposes API for user applications.

multiple different dVRK systems can be used at once. More importantly, since the

dVRK systems have a large footprint, one does not need to be in their vicinity.

Although CHAI-3D does not support dVRK MTMs as input devices, many of

the commercial haptic and tracker devices are supported through an extensive API

with minimal overhead. To model the dVRK Manipulators according to the CHAI-

3D device specifications a plugin-based interface was designed which was written in

C++. This plugin, somewhat similar to “dvrk python”, leverages the ROS topics

emanating from sawIntuitiveResearchKit to provide network-based features such as

device discovery, control via external PC and asynchronous reads and writes, and

also provides device-driver based features such as dynamic linking and watchdog

timers for command resetting. On top of that, this plugin handles the FIID−TO

and FIID−BO frames described in Section 3.5. The other notable part of this im-

plementation is that it is generic to support other devices that have ROS based

communication. For example, Geomagic Touch (haptic device) and Razer Hydra

(tracker device) have been used with this interface. This plugin is called the “AF

Arm Plugin”. A component view of this plugin is depicted in Figure 3.14.
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The “AF Arm Plugin” was initially leveraged to append the gravity compensa-

tion for better teleoperated control, however, more recently, the complete dynamic

model of the dVRK MTMs has been identified [42] [88]. This dynamic model will

potentially be used with the plugin for improved haptic feedback and impedance

controllers in a distributed manner.

3.7 Medium for Communication Pipeline

Section 3.4 and correspondingly Figure 3.15, mention the inclusion of a dedicated

communication interface for each simulated body, visual entity and IID in the Asyn-

chronous Framework. Having a communication interface allows external applica-

tions to control the dynamic simulation by using minimal information contained

in the communication payloads. Most of the existing community-based simulators

support some form of communication pipelines which makes it easier to interface

with different applications instead of having to compile everything together. Many

different types of communication mediums exist in modern operating systems that

could have been used for the Asynchronous Framework.

A brief review of the commonly used communication libraries is presented in

this section and based on their pros and cons, ROS has been selected as a middle-

ware. Although shared memory is the fastest form of data-exchange across different

applications on a single machine, it is not scalable nor can the implementation on one

platform easily be ported to another. Furthermore, the implementation complexity

on a single platform can easily over-shadow the core application for which it is being

implemented. Socket communication, although relatively slower [89], is scalable and

provides similar implementations across all dominant Linux distributions and even

other operating systems. It is also conveniently supported in almost all programming
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languages. However, unlike shared memory, socket communication requires the

additional step of defining a specification for data serialization and de-serialization

since data is transmitted as a stream of characters. Packages such as Zero-MQ [90]

and ProtoBuf2 simplify this task by outlining specifications for basic data types.

These specifications can be incorporated into the application by defining variable

names and types in a text-based file which is then included along with the program

resulting in programmatically generated code. This generated code represents the

data-types and variables specified in the text-based file and can be used at both the

transmission and reception ends.

AF COMM (ROS Based)AMBF Simulator

afRigid Bodies

BULLET 
DYNAMIC 
ENGINE

afObject Comm

RIGID BODY

Thread
Controller

Lineage Graph
Object State

Object Cmd

Thread
Sim Times

Step ControlafWorld

afWorld Comm

World State

TCM

World CmdTCM

Figure 3.15: A visual representation of the Asynchronous Framework with regards to the C++
AMBF Simulator where each simulated dynamic object is represented as an afObject. The afObjects
utilize independent communication pipelines by exposing State/Command interfaces which allow
isolated control

Robot Operating System (ROS) [91] also offers similar features using 3 different

types of text-based files which are called messages (.msg), services (.srv) and ac-

tions(.action). What sets ROS apart from [90] and Protobuf is the built-in support

for several helper tools, both command line and GUI based. These helper tools

enhance the ability to debug large scale applications, unlike any other messaging

library. ROS also integrates with powerful plotting (RQT Plot [92], PlotJuggler

[93]) and logging tools (ROS Bag [94]) which are always useful. These tools do not

2https://developers.google.com/protocol-buffers
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require any extra setup steps which makes ROS much easier to use and maintain as

compared to other socket-based communication libraries.

For communication purposes, all the bodies in the simulation, either kinematic or

dynamic (including Cameras, Lights, etc) are called afObjects, where ‘af’ stands for

‘Asynchronous Framework’. To maintain a distributed communication structure,

each afObject owns a separate instance of a communication plugin called afObj-

Comm. Likewise, the simulation world is called the afWorld and communicates

via afWorldComm. Unlike multiple instances of afObjects that correspond to each

simulated body, IID and visual entity, there is only one world and thus only one

afWorld instance. The communication plugins receive and transmit data asyn-

chronously using indigenous threads but can also share the thread of their parent

afObject/afWorld.

This design is somewhat similar to ROS Nodelets [95], albeit with some key

differences. Unlike ROS Nodelets, the instances of afObjComm/afWorldComm

distribute/isolate the ROS callbacks using custom callback queues. Custom call-

back3 are different from the default ROS callbacks. For instance, it is the respon-

sibility of the application to introspect whether new messages have been received

and if so, that application has to manage the retrieval. On the contrary, the default

ROS callbacks are invoked automatically thus temporarily halting program execu-

tion. The advantage of using custom callbacks is that groups of communication

interfaces can be managed by the application rather than automatic handling by

the ROS communication server. Thus transmission control features that are iso-

lated for each group of communication interfaces can be defined. A conceptual view

of this implementation is illustrated in Figure 3.15.

This distributed structure allows each communication instance to define its safety

3https://docs.ros.org/api/roscpp/html/classros_1_1CallbackQueue.html
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mechanism (WatchDog timers), speed of communication (publishing and reception

frequency) and trigger events (e.g. addition and removal of children data). Even

though each communication plugin is isolated from one another in terms of function-

ality, they are all grouped in a way that they can all be launched dynamically within

a single application, without the need for ROS launch files, as is the case with ROS

Nodelets. Keeping the Asynchronous Framework isolated from ROS based run-time

mechanics while still being able to leverage ROS tools is a distinctive feature of the

Asynchronous Framework and provides the means for swappable middleware in the

future.

It should be pointed out that although this implementation might seem similar to

“AF Arm Plugin”, it is different in many cases. The “AF Arm Plugin” was designed

to complement the existing interfaces provided by sawIntuitiveResearchKit and

ROS based devices whereas the “afCommunication” was developed while keeping in

the mind the support for ML, RL and more importantly, a convenient interface for

users to interact with the simulation. Moreover, this simplicity should not come at

the cost of robustness in handling extensive simulation and communication load.

Due to the asynchronous nature of the communication plugins, a multi-purpose

transmission control mechanism (TCM) is built into the design. One component

of the TCM is a software-based WatchDog timer which resets the afCommand if

the timing condition – the invocation frequency of the afObjComm/afWorldComm

callback – is not met. This adds an extra layer of safety to asynchronous control as it

prevents saturation of unsupervised commands to the dynamic simulation and more

importantly terminates force commands to actively connected physical haptic IIDs.

The TCMs Watchdog timer is re-initiated once a stream of new commands starts

to flow in. The secondary function of the TCM is to switch the publishing speed of

afStates between a minimum and a maximum frequency depending on whether or
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Table 3.6: afWorlds State Payload

afWorld State
afState Description
Msg Num An incrementing number based on the number of message sent
Server Time The time read from system clock
Sim Time The time of the dynamic simulation
Num Devs Number of Input Interface devices connected to the simulation
Dyn Freq Frequency of the dynamic simulation

not the WatchDog timer is expired. This reduces the load on computing resources

and allows the users to retrieve data at lower frequencies for noncritical tasks.

3.7.1 Bidirectional Communication Interfaces

Both afObject and afWorld have two interfaces for communication, an afState for

relaying the relevant data outside the simulation environment and an afCommand

for accepting commands to be applied to the underlying afObject. These two in-

terfaces implement a scalable input-output design for bidirectional communication

through an Inter Process Communication (IPC) medium (Figure 3.15). Based on

this design, multiple distributed controllers can be defined for each afObject. More-

over, if afObjects are connected to each other through the foundational joints (revo-

lute or prismatic), the joints themselves can be controlled using the communication

interface of the parent afOjbect.

3.7.2 Communication Pipeline Payloads

The Communication Payloads for the Asynchronous Framework are shown in Tables

3.6, 3.7, 3.8 and 3.9. The payloads are designed to account for external applications

with slower execution speeds, such as the Python Client presented in Section 3.8.

The world command has a field called Enable Throttle, which is a boolean
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Table 3.7: afWorlds Command Payload

afWorld Command
afCommand Description

Client Time Time of the client clock
Ena Throttle Boolean Flag to enable / disable step throttling
Step Clock Clock to drive the dynamic simulation if Ena Throttle ==

True
Jump Steps Number of Simulation Steps to jump at each clock toggle if

Ena Throttle == True

Table 3.8: afObjects State Payload

afObject State
afState Description

Name The name of the afObject
Sim Step The simulation step counter number
Wall Time Time of system clock in Asynchronous Framework
Sim Time Time of simulation
Mass The lumped mass of the object
Principal Inertia The principal inertia
Pose The pose in the world frame
Wrench Not implemented yet
User Data Additional data for debugging or logging purposes
User Data Desc. Description of user data
Children Names Name of all the bodies lower in hierarchy
Joint Names Name of all the joints lower in hierarchy
Joint Positions Position of all the joints lower in hierarchy

flag and serves to control the flow of dynamic simulation. The other important

field in the ObjectState and WorldState is the field called SimTime, which is

incremented at each step of the dynamic simulation such that.

tnsim = tn−1
sim + dt (3.8)

For a real-time dynamic simulation, this time tnsim matches the system time, as

85



Table 3.9: afObjects Command Payload

afObject Command
afCommand Description

Enable Position Controller Boolean flag to enable/disable Cartesian po-
sition control.

Pose The pose command expressed in the World
Frame. If the Enable Position Control
flag is true, this pose command will be con-
sidered, ignored otherwise.

Wrench The wrench command expressed in the
World Frame.If the Enable Position Con-
trol flag is false, this wrench command will
be considered, ignored otherwise.

Joint Commands An array of joint commands to be applied to
the children joints

Pos. Controller Mask This mask is used to choose between position
or effort command for Joint Commands
array. If this field is not set, all the joint
commands are taken as effort control targets.
If this array is set, the corresponding Joint
Commands with a mask value of true are
treated as position control commands

Publish Children Names Flag to enable/disable the publishing of all
the bodies children names

Publish Joint Names Flag to enable/disable the publishing of all
the bodies children joint names

Publish Joint Positions Flag to enable/disable the publishing of all
the bodies children joint positions

86



recorded by the running application, therefore this information is redundant. As

discussed previously, the purpose of using the dynamic time-step is to keep the

user-interaction consistent. However, the Asynchronous Framework can also be run

based on a fixed time-step by simply specifying the correct command-line arguments.

This results in a non-real time dynamic simulation. Similarly, the simulation can be

run at a speed greater than the ticking of the real-world clock. Such a scenario is

useful in cases where autonomous training and learning are desired without human

interaction (using input interface devices) and thus having a separate field for the

simulation time is useful for mapping.

3.7.3 Normalized Joint Control of Multi-Jointed SDEs

Training simulations targeting manipulation applications require grippers (forceps,

retractors, etc.). Specifically for surgical applications, the IIDs such as dVRKMTMs

and even gaming devices such as Razer Hydras have a single DOF for controlling

the open and close jaw angle. The SDEs representing these physical input interface

devices may consist of articulated rigid bodies connected via sliding or rotating

joints. The abstract control of the jaw angle of the SDE is preferable over controlling

the explicit joint position or effort for every joint. For this reason, the SDE is

designed such that each joint limit is normalized and has an actuation direction

that allows it to fully close when the angle is set to 0 and fully open when the angle

is set to 1. Based on this design, one can generate a whole class of grippers, an

example shown in Figure 3.16, that are controllable via scalar jaw angle input.

Since the simulated bodies in the Asynchronous Framework are represented using

maximal coordinates, the joint torques and efforts, which are representations in the

reduced coordinates, have to be re-converted to Cartesian Space coordinates. For

this purpose, if the axis of freedom of a child body B expressed in parent body A is
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Figure 3.16: Generating grippers such that the joint axes between the left and right fingers (and
sub-links) are inverted. This allows a scalar variable to map to multiple joints and allows a generic
interface with IIDs having only one pinch DOF.

axA, then:

(axW )n = RW
A ∗ ax

A
J (3.9a)

∆RW
A = (RW

A )n ∗ (R
W
A )n−1 ∗ (R

W
A )Tn (3.9b)

∆RW
B = (RW

B )n ∗ (R
W
B )n−1 ∗ (R

W
B )Tn (3.9c)
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∆axW
A , δθWA ← ToAxisAngle(∆RW

A ) (3.9d)

∆axW
B , δθWB ← ToAxisAngle(∆RW

B ) (3.9e)

τWB = −τWA = KJax
W
n (θd − θ) +DJax

W
n (θ̇d − θ̇) +DC∆axW

A ∆θWA (3.9f)

3.8 The Python Client

As discussed in the introduction of this chapter, many of the popular libraries for

learning and training have Python interfaces (Keras, GYM, Tensorflow/Theano, and

Keras-RL). In alignment with these preferred interfaces, a stand-alone Python client

was developed to complement the Asynchronous Framework. The design of the com-

munication interfaces (Section 3.7.1) and the implementation of the Python Client

were done alongside each other. Python tends to have slower execution speeds when

compared to compiled applications. To build on the robustness of the Asynchronous

Framework, the following requirements were identified for a complementary Python

client.

• Online and Offline Training based on Deterministic Data

Offline training of data can easily be implemented for any dynamic simulator

and examples of such implementations can be found in [96] and [79]. Generally,

online training has a broader set of requirements since the external application

has to account for the round-trip communication overhead and asynchronous
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data update. Offline training is relatively simpler and can be covered under

the requirements of online training.

• High-Speed Closed-Loop Control

High-speed closed-loop control is slightly related to the previous point. The

challenge here is to manage a large number of afObjects while still being able

to keep a high communication speed and low round-trip latency.

• Distributed Handling of Objects

This requirement builds upon the previous requirement. Since the C++ imple-

mentation of the Asynchronous Framework treats afObjects in a distributed

and asynchronous manner, a sequential implementation in the Python client

would nullify the associated advantages. Therefore the Python client should

replicate the underlying design philosophy of the C++ Asynchronous Frame-

work and allow parallel handling of the underlying objects.

Based on the listed requirements, the Python Client makes use of the bidirec-

tional communication of afObjects and then creates callable instances of afObjects

and afWorld. These instances have encapsulated ROS publishers and subscribers

and are grouped only for dissemination purposes by the Python Client, other than

that, they are isolated from one another. Similar to their C++ counterparts, the

Python afObjects are asynchronous. Data sequencing techniques and payload time-

stamps are used to keep track of states, actions and rewards, thus allowing deter-

ministic data management for machine learning applications. A distinctive feature

of the Asynchronous Framework is the minimal initialization time and the Python
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client replicates this by directly using ROS topics (names and message types) for

implicit discovery, initialization and dispatch of afObjects.
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Figure 3.17: The Python Client communicates with the AMBF Simulator using ROS as a middle-
ware, AMBF ENV retrieves the requested handles for objects from Python Client and provides a
GYM compatible interface

Another useful feature of the Python client is building upon the joint control

interface exposed by the afCommand message. All the children’s joints of any

parent afObject can be accessed using either integer indices or the actual joint

names. In this regard, it is possible to control the joint positions and efforts using

instantaneous and non-blocking method calls. Essentially, the desired position or

effort keeps publishing without withholding the program control. This makes the

testing and debugging of position and force-based controllers using the Python Client

very easy. The client still has an option to change this behavior and reset the

commands based on a Watchdog timer which is encapsulated with each Python’s

instance of the afObject. Similar to the C++ TCM, this timer enforces command

resetting and thereby provides an extra layer of safety. The overview of the internal

workings of the Python Client and its connection with learning interfaces is shown

in Figure 3.17.
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Figure 3.18: The Flowchart depicting the process of throttling the dynamic simulation based on
setting the “Enable Throttle” flag by an external application. Once the flag is set, the external
application is responsible for providing a clock as shown by the field “External Clock”. The default
value of “No. Skip Steps” is set to 5, which the number of simulation steps the physics will take
between each clock toggle. This field can also be set dynamically.

As discussed in the requirements for the Python client, there needs to be a

mechanism to account for the round-trip latency between the Client and the Asyn-

chronous Framework for ML and RL applications. At the very least, this mechanism

requires that the dynamic simulation be paused (throttled) to give the underlying

neural network adequate time to process the afStates and compute the next af-

Commands and vice-versa. The requirement for this throttling comes from the

action-reward pair for the valid Markov States in Reinforcement Learning problems

[97]. This, in effect, mandates the states to have associated rewards. These rewards

are only defined as a function of the action taken. In the case of Asynchronous

Framework which has a distributed and asynchronous communication implementa-
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tion, the time delay between an action being applied to the reward being retrieved

makes the action-reward mapping meaningless. To circumvent this, the simulation

can be throttled between the update-steps of training (forward and backward pass

of the Neural Network).

To achieve such a throttling, the Python Client can leverage the afCommand

of the afWorld. The client firstly enables a throttle flag which forces the dynamic

simulation to stop auto-stepping and instead, progress on an external trigger. This

trigger can be provided by the communication medium, and therefore, also the

Python client, in the form of a clock signal. A flow-chart representing this take-over

of the dynamic simulation scheme is presented in Figure 3.18. The asynchronous

design allows one to dynamically change the physics simulation frequency while

the connected input interface devices can still run in real-time threads. Such a

setup would not be possible with a “sequential implementation” as throttling the

simulation frequency would throttle the update of the device drivers and affect the

force feedback for haptic devices.

3.9 Results and Discussions

A PC setup consisting of an Intel(R) Core(TM) i7-3770 CPU (3.40GHz), Fujitsu 32

GB DDR3 RAM (1333 MHz) and an Nvidia GTX 1060 (8 GB RAM) GPU running

Ubuntu 18.04 was used for the demonstration of results.

To demonstrate the robustness of the Asynchronous Framework, the differ-

ence between the “sequential” and “asynchronous” implementation was analyzed

by recording the dynamic and haptic update-rates of multiple IIDs connected to a

real-time dynamic simulation. The devices include five haptic controllers, of which

two are Novint Falcons, one Geomagic Touch, and two Master Telemanipulators
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(MTMs) from Intuitive Surgical Inc., Sunnyvale, CA, USA. As shown in Figure

3.19(a), (c) in the sequential implementation, the update-rate never meets the 1

kHz set-point. On the other hand, in Figure 3.19(b), and (d), the device update-

rates stay close to 1 kHz but the dynamic update-rate can swing depending upon

the complexity of equations for the physics solver.

(a) (b)

(c) (d)

Figure 3.19: Figure (a) and (b) show the haptic update-rate of 5 devices when controlled ‘se-
quentially’ vs ‘asynchronously’, respectively. Figure (c) and (d) show the corresponding rates for
physics update-loops for ‘sequential’ vs ‘asynchronous’ control

Having demonstrated the performance of device updates with a varying physics

simulation frequency, the controller performance of the Simulated Dynamic end-

effectors (SDEs) was analyzed in response to varying dynamic update frequency.

Since one cannot deterministically reduce the physics update frequency by only

using appropriately complex simulation environments, the reduction was induced

by leveraging the “step throttling” functionality discussed in Section 3.7.2. The AF

Arm Plugin interface (shown in Figure 3.14) was used to spawn two input devices
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(MTM-R and MTM-L) and controlled based on a parametric trajectory described

by the following equation:

Pinput = Poff + [apsin(tct), bpcos(tct), cpsin(tct)]
′S (3.10)

Here, Pinput is the commanded position of the Input Device while the R.H.S

consists of offset Poff , time constant tc, scale S, system time t and ap, bp, cp are the

major/minor axes in the 3 Dimensional space. In order to generate a high velocity,

the variables were set as follows, tc = 4.0, S = 0.1m and ap = 1, bp = 1, cp =

2. A script systematically throttled the dynamic update frequency and recorded

the controllers’ performance as the magnitude of error from the set-point. Figure

3.20 shows the output of the controllers performance for n = 5000 readings. As

visualized in the graph, the controllers’ response began to suffer as the dynamic-

loop’s frequency fell below a threshold frequency of ∼ 50Hz.

While this result is not significant in itself as it only shows the performance of

the corresponding PD control, it is significant because an external application with

slower execution speeds can be used in conjunction with human subjects to perform

collaborative tasks. One particular example of such slower applications is a trained

agent (NN trained through ML or RL) which would need to throttle the dynamic

simulation to have adequate time to process each state and generate the correct

response command. This throttling would not affect the connected users as long as

the dynamic simulation frequency stays above a certain threshold (> 50Hz).

This result is also significant in the sense that a complex environment that is

unable to run at the desired simulation-frequency would also not impact the haptic

IIDs as long as it keeps above the threshold frequency. Such a simplistic test can

be used to analyze the haptic response due to the use of shared data-structures

discussed in 3.4.2. Essentially, the set-point error (both in terms of the position and
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Figure 3.20: Reponse of haptic controllers with degrading dynamic loops frequency

velocity) is used, in the correct Frame of References (FoRs), for the PD controllers of

each SDE and IID. Especially for haptic IIDs, the PD controller can be incorporated

inside more advanced controllers such as the generic Impedance controller or specific

Inverse Dynamics Controllers. Better yet, these advanced controllers can also be

run separately and their output can be incorporated by using the communication

pipeline for each IID.

Moving on, Figure 3.21 demonstrates an application involving two users con-

trolling a pair of IIDs each. Both users have their independent view-ports and can

control them individually. The user controlling the dVRK MTMs (visible as PIP on

the top right) has force feedback as well as visual feedback while the user controlling

the Razer Hydras (PIP on the top left) only has the visual feedback. This setup
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Razer Hydras
dVRK MTMs

Razer Hydras
dVRK MTMs

Razer Hydras
dVRK MTMs

Figure 3.21: These sub-figures show the progression (top to bottom) of a bi-manual task using
the AMBF Simulator. The two SDEs holding the green multi-link puzzle piece are controlled by
dVRK Masters (shown as Picture in Picture on top right) and the other two SDEs are controlled
via Razer Hydra (shown as Picture in Picture on top left)
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shows the inclusion of IIDs with different update rates, as the dVRKs update at

1 kHz whereas the Razer Hydras update at ∼ 300Hz. The goal of the setup is to

place the puzzle pieces including three single link rigid bodies puzzles (the Triangle

Piece (Green cylindrical shape), the Square piece (Blue cylindrical shape), the Circle

Piece (Red cylindrical shape)) and the multi-link chain (Green Plate with Orange

Handles) on the Puzzle Base (Yellow Mesh). The Puzzle base and the multi-link

Puzzle have a matching set of extrusions and cut-outs respectively, while the three

rigid body puzzles have matching cut-outs for the three individual extrusions of the

puzzle base. It is important to note that all of the grasping interactions in the sim-

ulation are purely dynamic, therefore, they involve a combination of friction due to

contact geometry, grip force, slip, and slide. No simplification techniques were ap-

plied for appending the grasped object. While this dynamic grasping helps provide

a natural feel by allowing gripping slack, it makes puzzle-solving more challenging.

Manipulation and grasping in the simulation have their own set of challenges that

are addressed in the context of the Asynchronous Framework in Chapter 6.

The sub-figures 3.21 show the progression of a sub-task that involves manipula-

tion of the multi-link puzzle. The multi-link puzzle requires at least two inputs for

it to be lifted and placed on the Puzzle Base. This is followed by the single link

puzzle pieces being placed on top. All of the four simulated end-effectors can inter-

act with each other and the remaining puzzles. The closed-loop constraint formed

by the multi-link Puzzle is felt by the dVRK Masters which constrains the range of

motion, which in this case allows better control and manipulation.

The goal of this demonstration is to show multi-user control, therefore the puzzles

weren’t designed to any particular sub-task (surgical or not). The meshes for the

puzzle were created in Solidworks and then imported, scaled and placed explicitly

using the C++ interfaces of CHAI-3D that are ultimately wrapped by Asynchronous
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Framework. The corresponding lower-resolution collision meshes were generated

using mesh-decimation techniques via Blender [98]. The lower resolution collision

meshes help maintain stable dynamic update frequency.

A more interesting demonstration is the multilateral (bi-lateral in this case)

control of the SDEs. Using the XVII Representation discussed in Section 3.5, two

different users control the same underlying pair of proxy SDEs. The haptic and

controller gains can be set to achieve 1) SISO, 2) SIAO, 3) AISO or 4) AIAO. In

Figure 3.22, a SISO scheme is shown. The user holding the Falcon IIDs can only

command the Position (as the Falcon has no orientation sensors) while the dVRK

User can command both the Position and Orientation of the SDEs and the moment

feedback is disabled. Both the users can feel the forces imparted by each other’s

corresponding hand. Similarly, the two users can interact within their own FoRs.

Switching from evaluating the control characteristic, the performance of the dis-

tributed communication pipeline is tested. For this purpose, around 300 cubes

(primitive shapes) were programmatically spawned in the simulation to achieve

both a burdened simulation as well as an extensive communication load by set-

ting the minimum and maximum communication frequency to [100Hz, 2kHz]. The

distributed communication interfaces exposed the states of each dynamic body as

an afObject which were read asynchronously to determine the characteristics of

the communication pipelines. The ROS introspection tools were used to probe the

frequency of afStates for a few boxes. The introspection tools pushed the communi-

cation frequency of the afObjects to the max frequency by commanding zero efforts

at frequencies greater than the pipeline’s WatchDog timer frequencies. As shown in

the Figure 3.23, due to the excessive load, the dynamic update frequency dropped

to around 300 Hz (still real-time), however, the communication speed for all afOb-

jects was ∼ 2kHz. This result emphasizes the utility of segregating every possible
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SISO Control. Position Control and 
Force Feedback.

SISO Control. Position + Orientation 
Control and Force Feedback.

Figure 3.22: Bi-Lateral SISO Control by using a pair to Novint Falcons and a pair of dVRK
MTMs to control the same SDEs.

computation from the dynamic update loop to better achieve real-dynamic dynamic

simulation.

The communication result, discussed above, was analyzed using the built-in ROS

introspection tools, namely “rostopic info” and “rostopic bw” [99] which are writ-

ten in Python. For more realistic scenarios, the Python Client itself will be used

instead for external control. To achieve Synchronous control under the umbrella

of Asynchronous control, a stepping control mechanism has been implemented in

the Client. This mechanism uses data sequences and time stamps for making sure

that the correct data is mapped for the state, action and reward triplets (already
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Figure 3.23: Communication speed of several afObjects for an overloaded dynamic environment.
The desired communication frequency is set to 2 kHz Dynamic-Loop’s Frequency ∼ 300Hz, afOb-

jComm frequency ∼ 2kHz

discussed in Section 3.8). Apart from measuring the communication frequency, it is

also important to measure the communication latency. Various tests were written for

this purpose and supplied publicly with the AF source code. To measure the latency

for each message, the current system time-stamp is embedded at the Asynchronous

Framework’s end before transmission. In the Python Client, this embedded time is

compared to the current time. Since both the C++ AF and the Python Client run

on the same machine, the system time can be used as a ground truth.

One can set a queue size of messages in the ROS C++ and Python implemen-

tations. The messaging queue size refers to the number of messages that will be

stored for retrieval. If the queue is full and new data is incoming, it will be dis-

carded. Figure 3.24 shows the latency characteristics at ∼ 1kHz of communication

frequency and the messaging queue size of 5 at the Python’s end. It can be seen

that the Python Client (or the Python implementation of ROS) does not seem to

be able to maintain a stable latency. It was worth discovering whether or not the

value of the queue size had any effect on this. For this, a different test was carried

out where AF published a topic at 100Hz while the Python queue size was set to 5.

It can be seen that in Figure 3.25, even with a reduced communication frequency, a
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(a)

(b)

Figure 3.24: (a) The histogram showing the communication latency between the C++ AF and
the Python Client using message queue size of ∼ 10 (b) The green dots show the difference between
every successive new message received from the C++ AF by subtracting from the previous packet’s
embedded time. Similarly, the red dots show the difference between the current time when the
message was read from the previous time the last packet was read.

longer queue aggravates the latency.

For synchronous control, one is concerned with the latest data, and thus the

queue-size can be set to 1. This was tested alongside a communication frequency of

1kHz and as shown in Figure 3.26, the latency histogram performs much better. For

offline training applications, one might need access to more than just the recent data

and thus it might make sense to keep a higher value of the queue size. In conclusion,

it should be pointed out that in our experiments, the C++ ROS implementation

does not suffer measurably to higher values of the queue sizes and thus the bottleneck

102



is almost always at the Python’s end.

Figure 3.25: The histogram showing the communication latency between the C++ AF and the
Python Client using message queue size of ∼ 10.

3.10 Conclusion

This chapter demonstrated the design and development of the Asynchronous Frame-

work for allowing the inclusion of a variable number of IIDs in a real-time dynamic

simulation. The framework is especially useful as it allows extensive mapping be-

tween cameras, IIDs and SDEs without having to develop temporary applications.

All this could be achieved using the configuration file shown in Figure 3.8. The

same file can be used to allow the coordinated control modes discussed in Section

3.5. These control modes are of interest as they allow supervised and task perfor-

mance both with and without force feedback. The performance of the Asynchronous

Framework for an actual multi-user and multi-manual tasks was demonstrated in

Figures 3.19 and 3.23. These results show a promising implementation that sep-

arates dynamic simulation from the control of multiple IIDs and communication
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Figure 3.26: Histogram of the time difference between the embedded time of a received packet
and the current time for synchronous communication using Step Throttling
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Chapter 4

Distributed Format for Robots,

Environments and Devices

This chapter discusses the simulation component of the Asynchronous Framework

which is called the Asynchronous Multi-Body Framework (AMBF). To enable the

simulation of complex robots and environments a viable specification format is re-

quired. Section 4.2 presents the limitations of the most commonly used robot rep-

resentation formats in terms of simulating closed-loop surgical robots. To overcome

these limitations, a novel distributed specification format has been developed which

is discussed in Section 4.3. This section also discusses the additional features of this

specification format that are not present in existing formats. To make this format

adoptable within the community, several addons and scripts have been developed

that bridge the gap with the existing format. These scripts and addons are dis-

cussed in Section 4.4. Finally, the results and conclusions pertaining to AMBF are

presented in Section 4.5.
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4.1 Published Work

Most of the work presented in this chapter has been published as:

Munawar A, Wang Y, Gondokaryono R, Fischer G, “A Real-Time Dynamic Sim-

ulator and an Associated Front-End Representation Format for Simulating Complex

Robots and Environments”, Intelligent Robots and Systems (IROS), Macao, China,

2019.

4.2 Introduction

Achieving real-time control of multiple haptic input devices with real-time dynamic

simulation, presented in Chapter 3, is a novel contribution of this thesis. The contri-

bution presents a framework for using multiple devices and distributed control algo-

rithms together rather than individual application based implementations which are

both limited in terms of scalability and require unnecessary re-writing of code. The

framework is written in C++ and has a Python client for incorporating intelligent

agents and distributed controllers. While the inclusion of IIDs and external con-

trollers was formalized into the framework, the examples of SDEs being controlled

as well as other simulated dynamic bodies, were hard-coded in the application itself.

It is possible to program many different sets of simulated environments as well as

SDEs but it can be argued that such a stiff interface defeats the purpose of the

Asynchronous Framework. This could potentially also limit community adoption.

This limitation was recognized early on in the design of the Asynchronous Frame-

work and led to the in-depth study of existing representation formats that could be

leveraged to define various environments for the Asynchronous Framework.

The Universal Robot Description Format (URDF) is one of the most widely used

representation formats for robots. There exist other formats that are either driven
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from URDF (Standard Description Format (SDF) [32]) or allow conversion from

URDF (such as MuJoCo [100] format and V-REP Simulator [70]). Arguably, URDF

played a pivotal role in the success and community adoption of Robot Operating

System (ROS) [91] and is tailored to serial manipulators and robots. While there are

ways to visually achieve redundant mechanisms using mimic tags, realistic closed-

loop constraints are not possible as the limitation broadly comes from the design

philosophy of URDF. The idea of a robot, as envisioned by URDF, is a spatial tree

of bodies wherein the joints are essential parts of the links. While this philosophy

is the foundational building block of kinematics and visualizations using the default

ROS simulator RViz (and derivative software such as MoveIt), it thwarts the ability

to define unconnected, sparsely and densely connected combinations of bodies.

The Simulation Description Format (SDF) is employed by the Gazebo Simulator

[32] and is similar to the URDF in many core aspects while defining serial robots.

SDF addresses the key limitation of the URDF in defining closed-loop mechanisms,

however, the latest Gazebo simulator (9.0) does not support direct control of parallel

linkages using ROS. While URDF can only define a single robot per description file,

SDF can support the distributed description of robots. Moreover, SDF is designed

for more general-purpose use with support for environment entities such as lighting,

scene-objects, and sensors. Scene objects are relatively straight-forward to describe

so in this discussion, the role of representation formats is limited to defined robots

and inter-connected mechanisms.

Both the URDF and SDF (and even MuJoCo) use XML language, which al-

though historically has been used to store and transmit configuration and description

data, is not known for human readability. This limitation has somewhat been the

reason behind the development of other markup languages such as JavaScript Ob-
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ject Notation (JSON)1 and Yet Another Markup Language (YAML)2. While XML

retains its place as the back-end tool for data storage, YAML and JSON are gaining

wide adoptability in front-end applications. In addition to the readability compo-

nent, both JSON and YAML are feature-rich as compared to XML. For example,

YAML provides inherent support for macros in the form of anchors, which tend to

be useful for the specification of properties. Moreover, vectors are also supported in

a better manner in YAML.

Gazebo [32] is supported across major operating systems (e.g., Microsoft Win-

dows, Mac OS, and Linux), however, it is used most commonly with ROS (Linux).

While Gazebo is feature-rich and allows for robust support for a large number of

sensors as loadable plugins, its support with URDF, and consequently external con-

trol via ROS-topics is complicated and non-robust. The process of going from a

URDF to SDF, and eventually loading joint controllers, communicable using ROS-

topics/ROS-services, is lengthy and repetitive even for advanced users. Some of this

complexity can be attributed to ros control and ros controllers packages which

form the backbone of control via ROS. Even after a successful bridge between ROS

and Gazebo has been established, joint control for connected bodies requires extra

steps since the joints must be controlled independently using messages and services.

There are of course ways to simplify the segregation of joint controllers by using

wrappers, such as the Gazebo plug-in for da Vinci Surgical Robot [40]. While this

might not pose an issue for simpler robots with a limited number of joints, it cre-

ates unnecessary complexity for real-world surgical robots. A general comparison

between URDF and SDF is presented in Table 4.1.

1https://www.json.org/
2https://yaml.org/
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Table 4.1: Basic Comparison Between URDF and SDF

URDF SDF

ROS uses URDF Gazebo uses SDF
XML Markup Specification XML Markup Specification
Each link defined w.r.t. previous joint Each link specified in world frame
Each joint defined w.r.t. it parent links
frame

Each joint defined w.r.t. child link
frame

Does not support close loop intercon-
nection

Sort of supports closed loop kinematics

Joint and link dynamics are optional Joint and link dynamics are mandatory
URDF supports Xacro (an XML
Macro)

No Macro Support

Conversion to SDF trivial Conversion to URDF not trivial (some-
times not even possible)

4.3 The AMBF Description Format (ADF)

Based on the limitations of the robot description formats, and consequently, robot

simulators elaborated in the introduction to this chapter, the following metrics are

outlined for the proposed Asynchronous Multi-Body Framework Format (ADF):

• Human Readability: One of the design motivations behind the Asynchronous

Multi-Body Framework Format (ADF or AMBF description file) is human

readability, and consequently modification by hand. ADF’s design philos-

ophy places robot description at the front-end for creating, modifying and

distributed testing of multi-bodies.

• Distributed Structure: All the relevant data for a single body/constraint/environmental

object should be contained in the relevant definition block. Removal of the

data block should not affect any other body/constraint.

• Constraint Definition: A body could have multiple constraints (joints),

and each constraint is defined independently of other constraints. The addi-
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tion/removal of a constraint should not alter any other constraint except for

the physical/dynamic implications.

• Controllability: In this context, controllability refers to the ability to apply

forces on the body internally or externally from the running simulation inde-

pendent of the other bodies. The connected bodies react passively based on

the type of constraint they share.

• Communicability: This refers to the ability to relay information about all

aspects of every dynamic body independent from each other. This information

can include the constraints this body forms with all of its connected bodies

but not necessarily the information of bodies themselves.

• Dynamic Loading and Unloading: This defines the ability to add/remove

bodies at run-time and even define constraints between newly added bodies

with existing bodies.

4.3.1 Anatomy of ADF

The AMBF simulator was designed around the ADF to demonstrate its capabilities.

The AMBF simulator uses several external packages that include Bullet Physics [34]

and CHAI-3D [72]. The types of data in the ADF can be separated into various

types that include World Data, Rigid Body Data, Soft-Body Data, Constraint Data,

Lighting Data, Camera (View-port) Data and Input Device Data. The flexibility

of the ADF allows not only for the definition of multiple robots and multi-bodies

in one description file but also for the separation of a single robot/multi-body in

multiple description files, which is in line with the Distributed Definition metric.

As an implementation example, all the body data for one robot can be defined in
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Figure 4.1: The anatomy of ADF. The yellow tile forms the header and consists of global param-
eters and header lists which are highlighted with the purple dotted border. The red tile represents
a constraint, green represents bodies and blue represents scene objects. The blue text highlights
optional parameters.

one or more description files, whereas the constraint (joint) data can be placed in a

separate file(s). The ADF files are written based on the ADF. Figure 4.1 outlines

the components of the ADF file (placed in tiles for emphasis but are written sequen-

tially). The contents of the yellow tile are placed at the top and consist of global

parameters applicable to the rest of the description file. Debugging robot/multi-

body models by ignoring certain sub-components of the model is often an over-

looked and understated design feature of robot description formats. Commenting

out parts of the robot description is helpful, not only for debugging but also for test-

ing sub-components of a model in isolation. To ignore certain objects from loading

in URDF or SDF, the required object’s description spanning several lines needs to

111



be commented out. AMBF’s design specification uses header lists (emphasized by

the dotted purple border in the yellow tile in Figure 4.1). The header lists are the

entry point of the document such that bodies, visual elements and constraints are

processed based on the content of these lists. Instead of having to comment out

multiple lines of object data, it is sufficient to remove the object from the header

list of its type. The ignored description block does not affect the loading of any

other body or constraint since the AMBF simulator, it’s derivatives and the ADF

are implemented while considering the Distributed Definition, Constraint Handling

and Dynamic Loading specifications.

Figure 4.2: Densely connected bodies with the corresponding lineage for each body shown on the
right.

4.3.2 Interconnected Bodies

To generate non-connected, semi-connected or densely connected bodies, a combi-

nation of a graph network and a densely interconnected tree structure is employed.

Figure 4.2 illustrates an example of this composite structure. Unlike other for-

mats where the parent refers to the immediate predecessor body, this requirement is

relaxed by classifying all the predecessors of the body as its parents. While the re-

laxation of such parent hierarchy might seem counter-intuitive in traditional robot
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representation formats, this relaxation is essential to meet the defined metrics of

AMBF.

The Table in Figure 4.2 shows the resulting population of each body’s lineage.

It should be noted that the lineage path from one body to another may lead from

multiple routes as is the case between bodies (A → B) and (F → E). In such

cases, adding children/parents redundantly to a body’s lineage is restricted. To

achieve the fully connected tree, an upward and a downward pass for each added

constraint is used. Algorithm 1 sums the process of adding a constraint. At the end

of all passes, each object maintains references to all the successor joints while all

the children register references to all the predecessor bodies. It is important to note

that in the case of diverging leaf nodes at a specific body, the predecessor bodies

contain the references to all the children in every leaf node, however, the successors

in leaf nodes are unaware of bodies in other leaves.

4.3.3 Convention of Constraint Definition

Constraints are used to connect two bodies in certain ways that limit their relative

motion. In robot applications, the constraints can broadly be classified into two

foundational types, the rotational constraint (revolute and hinge) and the transla-

tional constraint (prismatic and slider). Other constraints such as springs, cams,

gears and 6 DOF joints can be built with the combination of foundational types.

Fixed constraints present a special case, but can also be implemented with either of

the foundational types.

In alignment with the design philosophy of the Asynchronous Framework, con-

straints are defined in a slightly different manner as compared to URDF or SDF.

In URDF, the joint is treated as the origin of the child body or vice-versa, and two

additional fields are used to set the offset of the child body’s visual mesh and the col-
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Algorithm 1 Add Constraint Algorithm

1: function Add Joint(joint, parent, child)
2: p := parent, c := child
3: c.Parents← p, p.Children← c, p.Joints← joint
4: UpwardTreePass(p)
5: DownwardTreePass(c)
6: end function
7: function Upward Tree Pass(body)
8: P := body.Parents, C := body.Children
9: for p ∈ P do

10: for c ∈ C do
11: p.Children ∪ C & p.Joints ∪ c.Joints
12: end for
13: end for
14: end function
15: function Downward Tree Pass(body)
16: P := body.Parents, C := body.Children
17: for c ∈ C do
18: for p ∈ P do
19: c.Parents ∪ p.Parents
20: end for
21: end for
22: end function
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lision mesh. Furthermore, these visual and collision offsets are defined in the body’s

definition, while the child origin (joint origin) is defined in the joint description.

This distribution of data breaks the Asynchronous Design, since, to get a complete

specification of the interconnection between two bodies, it is necessary to parse the

data beyond what is just defined in the constraint description.

In the AMBF Constraint definition, a body’s origin is always treated as the base

frame of its representative mesh. The way AMBF’s constraint definition differs from

URDF or SDF is by treating the constraint origin as independent of the child’s or

parent’s body origin. As a result, two fields - namely pivot and axis - are used for

the parent and the child. The pivot defines the location of the constraint from the

body’s origin in Cartesian space, and the axis defines the free axis in the body’s

frame. This convention requires less parameters to fully define an interconnection

( 13 = [parent’s pivot (3) + parent’s axis (3) + child’s pivot (3) + child’s axis (3)

+ offset (1)] ) as compared to URDF or SDF (15 = [joint’s XYZ (3) + joints’s

RPY (3) + joints’s axis (3) + child’s offset XYZ (3) + child’s offset RPY (3)] ).

While this description is sufficient in constraining the two bodies, an extra scalar

parameter is required to define the rotational offset along the parent axis between

the two bodies. This offset is discussed in detail in Section 4.4.2. The best part

about the way ADF defines a constraint is that one can easily switch the parent and

child definition (name, pivot and axis) and the joints will stay where it is. This is

handy for complex interconnected robots where it is difficult to determine who the

parent/child is.

The direct use of parent/child axes to build constraints emphasizes the front-end

nature of ADF, which consequently makes the specification of robots and multi-

bodies easier. This, however, adds more work at the back-end where the constraints

are actually parsed and processed. Internally, joint transforms w.r.t. the parent
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body and child transforms w.r.t. to the joint have to be computed. A unified

convention to define the rotation represented by axes in the parent/child body frame

is required. This convention utilizes the plane formed by the two axes ( ~axp and ~axc)

to define a rotation matrix. This rotation is trivial except for the case where the two

axes are parallel to each other since there exist an infinite number of rotation planes.

To address such cases, Algorithm 2 is adopted across the AMBF Framework, AMBF

Simulator, Blender-to-AMBF add-on (4.4.2) and the URDF-to-AMBF converter

(4.4.1). In the Algorithm, S denotes the Skew-Symmetric matrix, ~a×~b denotes the

vector cross product, I3×3 is the 3× 3 Identity matrix and ~nx, ~ny, ~nz are the three

unit vectors.

Algorithm 2 Convention for Rotation Between Two Vectors

1: ~a = ~a/‖~a‖

2: ~b = ~b/‖~b‖

3: if abs(~a.~b) ≃ 1 then R
~b
~a = I3×3

4: else if ~a 6‖ ~b then ⊲ ~a is not parallel to ~b

5: R
~b
~a = I3×3 + S(~a×~b) + S(~a×~b)2(1− ~a.~b)/(~a×~b)2

6: else if ~a 6‖ ~nx then R
~b
~a = AxisAngle(~a× ~nx, π)

7: else R
~b
~a = AxisAngle(~a× ~ny, π)

8: end if

4.3.4 Flexibility of Name-spacing and Resource Paths

The foundational structure of ADF allows for the use of multiple namespaces in a

single description file. This is accomplished by overriding the description file’s global

namespace with the local name-space parameter in the respective body(ies) as shown

for Body B in Figure 4.1. Name-spacing is not required for joints as their parents

and children are searched in all the listed name-spaces. This feature of the AMBF

not only allows multiple robots and multi-bodies to exist in one description file but

also the ability to create different name-spacing for sub-structures of a single robot.
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Table 4.2: Simplifying redundant names using name-spaces rather than suffixes

URDF & SDF ADF

/body/limb 〈left|right〉 /body/〈left|right〉/limb
/box 〈one|two〉 lid 〈top|down〉 /〈one|two〉/box/〈top|down〉/lid

One practical example is shown in Table 4.2 where identical bodies are distinguished

by name-spaces rather than the addition of suffixes to their names. Among other

advantages, this allows for the convenience of disseminating distributed controllers

using name-spaces rather than breaking down the link names.

A redundant aspect of URDF or SDF is the specification of resource paths as it

is often the case that a robot’s visual and collision meshes are located in a single OS

directory. However, a qualified path for the mesh needs to be defined for each link.

This is somewhat simplified by the use of “package” or “model” tags as base names,

which are resolved to the base folder of a “package” or the “.gazebo/model” folder

respectively. The ADF simplifies this by separating the mesh’s name from its path.

Towards this end, two global resource paths are defined in the ADF’s header shown

in Figure 4.1 (for visual and collision geometry). Similar to the global name-space

parameter, the mesh resource paths can be overridden locally in the body’s descrip-

tion, thus allowing multiple paths in a single description file. Additionally, the mesh

path can either be relative or absolute. This greatly improves the readability and

manageability of the ADF files.

4.3.5 Resolving Naming Conflicts

As of now, there are three different ways of spawning ADF files into the AMBF

simulator, these include:

• Using Launch File:

Appending the desired ADF file path to the base launch file and using the
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corresponding index of the appended file to start the simulator.

• CLI Specification

Using a CLI argument −a and then adding to that flag, the file-path of the

desired ADF file.

• Drag and Drop

Dragging and dropping the ADF file into a running instance of the simulator.

Using all the above three ways of spawning an ADF file, multiple different files

can be loaded at the same time. Even the same file can be loaded multiple times.

Since the ADF is designed to support a distributed definition of bodies and joints,

a naming conflict may occur among different files or will occur while launching the

same file multiple times. Although the naming conflict can be avoided by altering the

global or local name-space parameters in ADF files or expecting the user to prevent

any name repetitions, nonetheless, the AMBF Framework is integrated with a safety

mechanism to detect naming conflict, re-assign names systematically, resolve joint

look-ups and load communication plugins without breaking the running instance of

the simulation.

For this purpose, if an ADF file contains a fully defined object name (body /

camera / light or sensor name) that already exists in the graph, the newly added ob-

ject is appended with a renaming index starting at 1. Adding objects with identical

names keeps increasing the renaming index. It is worth noting that a mechanism

for rectifying naming conflicts, for objects specified at random times, is more cum-

bersome as compared to batch copy/pasting and renaming, as it includes breaking

down the object names as strings, and then finding if the name contains any trailing

characters representing the ASCII character for digits and if a number exists, this

number is incremented by 1 and appended to the name of the newly added object.
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On the other hand, if a trailing number doesn’t exist, the renaming index is set to

1 and appended to the newly added object name. This newly added name is also

reflected in the communication instance of the object.

Since a multi-body can be divided into multiple description files a joint (con-

straint) can have an interconnection between two bodies that do not exist in the

same file. While this makes the ADF files shorter, simpler and manageable, it in-

troduces complexity in case a naming conflict between two objects (bodies) results

in the renaming of the original bodies, as any joint looking to connect to the bodies

with the original name might fail. For this reason, for each joint, the parent and

child are first searched in the local scope. The local scope refers to all the objects

defined in the current description file. If an object with the required name is not

found, it is searched for in the global scope. Global scope refers to all the objects

that have been added to the graph until that moment.

This still doesn’t address the case where identical ADF files (containing both

bodies and joints) are loaded in succession. The first ADF file will result in bodies

being spawned at first and eventually the joints are loaded, connecting these bodies.

When the second ADF file is loaded, all the bodies will be renamed by appending a

“1” at the end. Now the joints of this newly added ADF file will already have been

defined by the previous file, so these joints will also be renamed by appending “1”.

The appended character is now used in combination with the parent and children

names to search in the local scope thereby resulting in the correct interconnection

between the newly added bodies.

In case the second added ADF was not identical to the first ADF file , i.e. all the

bodies and most of the joints were of different names except some joints with the

identical names to joints in the previous ADF file, then after the first local search

with the appended “1”, which will fail, the search is repeated in the global scope
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with all the appended combinations up til the “renaming idx”. This will allow these

joints to correctly connect to the bodies in the first ADF file. If one wants to connect

to a prior body belonging to the group of renamed bodies, they should explicitly

provide the correct name along with the renamed index in the ADF file.

Although this safety mechanism is cumbersome to explain and equally complex

implementation wise, it makes it possible to quickly copy, paste and spawn multiple

robots and environments in the AMBF simulator. More importantly, this allows

specialized robots to have changeable tools and end-effectors while the simulation

is running.

4.3.6 Support for Soft Bodies

The ADF provides support for soft bodies in addition to rigid bodies. Soft-bodies are

defined as almost identically to rigid bodies except for additional solver data. The

AMBF simulator uses the Bullet’s soft-body solvers for simulating the interaction.

The discussion of soft-body support deserves a lengthy discussion and for this reason,

it is presented in Chapter 5.

4.3.7 Action Based Sensors for Reusability

An interactive training simulation involves several forms of interactions that result

in the change of state of the interacted objects. For example, a user may interact

with a door or a latch resulting in the state of the door being “open” or “closed”

or neither. Likewise, in the context of user-training, the task may involve solving a

puzzle, and a sub-task is considered successful if the correct puzzle piece is placed

in the desired position (and/or orientation). In these examples, the outcome of the

interactive task is a boolean flag which indicates “success” and “failure” or simply

“true” and “false”.
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For the specific examples, the problem here is to determine if the door is open

or closed and whether the puzzle piece is sitting in the right place. These problems

can, of course, be solved using brute force methods. In the example of the door

open/close, a brute force method may be simply testing the joint angle θhinge of the

door hinge and explicitly defining whether the angle is between the threshold for

a door being open or closed θcorrect. Likewise, in the example of puzzle placement,

the transform of the puzzle base Tw
b and the puzzle piece Tw

p need to be calculated

to finally calculate the transform between the piece and base T p
b . Afterward, a

predetermined transform Tcorrect needs to be defined, which is compared to T p
b to

find out if the puzzle piece sits where it needs to. While these problems are easier to

solve, they require the explicit programming and calculation of correct Tcorrect and

θcorrect for each door and puzzle piece. One can envision using dynamically placeable

simulated sensors to address these problems without explicit programming. These

sensors, similar to their real-world counterparts, trigger based on either proximity

or contact and output a boolean state as well as the ID or name of the triggering

bodies. For the puzzle-solving task, pairs of sensors can be used, each for the puzzle

piece and the corresponding location on the puzzle base. These sensors can then be

assigned a matching key, to identify if the correct piece sits in the right place.

For more involved problems, one may require the output of sensors to be actions

instead of just a boolean state. This comes in handy for manipulation problems, such

as affixing the desired body to an SDE with a closed grip once the body is between

the jaws. It can be easily argued that the sensor-based approach makes this problem

generic to solve as compared to the brute force approaches for each different type of

SDE. Similarly, more challenging problems like cutting soft-bodies using simulated

knives and blades can be approached using sensor-based approaches even if the initial

implementation is more challenging. In literature, the term “sensactors” [101] or
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“sensoriactuators” [102] have been used for action based sensors.

The goal of an action-based sensors approach is to solve these problems by first

reformulating them, and then classifying them into smaller generic sub-tasks. The

first challenge lies in determining whether an event has taken place in the context of

the sub-task. This can be accomplished by using different types of sensing elements.

One such sensor is implemented by utilizing the ray-tracing algorithm which can be

used to calculate range, scan areas, detect contacts and determine the information

of the triggering body(s). This multipurpose sensor can be conveniently used for

implementing contact-based grasping, cutting, magnetic constraints and contact

validation for puzzle design.

The design and implementation of these sensors are inspired by actual sensors

used in robotics. The advantage of using such a formulation is that sensors are

defined in the front end ADF. This description includes the type of sensor and also

what object are these sensors parented to. This makes it convenient to develop

training simulations with reusable elements rather than explicit programming of

all scenarios. A generic grasping methodology using these sensors is presented in

Chapter 6.

4.3.8 Auto Generation of Communication Instances

Unlike other robot dynamics simulators, the AMBF simulator does not require any

intermediate steps to prepare for bidirectional communication. The bodies defined in

the ADF are designed to satisfy the communicability and controlability requirement

and spawn instantaneously after the relevant ADF file is loaded. Each body initiates

a thread for its bidirectional communication using an Inter-Process Communication

(IPC) medium (via ROS topics). The outgoing communication provides information

about the body’s state and is conveniently called the afState message, while the
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incoming message is called afCommand. Unlike multiple communication instances

for bodies, there is a single instance for the world’s states/commands. The payloads

for these communication instances have already been discussed in Section 3.7.2.

4.4 Compatibility of ADF with External Software

4.4.1 URDF to ADF Conversion

A significant number of robot models haven already been defined using the URDF

format, and arguably, newer robots would continue to be represented in URDF. To

take advantage of the existing work and community support for the URDF, a URDF-

to-AMBF converter has been developed in parallel with the design of the ADF and

simulator. The source code of this converter is available at [103]. The converter

uses internally implemented XML parsing to reduce the reliance on external ROS

parsing packages for portability outside Linux operating systems. As mentioned in

the previous sections, URDF is constrained by design to limit the links to a single

parent. From a design point of view, this deadlock is enforced by the use of visual

and collision offset data in the link description. These offsets are taken from the joint

frames of relevant links. For the ADF, this visual offset data is used in conjunction

with joint data to develop AMBF constraints based on Algorithm 3.

Algorithm 3 URDF Joint to AMBF Joint

1: if JointType := Fixed then ~axj = ~nz else ~axj = joint.Axis
2: T pv

j = (T p
pv)

−1 ∗ T p
j ⊲ pv = ParentV isual, p = Parent

3: ~pvtp = P pv
j , ~axp = Rpv

j ∗ ~axj ⊲ j = Joint, ax = axis

4: ~pvtc = P cv
j , ~axc = P cv

j ∗ ~axj ⊲ pvt = Pivot
5: ambfRp

c = RotBetweenV ectors( ~axc, ~axp)
6: urdfRp

c = (Rp
pv)

−1 ∗Rp
j ∗R

c
cv

7: Rjo = (ambfRp
c)

−1 ∗ urdfRp
c ⊲ jo = JointOffset

8: ~axjo, θjo = toAxisAngle(Rjo)
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4.4.2 Blender ADF Addon

The default simulator for ROS (RViz) does not have the capabilities to generate

robot models. The most recent versions of Gazebo provide limited support for

generating robot models, but its interface is experimental. Hence, SDF files are

often generated using URDF through script converters. URDF files can be created

using Solidworks (Solidworks Corp., MA, USA) via Solidworks2URDF converter

[104]. This versatile converter has been in active development and the tool of choice

for anyone creating URDFs without handling XML by hand. While ROS and its

derivatives are designed to be free for research purposes, Solidworks is not. Not only

that, Solidworks lacks support for Linux, which is the OS of choice for ROS related

development. It is worth mentioning that the Solidworks2URDF converter lacks

bidirectional support in Solidworks (i.e., the generated URDF file cannot be reused

to load the corresponding Solidworks assembly). Arguably, this can be attributed

to the restrictions posed by Solidwork’s plugin API rather than the converter itself.

Figure 4.3: A subset of robot models already implemented for the AMBF simulator in Blender.
These robots include the da Vinci Surgical Robot with multiple parallel mechanisms.
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Even though the ADF has a front-end interface to allow for the easy creation

of simple robots and mechanisms, a graphical user interface is always helpful in

fine-tuning and creating complex robots and multi-bodies. Existing software that

can be leveraged for this purpose was sought out. A few specifications are outlined

for the selection of the corresponding software, which includes a “free to share”

license, bidirectional API to generate and load models, community support and

optionally Linux portability. Based on these specifications, Blender [98] is selected

as the graphical interface for creating ADF files (Figure 4.3). Notably, the overall

user interface of Blender might offer a relatively steeper learning curve to users

unfamiliar with animation software.

Figure 4.4: A few features of the Blender-to-AMBF add-on include copy pasting robot models,
scaling, altering the pose of any subset of robots/links, visually setting constraints and inertial
properties, creating collision meshes and generating/loading created ADF files.

While Blender enjoys huge community support for graphic designers and hence

offers extensive features for such, it has not primarily been used for modeling dex-

terous robots and bodies with a significant number of interconnected constraints.
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Blender includes basic support for Bullet Physics for defining constraints and rigid

bodies. This support has been leveraged to create a plugin for generating and loading

ADF files (Figure 4.4). To include bidirectional usage with Blender, a few simpli-

fications of the ADF are required which are addressed in the following subsections.

The source code for Blender-to-AMBF add-on is available at [105].

Loading ADFs

Child body’s nz and nx are the default constraint axis for rotational and translational

joints respectively in both Blender and Bullet Physics, while ADF and simulator do

not impose this limitation. To enable the same model to be circularly compatible

with Blender, the Blender-to-AMBF add-on provides the necessary functionality

to alter the multi-body description by adjusting for child body pivots and axis.

Adjusting a body axis and pivot is not trivial as all the successor bodies must be

accounted for. Since the design philosophy of AMBF separates constraints from

bodies, all the body data (meshes) are imported first followed by joints, which in

turn connect bodies and enforce world transforms. The pivot and axis correction

involves two algorithms which are necessary to make sure that the entire connected

structure is bidirectionally compatible:

Algorithm 4 Adjust and Store Child Offsets

1: if JointType := Rotational then
2: ~axj = ~nz

3: elseJointType := Translational
4: ~axj = ~nx

5: end if
6: Rcadj

j ← RotBetweenV ectors( ~axj, ~axc)

7: T cadj

j := [Rc
j,

~pvtc] ⊲ adj = Adjusted

8: ApplyMeshOffset(T cadj

j ) ⊲ c = Child, pvt = Pivot

9: Body OffsetMap [child]← T cadj

j
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(a) (b)

(c) (d)

Figure 4.5: In the sub-figures, the purple and turquoise bodies represent the parent and child
with the constraint axes marked with the black ring. In (b), the child body is rotated to form
a constraint by aligning ~axp and ~axc. (c) shows the adjustment required in Blender such that
the child body is rotated to adjust the constraint axis to default ~nz followed by (d) to align the
constraint axes with parent’s axis.

Figure 4.5 shows a parent (purple), and a child (turquoise) and the corresponding

joint axes marked with the black rings for a rotational joint. To create the constraint,

the child’s axis is aligned with the parent using Algorithm 2 as shown in Figure 4.5

(b). As illustrated in the Figure, the child’s constraint axis ( ~ny) is different from the

default axis for rotational constraint type ( ~nz). Algorithm 4 is performed iteratively

for each constraint before the final Algorithm 6 is performed. The goal here is to

offset the body meshes such that the child pivots can be ~0 and the child axis is set

to the default constraint axis. While performing these mesh offset operations, the

corresponding imparted offsets were kept track of so that they can be used later

in Algorithm 6. These offsets are stored in a map (f : body → T cadj

j ) where the

superscript T cadj

j reiterates that the offset is applied to all bodies when considered
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Figure 4.6: A visual representation of plane offset between the plane formed by shortest an-
gle rotation between parent’s and child’s constraint axes (purple disk) and the rotation plane of
correction axis (green disk).

as children, however, they are used in Algorithm 6 when treated as parents.

The nature of representing joint data using pivot/axis notation and the correc-

tion, thereby using Algorithm 4, can result in axis misalignment along the constraint

axis. This misalignment occurs when the rotation due to offset correction occurs

outside the plane of rotation between the parent’s and child’s body axes. The

misalignment is best explained by Figure 4.6. To account for the imparted axis

misalignment, Algorithm 5 is performed before Algorithm 6.

After adjusting for the child body offset and axis alignment, the final step is

loading all constraints from the AMBF, and consequently, assigning the correct

body poses, and eventually, parenting the bodies. This can be summed up with 5

transformations applied iteratively for each constraint to the respective bodies in

Algorithm 6.
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Algorithm 5 Axis Alignment

1: Rp
j = RotBetweenV ectors( ~axj, ~axp)

2: Rpadj

c = Rp
jR

jadj

c

3: Rp
c = RotBetweenV ectors( ~axc, ~axp)

4: Roff = (Rpadj

c )−1 ∗Rp
c

5: ~axoff , θoff = ToAxisAngle(Roff )
6: if θoff > ǫ then
7: Rao = FromAxisAngle( ~axc, θoff )

8: Body OffsetMap [child]← RaoT
cadj

j

9: else
10: Body OffsetMap [child]← I4×4

11: end if

Algorithm 6 Pose Data from ADF

1: if JointType := Rotational then
2: ~axj = ~nz

3: elseJointType := Translational
4: ~axj = ~nx

5: end if
6: Tw

p ← Parent Body’s Pose in World
7: Tbo ← Body OffsetMap [parent]
8: T p

j = [I3×3, ~pvtp]
9: Tjo = [Rjo, 0] ⊲ Rjo = FromAxisAngle( ~axj, θjo)

10: T j
c = [Rj

c, 0] ⊲ Rj
c = RotBetweenV ectors( ~axc, ~axj)

11: Tw
c = Tw

p Tbo T
p
j Tjo T

j
c
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Support for Detached Joints

As stated in the previous sections, an important goal of the ADF is to support closed-

loop mechanisms and parallel linkages for robots in an easy manner. While this is

conveniently achieved using the front-end syntax of ADF itself, necessary means to

achieve this have been provided using the graphical interface of Blender via Blender-

to-AMBF add-on. Blender does not support multiple parents for an object, which

is necessary for closed-loop mechanisms. To circumvent this, an empty frame is

used with a specific prefix in its name. This empty frame is then used to define a

constraint by defining a parent and child body. While parsing through the bodies

and constraints in the Blender scene to generate an ADF file, the assigned naming

prefix is leveraged to treat the empty frame as a place holder rather than an actual

empty body. This allows the robust creation of densely connected bodies without

having to manually touch up the ADF file.

4.4.3 Implementation of Multiple View-ports using Camera

Data

One of the design requirements of the AMBF framework and the AMBF simulator

is the ability to manipulate multi-manual tasks in the real-time dynamic simulation

with haptic feedback. The design goal enables multiple users alongside AI to share

a simulation via haptic/input devices. To this end, having multi-port frame buffers

can assist the users in performing tasks within their respective view-ports. Addi-

tionally, the users should potentially possess the camera control for their view-port

independent of the other users in the simulation. As a result, the prospective design

of the ADF includes support for achieving multiple view-ports and binding input

devices to each (described in Figure 4.1 for the camera tile). Figure 4.7 shows the
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Figure 4.7: A multi-port view of the underlying simulation using 3 frame-buffers which output to
separate windows and can be dragged around different monitors.

result of using multiple cameras and thereby achieving multiple views/windows of

the underlying simulation.

Figure 4.8: A simulation with several manipulators running in real-time. The labeled manip-
ulators (ECM and PSM) have two connected closed-loop mechanisms while the MTM has one
closed-loop mechanism.
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Figure 4.9: Each column shows the joint control of a different manipulator labeled underneath.
The last row shows the dynamic update frequency of physics simulation. The ECM’s and PSM’s
3rd graph depicts a translational joint while all the joints of the MTM are rotational.

4.5 Results and Discussion

The same PC setup from Section 3.9 was used for the results in this section. The

controller performance of multiple closed-loop robots is demonstrated in the simu-

lation environment using ROS communication as IPC. The robots shown in Figure

4.8 are commanded at 1 kHz. The joints are controlled in position control mode

and labeled in Figure 4.9. The inertial parameters of the PSM and MTM have been

computed by Yan et.al [42] and can be utilized in the ADF files. As shown in Figure

4.9, the joint response at 1 kHz of communication frequency remains stable and

robust.

The AMBF simulator was designed to reduce computational overheads and en-

able efficient loading and unloading of models. This also assists in the work-flow of
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Figure 4.10: The loading vs unloading times for simulators with increasing number of complex
robot models. The simulators are loaded using the bash terminal.

developing a multi-body representation using Blender-to-AMBF add-on and quickly

loading it in the AMBF Simulator. The loading times of multiple robots in parallel

with multiple closed-loop constraints are presented and compared with Gazebo and

RViz using similar models and identical system load. As evident from Figure 4.10,

not only does the AMBF simulator outperform Gazebo and RViz in terms of loading

speed and controller performance, it also outperforms in the cleanup speed.

Another demonstration of a complex robot (WPI’s Neuro Robot [106]) and its

controller performance is shown is Figure 4.11. The URDF description of the robot

was developed at [107] and is converted using the URDF-to-ADF converter. The

AMBF model is then loaded in Blender using the Blender-to-ADF add-on to create

parallel linkages and then adding visual details and colors to the robot. Using the

IPC controllers, various joints of the robot have been excited to follow a different

sinusoidal frequency.

Various results for speed of communication for distributed controllers as well as

the real-time performance of AMBF have been shown in this Chapter. However,

the advantage of AMBF over other community-based simulators goes beyond just

these performance metrics. AMBF can not only dynamically load robots and envi-

ronments using a distributed definition that spans multiple description files but also

cleanly remove segments of interconnected mechanisms in real-time. The incurred
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Figure 4.11: WPI’s Neuro Surgery Robot Model using the Blender-to-AMBF add-on. The robot
consists of a 6 bar linkage at the base and an inter-connected 8 bar linkage at the top. The robot
is controlled using ROS topics at 1 kHz communication frequency.

changes to the body lineage (Section 4.2) are reflected in real-time both internally,

as well as externally to the communication instances. An example of such dynamic

removal is shown in Figure 4.12 where an interconnected body is removed dynami-

cally from the running simulation. Such dynamic removal and addition are used in

surgical robots that require interchangeable tools during a single procedure.
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Figure 4.12: The dynamic selection and removal of links belonging to interconnected mechanism.

135



Chapter 5

Integration of Soft-Body

Simulations

The prior chapters covered the design of the Asynchronous Framework for the inclu-

sion of multiple IIDs, shared view-ports, a communication interface for both online

and offline training and finally the associated real-time simulator with a novel front

end specification format (ADF). This chapter focuses on the extension to both the

ADF format as well as the AMBF simulator for allowing the development of soft-

body simulations for training and control.

Section 5.3 introduces the challenges associated with the development of a general-

purpose soft-body simulator. These challenges do not include the underlying com-

plexity of solving the system of equations representing the soft-body, but the steps

for easily specifying a soft-body. These challenges are addressed using a variety of

tools and techniques which are presented in Section 5.5. The results and discus-

sions for the implementation of the soft-body support in the AMBF are presented

in Section 5.6 and 5.7.
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5.2 Introduction

The use of soft-body simulation has always been an area of interest for simulators

targeting surgical robotics. A large proportion of research in this area has focused

on solving the dynamics of tissue deformation, visual realism, and to some extent,

the real-time simulations for specific tissues. On the other hand, surprisingly little

work has been done, by the open-source community, towards the development of

a generic framework for integrating custom soft-body simulations with real-time

manipulation using input interfaces of research versions of surgical robots.

The design of ADF, among other things, allows the easy definition of robots and

mechanisms designed using parallel linkages, a trait commonly employed in surgical

robots, and even the specification of distributed controllers for each link and joint.

To develop the Asynchronous Framework beyond just a rigid-body heterogeneous

simulator, an extension to ADF that followed the original design principles covered

in Section 4.3 was required.

5.3 Problem Formulation

Some of the widely focused aspects of soft-body simulations are the physical dynam-

ics of deformation and visual realism. While these are certainly challenging aspects,
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additional challenges need to be addressed to provide a generic framework. These

challenges include:

1. Representation:

Representation refers to the description of the soft-body shape and dynamic

parameters such as softness, stiffness, bending, and weight distribution. In ad-

dition to the geometric shape, the required number of controllable parameters

for a simulated soft-body pose a challenge for description purposes. Simula-

tors such as Gazebo [32] and V-REP [70] utilize physics computation libraries

that support soft-body simulation, however, they do not support soft-body

representations or their visualizations.

2. Visualization:

Visualization is more challenging as compared to representation. Unlike rigid

bodies that do not require a constant update to the geometry of the mesh,

soft-bodies require computationally expensive updates to the mesh at each

simulation step before the shape can be pushed to rendering frame buffers.

Thus the algorithm for updating the visual representation of the soft-body

adds additional overhead to the simulation step. High-density meshes are

preferred for visual realism, however, they are problematic for real-time soft-

body simulations. For this reason, a pair of meshes can be specified: (1) a

high-quality mesh for visualization and (2) a lower resolution mesh to represent

the soft-body. The meshes can then be fused such that the lower resolution

mesh can be used to update the vertices of the high-quality mesh.

3. Interaction and Manipulation: Interactions and manipulation of the soft-

body are complex tasks that are usually specialized for specific soft-bodies.
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Realistic grasping is a challenging problem in rigid body dynamics and holds

even in soft-body dynamics.

4. Real-time dynamic update:

This challenge is similar to the one discussed for real-time dynamic update of

rigid-bodies (Section 3.4.1), however, it can easily be argued, that achieving a

real-time dynamic update for soft-body simulations is even more challenging

than rigid body simulations.

.

5.4 Related Work

Framework level implementation of a combined real-time interactive simulator that

includes both soft-body simulations and extensive rigid-body dynamics is rather

limited. One possible reason is that the design choices that are usually undertaken to

implement a robust rigid body framework, quite often, run contrary to the inclusion

of a soft-body simulation, representation and manipulation. Regardless, one can

look at other applications such as gaming for ascertaining the state of the art of

soft-body applications. Maciel et al. [108] used NVIDIA’s PhysX1 library to provide

bi-manual interactivity in simulated surgical operations with implicit integration-

based stepping (between 10 to 20 Hz). However, at that time, the PhysX source

code was not freely available and only recently has the source code been made public

(using the BSD license).

Danevičius et al. [109] worked on the gamification of a soft-body simulator that

was based on the mass-particles model. To achieve real-time stepping, the graphics

1https://developer.nvidia.com/physx-sdk
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and physics computations were offloaded to a cloud-based system. However, this

work was limited to simplistic soft objects and lacked extensive collision model-

ing. Tan et al. [110] worked on the simulation and control of muscle fibers using

Finite-Element (FEA) methods for locomotion. The control was achieved using ob-

jective functions that controlled the length and surface characteristics of the muscle

fibers. Mesit et. al [111], [112] modeled an interface for parametric soft-body simu-

lation that employed pressure based constraints. This work used implicit integration

(rather than explicit) to resolve the stiffness associated with the underlying system

of equations. Finally, Müller introduced the Position-Based Dynamics method [60]

[113] which extensively models complex soft-bodies and their interactions. As dis-

cussed in Section 2.5, this method is numerically less accurate as compared to other

methods.

While most of the prior art dealt with the two factors (simulated dynamics and

visual conformity) discussed in the introduction of this chapter, there is limited work

towards the integration of the aforementioned advancements into a generalizeable

framework for rapid development.

5.5 Methods

This ADF has been extended to incorporate an evolutionary interface for the specifi-

cation, simulation, and manipulation of soft-bodies with full backward compatibility.

The inclusion of the soft-body support to existing specification interfaces of ADF is

shown in Figure 5.1 and it can be seen that it uses the basic principles (Section 4.3)

used to describe rigid body dynamics.
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Figure 5.1: Anatomy of the ADF. The blue tile forms the header and consists of global parameters
and header lists which are highlighted with the purple dotted border. The red tile represents a
constraint, green represents rigid bodies and yellow represents soft-bodies. The tunable parameters
for soft-body dynamics can be set using the config parameter highlighted in red. The defined
parameters include kLST = Linear Stiffness Coefficient, kDP = Node Damping Coefficient, kPR

= Internal Pressure Coefficient.

5.5.1 Real-Time Simulation of Soft-Body Dynamics

Soft-bodies can be represented using a collection of nodes with inertial proper-

ties interconnected to their nearest neighbors. The interconnections between two

nodes can be generalized with a constraint formed by a three-dimensional spring

which models tension, torsion, and flexion. Additionally, each node is subject to

the laws of dynamics and can collide with other objects in the environment. The

combination of constraints due to motion, collision, and contact dynamics can be

modeled using different methods which can be categorized into direct force computa-
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tion, velocity-based methods (Sequential Impulse Constraints [114]), position-based

methods (PBD) [60], and indirect representation as Linear Complementary Prob-

lems (LCPs) [115]. These methods have been discussed along with their differences

in Chapter 2. The position of each node is updated at every step of the dynamics

simulation based on the symplectic Euler method (although the implicit method is

also used in some instances). Since the underlying problem of updating the position

of each node is implemented numerically, the time-step dt between each update is

an important factor in determining the accuracy of the solution. In real-time dy-

namic simulations where collision computation is a factor of the number of bodies

in contact, it is impractical to fix the time-step dt to a preset value.

Mixed soft-body and rigid-body simulations with real-time dynamic updates

pose challenges to implementation as stability and convergence is not guaranteed

with a compound limit on the length of the time-step along with the number of

sub-iterations. This problems is similar to the implicit variation of time step dt as

mentioned in Section 3.4.1. The equation is presented again below:

dt < δti ×N ; N ∈ Z+ & N ≤ Nmax (5.1)

A similar methodology is applied for soft-body simulations while altering Nmax

from 10 to a lower value depending upon the complexity of the soft-body simulation

at hand.

5.5.2 Representation of a Soft-Body

As discussed in Section 5.5.1, soft-bodies can be represented by inertial nodes that

are interconnected to nearest neighbor nodes. Meshes used in computer simulations

also employ a similar form of interconnection of vertices, although meshes usually
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define only the surface. However, meshes for soft-body representation (defined by

nodes) also comprise of an internal lattice forming the skeletal structure of the soft-

body. An example is shown in Figure 5.2 showing two similar bodies with equivalent

sub-divisions along the surface, however, one body (purple) has an internal skeletal

structure while the other (pink) does not.

(a) (b)

Figure 5.2: Two meshes with similar surface geometry but different internal structure defined
using the OBJ mesh format.

Rather than developing a new specification for representing meshes with sur-

face or internal 3D structure, existing standards were utilized. The following mesh

formats have been used to define soft-bodies and are discussed in terms of their

advantages and disadvantages for soft-body representation.

• The StereoLithography (STL) Mesh: STL is an older and widely used

format. It supports the definition of triangle faces by specifying three vertices

as floating-point numbers. A normal is specified for each triangle as well. Since

each triangle defines its vertices explicitly, the shared vertices are repeated for

each triangle.

• The Autodesk (3DS) Mesh: 3DS is a proprietary binary format that is

widely used. Similar to STL, 3DS defines the mesh geometry as triangles

containing a maximum of three vertices. 3DS can also define scene objects for

animation software.
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• The Wavefront (OBJ) Mesh: The OBJ format has more features compared

to STL and 3DS representations and is a non-proprietary format. The biggest

advantage for soft-body representation is that each face can comprise of more

than 3 vertices. Similarly, edges without faces can be defined as polylines. All

the vertices are specified as separate lists, and therefore, vertex repetition can

be avoided although is not mandated in the format. OBJ can additionally

store the normal and texture data per-vertex.

For representation, all three of these meshes have been supported. However, the

Wavefront’s OBJ is the preferred mesh format since one can utilize the polylines

feature to define non-faceted vertex interconnection. Additional mesh formats such

as the VTK format2 may be supported in the future. For visual realism, a pair

consisting of a visual (high-density) mesh and a low-resolution collision mesh is

used. The visual mesh can also store the texture information which is not used by

the collision mesh. Additional properties for soft-body dynamics are specified in the

same data-block as shown in Figure 5.1.

5.5.3 Visualization

As discussed in Section 5.5.2, a pair of visual and collision mesh is used to represent

the soft-body. The collision mesh can be defined by using any of the three supported

mesh formats. The array of vertices retrieved using these formats includes redundant

vertices which pose a problem for the creation of the underlying soft-body nodes.

This requires the elimination of the repeated vertices by unification. The brute force

approach to counting repeated vertices is computationally exponential, and thus, not

desirable. Instead, hashing techniques are used that turn the vertex unification into

an almost linear problem. These techniques are usually modifications of the “vertex

2https://www.paraview.org/Wiki/ParaView/Data_formats
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Algorithm 7 Vertex Triplet Generation

1: sblock = Param. Block Size
2: nblocks = nvtx/sblock ⊲ nvtx = No. of Vertices
3: res[x,y,z] = nvtx/bounds[x,y,z]
4: vtxChk[nvtx]← False ⊲ vtxChk = Mark Chkd Vtx
5: vtxTrp[nvtx][3]← −1 ⊲ vtxTrp = Vtx Triplet
6: CHK[sblock][sblock][sblock]← False
7: IDX[sblock][sblock][sblock]← −1
8: for xblock = 0 to nblocks do
9: for yblock = 0 to nblocks do

10: for zblock = 0 to nblocks do
11: [x, y, z]low = [x, y, z]block + sblock
12: [x, y, z]high = [x, y, z]low + sblock
13: CHK[sblock][sblock][sblock]← False
14: IDX[sblock][sblock][sblock]← −1
15: for i = 0 to nvtx do
16: if vtxChk[i] == False then
17: p← vtx.position
18: key[x,y,z] = res[x,y,z] ∗ (p−min[x,y,z])
19: if key[x,y,z] ∈ [[x, y, z]low, [x, y, z]high] then
20: key[x,y,z] = key[x,y,z] − bounds[x,y,z]
21: vtxChk[i] = True
22: vtxTrp[i][0] = i
23: if CHK[keyx][keyy][keyz] == False then
24: CHK[keyx][keyy][keyz] = True
25: IDX[keyx][keyy][keyz] = i
26: vtxTrp[i][1] = i
27: else
28: vtxTrp[i][1] = IDX[keyx][keyy][keyz]
29: end if
30: end if
31: end if
32: end for
33: end for
34: end for
35: end for
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Figure 5.3: Reference image for Algorithm 7. The soft-body fits in the boundary box that is
sub-divided into p, q and r blocks along x,y and z axes respectively. Each block in then parsed
individually by creating 5 sub-blocks which are a CHK, an IDX and 3 Vertex Triplet sub-blocks.

Figure 5.4: (a) The original vertex indices that do not account for repeated vertices. (b) The
reduced vertex list with the duplicate vertices unified together into a new list.

welding” [116] approach in which the vertices forming a mesh are discretized into

smaller bins (sub-blocks). The resulting welded mesh has a reduced vertex count. An

extra step is required to modify the triangle indices forming the faces of the mesh to

map (“rewire”) to the reduced set of vertices. This extra step is not directly related
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to the vertex welding algorithm.

Vertex welding essentially gets rid of the repeated vertices which is necessary for

a proper definition of an underlying soft-body but such a reduced mesh might not

be desirable for a generic rendering application (which uses the original mesh with

repeated vertices for visualization). Therefore, a different approach, which is in part

based on vertex welding, is proposed which unifies the repeated vertices and stores

them in a data structure. This algorithm also stores the relation between unified

vertices and their original non-unified copies. The resulting data-structure is then

used for rendering and solving the soft-body after each dynamic update-step.

The algorithm discussed above can be divided into two separate parts which

include (1) the Vertex Triplet Generation (Algorithm 7) and (2) Generating Unique

Triangle Indices (Algorithm 8). The first algorithm fills a data structure consisting

of three arrays (3-dimensional sub-blocks). This data structure is called the Vertex

Triplets and its three associated arrays are described as follows:

• Original Vertex Indices vtxTriplet[0] The first array contains the indices

to original vertices that form the mesh.

• Unified Vertex Indices vtxTriplet[1] The second array contains the vertex

indices referring to the first index at which the vertex occurred in the original

vertex list.

• New Vertex Indices vtxTriplet[2] Finally the third array contains indices

from a newly formed array containing only the distinct vertices.

To complement Algorithm 7, Figure 5.3 visually illustrates the associated data

structures mentioned in the algorithm. The Vertex Triplets for the mesh triangles

shown in Figure 5.4 are presented in Table. 5.1. Afterward, Algorithm 8 is used
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Table 5.1: Population of Vertex Triplets for the example in Figure 5.4

vtxTrp[0] 1 2 3 4 5 6 7 8 9 10 11 12
vtxTrp[1] 1 2 3 2 5 3 2 8 5 8 11 5
vtxTrp[2] 1 2 3 2 4 3 2 5 4 5 6 4

to compute rewired triangle indices corresponding to the newly sorted vertices and

edges.

Algorithm 8 Generating Unique Triangle Indices

1: vtxcount = 0
2: vtxtree = [nvtx][]
3: for i = 0 to nvtx do
4: if vtxTrp[i][1] == vtxTrp[i][0] & vtxTrp[i][2] == −1 then
5: vtxTrp[i][2] = vtxcount

6: vtxtree[i]← vtx
7: vtxcount ++
8: else if vtxTrp[i][1] < vtxTrp[i][0] then
9: bIdx = vtxTrp[i][1]

10: cIdx = vtxTrp[i][2]
11: vtxTrp[i][2] = cIdx
12: vtxtree[cIdx]← i
13: else if vtxTrp[i][1] > vtxTrp[i][0] then
14: bIdx = vtxTrp[i][1]
15: vtxTrp[i][2] = vtxTrp[i][2]
16: end if
17: end for

5.5.4 Manipulation of Soft-Body

Manipulation of soft-bodies involves several intermediate preemptive steps. To de-

velop a generic implementation to grasp any soft-body, sensors based on ray-tracing

elements which are placed on the simulated graspers to detect proximity to collision

objects were used. The ray-tracing algorithm is used in computer simulations to

trace out the path of light rays as they repeatedly collide with objects in simulation

and as a result, each ray computes the sensed points of contact with objects along its
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path. Therefore, ray-tracing can be used to detect the nearest points between two

surfaces as well. In a trivial ray-tracing implementation, the starting point of the

rays originates at the light source, which is usually fixed. However, for the nearest

point calculation in dynamic objects, the rays can be parented to a specific dynamic

body. Therefore each proximity sensor has the attributes shown in Figure 5.5.

Figure 5.5: Proximity sensors can be defined using the same method as bodies, joints, and scene
objects in Figure 5.1. The proximity sensor is parented to the desired body with the relative
location offset, direction, and range.

Once a proximity sensor triggers and the grasping closure angle is less than a

user-specifiable threshold (any angle of the grippers jaw), the contact face in the

ray’s path is found. Then, the nodes forming the face are anchored using Algorithm

9. An anchor is a simulated constraint that attaches the vertices forming the nearest

soft-body face to the parent body on which the sensor is mounted. To prevent jerk

on newly anchored vertices, whenever grasping occurs, the offset between the parent

body and the vertices is stored and then used as the desired offset while the anchor

remains intact. This anchor produces a weak force according to Algorithm 10 that

guides the connected vertices along the parent body.
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Algorithm 9 Anchor Vertices to Parent

1: G := Sensor’s Parent
2: Face ∈ Get Nearest Face to Contact Point
3: Vertices ∈ Face
4: TW

G ∈ G.Transform
5: for v ∈ Vertices do
6: PW

v ∈ v.Pos
7: PG

v = (TW
G )−1PW

v

8: a ← Anchor(v, PG
v )

9: G.Anchors.append(a)
10: end for

Algorithm 10 Update Anchored Vertices

1: for G ∈ Rigid Bodies do
2: TW

G ∈ G.Transform
3: Ha, Da := Parametric Anchor Hardness and Damping
4: for a ∈ G.Anchors do
5: PG′

v ∈ a.Offset
6: v ∈ a.Vertex
7: PW

v ∈ a.Offset
8: PG

v = (TW
G )−1PW

v

9: δPn = PG′

v − PG
v

10: Fa = HaδPn +Da
δPn−δPn−1

dt

11: a.ApplyForce(Fa)
12: end for
13: end for
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5.6 Results

As previously discussed in the introduction to this chapter, soft-body simulation

for training simulators aimed for surgical robotics is a multi-fold problem, four of

which have been identified in this chapter. The results of these four challenges are

discussed in the following section.

Freely available software can be used for creating representative meshes for soft-

bodies. In this chapter, Blender [98] was used simply due to the extensive prior use

with AMBF [117]. To create a soft-body representation, either a shape primitive

(as a mesh) or an externally supplied mesh can be used. These meshes can then be

sub-divided, morphed, and cut using the existing tools provided in Blender. Figure

5.6 (a) and (b) shows the operations of converting a primitive mesh into a compound

shape using simple Boolean operations. Similarly, Figure 5.7 shows the conversion

of a simple cylindrical shape into a body resembling a textured slice of meat.

It is challenging to impart volumetric constraints to soft-body meshes. For this

reason, many different approaches are used based on the context of simulation.

These approaches include either constraint on the volume of a convex mesh [118],

or a constraint of the form of a pressure [119]. Another popular approach is to

model a skeletal mesh that forms the structure of the original visual mesh. Tetgen

[120] is a useful library, which among other features, can be used to skeletalize a

visual mesh. However, for this discussion, the internal structure of the mesh is

explicitly computed by connecting the desired vertices using edges. It is important

to note that connecting vertices inside the surface only requires the creation of edges

and not faces. As discussed in Section 5.5.2, only the OBJ format can be used to

store non-faceted connections. Figure 5.2 shows the original visual mesh with an

interconnected lattice defined using generic tools in Blender.
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(a) (b)

(c)

Figure 5.6: Similar to convex hulls used for rigid-body dynamics, a complex soft-body shape can
be generated using a compound of simpler shapes. These simpler shapes can be used to perform
Boolean operations of mesh subtraction or addition as shown from (a) → (b). Finally, (c) shows
the simulation and interaction of this mesh in AMBF.

The specification of soft-bodies using the front-end format described in Sections

5.5.1,5.5.2 is parametric. Soft-body dynamic properties that define flexion, torsion,

elongation etc. can be set in the config field displayed in red in Figure 5.1. This is

the final step, after which these soft-bodies can be spawned alongside rigid-bodies

and robots and can be manipulated with multiple IIDs including dVRK MTMs.

Figure 5.8 demonstrates the interaction of soft-bodies with SDEs that are con-

trolled via dVRK MTMs. The methodology used for grasping is not modeled after

natural interaction as it does not account for friction, and therefore, it does not allow

controlled manipulation based on stick-slip friction around the grab points. How-

ever, grabbing soft-bodies using the methodology presented in Section 5.5.4 provides

a simplistic, yet useful, approach to interactive manipulation. It should be noted
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(a) (b)

(c)

Figure 5.7: Sequential process of converting a cylindrical primitive to a mesh with coarse surface,
creating edges inside for structural stability, and finally applying texture for visual realism.

that this methodology only works on faces of soft-bodies as covered in Algorithm 9.

The grab force can be varied by changing the value of Ha & Da in Algorithm 10.

Figure 5.9 illustrates the Real-Time Factor (RTF) during the example of soft-cloth

manipulation shown in Figure 5.8. The RTF is calculated by dividing the simulation

clock time by the real world clock time and a value of 1 indicates that the simulation

is real-time.

5.7 Discussion

While this extension to the Asynchronous Framework can potentially provide a

convenient research platform for the research community working towards surgical

robotics, several additional features need to be added. First, the soft-body im-

plementation is limited to homogeneous materials, while surgical tissues are both
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Figure 5.8: Examples of Soft-body manipulation using the dVRK MTMs

non-homogeneous and visco-elastic. This might be possible, in the future, with the

inclusion of additional data per vertex, in the mesh format. Secondly, the soft-bodies

are usually anchored to fixed points. This is currently implemented by using the

index of required nodes and setting their mass to be zero. In physics simulations,

the mass of 0 has a special meaning as it essentially treats the object as immoveable

(or having infinite mass). A better approach is to use either visual guides or rough

positional coordinates for setting the node masses to zero.

Other features that are necessary for a simulator targeting soft-body simulators

for surgical robotics is the support for cutting and stitching. In this regard, an ex-

tension of AMBF’s sensor interface is required. Similar to proximity sensors (Figure

5.5), cutting sensors can potentially be mounted to a rigid-body and can be used to

sub-divide and dissect the connecting links nearest to the contact point. Stitching is

a more challenging problem to address using generic methods and requires further

exploration.

Lastly, there is a need for developing soft-body environments that can replicate
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Figure 5.9: Real Time Factor for tasks shown in Figure 5.8 (a), (b).

actual surgical sub-tasks while using our proposed framework. Although this task

mostly entails the specialty required to design such environments rather than the

validity of the proposed framework, it is imperative in demonstrating the actual

use-case of the AMBF soft-body extension.
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Chapter 6

Grasping in Simulation

Having discussed the various aspects of the Asynchronous Framework, all the way

from soft-body simulations to the inclusion of IIDs for multi-user collaboration, this

chapter discusses a fundamental aspect of user interaction to manipulate objects in a

simulated environment. In most cases, interactive manipulation by a user-controlled

SDE is initiated via grasping, which is the focus of this chapter. The challenges

to grasping using only the friction modeled in physics simulations is presented in

Section 6.4. These challenges are overcome by the inclusion of penalty-based contact

penetration elements called Resistive sensors (Section 6.5.1). These sensors can be

contoured to the desired shape and parametrized using the ADF specification. This

is discussed in Section 6.5.4. Finally, the results and discussions are presented in

Section 6.6 and 6.7.
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6.2 Introduction

Interactive computer simulations play an important role in robotic teleoperation

by enabling human operators to practice and gain experience with a system before

operating the actual physical hardware. In the context of the Asynchronous Frame-

work, users can interact with the dynamic objects (such as simulated soft-tissues,

rigid-body puzzles, peg and hole tasks, etc.) using the SDEs controlled (teleoper-

ated) via the IIDs. These interactive simulators can enhance the skills of the user

for performing coordinated hand motions for complex tasks.

The ability to grasp and manipulate physical dynamic objects is fundamental to

such interaction which includes the dynamic deformation of skin tissue in the vicinity

of contact points as shown in Figure 6.1. To be perceived realistic, interactive

simulators need to compute the real-time physics of the interaction between the

robot and its environment. This encompasses, among other things, the interplay

between the forces created by the user through his/her actions, the forces created

by the objects present in the simulated environment, and the resulting changes in

the environment.

While most interactive simulators excel at rendering realistic physics, grasping is

implemented using simplified techniques that do not mimic natural contact dynamics

as shown in Figure 6.1. As an example, one widely used technique for simulated

grasping [24], [121] deactivates the dynamic properties of the grasped object and

treats it as a kinematic body affixed to the grasper. This approach has obvious

shortcomings as it does not scale well with multi-manual manipulation. Moreover,

an important aspect of natural grasping is the ability to allow controlled “slip and
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slide” of the grasped object as shown in Figure 6.2. This is useful in training

applications, modeled after realistic tasks, that require multi-handed interactions

but is challenging to implement.

Figure 6.1: Natural method of grasping for fully-static or quasi-static dynamics. The skin surface
in the vicinity of contact points deforms according to the underlying shape of object, thereby
providing better surface friction.

Based on the associated challenges to modeling contact dynamics, two differ-

ent classes of simulators are currently used in research. One class specializes in

high-speed rigid-body dynamics, employed mostly for training and entertainment

purposes while the other class of simulators use time-consuming Finite Element

(FEA) based methods for offline computation of surface deformation and contact

response, which is not suitable for real-time dynamics. Although this study does not

intend to replicate the techniques from the latter class of simulators into the former,

it is a step towards separating interaction/contact dynamics for grasping purposes in

the context of interactive simulators into a formalized problem. This study utilizes

a form of penalty based parametric sensors [122], [123] that can be mounted on any

grasper to emulate adequate friction for easy grasping. The proposed approach is

implemented on a variety of different simulated graspers and friction surfaces. These

graspers are used to perform complex tasks that involve manipulation of various dy-
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namic objects, physical interaction with surgical robots, and controlling deformable

bodies (modeled using finite primitives) using two hands. These approaches are

generic and can be modeled on any existing physics library.

In this chapter, the grasping approach is demonstrated on both rigid bodies and

deformable bodies. It is important to establish the difference between the use of

the term “deformable body” from the term “soft-body” within the context of this

chapter. Soft-bodies, as described in Chapter 5, are represented by a single mesh,

comprising of vertices connected to form faces. The vertices can interact with other

objects in the environment and result in the deformation of the corresponding faces.

Deformable bodies, on the other hand, are represented by a finite group of rigid-

body meshes (nodes), connected via constraints. Unlike soft-bodies, the deformable

bodies have no faces between the inter-connected nodes.

Figure 6.2: Natural Manipulation using either controlled slip, controlled slide or both. The
controlled slip and slide is usually assisted by either the weight of the grasped body, using a second
hand or leveraging the collision with other objects in the environment.

6.3 Related Work

A summary of notable work addressing the problem of grasping using contact dy-

namics in simulation is described in this section. GraspIt! [124] by Miller et al.
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was a prominent simulator that contained multiple robotic hands, contact body

dynamics, and a basic grasp planner, but lacked an API and a modular architec-

ture which limited its functionality. A proposed improvement by Léon et al., called

OpenGRASP [125] simulates contact sensors for grasping and attempts to create a

realistic simulation of grasping rigid objects using soft contacts.

Moisio et al. [126] used the OpenGRASP toolkit to improve an existing model of

simulated tactile sensors that used a soft contact approach without modeling stick-

slip. The improvements were made by using a parametric contact force model for

surface forces, holding torques and stick-slip as well as generating the sensors using a

geometry patch. The resulting simulated framework was compared with real-world

robot grasping. However, the authors stated that the computational efficiency of

the tactile sensor model can be improved by using a non-brute force collision detec-

tion solver. Ciocarlie et al. [127] worked on a general analytical method to model

fingertip gripping with friction by analyzing friction constraints on non-planar con-

tacts of elastic materials, formulating a linear complementary problem (LCP), and

removing any assumptions about the objects geometries. Goldfeder et al. [128]

implemented a grasp planner in GraspIt! that was generalizeable to various ob-

ject/hand geometries/kinematics by decomposing and representing an object as a

tree of super-quadratics, hence defining a smaller search space of potentially suc-

cessful grasps as those which have good grasps on sub-components of the object in

the decomposition tree.

Hawkes et al. [129] proposed an alternative to gripping an object purely using

the normal force. Their work used gecko-inspired controllable fibrillar adhesives

that utilize tangential shear forces mimicking the curvature of an object. Such a

gripper could grasp convex objects that are relatively large and featureless as well

as delicately grab objects without squeezing. Todorov et. al. model the contact
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dynamics for grasping as an implicit complimentary problem instead of a linear

complimentary problem [130]. The implicit complementarity formulation sets con-

tact impulses and contact velocities as functions that satisfy the complementarity

constraints automatically and optimizes for a set of unconstrained variables which

in turn reduces the number of unknowns by a factor of three. They also created a

simulation which incorporated multi-joint dynamics with grasping [131].

Malvezzi et al. [132] developed a lightweight Matlab toolbox called SynGrasp.

In addition to providing an easy way to load hand models, it allows grasping per-

formance analysis and grasps quality measures such as minimizing contact forces

for a given grasp based on a specified cost function. Finally, Spiers et al. [133]

worked on building a mechanical gripper equivalent of a biological finger by having

a low-friction surface for an object sliding as well as a high-friction surface for firm

gripping.

Existing applications for contact-based grasping are usually restricted to rigid

bodies that are simplified as collision primitives or convex hulls. Interactive train-

ing, on the other hand, may involve multiple non-convex and multi-jointed puzzles

in a real-time simulation that requires multi-manual and within-hand manipulation.

Moreover, existing applications model the graspers to have uniform surface friction

properties. As discussed in [133], however, mechanical equivalents of a biological

finger can have surface regions with different friction coefficients. Therefore a gen-

eralizable approach for interactive training is presented which uses penalty based

contact sensors that complement the underlying collision constraints provided by

the physics solver [34].
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6.4 Problem Formulation

The challenges associated with realistic grasping in simulation can be investigated in

conjunction with the limitations introduced by A) calculating the collision between

dynamic bodies, B) the geometrical representation of simulated rigid bodies and C)

the implementation of dynamics in physics libraries. These are discussed as follows:

6.4.1 Limitations Associated with Rigid-Body Collisions

Collision techniques for simulated bodies differ greatly from real-world collisions

which impacts the computational methodology of contact forces. The state-of-the-

art algorithms used for rigid-body collision can be classified into implicit and explicit

techniques [56]. Implicit collision techniques are employed for primitive shapes while

non-primitive shapes (convex and concave meshes consisting of faces and vertices)

are solved for using explicit collision techniques. Implicit techniques model the

collision shapes using analytical expressions that represent the shape of the under-

lying geometric primitives. As an example, consider a simulation involving spherical

bodies which are modeled using the corresponding analytical function, representing

the geometry. The collision computation only requires that the center Pw
Bi

of each

Body B maintain its radius rBi
from all the other bodies. This constraint can be ex-

pressed simply as ||Pw
B1
−Pw

B2
|| >= (rB1

+ rB2
). On the other hand, explicit collision

shapes require instantaneous (at each update step) calculation for all the colliding

faces to generate a resulting force acting on the body. The Gilbert-Johnson-Keerthi

(GJK) [134] algorithm is used quite often in modern physics and collision detection

libraries for computing collision between explicit (non-primitive) shapes. Due to the

nature of physics computation using numerical methods (implicit and explicit Euler

methods), the dynamic bodies are processed at discrete time-steps [n, n1, n2, ...nd].
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As a result, simulated rigid bodies (for instance ) might penetrate each other such

that the constraint ||Pw
B1
− Pw

B2
|| >= (rB1

+ rB2
) is violated. The resulting error

Dp = rB1
+ rB2

− ||Pw
B1
− Pw

B2
||, called the penetration depth, is used to calculate a

resulting correction force which serves to “repel” the penetrating bodies to re-satisfy

the constraint.

(m
m

)

Vertices  (~500) Vertices  (~7000)Primitive

Figure 6.3: The penetration depth Dp of three collision shapes (Spheres) with mass = 50 Kg,
radius 0.5 m, non static ground plane position at 0 m and drop height = 2 m. The penetration
depth was recorded as the difference between the maximum fall distance and the resting position
after stabilization.

6.4.2 Limitations Associated with Geometric Representa-

tion of Rigid Bodies

Another important difference between simulated and physical rigid bodies is that

simulated rigid bodies are simplified to have infinite surface stiffness. As a result,

the surface in the vicinity of a contact point for a simulated rigid-body does not

deform. Moreover, individual faces of shapes and meshes, representing simulated

bodies, are locally smooth whereas the contact surfaces of physical bodies are rough
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at a microscopic level as illustrated in Figure 6.1. This roughness plays a major role

in both the static and sliding friction response.

An interesting observation from the collision algorithms for rigid-body dynamics

is that they render an inherent softness in the form of the penetration depth Dp that

counteracts the infinite stiffness of rigid bodies. At a glance, this penetration depth

can be leveraged to mimic the softness inherent to real-world bodies. However, this

penetration depth varies for the simulated body based on a few factors, which include

1) the update rate of the physics simulation and 2) the complexity of the body’s

geometry. As demonstrated in Figure 6.3, an implicit and two explicit spherical

shapes (of a different number of mesh faces) of identical scale are dropped onto a

static plane at various physics update frequencies. The difference in geometry and

physics update frequency alters the penetration depth of each object. This varying

behavior of the resulting penetration depth Dp limits the use of implicit softness

rendered by collision algorithms for contact dynamics purposes.

6.4.3 Dynamics Calculation in Physics Libraries

The computation of the normal force ~FN is used for the derivation of both the static

and sliding friction. The analytical approach to modeling the static friction force,

depicted in Figure 6.4 is trivial for specifically optimized examples, modeled using

non-stiff differential equations. On the other hand, for general rigid body dynamics,

as in our case, iterative techniques are preferred where the collisions are modeled

as instantaneous inequality constraints. Examples of these methods include both

velocity (such as Sequential Impulse [135] [61]) and position based methods (PBD)

[60]). These methods counter the penetration by applying corrective impulses (pro-

portional to penetration) or position correction respectively. The application of cor-

rective impulse instead of direct position rectification makes velocity based methods
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more suitable for simulating friction. However, even for SI solvers, the dependence of

the normal force on the penetration depth makes the friction constraint non-linear

and not strictly convergent. Moreover, it is difficult to compute the correct con-

tact area for non-primitive shapes without some simplifications. Thus especially for

real-time simulations, where the accuracy of the solver has to be comprised to some

extent, the rigidity associated with collision shapes makes even an acceptable fric-

tion model using velocity based method insufficient for rendering adequate stick-slip

friction.

Figure 6.4: Visualization of the friction cone to model the natural friction response. The coefficient
~nW is the contact normal in the world, ~FR is the resultant force which is expressed as (~FR = µ∗ ~FN ),
~FIMP is the impending friction and φs is the static friction ratio.

Penalty based contact modeling approaches [122], which are forms of Force Based

methods, are usually avoided in popular physics solvers due to their instability.

These methods are also difficult for achieving impenetrability as a high enough

velocity of a colliding body may result in passing through, referred to as “tunneling”

[136]. However, in our case, it is their exact penetrability that is leveraged to simplify

grasping and emulate stick-slip friction as discussed in the next section.
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6.5 Methods

The following section provides details about the approach used to model sensor-

based friction for grasping and manipulation. The section uses several coefficients

which are listed in Table 6.1 for clarity.

Table 6.1: Symbols used in this Manuscript.

Symbol Description
~FS Static Friction Force
~FV Sliding Friction Force
~FN Normal Contact Force
~eT Tangential Contact Error
~eV Tangential Velocity Error
~eN Normalized Penetration Depth
µS Static Friction Coefficient
µV Sliding Friction Coefficient
KN Normal Contact Stiffness
KD Normal Contact Damping
V C
[A,B] General Notation to Express V C

A and V C
B ,

which can be read as VA and VB expressed in C
σa Contact Area for Static Friction specified as a radius

6.5.1 Resistive Sensors for Preemptive Contact Computa-

tion

Ray Shooting (Ray Tracing) [137], [138] is an approach that is widely used in com-

puter graphics for rendering realistic scenes resulting from tracing the path of light

rays that repeatedly collide with the objects in the scene. Since this technique

essentially computes the intersecting point of an object along the path, it can be

used for a variety of other applications (For example Section 5.5.4). For abstrac-

tion, an assembly of a limited horizon individual Ray and the associated parametric

data can be called a Resistive sensor. Figure 6.5 visually demonstrates the impor-
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tant parametric data associated with the Resistive sensor. Each Resistive sensor is

self-contained for computation purposes which allow for managing groups of sen-

sors in parallel. This is important as Ray-Tracing is a computationally demanding

algorithm especially for a large number of Rays.

6.5.2 Anatomy of a Resistive Sensor

A Resistive sensor is shown in Figure 6.5 which visually illustrates the coefficients

mentioned in Table 6.1. The sensor can be defined w.r.t. a start ~PrayStart and

an endpoint ~PrayEnd and is “triggered” when it intersects with another object. In

addition to the starting point, the sensor is parameterized by a range and an offset

(or a depth) from the surface of its parent body. To specify multiple sensors, a

separate triangular mesh can be used as discussed in Algorithm 12.

Due to the challenges associated with implementing the static friction cone,

as discussed in section 6.4, one alternative method is to use a fully deterministic

analytical approach. This approach is shown in Figure 6.6. A torque τ[GA,GB] is being

applied to both fingers by an external controller. To solve for the contact normal

force at points PAC and PBC , the knowledge of the torque τ[GA,GB] at JG, and the

lengths ~PGA and ~PGB is required. This example can easily be expanded to non-quasi-

static problems, where the gripper is accelerating while holding Body Z (Figure

6.6). In such cases, the Inertial and Coriolis components need to be considered

in addition to the contact dynamics and gravitational components. Furthermore,

additional bodies may interact with the gripper’s finger and as a result, increase the

complexity of contact force computation at PAC and PBC .

Secondly, the vector of Tangential force ~FT is required to compute the Resultant

force ~FR. This tangential force is balanced by the static friction force ~FS under

the following condition ~FT <= ~FS and until this condition holds, there is no dis-
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PrayStart
nW

PAC

PrayEnd

FN

σa

eT
eN

PBC

(a) (b)

Figure 6.5: (a) A visual representation of an individual Resistive Sensor during contact with an
external body B (the blue torus). The coefficients are defined in Table. 6.1. (b) Visualization of
Resistive sensors mounted on a body (blue cube) before and after penetration into another body
(green sphere).

placement along the tangential direction. However, due to the nature of physics

computation using explicit Euler methods, it is not trivial to compute the tangen-

tial force before a displacement has already taken place. Taking this limitation into

consideration, a different methodology is presented to compute the interaction dy-

namics which utilizes σa and KN . A displacement along the tangential direction

results in error ~eT = (TW
A

~QA
C − TW

B
~QB
C)projT , where projT is the projection of the

contact error in the tangential plane to the direction of the sensor and is then used

to compute ~FS as:

~FS = µS ∗ ~eT ∗ ‖~FN‖ (6.1)

Equation 6.1 does not rely on the limit ~FT <= ~FS but instead on the limiting

error ~eT . Once a Resistive sensor triggers as a result of contact with another body,

the sensed point PW
C is recorded. This sensed point is then used to calculate ~QA

C
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and ~QB
C as:

~Q
[A,B]
C =











(TW
[A,B])

−1 ~PW
C , if ‖~eT‖ <= σa,

Recompute, otherwise.

(6.2)

Where ~QA
C is the position of the sensed point ~PW

C in Body A and ~QB
C is the

sensed point’s position in Body B. If the limiting condition ‖~eT‖ <= σa is exceeded,

the new value of ~PW
C is used to compute ~QA

C and ~QB
C based on Algorithm. 11.

PGAPAC

PGB

Base JG

𝜏[GA,GB]
Grasped 
Body Z

Contact 
Normal 
Force

PBC

Figure 6.6: Grasping an object using a simple two finger gripper. The normal force at the contact
points is required to compute the normal force ~FN for static friction computation.

Algorithm 11 Store Contact Points in Body Frames

1: if Sensor Triggered == True then
2: ~PW

C = Get SensedPoint()

3: ~e = TW
A

~QA
C − TW

B
~QB
C

4: if ~eprojT > σa then

5: ~P
[A,B]
C = (TW

[A,B])
−1 ~PW

C

6: ~Q
[A,B]
C = ~P

[A,B]
C

7: end if
8: end if
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Next, the tangential error is calculated by:

~eT = (TW
A

~QA
C − TW

B
~QB
C)proj T (6.3)

Similarly, ~FN , which is the normal contact force is calculated as:

~FN = ~KN~eN + ~KDδ~eN/dt (6.4)

This force is based on the penetration depth of the sensed point w.r.t. the sensor

limits. This depth is normalized using Equation 6.5 and then projected along the

sensor’s direction in the World frame.

~eN =

( ~PW
C − TW

A
~PA
rayStart

TW
A (~PA

rayStart −
~PA
rayEnd)

)

proj ~NA

(6.5)

The terms ~PA
rayStart and

~PA
rayEnd are the start and endpoints of the Resistive sensor

in the Body A frame, and δ~eN/dt is to provide damping to the contact normal force.

Finally, the sliding friction force is computed from the differential velocities of

contact points of Body A and Body B.

~FV = µV ∗ ~eV (6.6)

In physics computation libraries, kinematics and dynamics are usually expressed

in the World frame, thus if the velocity of bodies A and B are (~V W
A , ~ωW

A ) and

(~V W
B , ~ωW

A ) in the world frame respectively, then:

(~vC[A,B]) = (RW
[A,B])

−1~V W
[A,B] + (RW

[A,B])
−1~ωW

[A,B] × T
[A,B]
W PW

C (6.7)

In Equation 6.7, the rotation (RW
[A,B])

−1 is not collected outside as the cross prod-

uct (RW
[A,B])

−1~ωW
[A,B] × T

[A,B]
W PW

C is not commutative. These velocities are converted
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back to the World frame using Equation 6.8. The ~vWC[A,B] notation emphasizes that

the velocity of sensed point (C) relative to Body A, and Body B, is expressed in

World frame:

~vWC[A,B] = RW
C[A,B]~vC[A,B] (6.8)

Which leads to the sliding error:

~eV = (~vWCA − ~vWCB)projT (6.9)

The three components of force are summed together according to Equation:

~Ftotal = ~FN + ~FV + ~FS (6.10)

This force can now be used to compute the resulting moment on Body A and

Body B by converting it back to Body Frames.

~ωW
[A,B] = RW

[A,B]((R
W
[A,B])

−1 ~Ftotal × (TW
[A,B])

−1 ~PW
C ) (6.11)

The final force and moment are then applied to both Body A and Body B as

action/reaction wrenches.

6.5.3 Visualization of Contact Forces

The static force computation described in Section 6.5.2 can be used model stick-slip

friction. Interestingly, the magnitude of this static friction force can be visualized

as an inverse cone shown in Figure 6.5 (a). This static friction force depends on the

penetration depth based on Equation 6.5. Figure 6.5 (b) shows the deformation of

the contact surface formed by Resistive sensors as it penetrates another body. The
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normal force introduces “softness” to contact dynamics and improves the friction

response, which can be leveraged to loosely mimic natural manipulation using soft

contacts without the explicit use of soft-body simulations. However, a normal force

might not be desirable in certain applications. Such cases can be implemented by

modification of Equation 6.1 as follows:

Figure 6.7: Static friction response of body-mounted with Resistive sensors (transparent blue
box) sliding along the plane underneath (shown with the wooden texture) subject to a constant
force applied along the direction of the ground plane. The response is calculated as the tangential
error (i.e. the difference between the commanded and current position of the blue box).

~FS = µS ∗ ~eT ∗ ‖~e
N‖ (6.12)

Where the depth is the normalized fraction of the sensor’s penetration depth.

The underlying equations used to represent the behavior of Resistive sensors are

based on the combination of both penalty based methods for contact computation

and the classical Coulomb friction model. However, these equations are slightly

different in their application. This difference results from the fact that instead of

two bodies colliding with each other, it is the Resistive sensors mounted on a Body

A which penetrate Body B. Thus, there is no common normal of collision at this
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instance, instead, it is the direction of the sensor that is used for the computation

of the normal force ~FN (Eq. 6.4) as well as the static and sliding friction force ~FS

(Eq. 6.1) and ~FV (Eq. 6.6). The damping KD assists in the stability of the normal

force by reducing “jitter” that is generally associated with penalty based methods.

6.5.4 Automating Sensor Placement

An obvious question arises about the placement of Resistive sensors along the body.

For very simple meshes, containing a few faces, it is possible to place the sensors

individually, however, it is impractical to place an array of Resistive sensors on

simulated dynamic bodies represented by complex meshes. After all, the density

and curvature of the Resistive surface play an important role in contact dynamics.

Two approaches are proposed for sensor placement which are, sensor placement (1)

based on the visual mesh of the object and (2) based on a separate parametric mesh

specified alongside the visual mesh. These meshes are called the “source meshes”

and are used according to Algorithm. 12. The resulting sensor placement is shown

in Figure 6.8. The primitive patches are wrapped around the visual mesh using

Algorithm. 13.

Based on the vertex and triangle data of the source mesh, the surface is covered

using the trivial Algorithm. 12. This algorithm can be expanded to cover edges

and vertices. Using a separate mesh to define the surface of placement has many

advantages over using the visual mesh of the object. For gripping tasks, the resistive

surface forming the grasp closure is of more interest. Thus a mesh covering only the

specific surfaces may be used. Furthermore, the parametric mesh can be defined to

smooth out sharp corners of the visual / collision mesh.

Real-world rigid bodies may contain surfaces that are represented by different

friction coefficients. This effect is hard to replicate by rigid-body dynamics as a
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(a) (b)

(c)

Figure 6.8: (a) Primitive Patches for Resistive Sensor Placement. (b) The primitive shapes can
also be ”skin-wrapped” to match the contours of the underlying complex shape. Figure (c) Sensor
placement on the simulated gripper with red spheres representing the PrayStart and the green
spheres representing PrayEnd.

friction coefficient is an attribute of the entire body. By placing Resistive sensors

with separately defined parametric meshes, the different surfaces of the body can

be “coated” with sensors with different coefficients of friction, surface stiffness and

even range of the Resistive sensors.
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Algorithm 12 Populate Sensors Along Body Surface

1: D := Param. Depth, R := Param. Range, M := Mesh
2: Triangles←M
3: for T ∈ Triangles do
4: ~vtx0, ~vtx1, ~vtx2 ∈ T
5: ~edge0 = ~vtx1 − ~vtx0, ~edge1 = ~vtx2 − ~vtx1

6: midpoint = ~vtx0 + ~vtx1 + ~vtx2

7: nf = ~edge0 × ~edge1/‖ ~edge0 × ~edge1‖

8: ~PrayStart = midpoint− ~nfD

9: ~PrayEnd = ~PrayStart + ~nfR
10: end for

Freely available software can be used to generate and modify meshes. Blender

was used in this case for creating skinned meshes. Afterward, their subdivisions

were created to generate Resistive surfaces.

Algorithm 13 Wrapping Primitive Around Visual Shape

1: S ← Visual Shape, M ← Primitive Mesh
2: poff := Param. Offset
3: for v ∈M.V ertices do
4: pv := v.position, nv := v.normal
5: pc := Contact Point on S of Ray along nv

6: if Contact Occurred then
7: fc := Nearest Face of S to pc
8: nc := fc.normal
9: if dot(nc, nv) < 0 and poff <= (pc − pv) then

10: lv = pc −
(pc−pv)

||(pc−pv)||
∗ poff

11: pv = lv
12: else
13: Discard v
14: end if
15: end if
16: end for
17: Recompute Normals for M
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Figure 6.9: A simple prismatic gripper with two links, mounted with an array of Resistive sensors
at ends facing each other. The bottom two figures show the grasping of a magenta cylindrical
object with an asymmetric posture and the grasping of a yellow object that is composed of multiple
collision meshes.

6.6 Results

The dynamic environments shown in this section have been designed specifically for

the demonstration of manipulation using the proposed approach. The SDEs have

been controlled using various IIDs including Geomagic Touch, Razer Hydras and

the dVRK MTMs. First, the stability of the Resistive sensors is demonstrated by

placing a sensorized box on an inclined plane and then recording its position over

time. The response is shown in Figure 6.10.

Natural manipulation involves grasping complex objects at asymmetric postures

which is demonstrated in Figure 6.9. Such interactions show potential scenarios

that are not only applicable to interactive simulators for surgical training but also
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Tilting Caused By 
Inclined Plane

Figure 6.10: Stability analysis on an inclined plane. m = 0.5Kg, Ks = 5000, σa = 0.001, Kn = 1,
KD = 50 and µv = 0.1.

Figure 6.11: Bi-manual manipulation of a screwdriver to rotate the cast assembly underneath

entertainment and gaming simulators. The procedure of contact dynamics using

Resistive sensors takes away the factor of varying geometrical shapes from grasp

mechanics.
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Table 6.2: Parametric Data for Specified Tasks

Task Obj. Mass (Kg) µs µv KN KD σa(m)

Obj. Grasp 0.4-0.8 1000 0.5 1.0 5 0.001
Screwdriver 0.6 5000 0.8 0.8 0.1 0.001
Thread 0.002/Prim. 1000 0.3 0.05 5 0.005

Figure 6.11 shows a more challenging scenario that mimics a two-handed screw-

driver operation. The screwdriver is first grasped and then inserted into the cast

(matching the tip shape of the screwdriver) via bi-manual manipulation (controlled

via haptic input interface device). After insertion into the cast, the minor hand

softens the grip, thereby reducing static friction according to Equation 6.1, and the

dominant hand rotates the tool to rotate the cast underneath. The tasks can be

carried out repeatedly by tightening the non-dominant hand and softening the domi-

nant hand and re-orienting to a comfortable pose for rotating the screwdriver. Using

constraint-based grasping, such a scenario would require pre-planning at the time of

picking such that the user holds the objects to accommodate switching between the

hands as the dominant hand would require the release of the grasped object by the

non-dominant hand for rotation. Lastly, using kinematic simplification for grasping

by making the tool static and affixed to one simulated end-effector would make the

initial positioning in the cast impossible.

Similarly, multiple connected objects can be grasped and manipulated. Figure

6.12 illustrates a task involving the manipulation of a deformable thread around

the puzzle. The parametric values used for these three examples are presented in

Table. 6.2. The response of the AMBF simulator during the two-handed screw-

driver operation is shown in Figure 6.13. As illustrated, the dynamic frequency of

the simulation varies throughout but the Real-Time Factor (RTF) stays constant.

The stiffness achieved through the inclusion of Equation 6.4 introduces a soft
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Figure 6.12: Manipulation of a deformable thread around the gripper jaws and around a puzzle.

feel to grasping. This is useful as it shows that objects do not have to be grasped

symmetrically and also extends the grasp to allow manipulation without the use of

soft-body dynamics. For visualization purposes, a rendered skinned mesh can be

used for the surface comprising the Resistive sensors. The vertices of this skinned

mesh can be anchored to the sensed point of each Resistive sensor.

6.7 Discussion

This chapter presented a parametric approach to tackle the problem of grasping

and manipulation in simulation using Resistive sensors. While the initial results

are promising, the proposed approach has a few limitations. One major limitation
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is the number of parameters required to define the friction response of individual

Resistive sensors. These parameters vary based on the scope of simulation and re-

quire tuning using a combination of empirical and analytical methods. The problem

is compounded by the unbounded nature of friction coefficients as high values can

render the grasp unstable and lower values result in insufficient grip forces.

Figure 6.13: The dynamic update frequency of real-time simulation for the two-handed screw
driver task and the real-time factor.

Each Resistive sensor requires the calculation of ray-tracing which is an expensive

operation. For a large array of Resistive sensors, the required computation time will

adversely affect the speed of the dynamics solver for real-time physics. The advent of

hardware specialized for Ray Tracing (https://developer.nvidia.com/rtx) can

potentially be leveraged to compute the response from Resistive sensors in parallel.

The encapsulation of relevant data for the Resistive sensors means that each sensor

can be computed independently at each time-step of the physics simulation. Rather

than relying on dedicated GPU hardware, the computation can also be performed
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in parallel by using multi-threading and batching a group of sensors together.
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Chapter 7

Applications and Use-Cases

The AMBF simulator has already been used by several researchers across North

America and Europe for various applications despite its nascent release. These

applications include cooperative learning and training for surgical task automation,

dynamic simulation of lower limb exoskeletons and impedance control of simulated

dVRK manipulators to name a few.

To demonstrate the utility of AMBF for actual user-studies, two applications are

presented in this chapter. These applications are 1) Supervised semi-autonomous

control with Bayesian optimization and 2) Analysis of collateral control on surgical

training tasks. It is important to point out that while these applications show the

feature set and ease of use of AMBF, both of the user-studies are valid candidates for

evaluation actual surgical training tasks. In that respect, while the first user study is

more or less possible with other community-based software, one would still need to

modify the core parts of these simulators to achieve hard real-time physics updates

and establish the command and communication pipeline that AMBF inherently

supports. More details are discussed in Section 7.1. The second user-study is an

application that relies on the XVII Frame representation, discussed in Section 3.5,

182



which allows four primary modes of collaborative control. The details of this study

are presented in Section 7.2.

7.1 Supervised Semi-Autonomous Control with

Bayesian Optimization

Junhong and Dan-Dan from Imperial College London were the first to employ the

AMBF simulator for a two part user-study. The work has been submitted for review

as:

Junhong C, Zhang D, Munawar A, Fischer G S, Yang G Z, “Supervised Semi-

Autonomous Control for Surgical Robot Based on Bayesian Optimization ”, In Re-

view for International Conference on Robotics and Automation (ICRA), 2020.

The results and figures used in this chapter have been taken from the submission

listed above. As part of the user-study, the test subjects were asked to perform the

peg transfer task with and without supervised assistance. Figure 7.1 illustrates the

overview of the task. The supervised semi-autonomous control setup can be summed

up using the flowchart in Figure 7.2. The task performance of the test subjects was

evaluated based on the following parameters:

1. The total path length traversed by the IIDs (P ).

2. The frequency of clutching (T ).

3. The task-completion time (C).

4. The average velocity of the SDEs (A).

Furthermore, the supervised assistance was calibrated with Bayesian optimiza-

tion. The qualitative analysis of the Bayesian optimization was performed by com-
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paring it with the supervised task performance without the optimization.

(a)

(b)

Figure 7.1: (a) The study setup involves the human-subjects looking at the screen where the
interactable simulation is being displayed. (b) The goal of the exercise is to pick the peg located
at A using the right SDE, handing it over to the left SDE and placing it at B. Then picking back
the peg at B and placing it at C using the left SDE. Finally, switching hands to use the right SDE
to pick and place the peg back at A. [3].
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Figure 7.2: The supervised semi-autonomous control scheme for assisting the human subjects in
surgical task performance [3].

7.1.1 Design of Training Puzzle

The puzzle pieces shown in Figure 7.1(a) are triangular in shape with holes (cavities)

inside. This helps in placing these pieces on cylindrical pegs. However, the presence

of this cavity renders the collision shape non-convex. As discussed in Chapter 3, a

collision mesh representing a non-convex shape can be unstable at lower frequencies

of the dynamic update loop. Since the underlying puzzle was meant for user train-

ing, it was desirable to have a consistent simulation without the collision objects

suddenly jumping and altering the study data. To cater to this scenario, the ADF

was extended to define a compound of primitive shapes to represent a single collision

shape. This feature was integrated at a framework level in the ADF without break-

ing backward compatibility. Using this feature, one can define arbitrarily complex

collision shapes, both convex and concave, using any number of simpler primitives.
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The entire simulated puzzle was designed using the ADF Blender Add-on [105].

The takeaway here is that this puzzle involves a large number of collision objects

and relative transforms that one has to deal with for accurate initial placement.

Using the provided ADF Blender Add-on, one can rapidly generate such complex

puzzles and tweak them with ease in a matter of seconds as compared to every other

solution that exists out there. Similarly, one can disable parts of the puzzle from

loading just as easily using the header list feature discussed in Section 4.3.1.

In terms of inputs to the simulation, the study investigators requested the use

of Geomagic Touch haptic devices as they offer a smaller form factor. Although

these devices are natively supported in the AMBF Simulator using the CHAI-3D

device driver interfaces, additional button events were required for switching differ-

ent modes of control during the study. Instead of temporarily tweaking the device

driver code for the specific applications, the highly customizable interface of AF Arm

Plugin was leveraged. For this purpose, a light-weight Python application [139] was

developed that expanded some of the capabilities of the AF Arm Plugin without

having to modify the plugin itself.

7.1.2 Study Results

12 human subjects participated in the study which was conducted by Junhong Cheng

and Dan-Dan Zhang at the Hamlyn Center in London. The user-studies were divided

into two parts. The first study was a comparison between the performance of a

task performed manually versus being performed with semi-autonomous supervision.

The second study was a comparison between the performance of the supervised semi-

autonomous control task with and without Bayesian optimization.

The result of the first part of the user-study is demonstrated in Table 7.1. Su-

pervised semi-autonomous control resulted in reduced clutching frequency (C) and
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Table 7.1: Comparison between the task performance of manual and semi-autonomous supervisory
control

Params Manual Semi-Autonomous Significance (p-value)

M(m) 4.70 ± 1.43 2.37 ± 1.50 0.0000
T (sec) 100.35 ± 48.48 111.30 ± 45.0 0.0037

A(mm/s) 10.826 ± 10.11 10.03 ± 2.94 0.9337
C 15.8 ± 6.2 8.0 ± 6.40 0.0012

shorted path traversal (P ) compared to fully manual control whereas the comple-

tion time (T ) and average SDE velocity (A) did not change significantly. Figure

7.3 presents the results of the application of Bayesian optimization to supervisory

control. Table 7.2 shows the numerical values of the study parameters with the

corresponding statistical significance. As observed, the application of Bayesian op-

timization resulted in lower values of task completion time (T ) and the average path

traversed by IIDs (P ).

Figure 7.3: The box plots show the results of semi-autonomous control assistance with and
without optimization through Bayesian learning. [3].
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Table 7.2: Comparison between the task performance of supervised semi-autonomous control with
and without Bayesian optimization.

Params With Optimization Without Optimization Significance (p)

M(m) 1.48 ± 0.51 1.44 ± 0.66 0.2145
T (sec) 55.47 ± 20.64 43.34 ± 15.03 0.0038

A(mm/s) 11.01 ± 2.12 12.77 ± 2.48 0.0280
C 3.3 ± 2.5 2.4 ± 1.4 0.0018

This user-study showed the potential of the AMBF simulator for surgical training

(and general-purpose training) tasks. The inclusion of various control modes and

the use of the AF Arm plugin interface for replacing Geomagic Touch drivers were

possible due to the distributed nature of AMBF. Finally, the data collection was done

using the easy to use interfaces exposed by the AMBFs communication pipeline.

Figure 7.4: The training environment for getting the study subjects on a similar footing for the
user-study. The goal of the environment is to pick and place the puzzle pieces (red, green, blue
and yellow bodies) in the purple cast with matching intrusions. The subjects learned the use of
clutching control and grasping to perform the task.
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7.2 Analysis of Collaborative Control for Surgical

Training Tasks

Different from the previous application, where the study showed the potential of the

AMBF for learning applied to semi-autonomous task performance, this user-study

did not involve any form of learning or AI. Instead, the purpose of this study was

to analyze the performance of multi-manual tasks with and without collaborative

assistance and to identify if assistive collaboration could improve the task perfor-

mance, and to what extent. Haptic IIDs were used for this user-study. Prior to the

recorded study, the test subjects were trained to get accustomed to the interface of

IIDs and the general manipulation in the simulation using a test environment. This

environment is shown in Figure 7.4. Even after the successful placement of the pieces

in the cast, each subject was allowed as many trials and time as they requested to

get accustomed to the control interface and the simulated environment.

After the training, the subjects were asked to perform 2 tasks of varying difficulty,

3 times each. Each task repetition can be summed up as:

1. Individual Task with Manual Control Mode: The first time, the task was

performed individually by the test subjects with haptic feedback enabled. This

can be called as the single or manual control mode.

2. Collaborative Task with SISO Control Mode: The second time, the same task

was accomplished with assistance from another user (the study investigator).

The second user can be referred to as the collaborator. Both the study subject

and the collaborator could feel the corresponding forces (not moments) from

each other as well as from the collision with the environment. The collaborator

used Novint Falcons as IIDs which do not have orientation control, thus the
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Switch 
SDEs

(a)

Left SDE
Right SDE

(b)

Figure 7.5: (a) Similar to the first user-study, the test subject is required to pick the pegs labeled
1 and 6 using the right SDE, then switching mid-air to the left SDE and placing the blocks in the
opposite corners. The pegs can be transferred in any order. (b) This was a more involved task
requiring simultaneous control input from both SDEs. The goal was to pick the yellow puzzle from
the two handles (dark gray in color) and place it on the base with matching extrusions.

study subject was only assisted in position control.

3. Collaborative Task with SINO Control Mode: The third time, the same task

was performed in collaboration but without any force feedback.
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The two tasks can be seen in Figure 7.5. To make the study fair, the subjects

were allowed to perform each of these two tasks as many times as they requested

before the study.

7.2.1 Setting up the Study

Conducting this study using any other open-source simulator would not have been

an easy task as apart from challenges to simulation, one would have to write specific

controllers for collaborative control that deal with the associated transformations

in addition to performing real-time haptic updates. AMBF, on the other hand, has

been designed and developed since its inception to allow performing such types of

user studies without having to write a single line of code in the core framework. The

design and integration of the XVII frame representation, although complex at the

onset, allows AMBF to be used as a truly heterogeneous simulator. To make two

IIDs pair to a single SDE, the following fields are used which are specified in the

“Input Device Specification” configuration file. These fields have been discussed in

Section 3.5 but are presented here again.

• Simulated MultiBody: This is an optional field and defines the name of

a multi-body in the AMBF representation format. Any body/robot/gripper

can be defined using this field and loaded as a proxy for the IID.

• Root Link: This is an optional field as well and specifies the base link that is

to be paired with the IID. For instance, a usual gripper, consisting of a palm

and left and right fingers can be specified as the “simulated multibody” in the

field above, and the root link can be specified as the name of the palm link.

Afterward, the IID would be able to control all the lower joints from the palm

link by normalizing all the joint limits.
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Specifying the fields of “Simulated MultiBody” and “Root Link” can result in

multiple different configurations that are elaborated in the flowchart shown in Figure

3.8. For the specific user-study, in the “Input Device Specification” configuration file,

the dVRK MTM’s data blocks specify the “Simulated MultiBody” and the “Root

Link”. The Novint Falcons do not specify the “Simulated MultiBody” but only the

“Root Link” which is a link belonging to the SDEs that are loaded with the MTMs.

This allows both the MTMs and Novint Falcons to bind to the corresponding SDEs.

Having achieved the pairing between the IIDs and SDEs, the control modes such

as SISO and SINO can be achieved by tweaking the gains in the corresponding

datablocks in the “Input Device Specification” configuration file. These fields are

the linear and angular Cartesian and haptic controller gains. Both these gains are

unique between as IID and an SDE. The haptic controller gains scale the error

between the SDE and the IID that serves as the control input for the IID. Similarly,

the Cartesian controller gains scale the error between the SDE and the IID to be

fed as the control input for the SDE. That being said, since multiple IIDs can

share a single SDE, there would be that many instances of Cartesian controllers

associated with that SDE. Moreover, there is always going to be an additional

Cartesian controller that listens to the afObjectComm instance of the SDE. There

indigenous and parallel controllers make full use of the XVII Frame representation

and the distributed nature of AMBF to allow asynchronous control.

The test subjects were required to use the dVRK MTMs as IIDs. In the actual

da Vinci MTMs, the Gimbals have redundancy that allows low effort and seamless

orientation control. The dVRK systems do not have this implemented yet. Thus to

achieve a similar setup, a simple null-space controller was devised. This controller

relies on the kinematic constraint illustrated in Figure 7.6.

The angle produced by the constraint is retrieved using the following set of
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(a) (b)

(c) (d)

Wrist Platform 
Link

Wrist Platform 
Affixed Plane

Wrist Roll 
Link

Wrist Roll 
Affixed Vector

Angle Between 
Vector and Plane

Angle Between 
Vector and Plane

Figure 7.6: The MTM’s wrist platform link is actuated to provide null space control by affixing
a virtual plane (translucent green plane) to the platform link. Secondly, a virtual unit vector (red
arrow) is affixed to the tip roll link. The angle between the red arrow and the green plane is used
in a PD control law to rotate the wrist platform link.

equations.

Rw
l4 = I3×3; Rl4

l5 = Ry(−π/2); Rl5
l6 = Ry(π/2); Rl6

l7 = Rx(π/2) (7.1a)
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Figure 7.7: The GUI for recording the user-study data.

R4 = Rz(θj4); R5 = Rz(θj5); R6 = Rz(θj6); R7 = Rz(θj7) (7.1b)

R4
7 = Rw

l4Rj4R
l4
l5Rj5R

l5
l6Rj6R

l6
l7Rj7 (7.1c)

~v47 = R4
7~nz; ~vw4x = Rw

4 ~nx (7.1d)
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e47 = (π/2)− cos−1(~v47.~v
w
4x) (7.1e)

τj4 = Kpe
4
7 −Kd

˙θj4 (7.1f)

Where the terms Kp and Kd are linear and damping gains. The terms Ry
lx are

the fixed offset rotation matrices between link x and link y. Finally, the terms Rx

are the variable rotation matrices that are parametrized by the corresponding angle

of joint x. This basic implementation was appended to the output of the Cartesian

space controller.

The data exposed by AMBFs communication pipeline contains ample informa-

tion for classifying the performance of user-studies. However, to capture this data

conveniently for multiple sub-studies and users, a lightweight Python application

[140] was developed. A complementary GUI that is shown in Figure 7.7 helped in

data collection using a minimal interface. The user name is specified at the top field

and the corresponding study type is selected by the radio buttons. Afterward, press-

ing the “Start Record” button prepends the subjects’ ID and study type with the

date and starts recording the data as ROS Bags [141]. The topics to be recorded are

provided as a Python list rather than a single string which allows code reusability

for other user studies. To sync the data, the Python code has a recordable built-

in timer that initiates when the record button is pressed and terminates when the

“Stop Record” button is pressed. This helps in classifying the length of the study

in case the message clocks do not sync up.
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Figure 7.8: Task completion time between the two studies A and B and three control modes each.

7.2.2 Study Protocol

The subjects were seated in front of the dVRK console shown in Figure 7.9. The

foot-pedal tray had the two control pedals. One foot-pedal allowed the re-positioning

of the simulated camera (Camera Clutch) while the other pedal (Control Clutch)

to engage/disengage the control of simulated graspers for re-positioning the MTMs.

The subjects were trained to get used to the interface of the SDEs by performing

the example task shown in Figure 7.4.

Screen with 
Simulation

Human 
Subject

dVRK MTM

Figure 7.9: A example of a human subject performing the collaborative user-study.
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The task performance of each task was measured by the following metrics:

• Time required for task completion.

• The average path traversed by the IIDs.

• The position clutching frequency.

• Subject’s over-all comfort, measured using the Reduced NASA TLX protocol

[142].

Figure 7.10: Length of the path traversed by IIDs between the two studies A and B and three
control modes each.

7.2.3 Study Results

A total of 5 human subjects participated in the user-study. All of the study partic-

ipants were right-handed. Two of the study participants had prior experience with

teleoperating the da Vinci but this experience was limited to less than a couple of
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hours of operation. The remaining three participants had never teleoperated the

dVRK or the da Vinci before.

The completion times of the user-study are shown in Figure 7.8. Quite evidently,

the SINO collaborative control modes have the least times for performing the tasks

followed by the SISO collaborative control mode. Based on this result alone, there

is evidence that collaborative control helped to speed up the required tasks. Figure

7.10 shows the average path traversal of MTMR and MTML for all the three control

modes of each study task. Since the average path traversal fluctuated between

different arms, the results lack any statistical significance and hence no conclusion

can be drawn.

Figure 7.11: Clutching frequency between the two studies A and B and three control modes each.

Figure 7.11 shows the clutching frequency between the user studies. Interestingly,

the average frequency drops between the three control modes for each study. This

points to the subjects feeling more comfortable with the addition of collaborative

control.

While the above three results are quantitative, the results demonstrated in Figure

7.12 show the real value of collaborative control from the perspective of the user

comfort. It can be seen that the subjects felt more confident about the task with

the addition of collaborative input. Surprisingly or unsurprisingly, the subjects felt

more comfortable with the collaboration involving force feedback yet most confident
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without force feedback.

Figure 7.12: Average of Reduced NASA TLX questionnaire between the two studies A and B
and three control modes each

7.3 Conclusion

Setting up user-studies for surgical training and evaluation is a time-consuming

task. A significant amount of the time is spent in the placement and calibration of

recording instruments as well as the actual training tasks. In many instances, the

effort required does not reflect in either the results or the efficacy of the user study.

Moreover, the nature of these studies makes it difficult to replicate across different

research institutions. Two such user-studies were presented in the chapter. Both

these user-studies can be carried out without the inclusion of AMBF, however, the

specific applications demonstrate the ease of setting up AMBF for differents kinds

of user-studies. AMBF is a step in the direction of simplifying the process of setting

up repeatable user-studies across research institutions.
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Chapter 8

Conclusion and Future Work

This chapter reviews the contributions of this dissertation, discusses the lessons

learned and then presents the future work related to the development of the Asyn-

chronous Framework.

8.1 Review of Contributions

The following conceptual contributions have been presented in this dissertation.

1. A framework for simulating a real-time dynamic simulation alongside high-

speed input interface devices.

2. An extensive frame representation for multi-user, multi-camera and collabo-

rative input mapping.

3. A distributed communication pipeline for speed varying communication from

the Asynchronous Framework.

4. Inclusion of action based sensors for simplifying common manipulation tasks.

5. A novel specification format for specifying complex robots and environments.
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These conceptual contributions have been converted into implementations for the

Asynchronous Framework and presented as different chapters in this dissertation.

8.2 Lessons Learned

The motivation that led to the design and development of the Asynchronous Frame-

work was drawn from years of experience with other community-based software and

simulators. The ever-changing API of these software, which might not have af-

fected their core user-base, diminished the already scant support for complex sur-

gical robots and heterogeneous input interfaces. It was not until 2016 when the

first implementations which eventually led to the development of the Asynchronous

Framework took place. As the adage goes:

“The journey of a thousand miles begins with one step [Laozi a.k.a. Lao Tzu]”

While this may seem cliched in general, and rightly so, and out of context for

software development which usually starts from a broader set of specifications to-

wards a narrower implementation, almost the opposite is true for the Asynchronous

Framework. Initially, the implementations were carried out using the CHAI-3D

[143] examples for static kinematic objects. Soon, these examples were expanded

to include a pair of dynamic bodies (a donut and a peg) which were solved using

Bullet Physics [34]. These simulated bodies were hardcoded into the software and

were interacted via rudimentary dual-link, single joint and hard-coded SDEs. At

that point, these implementations were simply called Extended CHAI-3D. The ex-

pansion beyond Extended CHAI-3D and towards Asynchronous Framework started

in mid-2017 with the inclusion of multiple IIDs simultaneously that could achieve a

real-time dynamic simulation. Fast forward to today, the Asynchronous Framework

along with its simulation component, the AMBF, allows the flexible specification
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and simulation of complex robots, environments and soft-bodies, all interactable

with real-time IIDs with haptic feedback.

Although the simulation component of the Asynchronous Framework, competes

with existing open-source simulators, it inherits the best design practices employed

by many of the same software. For example, ADF is a result of not only the lim-

itations of URDF and SDF, but also the good design practices employed by both.

Similarly, several sub-components of the AF draw inspiration from the dVRK soft-

ware [20].

The early development of a framework that was also being used in parallel by

other researchers presented an interesting scenario. Many use-cases originated which

had to be incorporated in the design. The complexity of the core framework required

more work for the inclusion of these features as compared to other sequential simu-

lators. However, it was the continuous evolution of the AF based on user feedback

which made many unique features of AMBF possible. The Python client is a great

example of this.

The more experienced the users of a new framework are, the more useful their

feedback and feature-requests are. However, there is also a possibility of “experience

bias” which goes against some of the core design philosophies. For example, since

many of the AMBF users also use ROS, RViz and Gazebo, a request is often made

to model ADF along some of the URDF’s and SDF’s frame specifications. While it

is possible to do so, it goes against the future vision of AMBF. However, how can

software have a future if it does not have sufficient user-base in the first place? This

is a question that arises often concerning AMBF.

There has not been an easy answer yet to this question. However, diverse upfront

examples that showcase advanced features of the software without having to delve

into the design is a good attractor. Then, the users feel more comfortable to take
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the time in learning the implementation details if they want more from the software.

A prime example of this is CHAI-3D [143] which has ample examples for nascent

users. Bullet physics [144] is another example. However, there is a key difference

between the examples shipped with CHAI-3D as compared to Bullet. CHAI-3D’s

examples are meticulously designed with a lot of code repetition. While this might

not seem like a good software engineering practice, it makes it much easier to learn

CHAI-3D as compared to Bullet Physics. AMBF has only a few examples but these

examples cover many advanced features.

8.3 Future Work

The Asynchronous Framework has achieved several milestones set during its initial

development, however, more work needs to be done in many different areas. The

sections below briefly discuss the types of future work that needs to be incorporated

into AF and AMBF.

8.3.1 Object Specific Communication Payloads

At the moment, all the simulation components in AMBF use a single pair of com-

munication payloads called afObjectCmd and afObjectState. While these payloads

are generic can cover some kinematic aspects of all the simulation components, they

are not ideal for scene objects. For example, visual entities such as lights and cam-

eras do not use most of the fields of afObject message payloads. The appropriate

fields for controlling cameras and lights are much different from controlling a rigid

body. A camera is usually controlled by setting the view direction, the target view

(position where to look at) and field of view, etc. Likewise, light objects are better

controlled by specifying parameters such as shine direction and spot exponents.
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Where these communication instances fall short are for newer entities that have

been added to AMBF. These include various types of sensors and soft-bodies. Sen-

sors need a newer design of communication payloads that follow the same underlying

design principles as the original afObject payloads did.

8.3.2 Extension of the Python Client

One of the most attractive features of AMBF is the complementary Python client

which makes the process of controlling simulated bodies much easier as compared to

any other simulator. This is primarily due to the design of communication payloads.

As discussed in the previous point, a newer communication payload design would

require a revamp of the Python client itself. The proposed idea is that the client

will itself disseminate objects into corresponding class instances based on the data

types so the end-user gets the exact seamless experience as they get from the current

Python client.

8.3.3 Inclusion of More Sensors

The most important feature of any simulator is the ability to emulate environmental

data using simulated sensors. AMBF inherently relays kinematic and dynamic data

of robots, joints and free bodies using extensive communication payloads and thus

does not require simulated sensors for these specific purposes. However, with the

evolution of AMBF, various kinds of sensors have been added and there is room for

much more. Sensors for depth mapping, range finding and inertial updates, although

applied in one form or another in AMBF, are not yet available for general purpose

use.
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8.3.4 Support for Application Program Interface

There is a need to develop a plugin-based API where users can expand AMBF’s

capabilities without modifying the core framework. A primary candidate that can

leverage an extensible API is the inclusion of various kinds of sensors.

8.3.5 Improved Softbody Simulation Framework

The inclusion of easy to use soft-body simulation is a distinguishing feature of

AMBF. However, there is tremendous room for improvement in the specification,

simulation and interaction of soft-bodies. At the moment, the elastic parameters are

set as a whole for a single soft-body. Realistic soft-bodies and tissues are rarely ho-

mogenous. Furthermore, soft-body simulations are not as valuable if the underlying

soft-bodies cannot be altered via manipulation. These alterations include cutting,

stitching, sewing, etc. All these can still be achieved programmatically as applica-

tions in AMBF, but the point here is that some of these tasks can be simplified and

specified as action-based sensors. The example of Grasping using Resistive sensors

in an example of such task simplification.

8.3.6 Swappable Middleware

At the moment, ROS is used as the sole middleware for AMBF. This has several

advantages, however, this is certainly not ideal. The future work for AMBF includes

the abstraction of the middleware as well as the mode of communication to allow

faster update speeds depending upon one’s needs.
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8.3.7 Incorporating CRTK Specification

The Collaborative Robotics Toolkit (CRTK) is a tremendous specification for inter-

facing with robots at various levels of control. This design of this toolkit happened

at the same time as the development of AMBF. Thus, some of the earlier specifica-

tions were incorporated in various components of the AMBF, however, the inclusion

of all the CRTK standards is left for the future.

8.4 Conclusion

The future of robot-assisted surgery may involve multiple surgeons coordinating to

perform a single procedure and using collaborative control to train lesser experienced

surgeons. The Asynchronous Framework is a small step in this direction as it lets

users get trained via more experienced operators with haptic feedback in a shared

environment with multiple contextual viewports. Other than its application for

surgical robotics, the AMBF is a versatile simulator for general-purpose robots and

rich environments. Several examples of its usage by the community have been

presented in this manuscript. It is hoped that the development of AMBF will

continue for many years to come both by the author and the community in general.

AMBF is available publically at https://github.com/WPI-AIM/ambf. The readers

of this manuscript are encouraged to try it out.
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