
Modelling and Control of a Haptic 

Interface : A Mechatronics Approach 

Daniel R. Madill 

A t hesis 

presented to the University of Waterloo 

in fidiilment of the 

thesis requirement for the degree of 

Doct or of P hilosophy 

in 

Electrical Engineering 

Waterloo, Ontario, Canada, 1998 

@Daniel R. Madill 1998 



National Library I*l of Canada 
Biblioth&que nationale 
du Canada 

Acquisitions and Acquisitions et 
Bibliogaphic Services services bibliographiques 
395 Wetligton Street 395. rue Wellmgîon 
OüawaON K 1 A W  OttawaON K l A W  
Canada Canada 

The author has granted a non- 
exclusive licence allowing the 
National Liôrary of Canada to 
reproduce, loan, distn'bute or sell 
copies of this thesis in microform, 
paper or electronic formats. 

The author retains o m e d q  of the 
copyright Hi this thesis. Neither the 

L'auteur a accordé une licence non 
exclusive permettant à la 
Bibliothèque nationale du Canada de 
reproduire, prêter' distriIt,uer ou 
vendre des copies de cette thése sous 
la forme de microfiche/nIm, de 
reproduction sur papier ou sur format 
électronique. 

L'auteur conserve la propriété du 
droit d'autein qui protège cette thèse. 

thesis nor substantial extracts fiom it Ni la thèse ni des extraits substantiek 
may be printed or otherwise de celle-ci ne doivent être imprimés 
reproduced without the author's ou autrement reproduits sans son 
permission. autorisation, 



The University of Waterloo requires the signatures of a l l  persons using or ph* 

tocopying this thesis. Please sign below, and give address and date. 



Abstract 

With the advent of virtual reality and the inaeasing power of modern comput- 

ers, there is renewed interest in new modalities for the human-machine interface. 

Force feedback is gaining momentum as new applications of teleoperation and h a p  

tic devices are discovered. This work applies the principles of mechatronics to the 

design and control of a novel five-bar robot for use as a haptic interface. Since 

the robot indudes flexibility, a general model for a two degree-of-freedom f l d e  

Iink mounted on an arbitrary robot is developed. The modd highlights the con- 

tributions of the flkbility to the overall dynamics and presents the dynamics in 

a matrix form. System identification is performed to isolate the model parameters 

for the robot and particular attention is paid to Conlomb friction. The model is 

then used to develop a non-hear state estimator. The estimator is applied to the 

problem of implementing a Wtual wall and the resdts are shown to be superior 

to conventional techniques. The importance of the mechatronics approach is high- 

lighted throughout. Frameworks for optimal implicit force control and impedance 

control are also developed and experiments performed. 
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Chapter 1 

Introduction 

With the advent of virtnal reality and the inaeasing power of modern cornputers, 

there is renewed interest in new modalities for the human-machine interface. Force 

feedback is gaining momentum as new applications of teleoperation and haptic de- 

vices are discovered. However, haptic devices have their own unique set of design 

considerations that have resulted in a proMeration of novel haptic devices in the 

literature. Many of these devices have highly non-linear dynamics that make con- 

trouer design inherently difncult . Even for simple devices, the stability of systems 

involving non-linear constraints has been a snbject of active research, since such 

constraints are necessary to emulate the environrnents encountaed in everyday life. 

This work applies the principles of mechatronics to the design and control of a 

novel five-bar robot for use as a haptic interface. Mechatronics entails the design 

of mechanicd systems with the goal of optimixing the balance between mechanical 

performance and controller complexity. The work is a continuation of the efforts 

of Ching and Wang [IO], who developed the &id version of the robot for impliut 

force control experiments and vimial reality simulations. 
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Chapter 2 reviews relevant litesature on force control, haptic devices and control 

of flexible structures. 

Chapter 3 presents a general model for the dynamics of a flexible beam mounted 

on an arbitrary robot. The beam is dowed to vibrate in two directions and any 

number of vibrational modes may be represented. 

Chapter 4 describes the two devices used for the experimental results: a one 

degree-of-fieedom apparatus and a three degree-of-freedom five-bar robot with a 

flexible W. Unlike other haptic devices, the robot structure itself Çnctions as a 

force sensing device. The robot is also specifically designed to simplify the con- 

trol problem, in accordance with a mechatronics approach, and its advantages are 

expounded in this chapter. 

Ckapter 5 de& with the problem of identifying the parameters of the robot 

model. The non-linear eEects of friction are identified and modelled. The use of the 

robot structure to measure forces is explained and a force cancdation expriment 

is performed to demonstrate the reliability of the technique. These results are later 

incorposated into the con troller design. 

The original intent of this work was to apply the general model of chapter 3 to 

the design of controllers for the five-bar apparatus. However, the system identifica- 

tion revealed unanticipated vibrational modes of the robot structure that dominate 

the modes of the flexible link. As a result, the general flexible model developed in 

Chapter 3 is not spplied to contr0Ue.r design. While changes to the robot stmc- 

t u e ,  such as increasing the link flexibility or the structural rigidity may help to 

elirninate the nnexpected modes, these options are not pursued in this work. Nor 

are more sophis ticated modelling t ethniques , such as finiteelement modelling , a p  

plied. However, suggestions for modifying the controller design to account for these 
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unanticipated vibrational modes are given in chapters 6 and 7. 

Chap ter 6 inves tigates various control s trategies for irnplementing a virtual wall. 

A non-linear state estimator approach is presented and compared to the traditional 

implicit force control technique. H, optimal control strategies are applied to the 

implicit force control and impedance control problems with some success. 

Chapter 7 summarizes the contributions of this work and suggests areas of future 

resezch. 



Chapter 2 

Background 

2.1 Force Control 

Force control attempts to govern the interaction between the robot and its environ- 

ment. Consider Figare 2.l(a), which depicts a robot end-dector in contact with 

an environment. The point x represents the actual position of the end-aector tip, 

while x. depicts the position of the environment when i k  is undeformed. The point 

xd represents the desired position of the end-efTector and Fe denotes the net force 

exerted on the environment by the end-efEector. Suppose the environment is linear. 

Let Ke(s) be the Laplace transform of the environment stifiess. Then the rela- 

tionship between the force exerted apon the environment and the deformation of 

the environment is: 

when the end-efI'ector is in contact with the environment. Equation (2.1) provides 

a convenient way of representing the relatiomhip between the deformation of the 
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Robot End-effectar 

-2 

"Environment" 

-Z 

(a) Robot in contact with wall (b) Finger in contact with virtuai wall 

Figure 2.1: Cornparison of Physical and Virtual Environments 

environment and the force exerted upon the environment. Since it is not possible 

to measure z., it is never used for control. Instead, the  force exerted upon the 

environment is typically measured directly using a force/torque sensor. 

Note that the end-effector position, z, is not only a function of the actuator 

configuration and environment stfiess, but &O the stifiess of the end-effector 

it self, as well as joint fle~ibilities~ link deformation, gear backlash, Mction, control, 

sensor location, etc. These factors may prevent the end-efEector from reaching the 

desired position, xd. 

For haptic displays, the "environment" is usnally the operator's hand or finger- 

tip, as Uustrated in Figure 2.l(b). The virtual wall is provided by the end-&ector 

of the haptic device. Hence, Figure 2.l(a) and Figure 2.l(b) are not miwr  images 
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of each other, but instead depict the same scenario. 

The "desiredn position, r d ,  could be a point on the surface of a virtual wall, 

as in the example of Figure 2.l(b). Note that both the fingertip and the virtual 

wall have "deformed" under the contact force, F. The "environment" position, 

x,, roughly corresponds to the position of the fingertip were it undeformed. The 

undeformed shapes of the finger and Wtual w d  are shown as dotted lines. Let the 

wall be modelled as a compression spring with stiffness Kw. In this case, the goal 

of the controiler is to make the force produced by the haptic device, F, satisfy: 

F ( s )  = -K&)(z(s) - r d ( $ ) )  (2.2) 

when x lies within the confines of the wall. Similarly, the operator's fingertip 

deforms. Assume the user's fingertip is linear and let Kt be the fingertip stifiess. 

Then the deformation of the fingertip, like that of the environment in (2.2), may 

be modelled as: 

Note that the virtuai wall shown in Figure 2 4 b )  does not exist physicdy. Instead, 

by controlling the contact force according to (2.2), the operator feels a w d .  The 

actual physical configuration, however, is the same as shown in Figure 2.l(a) with 

the environment replaced by the operator's fingertip. Thus, the "contact force", F, 

and the force exerted by the end-effector on the environment, Fe, are one and the 

same. A simple method of determining this contact force is to meagure it using a 

force sensor mounted on the robot end-dector. 

While it may seem natural to implement force control in an analogous fashon 

to position control, where the error between a desired force and the rneasured force 

drives the controller, such explicit force control is only one of a variety of "force con- 

tro1" techniques found in the Iiterature. However, all the force control algorithms 
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For small displacements, 6q and 6x are related by the manipulator Jacobian, J: 

Hence: 

It is dear from this expression that the contact force is reflected back to the joints 

as a torque: 

2.1.1 Explicit Force Control 

The most easily understood form of force control is explid force control. In this 

case, the reference input is a desired force, Fd, and the error between the measured 

force and desked force is used by the controller to produce the joint torques [12,5]. 

Since the contact force, Fe, and desired force, Fd, are expressed in the end-effector 

h e ,  a coordinate conversion is necessary to express the force error as a joint 

torque. The necessary coordinate transformation is provided by (2.3). 

Figare 2.3: Expliut Force Control [5] 

r 

Robot x - 
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The signal-flow diagram for explicit force control is illustrated in Figure 2.3. 

Note that when perfect force tracking is achieved, Fe = Fd. Also, since position 

information is not used, the end-aector position is uncontrolled. For example, if 

the desired force is zero, then an impulse given to the robot end-effector will cause 

the robot to move to bring the force to zero. However, driving the contact force 

to zero does not prevent the robot fiom continuhg to move at constant velocity, if 

no obstacles constrain it. Physical obstacles, such as table suxfaces, are known as 

natural position constraznts. Thus, explicit force control is primarily usefd where 

natural position cons traints exist . The principal difiiculty encountered when im- 

plementing pure force control is noise in the force measurements [12]. Including 

derivative terms in the controller, C, only compounds the problem. 

Borowiec and Tzes [13] apply an adaptive form of explicit force control to the 

control of a flexible link manipulator. A recursive le&-squares es timator produces 

a model of the manipulator dynamics from the input torque to the force exerted 

on the environment. This model is then used to tune a regulator. The controller 

output is computed using the identified model such that a quadratic cost faction 

of the control input and output error is minimiaed over a h e d  number of sample 

periods. 

2.1.2 Hybrid Position-Force Control 

There are few applications which require control of force without position regu- 

lation. It is possible to combine both position and force control by controlling 

position and force dong axes orthogonal to each other. 

For example, during insertion of a peg into a hole, position control can be used 

to maintain the position of the peg over the hole, while force control can be applied 
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simultaneously in the direction collinear with the hole axis in order to maintain a 

prescribed insertion force. 

Figure 2.4: Hybrid Force Control 

Figure 2.4 illus trates the feedback configuration for hybrid control. The desired 

position, a, and desired force, Fd, are in task kame coordinates. The selection 

matrix, S, is a diagonal matrix of ones and zeros. Entries containing a one corne 

spond to the axes (in task space) which are to be position controlled. For clarity, 

the robot system enclosed in the dotted frame in Figure 2.2 has been collapsed into 

a single box labded 'Plant" in Figure 2.4. The rnapping C, represents the posi- 

tion controller and CF represents the explicit force controller. Note that while the 

selection matrix decouples the position and force controllers, it does not eliminate 

couphg between force and position within the "plant". 

For example, in a flexible beam of square cross-section, coupling will likely be 

observed between the horizontal and vertical modes of vibration. If the horizontal 

direction is controlled using position control while the vertical direction is regulated 

using force control, then the actions of the position controiler will influence the force 
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control via coupling between the vibrational modes of the two axes (and vice-versa). 

Such coupling may be especially important in flexible robotic systems that employ 

hybrid control. No results have been observed by the author in the fiterature 

concerning simultaneous design of the position and force controllers to account for 

such coupling. 

As an example of recent work in hybrid position/force control, see Joly et al. [14], 

who use mechanical analogies to suggest a simple and robust controller applicable, 

according to the authors, to hybrid control, teleoperation and multirobot coopera- 

tion. Experiment al work validat es t heir result S. 

2.1.3 Impedance ControI 

Consider the relationship between contact force, F, and position, X, fbr a single- 

input single-output linear sys tem: 

The transfer Çnction a ( s )  is known as the compliance and is the inverse of stiff- 

ness. Applications involving contact wiih an environment generally need the robot 

to exhibit some compliance. Otherwise, even very s m d  displacements can lead 

to extremely large forces, possibly damaging the robot or the environment. Let 

V(s) denote velocity. Cornpliance may be expressed in terms of the mechanicd 

impedance, Z(s), dehed  to be [12]: 

The notion of impedance becomes dearer when considering the d e n i e s .  If the 

end-effector is immovable (Le. zero velocity) regardless of the extemal force applied, 



CHAPTER 2. BACKGROUND 

Figure 2.5: Impedance Control 

the robot impedance is infinite. In contrast, if the end-&ector moves at a constant 

non-zero velocity with no force being applied t hen its impedance is zero [12]. 

Impedance control at temp ts to regulate the mechanical impedance of the robot 

system. For example, by controhg the robot such that s Z ( s )  = - (Ms2  +Bs+ K), 

the system will behave like a mass-spring-damper. 

Consider the control system in Figure 2.5 at  equilibrium Le., when the robot 

velocity and acceleration are zero. For these quantities to be zero, the net force 

acting on the robot must also be zero. Hence, in equilibrium, the control signal, 

u, must equal the torque due to contact with the environment, T, = J ~ F , .  (See 

Figure 2.2 for an expansion of the "Plantn block.) 

For s m d  displacements about this equilibrium position, the Jacobian is approx- 

imately constant. Let the Jacobian at equilibriurn be denoted JO. Define Zo to be 

the mechanical impedance at the equilibrium position. Thus, for small displace- 

ments about the equtlibrium position and for linear t i r n e i n k a n t  controllers, CF 

and C', with no poles at the ongin: 
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Assuming JO is full rank, 

Observe that setting C, = O results in zero impedance. Rom the block diagram 

in Figure 2.5, set ting C, = O yields explicit force control with zero reference i.e., the 

system attempts to drive the contact force to zero. Thus, if the force between the 

end-effector and environment was due to fiction, for example, then the controller 

would compensate for the friction and the end-dector would move with constant 

velouty across the suface of the environment. 

Fixing CF = -1 instead results in infinite impedance (see equation (2.4)). In 

this case, it can be seen from Figure 2.5 and the expansion of the "Plant" block 

in Figure 2.3, that the force feedback exactly cancels the contact force, leaving 

only "unconstrainedn position control i.e., assuming no limitations on the actuator 

torques, the sys tem will be driven to the desired position regardless of the force due 

t O the environment. 

For treatment of the stability issues involved in the transition to and fiom 

contact using impedance control, refer to h rd i lov i~  [15]. 

Modifications to the above impedance control fiamework do, of course, exist in 

the literature. For example, Jung et al. [16] switch between two slightly different 

impedance controllers depending on whether the manipulator is in contact with 

the environment, the goal being to ensure that the end-efKector makes contact with 

the environment but remains robnst to robot mode1 ancertainty and inaccurate 

knowledge of enviromnent position. 
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2.1.4 Implicit Force Control (a.k.a. StifFness Control) 

AU the previous force control schemes used a force sensor to measure the contact 

force. Implicit force control regulates the impedance (or equdy the stEness) of 

the system without using a force sensor. Let CF = O in equation (2.4). Then 

the impedance about equilibnurn is simply Z&) = - 5 - ' C . ( s ) .  However, fkom 

Figure 2.5, setting CF = O is equivalent to eiiminating the force feedback, and 

hence any need for a force sensor. The disadvantage of this scheme, as well as 

the sample impedance control scheme of Figure 2.5, is that only the impedance 

for s m d  displacements about an equilibrium position is controlled. The transient 

response may be undesirable (although the system of Figure 2.5 has more control 

over the transient response since it incorporates force feedback). 

Recently, Ching and Wang [IO] demonstrated a Wtual wall based on an implicit 

force control scheme. Ching and Wang [IO] employ inertial compensation as the 

end-effector Ieaves the virtual w d  in order to cancel the inertia of the robot. 

2.1.5 Inverse Dynamics 

Consider an n-link robot. Let: 

q ( t )  = generalized coordinates 

u(t)  = control torques 

J ( q )  = manipulator Jacobian 

M(q)  = inertia rnatrix 

h(q, Q) = gravitational, Coriolis, centripetal and damping terms 

Then the dynamic eqnations of the robot are [12]: 

M(q)P + h(q14) = u - J(Q)=F. 
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The term J ~ F .  accounts for the contact forces as the robot cornes in contact with 

the environment. This equation may be transformed to the end-dector frame [12] 

by defining: 

Let F be the control torques in the end-effector fiame i.e., +IL= J ~ ( ~ )  F. Then the 

dynamic equation in the end-effector fiame becomes: 

Let f be a new input to the system. It is easily seen from standard inverse dynamics 

techniques, that to obtain the double integrator system: 

all that is necessary is to define: 

Note, however, that the expressions for M ( z )  and h(r, t) are highly non-linear and 

depend on accurate es timates of sys tem parameters. Furthermore, difficulties anse 

at the singularities of the Jacobian, as well as its derivative. Also, the end-effector 

position, x ,  is seldom measured directly, but is generally computed firom joint angle 

measurements. Thns, the caldation even of z depends on accurate estimation of 

the fomard kinematics . 

The inverse dynamics control strategy is illnstrated in Figure 2.6. The area 

endosed in the dot ted line represents the robot dynamics in the task or enddector 

space. Note that by messnring Fe and adding it to the control signal F, the contact 
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Figure 2.6: Inverse Dynamics 

force is negated. This same cancellation appeared in the impedance control of 

section 2.1.3 for Cf = -1. i.e. when the impedance is designed to be infinite. 

Intuitively, cancelling the contact force allows the relationship between force and 

position to be specified arbitrarily. For example, let a(s) and P ( s )  be transfer 

functions and: 

and the impedance of the system is: 

Thus, idedy, using inverse dynamics, the impedance of the system is controued 

"exactlyn i.e., even transients are controlled. 

2.2 Man-Machine Interaction 

The dynamic capabilities of the human operator are important for h o  reasons. , 

First, knowledge of the bandwidth limitations and nonhearities of the human 
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operator facilitates design decisions. Second, the human is also a feedback system, 

reacting with the haptic display based on proprioceptive, aurd and visual sensory 

information. Hence, the human operator dynamics can affect the stability of the 

hap tic display - human operator sys tem. 

The interaction between haptic display and human operator depends on a va- 

riety of factors. Certainly, the specific dynamics will Vary with each individual 

operator. The interaction also varies with the operation modality, for example, the 

type of hand grip (palm grip, fingertip grip, tight or loose grip, etc.) [6]. Bergam- 

asco [17] investigates the changes in contact area and forces as a human grasps or 

explores an object with the hand, revealing the complacity of the human grasping 

operation. Such investigations are important even for simple hap tic interfaces that 

allow the user to release and re-grasp the haptic device during operation. The dy- 

namics of the human operator also change according to the "degrees of freedomn 

used by the operator [61. For example, wrist flexion, h g e r  flexion and elbow fleu- 

ion al l  exhibit different dynamic characteristics and différent force profiles. Thus, it 

is important for analysis and design to dassîly the différent modalities and degrees 

of fkeedom employed when operating the haptic display. 

2.2.1 Performance Requirements 

It would be extremely diffinilt to empincally determine the dynamics associated 

with dl possible operator modalities and motions, for every known haptic device. 

However, by investigating the tradeoffs inherent in a particular haptic device and 

operator motion, a ntunber of general "rutes-of-thumbn may be developed for ap- 

plication to hap tic interface design. 

Lawrence and Chapel [6] designed a simple hand controller, depicted in Fig- 
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Figure 2.7: One D.O.F. Hand Controller [6] 
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ure 2.7, with a single degree of freedom. The haptic device was tested using a 

finger tip "pend" grip, moved in an approximately sinusoidal trajectory of ampli- 

tude Ao. This amplitude can be maintained up to a frequency of w~ radlsec, after 

which Lawrence and Chapel assumed that the motion amplitude would decrease 

I - ,  

with fkequency at 

of approximately 

r ...?O' < 
-.  *<?LW 

- - -  

40dBldecade. Thus, the input "signal" had a magnitude response 

Pl : 

Now, if the force required to move the hand controller is less than some threshold, 

Fo, then the motion of the hand controller will feel %een to the operator. Lawrence 

and Chapel assumed that this threshold remained constant for a given hand grip and 

motion. Thus, the maximum mechanical stiffness, Kf(s), that the hand controlle~ 

can exhibit before losing the feel of %ee motionn is [6]: 

1 - 

Similady, Lawrence and Chapel coxisidered fidy constrained motion - the 

'Yeel" of a waIL To feel rigid, the hand controller mnst feel completely motionless 

P i  
Range of motion \ Fingertip 

Force sensot pend grip 

, 
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for all forces exerted by the operator up to some *maximum reasonable force" [6]. 

Let this maximum force be Fm. Assume there exists some lower bound, az, on 

the displacement the operator can feel. i.e., for any displacement less than 82, the 

user will not detect the motion of the hand controller. Then for frequencies within 

the bandwidth, wo, the stifhess must be at l e s t  Fm/Bx. At higher frequencies, 

Lawrence and Chapel assumed that the hand controller inertia would dominate the 

response, leading to a minimum stifhess, K=(S), required to achieve the sensation 

of a " w d n  of [6] : 

Thus, for a hand controller to be 1h.l d ~ ,  h; 

able to emulate the two extrernes of free 

motion and M y  constrained motion, it 

must be able to produce stiffnesses ly- 

h g  beyond [6] the shaded region shovm 

in Figure 2.8. For A. = Zcm, Lawrence 

and Chapel [6] determined approximate 

values for ore, Fo and & of 20 d / s ,  0.1 

N and 104 N/m respectively. 

Fieme 2.8: Stifhess Range 

2.2.2 Interaction Modelling 

To model the interaction between the operator and the haptic device, a simple mass- 

spring-damper model is typically used. Continuhg with the example of Lawrence 

and Chapel's work [6], who modelled the interaction explicitly as a mass-sprhg- 

damper systern, consider Figure 2.9. 
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Actuator Force Sensor Fingers Handl A m  
7 7 - 1  I 

Figure 2.9: Device H Human Interaction [6] 

Ma and B. represent the actuator mass and damping respectively. The mass of 

the end-effector which moves wit h the force sensor is M.. The measured force and 

position are F, and X. respectively. The spring-damper combination, Kt and Bf , 
represents the operator's grip on the end-effector. The hand and arm are modelled 

as a mas ,  spring and damper with parameters Mh, Kh and Bh. The position of 

the hand is denoted by Xh and the force exerted by the hand and arm as Fh. 

The interesthg featmes of this model are not so much the modelling of the 

ac tuator and hand/arrn combination, but the inclusion of a model for the operator's 

gip. The strength of the grip can significantly affect the stability and performance 

of the system [6]. From a human force-control perspective, changing one's grip is of 

great utility for radically altering the compliance of the fingers/hand/arm system. 

In some sense, the fingers act as an active 'Lemote-centre cornpliant device" while 

the hand fimetions as the end-effector and the arm as the Dgid robot. 

An enhanced version of this mode1 of the human arm is provided by Lee et 

al. [18]. Lee conceives of the human arm as driven by two components: a force 

control component, driven by the error between the desired force and force sensed 
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by the human proprioceptive system, and a position control component, driven by 

the error between the desired position and the position detected by visual feedback. 

Let Mh and Bh denote the mass and damping of the hand/arm system, as 

before. Let e, and ef represent the errors between the desired position and actual 

position, and between the desired force and actual force, respectively. Let Fe be the 

force exerted by the environment upon the handfarm. Define Kp, Bp, Kt and Bf 

to be the spring and damping parameters for the position and force "components" 

of the human arm. Then the dynamics of the human-environment interaction may 

be expressed, according to Lee [Ml, as: 

The form of the human hand/arm mode1 was chosen to contain similar terms to the 

desired impedance, since Lee et al. [18] implernented a form of impedance control, 

dubbed generalized impedance control (GIC ) , for t heir teleoperation sys tem. (Note 

that the choice of name is rather unfortunate - only impedances of a very specific 

fonn can be achieved with the GIC control algorithm, although it does include the 

traditional mass-spring-damper impedance) . 

2.2.3 Performance Tradeoffs 

A consideration of pedomance tradeoffs must inevitably focus on a particular con- 

trol structure and spef ic  performance objectives. However, some general insight 

can be gained by investigating a variety of control techniques. Considn once more 

the work of Lawrence and Chape1 [6], since it is a simple one-dimensional system 

and Lawrence et al. examined the perfomance tradeoffs inherent in th& system. 

Let Xd and X, be the desired and sensed positions respectively. Similady, let Fd, 

F, and Fa denote the desired force, measured force and actnator force respectively. 
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The control strategy chosen in their work was an impedance controller of the form: 

where Cf and C, are a force controller and position controller. 

To achieve "fiee motionn, the c o n t r o k  C, should be set to zero. With Fd equd 

to zero, the force cont rok ,  Cf, will attempt to make the measured force equal to 

zero. Le., the control system will actually assist the operator in moving the p e n d  

by compensating for fiction forces as weU as inertid forces. The net result is that 

the controller effectively reduces the hand controller mas,  damping and friction, 

as felt by the operator. 

To achieve constrained motion, let C, be non-zero. If Cf is zero, then the 

operator will experience a stiffness of C,. Thus, it is clear that to achieve higher 

stiffnesses, the gain of C, must be higher. 

To consider the efKects of hand grip strength, Lawrence and Chapel [6] intr* 

duced a grip-factor, a, which scales the handlarm parameters Mh, Bi, Bh, Kt and 

Kh (see section 2.2.2). Thus, a grip factor of zero represents a loose grip and a 

factor of one represents a tight grip, assuming Kf  and Bf represent the stiflFiiess 

and damping for the tightest grip. Now, using the performance objectives akeady 

discussed in section 2.2.1, Lawrence and Chapel reached the following conclusions. 

First, the "tight grip regime defines the limits of force loop performancen [6] be- 

cause the highest force loop gains are experienced when the grip is tightest. If the 

gain of Cf is too hi&, instability resdts. (Lawrence and Chapel used a Nyquist ar- 

gument to evalnate stability). Intuitively, this observation makes sense. The force 

loop is used to provide fiee motion. For a tight grip, the force controller is faced 

with a Iarger mass to move (plus larger damping and stifhess). Th-, to maintain 

nnimpeded motion, it must generate higher actuator forces. If the force controller 
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gain is too high the system will overcompensate and go unstable (especially since 

the operator will likely be at tempting to provide their own compensation!). 

Second, the "position loop performance limits are defined by the loose grip 

regime" [6]. Intuitively, the position controller is used to provide constrained mo- 

tion. A tight grip helps to restrict the hand controller motion, thus improving 

stability. However, a loose grip barely constrains the motion of the hand controller 

at all, so if the position gains are too high, the hand controller will go unstable for 

loose grips. 

Thirdly, the achievable stifiess is limited by the actuator darnping and the gain 

of Ct. Larger actuator damping , Ba, improves the ob tainable s tEness but degrades 

the fiee motion impedance. Increasing the gain Cf reduces the s tinness. A smaller 

actuator mas ,  M., ameliorates both the achievable stitfness and fiee impedance. 

Finally, it is preferable for the position and force control loop bandwidths to 

be "one order of magnitude larger t han the characteris tic mechanical f'kequency, 

w, = BalMa. Significantly larger bandwidths do not improve the achievable per- 

formance" 161. 

2.2.4 Performance Tradeoffs in Sampled Data Systems 

While Lawrence and Chape1 [6] examine performance tradeoffs with respect to 

the dynamics of the human-machine interaction and achieving a requisite dynarnic 

range of stifiesses, Colgate and Brown [7] investigate the problem of emulating a 

virtud waU using a haptic display coupled with a sampled data control system. The 

problem of implementing a virtud w d  is interesthg for h o  reasons. First, very 

large stifhesses are generally required and thus, as seen in the preceding section, 

stability in the presence of a loose hand grip may be compromised withont due 
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precautions. Second, a virtual wall is a "unilateral constraint" [7]. When the end- 

ef5ector is away fiom the virtual wd, the haptic device should provide fiee motion. 

Inside the virtual wall, the motion should be constrained. 

zero-order 1 hold 

unilateral 
c0nstra.int 

Figure 2.10: Model of a Haptic Interface [7] 

Colgate et al. [7] use a one degree of fieedom haptic interface similar to the 

device built by Lawrence and Chape1 [6]. The virtual w d  is implemented as a 

very stin compression spring when the end-effector lies within the virtual w d .  The 

model used by Colgate and Brown (71 to represent theh haptic interface and the 

virtual wall is innstrated in Figure 2.10. The parameters m and b represent the 

inherent mass and damping respectively of the haptic device. The variables x and 

v are the position and velocity and u is the control do r t .  The force exerted by 

the operator on the haptic display is f. Findy, the sampling period is T and the 

sampled position is x.. H ( z )  is the discrete-time t r d e r  function of the virtud 

environment. Note that the controller is essentidy a discret~time implicit force 
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con trouer. 

Observe that the unilateral constraint in their model does not necessarily e h -  

inate the output torque fiom the controller when the user exits the virtual wall. If 

H ( z )  has memory - in other words, if it has any state - then the human operator 

will experience the zero-input îesponse of H ( s )  when they exit the Wtual w d .  The 

torque does not immediately drop to zero, as might be expected. This raises the 

question of whether these residual torques result in geater instability. 

Since, as Colgate and Brown assert, the "physical world relies heavily upon the 

property of passivity" [?], Colgate et al. consider an impedance, H ( r ) ,  achievable 

if it can be implemented passively, according to the model of Figure 2.10. Instru- 

mental in the assessrnent of passivity, is the foIlowing theorem [?]: 

Theorem 2.2.1 Passivity of a Haptic Interface [u 
Let w~ = 5 (the Nyquist jrepency). The haptic inteîface model of Figure 2.1 0 is 

passive if und only if: 

The proof is derived using Nyquist arbguments. The interested reader may refer 

to [19] and [20]. 

Suppose the Wtual w d  is implemented as a spring and damper of stifhess 

K > O and damping coefficient B i.e. the transfer function H ( z )  is: 

Substituting this expression into the theorem above leads to the following condition 

for passivity [7]: 

b > - -  KT B cos wT 
2 
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or, equivalently (consider w = O and w = w N )  [7]: 

From the above inequality, Colgate and Brown [7] concluded that: 

a The haptic device must exhibit some inherent damping for the system to 

be passive, since the sampling period is necessarily non-zero and either the 

stiffness, K, or the damping, B, of the virtual wall must be non-zero for the 

operator to feel any effect. 

a The maximum adrievable virtual stifhess, K, is inversely proportional to the 

sampling period, T, when the damping is fixed. 

The maximum achie~ble  virtual damping, B, is independent of the sampling 

period, T, when the virtual stihess is zero. 

While it is tempting to conclude that lower virtual damping, B, results in a higher 

achievable stiffness, K, Colgate and Brown [7] observe that the opposite conclusion 

can be drawn if the bandwidth of the human operator dynamics is less than half the 

Nyquist frequency. In this case, the cos wT term of equation (2.5) is always positive 

within the operator bandwidth. Thus, higher virtual damping dows higher virtual 

stiffnesses for the same physical damping, b. 

Alternativdy, inmeosing the physical darnping, b, and demasing the sampling 

pen'od, T ,  allows higher virtual stinness to be implemented [7]. While both these 

factors might be expected to improve the ability of the haptic display to simdate 

virtual walls (consider putting a real wall at the same location as the &tual wall!), 

one might &O expect increased physical damping to interfere with the implemen- 

tation of free motion. However, Colgate and Brown [7] suggest that negative Wtual 
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damping may be used to compensate for physical damping. For example, let K = O 

and B = -b in equation (2.6). Then the system is still margindy passive and ex- 

hibits no damping. This suggestion was implemented experimentally by Colgat e 

et al. [7], confirming the conclusion that higher physical damping can improve the 

simulation of virtual wds.  hdeed, Colgate and Brown refer to the maiamization 

of the haptic device's inherent damping as the "least expensive and highest payoff 

measure available" [7] for implementing vktual walls. 

Colgate and Brown [7] also investigated the efEect of using the Euler clifference 

method to calculate the veiocity from encoder position measurements, as in the 

damping term of H(z) .  Colgate et al. observed that the derivative estimate is 

highly sensitive to the sampling period and encoder resolution. If one encoder 

count is equivalent to A degrees and the sampling period is T, t h a  the minimum 

velocity discernible by differentiating the encoder counts is AIT '/sec. Thus, at 

8000 counts/rev and a sampling period of 1 ms, the minimum detectable velouty 

is 450 '/sec [7]. konically, increasing the sampling period improves the velocity 

resolution. Of course, the preferable solution is to improve the encoder resolution 

or implement digital filtering. Colgate and Brown [7] report at least an order of 

magnitude improvemen t in velocity resolu tion by using a simple firs t-order digital 

filter on the raw velocity estimate. Surprisingly, Colgate and Brown also show that 

introduction of the digital filter actually reduces the requirements for passivity. 

See [7] for detds.  

It  is important to observe that in th& experimental results, Colgate and 

Brown [7] noticed high frequency oscillations. According to Colgate and Brown, 

the high hequency oscillations are caused by limit cycles that arise due to the use of 

sampled data control with a unilateral constraint. The amplitude of the limit cycles 

is reduced by inereasing the encoder resolution [21]. Reducing the amplitude of the 
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high fiequency oscillations improves the subjective Teel" of the virtual wall [7]. 

Colgate and Brown [7] also observed that a loose one-finger grip led to instability 

much more readily than a full-hgered grip. This result c o n h s  the analysis of 

Lawrence and Chapel [6] discussed in the pceceding section. 

Love and Book [22] employ Jury's discrete-tirne stability test to analyse the 

stability of virtual walls. While the results are interesting in that they demonstrate 

that both a Iowa and upper bound on the w d  dampiag is apparently required to 

ensure stability, it appears that the results are only valid for the case where the user 

is in constant contact with the w d .  Due to the unilateral constraint inherent in any 

virtual wall implementation, induding Love and Book's, an impedance controller 

for virtual walls is essentidy a the-varying gain-scheduling controllet where the 

gain is switched between two values: zero and a constant gain, K. Hence, Jury's 

test may be used to analyse the situation where the user is in coustant contact 

with the wall, where the gain is constant, but yields no insight into the stability of 

contact transitions since Jury's test is not applicable to the-varying systems. 

Furthennore, Love and Book [22] only impose the unilaterd constraint on the 

stiffness term, not the damping term. Thus, damping wiU be imposed ontside the 

virtüal w d ,  where it is generally undesirable. Outside the wall, it is prefkcable 

for the haptic device to emulate %ee-space", offering the l e s t  resistance to the 

operator. 

h contrast to the passivity-based approach of Colgate and Brown [7], which 

may yield consenrative results, Tsai and Colgate [23] examine the same system 

of Figure 2.10 fiom an approach somewhat akin to desdbing fanction analysis. 

Conditions are considered under which sustained osdations cannot exist for the 

sampled data system of Figure 2.10. It is assumed that limit cycles exist and then 

conditions are derived t hat es tablish a contradiction. 
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Theorem 2 - 2 2  Limit Cycle Theorem [23] 

Consider Figure 2.10. Assume the operator applies a constant bias force to the 

haptic device, such that contact with the wall is achieued (although not necessarily 

mazntained) . Define: 

O(s) = operator set comsponding to the operator in Figure 2.10 

sin 8 
m(0) = 

1 -cos@ 

Then lômtt cycles will not occvr i f :  

2.2.5 Controller Designs 

The above analyses use various assumptions about the human operator, some very 

general, to arrive at "st ability" conditions for virtnal wall implementations. How- 

ever, human modelv are not usaally directly incorporated into controIIn designs. 

Gillespie and Cutkosky [24] employ a user-specific second-order mode1 of the ha- 

man operator to develop improved controller designs. In part idar ,  they focus on 

the destabilizing effects of the zero-order hold (ZOH) in the standard discrete-time 

implementation of virtual wab. The ZOH is destabilizing because it dows energy 

to be added to the system, destroying the passive nature of the simulated wd. In 

between sampling instants, the ZOH maintains output torque values at a constant 

level. However, the haptic end-ef5ector may lose contact with the w d  in bebeen 

sampling instants. Hence, due to the ZOH, torque will continue to be applied even 
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outside the virtual wd, leading to unintended energy being added to the system. 

The ZOH also introduces an effective haif-cycle delay. 

Gillespie and Cutkosky [24] compensate for the delay introduced by the ZOH 

through design in the discrete domain. They account for the extra energy intro- 

duced at w d  exit by a combination of model prediction and deadbeat control. 

User-specific model prediction is used to compute when the haptic end-eEector will 

leave the surface of the virtual wall, and the desired state of the system at the fkst 

sampling instant out side the wall. Since the model employed is only second-order, 

deadbeat control is used in the last two timesteps prior to exiting the wall to drive 

the system to the desired state. Simulation results demonstrate the effectiveness of 

the technique, but while experimental results are cited as exhibiting a marked im- 

provement over 'conventional" techniques, unfort unately, no result s are presented. 

Berkeknan et al. 1251 use digital state estimators on a magnetically-levitated wrist 

to compensate for sample-and-hold and cornput ational ddays. The results are ver- 

ified experimentally. However, the forces or torques applied by the human operator 

are not induded in the input to the estimators. 

Ellis et al. (261 also confiont the issues inherent in the ZOH. They arrive at a 

predictor-corrector scheme based on the impulse imparted by the Wtual wall - the 

integral of force over tirne. Let: 

T = sampling period 

Fk = force at time kT 

F ( t )  = desired force at time t  

Oves one sampling instant, kT to (k + 1)T, the energy imparted by the w d  is: 

(k+l)T L F(t)dt  c TF* 
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By considering predictor-correction integration met hods, it is readily apparent t hat 

a better approximation to the above integral may be obtained if Fk is not simply 

the sampled value of F ( t ) ,  but more prudently chosen. Ellis et al. [26] chose Fk 

t O minimize the difference between the desired continuous- time impulse and the 

impulse imparted by the discrete-tirne implementation. While experimental results 

demonstrated a marked improvement, small residual oscillations did remain. 

2.3 Hapt ic Interfaces 

Haptic man-machine interfaces provide feedback to the human operator through 

forces. Generally, in the literature, haptic refers to interfaces which provide gross 

force feedback capable of being sensed by the hand and arm, while the adjective 

tactile is applied to more sensitive force sensations, such as the perception of tex- 

ture at the fuigertip. There are numerous haptic intedace designs found in the 

literature. The requirements for haptic interfaces can vary depending on the a p  

plication. For example, the master hand controller in a telepresence system is 

essentially a haptic display. However, there can be advantages to making the mas- 

ter robot physically and kinematicdy similar to the slave robot, especially when 

real-time camera footage is provided as visual feedback. Since this thesis assumes 

virtaal reality simulations will be used for visual feedback, master controllers used 

in telepresence applications will be discussed only in terms of their relevance as 

generic haptic displays. 

Haptic interfaces may be classified into several categories: pardel platfonn hand 

controllers, suspension sys tems, robotic displays, hand displays and exoskeletons. 

Pardel  platform hand controllers are essentially f d y  p d e l  or serial/parallel 

mechanisms akin to a Stewart platform [27]. Suspension systems use tant cables to 
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support and direct t lie operator's finger. Robotic displays are standard industrial 

robot configurations used to provide force feedbadc to the operator rather than 

to perform a task. Hand displays are haptic interfaces designed to interact with 

the fingers and palm of the human hand. Exoskeletons are manipulators which 

are mounted on the operator, such as on the arm and shoulder, and enhance the 

operator's capabili ties. 

2.3.1 Parallel Platform Hand Controllers 

Long and Collins of the University of 

California [8] developed the "pantograph 

linkage parallel platform master hand con- 

trouern Uustrated in Figure 2.11. Similar 

mechanisms were developed by Noma and 

Iwata [28], BFyfogle et al. [29] and others. 

The design of Long and Collins will be used 

as an example. 

Each pantograph linkage is connected to 

the top platform through a passive three 

degree-of-fieedom bd-in-socket joint. The 

two links of each pantograph attached to 

Figure 2.11: Pardel P1atfix-m [a] the base plaeorm are ac t~a ted  by rotary 

motors. The point of a t t a h e n t  can also 

rotate (passively) dong an axis tangentid to the corresponding edge of the base 

platfonn. These degrees of fkeedom are indicated by arrows in Figure 2.11. The 

actaator mechanism indudes "cable/pdey reducers and diEerentialsn rather than 
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gears in order, as daimed by the authors, to uenhance transmission performance 

by rninimizing fiction, increasing efficiency, and eliminating backlash and torque 

ripple" [8]. 

The parallel platform mechanism of Bryfogle et al. [29] employs "direct-driven 

actuation, although a cable mechanism is used for power transmission (but not gear 

reduction). The perceived advantages of pardel platform hand controllers is their 

compact size and high stiffness [8, 281. Although earlier pardel platform designs 

sdered fiom a rather restricted workspace, the design of Long and Collins [8], and 

others' recent work, hac extended the workspace [28]. Unfortunately, the kinematics 

of parallel platform manipulators can be quite cornplex. Indeed, the fully pardel 

force-reftecting hand controller of Bryfogle et al. [29] requires a Newton-Raphson 

i t erative algori t hm to solve the forward kinemat ics! 

2.3.2 Suspension Systems 

Hirata and Sato [9] designed a very simple haptic interface, dubbed SPIDAR (Space 

Interface Device for Artificial Reality) comprishg four cables originating at the cor- 

ners of a cube and joined in the centre. The configuration is depicted in Figure 2.12. 

Each cable passes through an eyelet at the corner and then through a solenoid- 

controlled gap and over a rotary encoder. The tautness of the cable is maintained 

by a counterweight hung on the end of the cable. On-off pnising of the solenoid 

provides Mction and is used to control the forces exerted at the janction of the 

four cables, where the operat or places theV finger. A DC servomotor with integral 

encoder codd easily replace the encoder/solenoid combination and provide more 

precise force sensations. 
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While the apparatus is fairly large, it has a number of advantages. Fkst, since 

excessive forces are not required, nylon fine could replace the cables - making the 

mechanism virtually transparent in the operator's field of view. The workspace of 

the haptic display is dso quite large. However, the SPDAR interface does not 

provide six degrees of freedom. It is limited to three degrees of freedom unless 

more cables and actuators are added. However, addition of more cables increases 

the likelihood that the cables will interfere with rnovement of the operator's hand 

and a m .  

Figure 2.12: SPIDAR System [9] 

A similar mechanism is employed 

by Morizono et al. [30] for a "virtual 

sports training systemn . Their system 

incorporates a head-mounted display, 

tension sensors on the suspension wires 

and a grip handle at the wke junction. 

The curent application of the device, 

designed to demonstrate its high speed, 

is a "playing catchn simulation. 

2.3.3 Robotic Displays 

Most of the devices which use either commercidy a d a b l e  or custom designed 

robotic manipulators as haptic displays are employed in teleoperation research, 

where a master device translates operator commands for a slave device and feedback 

fiom the slave is reflected back to the master. For example, Jansen, Kress and 

Babcock [31] use a Kraft KMC 9100-MC 6-D.O.F. manipdator, sold by Ki& 

Telerobotics Inc. of Overland Park, Kansas. To overcome Coulomb fnction in the 
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manipulator joints, a preload function is used. A stifhess controller is used to 

control the steady-state manipulator stiffness. 

Hill et al. [32] developed a Caxis manipulator for use in endoscopie surgery 

that uses stifhess control to reflect forces between the master and slave manipula- 

tors. Salcudean and Yan 1331 used magnetically levitated wrists in a microsurgery 

system. Magnetically levitated wris ts were chosen because they are fast, fiction- 

less, backdriveable, light and provide six degree-of-freedom motion. Sato et al. [34] 

developed a force-feedback "pend", simila in concept to that of Lawrence and 

C hapel (61, for mis* t eleopera t ion experiment S. 

Luecke and Chai [35] use a "force-reflecting exoskdeton" mounted on an in- 

dustrial PUMA 560 robot as a haptic interface. The "exoskeletonn applies forces 

electromagnetically to one fmger of the hand, while the PUMA 560 is used to 

generate gross torques and extend the workspace. 

Haywatd et al. [36] developed a two degree-of-freedom "Pantographn device that 

the authors optimized according to size, workspace, inertia and other properties. 

Kelley and Salcudean 1371 designed a force-feedback mouse in which standard actu- 

ators are not used. Instead, the device itself is essentially a two degiee-of-freedom 

actuator with the monse mounted on a moving plate bearing the actuation coils. 

The Personal Haptic Interface Mechanism (PHANToM) of Massie and Salis- 

bury [38] comprises a statically balanced mechanism with low mass and fbriction, 

high stifkess, good backdnveability and thtee degrees-of-feedom. According to 

the aut hors, the transformation matrix from the mot or rotations to end-effec t or 

translations is nearly diagonal so that its tkee degrees-of-fkeedom are dmost de- 

coupled. Two of the motors actually act as counterbalances to achieve the gravity 

balancing. The PHANToM design &O employs cables and pdeys  to transmit the 
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rno tor t orques t o the ligh t weigh t aluminum links. 

As a haptic device, Ching and Wang [IO] employ a novel five-bar linkage ma- 

nipuiator which is both gravity bdanced and dynumically decoupled. The robot 

uses direct-drive DC servomotors, without cables or pdeys for actuation. By us- 

ing this innovative mechanical design, the dynamic equations are greatly simpMed, 

making control strategies such as feedback linezuization or inverse dynamics readily 

possible. 

Hayward et al. (391 have devdoped a seven-degree of fieedorn hap tic device c d e d  

Freedom-7 with application to surgical training. The device is also balanced, but 

not dynamically decoupled. The seventh degree-of-fi-eedom is employed to actuate 

the surgical tool which mounts on the end-dector, since tools such as scissors tend 

to have one degree-of-fieedom. 

2.3.4 Ot her Haptic Interfaces 

There exists a great variety of haptic interfaces in the Literature. While it is not 

the purpose of this chapter to ennmerate dl possible types of haptic devices, a brief 

snrvey of the other types of devices will be provided here for the benefit of the 

reader . 

One fasMating dass of haptic intdace is the hand display. Gomez et al. [40] 

investigate the modelling of one such display, the "Rutgers Master II" haptic dis- 

play. The Rntgers Master II display comprises a set of pneumatic actuators and 

linear position sensors motmted on four digits of the opaator's hand. Other sensors 

are also employed. The device can sense hand gestures and provide forces to four 

digits, yet weighs only 80 grams. 
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Caldwd et al. (411 have developed another hand display they dub the "Tac- 

tileGloven . The TactileGlove incorporate mechanorecep tive, thermorecep tive and 

proprioceptive feedback, all in one device. (Proprioception is the ability of the 

body to sense the orientation of its limbs, the movement of joints and resistance to 

movement, independent of surroundings. This information is provided by sensors in 

the muscles, tendons and joints. Mechanorecep tion involves the sense of pressure, 

touch, vibration, slip, etc. on the skin. Thermoreception entails the detection of 

temperature [4l]. ) Air pressure is used to provide low-frequency mechanoreceptor 

feedback and piezwlectric actuators are used to induce medium and high-fkequency 

mechanorecep t or feedback. Thermorecep tor stimulation is provided by Peltier de- 

ments, and the proprioceptor feedback by a force reflecting joystick. 

Tzafestas and Coiffet [42] also have a hand display dubbed the " L W  Dextrous 

Hand Master". Tzafestas and CoSet's work [42] centres on the computation of the 

contact forces required on each phalaw of the human hand to produce a realistic 

simulation of grasping a Wtual object. 

The impact of higher frequency feedback is less intuitive, but experiments by 

Wellman and Howe [43] demonstrate that high fiequency feedback can impart a 

sense of surface stifhess and texture to a human operator. Wellman and Howe [43] 

refer to t his higher fiequency feedback as "vibrot actile feedback" . Snch vibrotactile 

feedback is used by Wellrnan and Howe [43] in conjunction with lower fiequency 

force feedback to investigate its impact on human perception of surface sti5ess 

and texture. 

Submersive haptic displays are also presented in the literature. For example, the 

operator stands inside the "whole body kinesthetic display devicen [44] of Roston 

and Peurach, with each foot on a six-degree-of-feedom actuated footpad. The 

actnated footpads d o w  presentation of arbitrary terrains. Also induded in the 
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device are actuated "ground pads" to allow the operator to kneel, crawl, etc. A 

**vertical feature emulator" provides features such as windows, doors, etc. 

Most hap tic displays involve direct and continuous contact between the operator 

and the haptic device. Realisticdy, for such a device to provide a true sense of free 

motion when the operator is not in contact with a virtual object, the force exerted 

by the device on the operator must be below the operator's threshold of touch 

sensation. The human fingertip is extremely sensitive so giving the impression 

of "non-contact" while maintaining continuous contact with the device is quite 

difficult, if not impossible. Yoshikawa and Nagura [45] have developed a haptic 

interface which does not maintain contact with the operator. Instead, the operator 

puts their h g e r  inside a ring, and the haptic control system tracks the user's finger 

to avoid contact except where the user impacts an object in the virtual environment. 

Wannasuphoprasit et al. [46] developed a novel haptic interface by considering 

the design foremost from the perspective of operator safety. Hence, the "cobotn 

of Wannasuphoprasit et al. [46] is a mechanically passive device, in which device 

motion is provided entirely by the human operator. The cobot only provides con- 

straint forces. For example, in the "unicyde cobotn of Wannasuphoprasit et al. [46], 

the unicycle wheel is actively steered, but not driven. While the inherently pas- 

sive nature of a cobot places restrictions on its capabilities for simulating virtual 

environments, its novel passive design is suitable for applications such as the pre- 

sentation of Wtual "guides" in automotive and aircraft assembly, etc. 

2.4 Flexible Structures 

The five-bar linkage robot employed for the experimental research discussed in 

chapter 6 is a flezible manipdator. It is termed a Yiexible" manipdator becanse 
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the last link is flexible. Joint flexibility is not considered. The flexible link is in- 

troduced into the robot design so that its deflection may be used to measure the 

forces being exerted by the user on the end-effector. Thus, the robot structure it- 

self serves as the force sensor. However, link flexibility complicates the robot model 

since Bexibility is generally represented by nonlinear partial diff'ential equations. 

Furt hermore, flexibili ty typicdy result s in undesirable vibrations. For the hap tic 

application considered in this work, eliminating such oscillation is particularly im- 

portant. Hence, a survey of the Literature in position control and force control of 

flexible structures is presented here. 

2.4.1 Position-Control of Flexible Structures 

A cornparison of Mnous position control strategies, both optimal and non-op tim i d ,  

for the single flexible link is presented in (471. The optimal control strategies em- 

ployed were the rigid body linear quadratic regulator (LQR), the flexible body 

LQR, bounded-input H2 one-parameter Hm and tweparameter H, . 

The ngid body LQR controller is simply an LQR controller designed strictly 

for the rigid mode. Flexibility is ignored and the output variabte is chosen to be 

the hub angle rather than the tip position. Since this controller ignores the link 

flexîbîlity entirely, an impulse disturbance can lead to instability. 

The flexible body LQR controUer is an LQR controller based on the model of the 

flexible system. Hence, the output variable is the tip position rather than the hub 

angle. Obvionsly, by including some of the flexible modes, the order of the controller 

is higher. Cannon and Schmitz [48] designed a flexible body LQG controller for a 

single flexible link. In fact, Cannon and Schmitz are generally acknowledged as the 

fust to study the control of a single flexible link experimentally. 
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The bounded-input HI technique attempts to minimize the mean-squared error 

between the actual tip position and the desired tip position, while maintainhg a 

bounded toque command signal. Unfor t unately, the technique requires the refer- 

ence signal to be known and the design procedure is "very cornplex" [47]. 

The H, techniques weight the uncertainty in the model in the frequency do- 

main, with the goal of obtaining robustness to modelling errors and disturbances. 

In the H,  designs of [47], the higher order flexible modes that are not included 

in the plant model are treated as multiplicative uncertainty. The advantage of in- 

cluding the unmodelled modes as unstructured uncertainty is increased robustness 

to spillover effects. Spillover is the efFect of the control on unmodelled higher order 

modes. Under certain conditions, the interaction of the controller with these higher 

order modes can lead to instability if the higher order modes are not included in 

the model for control design [49]. While the natural solution would be to increase 

the number of modes in the model, augmenthg the model often leads to higher 

order controllers, which are undesirable. 

Pieper [50] taddes the issue of controller order in H2 and H, designs by using 

order reduction techniques to reduce the order of the optimal controllers. However, 

he notes the impact of this order reduction on controlla performance and conclades 

that there appear to be nominal bounds on the reduction before performance be- 

cornes unaccep table. 

The non-optimal control strategies outlined by Wang in [47] are the rigid 

body proportional-derivative (PD) controller, the passive flexible controller and 

the dosed-loop shaped input controkr. The rigid body PD controller, like the 

ngid body LQR controuer, treats the hub angle as the output variable and does 

not include any of the flexible modes in the model. The rigid body PD controuer 

is the type of controller typically employed by indnstry. 
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Figure 2.13: Passive, Minimum Phase Output 

The passive flexible controller is based on an alternative output variable which 

includes the tip position but resnlts in a minimum-phase, passive, transfer function 

between the input motor torque and the output. The normal tip position results 

in a non-minimum-phase transfer function, bat by using the scaled, reflected tip 

position, Pr(x) ,  as shown in Figure 2.13, a passive minimum-phase transfer function 

results, provided the link is sdciently stiff. This result was demonstrated by Rossi, 

Zuo and Wang [SI]. In the cornparison of [47], a scaling factor of r; = 1 is used. 

The dosed-loop shaped input technique is a dosed-loop version of the open- 

loop shaped input of Singer and Seering [52]. The shaped-input technique is best 

understood by a simple example. Let p(t)  be the unit step function. Suppose a 

sinusoid, ~ ~ ( t )  = Asin(wt)p(t) is fed to a linear time-invariant system, P. The 

output wil l  also be a sinusoid, yi ( t )  = B sin(& + a)p(t) , due to the linearity of the 

system. Let r2(t) be the same input sinusoid delayed 180". By adding the delayed 
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input to the actual input, i..e, r ( t )  = r l ( t )  + r 2 ( t ) ,  the output becomes: 

Hence, the output goes to zero for all t > 5. Due to superposition, the delayed 

input leads to complete destructive interference at the output. The same principle 

can be applied to cancelling vibration in a flexible beam. By adding more delays, 

th- system can be made more robust to uncertainty. Zuo and Wang [53] further 

increased the controller robustness by putting the shaped-input controller into the 

closed-loop. 

Recent work in improving the results of open-loop input shaping include the 

adaptive approach of Bodson [54] and the strategy of Magee, Cannon and Book, 

which combines input shaping and inertial damping 1551. 

Rattan and Feliu [56] examine disaete-time feedforward control in which the 

plant inverse is approximated using Wiener filter theory. The result is a more 

general version of the open-loop shaped-input controller of Singer and Seering [52]. 

Work has also been done on multiple flexible link manipulators, such as the two 

flexible link robot of Morris and Madani [57]. Morris and Madani [57] compare 

open-loop computed torque techniques to a quadratic optimal controller. 

Also, Artega [58] develops a dynamic model of flexible link robot manipulators 

using Lagrange's equations and a serial chah approach. Artega highlights prop- 

erties of the model resulting fiom physical attributes and the choice of flexible 

model. 

An interesting variation on Hm control of a flexible link is presented by Tcherny- 

chev et al. [59], who investigates the application of coristrained Hm control to tip 

position tracking. Constrained X, control, according to the authors, involves opti- 

mkbg the H, norm under the constraints imposed by thedomain  spedications. 
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The key point to note is that the time-domain specifications are not translated into 

the frequency domain, so the results are apparently much Iess conservative. 

AU of the control strategies discussed to this point have been linear t h e -  

invariant . Some non-linear or time-varyin6 position con trol s tra tegies have also 

been attempted. Kubica and Wang [60] designed a time-invariant fuzzy-logic con- 

troller that was highly successfd at reducing vibration in the flexible link. Bayo et 

al. [61] investigated an open-loop Uinverse dynamics" controller with limited suc- 

cess. Neural networks have also been applied to the control of flexible manipulators, 

such as the work of Talebi et al. [62]. Adaptive control strategies have also been 

ap plied. For example, Rokui and Khorasani [63] employ a mu1 ti-ou t pu t recursive 

least-square algorithm for adaptive feedback linearization of a single flexible link. 

Moallem et al. [64] use a non-linear observer to estimate the rates of change of 

the flexible modes. These rates of change are then used in an inverse dynamics- 

based control strategy to provide stable tip position tradting. (The non-linear 

observer is used to cancel particulas nonlinear terms in the dynamics.) Modem et 

a1.k work iç expanded in [65]. 

Another non-linear approach is the "model-fiee approach" of Zhu and Ge [66]. 

Th& controller is essentidy a PD controller with an added non-linear integral 

tenn designed to enhance the controller's abiliky to suppress the link vibration. 

The added term allows for some generality in its definition and a Lyapunov stability 

result (based on energy concepts rather than specitic linear models) is presented. 

Udortunately, the result s are currently only applied in simulation, alt hough the 

PD nature of the controller augnrs well for its implementation. 

Also considered in the literature is the related problem of transportation of 

flexible payloads by a rigid manipulator. For exzunple, Majors and Richards [67] 
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develop new real-time dynamic programming methods and apply them to the tram- 

portation of a flexible link, with the goal of minimizing the transportation time - 

including the time for link vibrations to cease. The real-time dynamic program- 

ming (RTDP) technique employed improves upon the work of Barto et al. [68]. 

By borrowing concepts from s p m e t n c  successive over-relaxation techniques for 

iteratively solving a system of linear equations, Majors and Richards manage to re- 

duce the number of iterations required to solve the dynamic programming problem 

formulated for tlieir transportation expriment by up to 50% over the methods of 

Barto et al [68]. 

2.4.2 Force-Control of Flexible Structures 

Force control of flexible structures is still a nascent field, so it is only recently that a 

body of literature has begun to appear. Some early work was performed by Tilley 

et al. [69], who used a fast end-dector mechanism to improve the position and 

force response of a flexible manipulator. However, Tilley et al. only performed 

force control on the end-efFector wrist; position control was employed to "slew the 

main arm into the wrist's operating envelopew 1691. Such a "dual" control system 

is limited in application because the position of the environment must be known 

to within the workspace of the end-efKector wrist. For an environment, such as a 

human operator's hand, which is moving dong an unknown trajectory, the daal 

control scheme is entireIy inappropriate without some mechanism for detecting the 

environment location. 

Matsuno et al. developed a "quasi-static hybrid position/force control" [70] 

algorithm for an elbow manipulator with both Illiks flexible. The control scheme 

is c d e d  "quari-static" becanse several technicd assamptions had to be made in 
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order to make the problem tractable. Further assumptions were necessary to apply 

the theoretical results to their experimental apparatus. For details, refer to [?O] 

and [71]. 

Further work by Matsuno. Umeyama and Kasai on force control of flexible struc- 

tures may be found in [72]. There, they develop a robust Hm force control strategy 

for a flexible link wit h a symmetric ngid body fastened to the tip. Performance of 

the control strategy is validated by experimental results. 

Yoshikawa et al. [73] also considered an elbow manipulator with both links flex- 

ible. However, like Tilley et al. 1691, Yoshikawa et ai. also added a fast, ngid 

"micro-manipulator" [73] with two degrees-of-freedom to the end of the elbow ma- 

niptdator. Two control systems are developed in 1731. The first scheme employs 

Yquasi-staticn control in which only the position of the elbow manipulator is con- 

trolled, while force control is applied to the rigid micro-manipulator. In order for 

this first approach to remain valid, the dynamics of the "macro" dbow manipula- 

tor must be effectively uncoupled fiom the dynamics of the micro-manipulator. In 

th& second scheme, simple proportional-derivative feedback control is applied to 

the joints of the elbow manipulator. However, the control algorithm for the micro- 

manipulator is designed to compensate for position and force mors in the flexible 

elbow manipulator. More recently, Lew [74] used the rigid micro-manipulator in n 

maao/micro manipulator experiment to actively damp out vibrations in the flex- 

ible rnacro-manipulator, while the contact force is regulated by a force-damping 

controller based on a combined mode1 of the micro/macro- manipdator. 

Chiou and Shahinpoor [75] applied a more conventional approach to force control 

of an elbow manipulator with both links flexible. Chion et al. [75] derived the 

equations of motion for the elbow manipulator asing a Lagrange formulation and 

then linearized the resulting non-linear equations about an opaating point. Hybrid 
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force/position control was then employed, based on the iinearized system. By 

examining the eigenvalues of the A-matrix in the state-space representation of the 

linearized system, for various Link stifhesses, Chiou et al. 1751 observed that the 

flexibility of the fUst link in the elbow manipulator dominates the system stability- 

Hence, a manipulator with the first link ngid and second link flexible is "more 

stable" [75] than a manipulator whose fust link is flexible and second link is rigid. 

Chiou et al. (751 also observed that the discontinuous contact of the end-effector with 

the environment result ed in limi t cycles. Furt hermore, variations in force sensor 

stiffness also affect system stability. Reducing the force sensor s t f i e s s  improves 

stability at the expense of positional accuracy [75]. 

Pfeifk et al. [76] considered an n-link rnanipulator with all links flexible. For 

vibration suppression, a hybrid position/force controller was investigated, where a 

proportional-derivative (PD) controller was used for the position control and pro- 

portional control (P) for forces. Feedforward terms were also included, where the 

feedforward terms were calculated in two steps. First , the nominal actuator torques 

are calculated for the reference trajectory assuming the robot links are rigid. Sec- 

ond, the elastic deformations due to flexibility are computed, and corrections ap- 

plied to the nominal actuator torques to compensate for elastic defomations. The 

ac tuat or torques for the feedfomard terms are calculat ed off-line for efficiency, while 

the PD and P controllers for position and force are applied on-line to compensate 

for modelling and feedforward errors, dong wit h dis turbances. 

Kim et al. [77] &O consider hybrid position/force control of multi-degree-of- 

freedom (multi-DOF) flexible manipulators. Kim et al. [77] note that due to the 

relationship between elastic deformations of a flexibIe link and the force ererted 

on the link tip, regdation of contact force &O moddates link vibrations. Hence, 

Kim et al. [77] decouple, under certain assurnptions, the dynamics of a mdti-DOF 
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system into two subsystems: a "constrained motion subsystem" which is iduenced 

by the contact force, and a "free motion subsystem" for which the impact of the 

contact force is negligible. The contact force is regulated for the constrained motion 

subsystem, but not vibrations, due to the observation above. Link vibration is 

ody modulated for the fiee motion subsystem. The control outputs are based on 

velocity commands due to the velocity feedback servomotors of their experimental 

apparatus. 

Chang and Fu (781 apply nonlinear adaptive control to a two-Iink planar flexible 

manipulator for the purpose of automated deburring. Again, hybrid position/force 

control is employed, with singular perturbation theory used to divide the dynamics 

into a slow and fast subsystem for control. 

Recently, Chang and Chen [79] used the hub angle and deflection of a single 

flexible link to estimate contact force and so design a force controller for the single 

flexible link that does not require a force sensor. The controUer structure entails a 

fast inner loop PD controller for the motos angle and a slower outer loop for the 

constraint force. The outer loop controller employs sliding mode control. 

Cornpliance of flexible manipulators has long been touted as one of th& advan- 

tages. Yet few stndies exist which examine impacts between flexible structures and 

objects whose position is completely unknown. Moorehead and Wang [80] address 

this issue by using strain gauges readings to estimate forces ererted at any point 

dong the flexible beam and hence to detect contact with an rrnknown object. Once 

contact has been ascertained, the controller switches from position control to force 

control in order to minimire the d e c t  of the impact. Limited positive acceleration 

feedback is introduced to rednce the overshoot in the force response. The r e d t s  

have application to operator safety and robot protection since the techniques allow 

a flexible robot to detect unexpected collisions in its workspace. 
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Modelling 

3.1 Motivation 

Two experimental apparatus are employed in this research - a simple linear mech- 

anism, and a &id five-bar linkage robot with an attached flexible link. Fiiture 

research will likely focus on more degrees of freedom and other robotic configura- 

tions, so a general framework has been chosen for the model development. The 

model is based upon a flexible link which is free to vibrate in two directions. This 

link is clamped to an arbitrary robot. An assumed modes approach is taken to 

the modelling of the flexible link [SI]. The base robot may be rigid or flexible. 

The mode shapes for the flexible beam are assumed to be orthonormal, and any 

number of rnodes may be used. The besm cross-section need not be square but an 

Euler-Bernodi beam model [82] is assumed. 

Because of the generdity of the model, it may also be applied tc a rigid robot 

picking np a flexible payload (831. The model &O attempts to separate the base 

robot terms and fl&bIe link terms so that the &ect of the flexibüity on the robot 



dpamics is readily apparent. In order to do this separation, the dynarnics are 

expressed using Kronecker tensor products [84] and permutation matrices. The 

final dynamic equations are applied to the traditional single-flexible-link experiment 

to demonstrate their validity. The application of the model to the five-bar robot 

employed in this research is also investigated. 

3.2 Preliminaries 

Modelling of robotic manipulators typically involves operations such as rotations, 

translations, vector products and dot products. Yet the final dynamic equations 

are more conveniently expressed in matrix form. Hence, matrix represent ations 

of the above operations are defined to facilitate development of the general model 

in matrix form fkom the outset. Common operators, such as rotation matrices 

and skew-symmetric matrices, are defmed in Appendix D, dong with some u s a  

properties. However, a matrix calculus is d e h e d  here so that the Euler-Lagrange 

equations may be applied in matrix form. In order to develop properties of the 

matrix calculus, the Kronecker tensor product is also discussed. 

3.2.1 Kronecker Tensor Products [l] 

A u s a  operator for expressing equations in matrix form is the Kronecker tensor 

product, denoted by B. Let A E RnxP and B E RmX? Then the Kronecker tensor 

product of A and B is defined as: 
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Define a transformation m a t h ,  Tw, as: 

The transformation is a permutation matrix. The definition provided here has 

a different form than the one in [l]. However, this definition is readily extended to 

the more general permutation matrix presented in section 3.2.2. The more general 

form is not discussed in [l]. 

The transformation of (3.2) is introduced here, as it is in [1], in order to allow 

the Kronecker product to be commuted. Being a permutation matrix, the matrix 

Tuv may be expressed as the product of elementary row or column operations. It 

simply exchanges rows or columns of the matrix on which it operates. While the 

transformation is introduced to commute Kronecker prodacts, it may also be used 

to interleave matrices and its action is probably best tmderstood in this capacity. 

For example, consider two matrices, A and B partitioned into column vectors 

and bi i.e., 

Pos t-multiplication by TaVp interleaues the 

[A BI T2,P = [a, 

columns as follows: 

The subscript 2 indicates that there are two matrices to be interleaved while the 

subscript p denotes the nnmber of columns in A and B. Pie-multiplication rnay 

be nsed to interleave rows. The motivation for the transformation cornes £iom the 
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column par titioning pro blem in matrix calculus, discussed in section 3.2.2. Refer 

to [Il for details conceniing the Tw permutation matrix and its application to 

Kronecker products. Refer to [85] for the more general permutation matrix and the 

application of permutation matrices to interleaving and matrix calculus. 

Properties 

The Kronecker tensor product has a number of usehil properties. The properties 

enumerated below are particularly relevant for the ensuing derivation of the general 

dynamic equations. Define In to be the n x n identity m a t h  and let A E !RnXP 

and B € !RrnX". 

0 If either A or B is a row vector then: 

A @ B = ( B  8 A)T,, since Tl, = IV and Tut = 1, (3.4) 

a If either A or B is a column vector then: 

A @ B = T,,(B @ A), since Ttv = IV and Tui = I, (3.5) 

ii. ( A + B ) ~ C = A ~ G + B O C  

iiî. ( A ~ B ) ~ = A * @ B ~  

iv. (A O B)(C @ D )  = (AC Q BD)  (3.8) 

These properties are proven in [Il. 
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3.2.2 Matrix Calculus 

Since matrices are used throughout the modelling, a few fundamental matrix cal- 

culus relationships will be derived. The key concept here is the extension of the 

standard "vector" Jacobian to a matrix Jacobian. Let x = (zl z, , . . z,)T be 

a real-valued vector function of tirne, t , and let fàj (x) , i = 1, . . . , n, j = 1, . . . , p, 

be real-valued differentiable huictions. Let F denote the matrix function, F ( x )  = 

[fàj(~)]il,, , , . Then the matriz Jacobian is defined as the n x mp matrix 

fuac t ion: 

Note that if F is a colurnn vector function then this definition reduces to the 

standard Jacobianl. Let A E S n X P  a ~ d  let g. be a vector representing the ith 

column of A. Define: 

vec(A) = 

This uectoruing fnnction, vec(A), codd also be defined to arrange the matrix el- 

ements in row major order instead of column major order. The ordering is not 

important as long as it is applied consistently [86]. 

Application of the m a t h  Jacobian often leads to situations where an extended 

form of the transformation matrix T, is expedient. Define the partitioning trans- 

formation, P ,,..-., a,,v, as follows [85]: 

lSee Brogan [86] for a definition of the standard Jacobian mat* 
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The transformation, Tm, of (3.2) interleaves the columns of matrices. The parti- 

tioning transformation, P., ,... is more 

For example, let A E RnxV and partition 

Similady, let B E IInXV8 and partition B 

general, and can interleave submatrices. 

A into submatrices, A, E RnXP Le., 

into submatrices Bi E IRnX': 

Then P. ,p ,  interleaves the submatrices as follows: 

Note that if A and B are partitioned into individual colamns i.e., p = 1 and s = 1, 

t hen r educes t O T2 ,, . In general [85] , 

Pro perties 

Let x E IRmxl,A(x) E !RnxP, B(x)  E Rrx' and F(x)  E W x P .  Let ( * ) '  denote 

differentiation with respect to the vector x so that F is defined as in equation 

(3.9) and let () represent differentiation with respect to t h e .  Use 1 .  to denote the 

nz x m identity matrix. Then2: 

i- (A 8 B)' = At@ B + (A@ Bf)P. ,... ,., 
v 

"roperties are proven in ES51 
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O If A is not a function of x then 

( A  @ B)' = ( A  8 B')Pa, . *  . , .,p 
v 

m 

O If B is not a function of x then 

ii. (AB)' = A'(I, @ B )  + AB' 

O If x is a scalar (m = 1) then 

(AB)' = A'B + AB' 

If A is not a function of x then 

(AB)' = AB' 

O If B is not a function of x then 

(AB)' = At(I, @ B) 

O If F is a column vector (p = 1) then 

iv. vec(x) = x, vec(xT) = x 

V. x' = I . ,  (xT)' = M C ( I . ) ~  

vi. If A and B are compatible for multiplication ( p  = r )  then 
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Partitioning 

In the derivation of the dynamic equations, matrices are partitioned into subma- 

tnces which represent the base and flexible components and cross-coupling terms. 

Hence, it is convenient to define the effect of Merentiation upon submatrices within 

a matrix, or differentiation by a vector which itself may be partitioned into base 

and flexible components. Let x be an m-vector and F ( x )  be an n x p matrix. 

i. Vector Partitioning 
r i 

Let x be partitioned as follows: x = L I -  
ü. Row Partitioning 

Let F be partitioned row-wise into two submatrices: 

Let F be partitioned colnmn-wise into r submatrices: 

where Fi has si columns for i = 1,. . . , r.  Then: 



CHAPTER 3. MODELLZNG 56 

Since the permutation matrix only operates upon the columns, row and col- 

umn partitioning may be combined by partitioning the matrix F into rows 

pnor to column parti tioning. 

3.3 Flexible Structures 

The general model derived in this chapter is bnsed upon a flexible link mounted 

on an arbitrary robot. However, before embarking on the derivation of the general 

dynamic equations, it is instructive to investigate the theory behind the modelling 

of flexible beams, since it is this vibration theory that is employed in the subsequent 

derivations. The theory is better described within the context of an application, so 

the traditional single flexible link experiment of Figure 3.1 will be considered [87, 

471. This single flexible link application will be revisited after the dynamics of the 

general model are derived in order to verify the results. 

Motot 

Figure 3.1: Single Flexible Link 
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The figure is a top view of the Iink. The link is typicdy an aluminum or 

steel beam of narrow cross-section. For this example, the link is mounted to a 

motor which is used to control the beam behaviour and the height of the beam is 

presumed to be much larger than the width so that only transverse vibrations are 

possible. Furthemore, the vibrations are assumed to occur in the horizontal plane 

so that gravitational forces may be ignored. In the generd fiamework, transverse 

vibrations and gravitational forces are included in the dynamics, but, for simplicity, 

these factors are ignored in this example. 

The frame xi-yl is chosen such that the zl-axis is tangent to the link at the 

motor (or hub). The frame xi-y1 is rotated fiorn the base frarne zo-y0 by an angle 

qo. This frame is convenient because the angle qo is easily measured by an optical 

encoder or potentiometer mounted on the motor. The XI-y1 frame could also have 

been chosen to pass through the centre of gravity of the link, but Belleza et al. [87] 

demonstrated that either frame may be chosen. The resdts would only difFer by 

a linear coordinate transformation. Although no payload mass is included in this 

derivation, Belleza's results [87] hold even when a payload (with both mass and 

inertia modelled) is added to the end of the flexible beam. 

The displacement of each point dong the neutral axis of the beam fiom the 

zl-yl fiame as a fanction of time is denoted by u(x, t). The neutral axis is the 

axis of the beam that experiences zero stress [88]. For example, consider the beam 

dement depicted in grey in Figure 3.2. As the beam is bent upward, the portion of 

the beam element above the neutral axis experiences compressive stress while the 

portion below the neutral axais undergoes tende stress [88]. 

Let 1 be the length of the beam. Since the neutrd ~ does not experience 

any stress, the arc length of the neutral axis in the bent beam is also 1. Thus, the 

x-coordinate of the end of the neutral axis, x., is less than 1 and the displacement 
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Figure 3.2: Beam Element in Bending 

of the end of the beam over t h e  is v(xe, t), not v( l ,  t). However, for small tip 

deflections, ze 1 and v(ze,  t )  zz v(1, t). In the subsequent analysis of the single 

flexible link, borrowed fiom Wang (471, it will be assumed that tip deflections are 

"small". Furthermore, damping in the beam will be ipored. Assume a uniform 

beam with hear mass density, p. 

Consider a point P(x) on the beam, as shown in Figure 3.1. The dependence 

on tirne of q~ has been omitted for darity. The coordinates of P(z, t) in the XO-y0 

ffame are: 

x cos(q0) - v(x, t ) sin(q0) 
p w ,  = 1 

= sin( qo) + v  (2, t ) cos(q0) J 
Since a Lagrangian approach d l  be used to develop the dynamic equations of the 

single flexible link, the kinetic and potential energies of the beam must be derived. 
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Let (j denote 

kinetic energy 
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the time derivative of the quantity in 

of the flexible link, assuming x, = 1 is: 

r 1 

59 

parentheses. Trividy, the 

Let Ih represent the inertia of the base motor Le., the hub inertia. Then the kinetic 

energy of the hub is: 

yielding a total kinetic energy of: 

Crrlculation of the potential energy of the flexible beam is more involved. It is 

derived in detail in Appendix A. Let ( e ) '  denote difkentiation with respect to z, 

or the spatial derivative. Rom (A.4), the potential energ- of the flexible beam is: 

Clearly, in order to compute the Lagrangian using the kinetic and potential 

energy expressions, the displacement of each point on the beam, v(x, t), rnust be 

known. For control purposes, it wodd be preferable to have a semi-discretized r e p  

resentation (an orduiary difkentid equation), resalting in a finite-dimensional sys- 

tem rather than the infinite dimensional system that arises fiom the partial differen- 

tiation of v(x, t). For this purpose, the assumed modes approach of Meirovitch [81] 

wil l  be employed. In this method, it is assamed that the variables may be separated 

such that the beam deflection takes the form: 



The function Q ( t )  is a time-varying function that modulates the modal shape func- 

tion, 9(x) .  A modal shape function which approximates the exact solution is ch* 

sen. The Euler-Lagrange dynamic equations are then used to solve for Q(t) .  Such 

an approach mirrors the Rayleigh Method refened to in [82]. The result should 

provide a good approximation to the actual beam dynamics (in an L2 sense). 

Mode shape functions for the Euler-Bernoulli beam model and damped-free 

boundary conditions are derived in Appendix B. The Euler-Bernoulli beam model 

assumes that plane faces remain plane within a beam element and factors such as 

rotary inertia and shearing deformations are ignored [82]. These assumptions are 

standard and are appropriate for the flexible link employed in this work. While par- 

ticdar mode shapes are not assurned in the general model of this chapter, torsional 

vibration and shearing deformation are ignored, consistent with an Euler-Bernoulli 

beam model. However, an irnport ant observation from the derivation in Appendix B 

is that the separation of variables assumption typicdy leads to an infinite nurnber 

of particular solutions, &(x) and qi( t ) ,  i = 1 . . . m. The total solution is the snm 

of the patticular solutions, whence: 

A convenient property 

be refmed to throughout 

Rom (B.14) 

ityn relations 

and (B.15) 

hold if the 

of the mode shapes for the damped-free beam that will 

this chapter is orthogonality i.e. that for i # j: 

in Appendix B, it is clear that these 

beam has d o r m  mass density, EI is 

two "orthogond- 

constant and the 
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boundary conditions for the beam satisfy: 

This relationship is valid for a variety of boundaq conditions, such as clarnped- 

free, damped-pinned and clamped-clamped. Also, as discussed in Appendix B, 

orthogonal mode shapes, 4i(x), may be "normalizedn such that: 

Kinetic Energy for the Single Flexible Link 

The displacement, v ,  for an unforced clamped-free beam takes the form of equation 

(XE), where the modal shape functions, + i (x ) ,  are defined by equations (B.8)- 

(B.9). In the case of the single flexible link shown in Figure 3.1, the hub actuator 

exerts a force on the link. However, a reasonably accurate mode1 of the single fiex- 

ible Illik behaviour can be obtained by assuming that the modal shape functions 

are the same as those of the udorced clamped-fiee beam, while the tirne-varying 

fwictions, qi ( t ) ,  are treated as the generalized coordinates. Thus, instead of as- 

ing qi ( t )  = et , the Euler-Lagrange formulation is employed to determine the 

goveming equations for each qi ( t ) .  Note that by using the eigenhctions for the 

damped-f5ee beam, the ort hogonality and normalization relationships hold. Fnr- 

thermore, for practical purposes, let the displacement 

a finite number of modes, n. Thus, 

V ( Z ,  t) be approximated using 
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Now, consider the kinetic energy of the single flexible link, as defined by equation 

(3.24). The tirnederivative of the position, P, is: 

Substituting the above expression into (3.24), the kinetic energy, T, is: 

Now, fiom equation (3.26): 
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Similady, 

by ort hogonali ty 

by normalization 

Substituting this result into equation (3.27), the kinetic energy in terms of the 

eigenfunctions and generalized coordinates is: 

Potential Energy for the Single Flexible Link 

As derived previously, the potential energy for the single flexible link is: 

Let Xi and w; be dehed as in Appendix B for i = 1 . .  . n. From equation (3.26): 

by normalization and (B.16) 
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Euler-Lagrange Equations for the Single Flexible Link 

Combining the expressions for the potential and kinetic energies, the Lagrangian 

of the system, L = T - V, is: 

Let ri be the generalized force acting upon the generalized coordinate, qi. The 

Euler-Lagrange equations stipulate, for each generalized coordinate: 

Now, for the rigid body mode, corresponding to generalized coordinate, qo: 

Hence, if T is the torque exerted by the motor at the hub, then by equation (3.28) : 

For the kth flexible mode, corresponding to generalized coordinate, qk: 
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Since there is no generalized force acting upon the flexible modes, ~ r ,  = O. Hence: 

Equations (3.29) and (3.30) dehe  the dynamic equations for the single flexible link 

show in Figure 3.1. Define: 

Then equations (3.29) and (3.30) may be written in matrix form as: 

M(q)Q + Ch, q) + Kq = T 

Note that the inertia matrix is symmehlc. 
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Only M(q) and C(q, q) are functions of the generalized coordinates. Define: 

It is easily shown that by linearizing (3.31) about the stationary operating point 

q = O and q = O, the inertia matrix becomes M and the centripetal and Coriolis 

terms disappear. To put the linearized equations into state-space form, define the 

state vector: 

Let the output, y, be defined in traditional fashion as the arc length from the base 

Frame to the tip of the beam: 

Since small deflections have been assumed, the distance v(1, t )  may be used to 

represent the tip deflection arc. The arc length is a natural displacernent for the 

rotary single flexible link and its use avoids the tngonometric relationships inherent 

to a Cartesian displacement. Let 8 = [ I  A (1) 4441 Then, the dynamic 

equations in state-space are: 



3.4 Forward Kinematics 

The dynamic equations for a simple single flexible link experiment have been derived 

in the preceding section. The full dynamic equations for a flexible link mounted 

upon an arbitrary base robot will now be considered, using the same assumed modes 

approach of Meirovit ch [BI] for m o d e h g  the flexibility t hat was employed in the 

preceding section. The flexible link attached to a base robot is shown schematicdy 

in Figure 3.3. Let: 

XQ-N-ZQ = base fiame of the base robot 

x.-y,-%. = frame of attached end of flexible link 

2 = length of flexible beam 

m = degrees of fieedom of base robot 

q(t )  = generalized coordinate vector of base robot, q(t)  E 91" 

H,'(q, t) = homogeneous transformation relating base fiame to flexible frarne 

v(x, t) = deflection of flexible beam in y, direction 

w(xl t) = deflection of flexible beam in z. direction 

The andeflected beam lies dong the z, axis. The beam is assumed to be a line. 

Hence, there are no rotational inertia efFects. It should be noted that in s p e d c  cir- 

cumstances, this assumption can lead to misleading results. In partidar,  suppose 

the base robot consists of only a rotary motor and the flexible beam is mounted 

such that its neatral axis corresponds to the axis of rotation. Assume the actnator 

has no rotationd inertia. Since the beam is also modelled as having no rotationd 

inertia, the kinetic energy of the beam will be zero and the resulting inertia ma- 

trix will be singular. Such singularity is not possible for a real physical system. 

Howeva, by acconnting for the rotational inertia of the actnator, the singaiarity 



Figure 3.3: Flexible Beam Mounted on a Base Robot 

problem disappears and the mode1 is more realistic. Generdy, a base robot has 

non-zero inertia with respect to each axis so the assumption that the beam ha9 no 

rotational inertia is reasonable and wiu not result in a singular inertia matrix. 

It is fnrther assumed that beam defiections are s m d  and extension or compres- 

sion of the beam dong the x. axis is negligible. Hence, the point p expressed in 

frame e coordinates is simply: 

The assnmed modes approach will be used for modehg  the flexible beam. Define, 
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for i =  l...oo: 

ipà(x) = mode shapes of the beam in the 1 ~ .  direction 

vi(t) = generalized coordinates of the beam in the y, direction 

+$;(x) = mode shapes of the beam in the z. direction 

vi ( t ) = generalized coordinates of the beam in the ze direction 

Thus, the beam deflections v ( z ,  t )  and w(x, t )  may be written: 

For convenience, define the n-vectors: 

and write the base robot generahed coordinates as: 

Hence, by (3.33) and (3.34): 
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3.4.1 Translation 

The homogeneous transformation Hg of Figure 3.3 may be expressed in terms of 

a rotation matrix, R = &(q, t )  E SO(3) in conjunction with a translation vector, 

Similady, the coordinates of the point p on the flexible beam, expressed 

(3.42) 

in base 

jkame coordinates, po, represents a translation from the base frame to the point p 

on the beam. Clearly by (3.40)-(3.42): 

3.4.2 Orientation 

In order to have a cornplete homogeneous transformation fiom the base fiame to a 

point on the flexible beam, the orientation of the beam at the point, p, must also 

be considered. Observe the &ame attached to point, p, in Figure 3.4(a). The x, 

axis of the h e  is tangentid to the neutral axis of the beam. The y,-+ plane Les 

in a planar cross-section of the beam at point, p. 

The tip deflection of the beam is modded by two displacements: v and w, in 

the y, and r. directions respectively. Rotation about the ze axis, or roll, is not 

considered so the orientation of the h e  xP-yP-+ may be expressed by two angles, 

B and #, representing pitch and yaw respectively. These two angles are ilhstrated 

individudly in Figures 3 4 b )  and 3.4(c), and together in Figure 3.4(d). 
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(b) Angle 8 

=P 

(a) Axes at p 

Figure 3.4: Flexible Beam Orientation at Point, p, Along the Beam 
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It is clear from Figure 3.4(d) that the transformation korn frame e to frame p 

may be accomplished by h s t  rotating frame e through an angle 4 about the y, axis  

to get a new h e ,  frame e'. Denote this new kame by x:-&z:. Rotate frame e' 

about its z: axis to get frame p. Since small deflections are assumed, the same 

result may be obtained by rotating about the z, axis first and then about the y: 

axis. 

Let %,+ be the rotation through angle 4 about the y,-axis and RZqe be the 

rotation by 0 about the 2:-axis. Then the net rotation matrix, Q, fiom frame e to 

frame p is [12] : 

For convenience, define: 

From Figures 3.4(b) and 3 4 ~ ) :  

Assuming s m d  deflections, let (ut)* = ( w ' ) ~  = v'w' E O. Hence, firom (3.44)-(3.46): 

Thus, by (3.40) and (3.41), the overall rotation between the base fiame, x ~ y ~ z o ,  



CHAPTER 3. MODELLING 

and frame xp-y,-+, is: 

Equations (3.43) and (3.47) define the homogeneous transformation between 

the base frame and the hame xp-l/p-tp The position and orientation of the tip of 

the beam are found by evaluating equations (3.43) and (3.47) at x = 1. 

3.5 Velocity Kinematics 

The preceding sections derived the position and orientation of a point, p, on the 

flexible beam with respect to the base fiame. In order to determine the kinetic 

energy of the system, the velocity of each point on the beam must also be known. 

Recall the position, po, of a point p on the beam from (3.43). 

Let: 

w = angular velocity of h e  e expressed in base frame coordinates 

Then by the chah d e  of differentiation: 
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But RTw is simply the angular velocity of frame e expressed in kame e coordinates. 

Define: 

Hence: 

fio = Rp + RS(Sl)p + d 

= R p  - R S ( p ) O  + d by (D-4) 

Note that R, d and are strictly factions of the base robot generalized coordi- 

nates, q, while p is strictly a function of the flexible coordinates, v and 7. 

Now, the angular velocity, Q, may always be expressed as: 

0 = .Tnq where J"(~) E Px" (3.50) 

This fact is easily shown by considering the inverse of the skew-symmetric operator 

S(*). Let A = [a,] be an arbitrary mat& in SS(3). Define the invetse skew- 

symmet7-k operator, S-'(A) : SS(3) r-t p, by: 

The inverse skew-symmetric operator is cleady linear. From (D.6)-(D.7) and (3.48): 

using the chah nile 
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Hence, 

Now, define the 3 x m matrix: 

Using (3.15), (3.22),  (3.50) and (3.53) in (3.49): 

Po = RP - R S ( ~ ) P ~  + J v q  

= R[O i, w ] ~  + (J" - R S ( ~ )  J " ) ~  since x = O 

T T R[o < p T ~  + +] + ( J V  - R S ( ~ ) J " ) ~  fkorn (3.40) and (3.41) 

Let: 

E Fnx3 and Q(t)  A 

and define the 3 x (rn + 2 4  Jacobian matrix: 

Note that only S ( p )  and 9 are fûnctions of x.  Combining equations (3.54) and 

(3.56): 

This equation provides the relationship between the generalized coordinate deriva- 

tives and the velocity of each point on the fl&bIe link. 
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3.6 Force-Torque Relationship 

Of obvions interes t for force control is the relationship between the torques exerted 

by the robot actuators and the force at the end of the flexible beam. Let: 

F = generalized force exerted at a point x along the beam 

X = displacement of the beam element at x 

d X  = incremental displacement of the beam element at z 

r = generalized forces exerted by the robot actuators 

d Q  = incremental change in the generalized coordinates 

By the Principle of Virtual Work 1121: 

But from (3.57), x = JQ. Hence d X  2: JdQ, whence: 

F ~ J ~ Q  = T ~ ~ Q  

T = J ~ F  

Thus, given a desired end-point force, or force anywhere along the flexible beam, 

the required joint torques may be readily calculated using (3.58). Note, however, 

that since equation (3.57) relates the coordinates of the end-effector in buse f rame  

coordinates to the generalized coordinates, then the force, F, in (3.58) is also in 

base h e  coordinates, not end-efFector coordinat es. 

3.7 Kinetic Energy 

In order to derive the dynamic eqnations using the Euler-Lagrange approach, the 

kinetic energy is reqaired. Since no restrictions have been placed on the base robot 



up to this point, only the kinetic energy of the flexible beam will be considered. 

The kinetic energy of the base robot may be derived separately since energies are 

additive. Assuming the beam has uniform linear mass density, let: 

Kb = kinetic energy of the base robot 

Kt = kinetic energy of the flexible beam 

m, = mass of the flexible beam 

p = linear mass density of the flexible beam 

From standard vibration theory: 

Substituting (3.57) into (3.59): 

1 

K~ = ip J Q'JT J Q ~ Z  
O 

But Q is independent of x ,  hence: 

Thus, a quantity of interest is the symmetric matrix, fl J. By equation (3.56): 

For conveaience, dehe  the following quantities: 
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and 

whence, using the ort liogonality of rotation matrices: 

Only X I  through xq and m are functions of x in this equation. Indeed, in w ,  only 

9 and XZ are functions of x. Hence, to solve for the integral in equation (3.601, the 

following quantities must be evaluated: 

and the integals: 

Now consider each of the integrals, Zr through Z4. Each of the terms has 

particnlar significance that will be discussed in the ensuing subsections. 

3.7.1 Centre of Mass 

The quantity Sr is related to the centre of m a s  of the flexible link with respect to 

the damped fiame. For, by definition of the centre of mas,  p,: 
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from whtch: 

Since the generalized coordinates u and t) are independent of x, El may be expressed 

in block matrix form, using (D.l), as: 

O -aYs azv 

(3.66) 

Note that a, and a, are constant, so El is a linear function of the generalized 

flexible coordinates, u and q. Also, by setting v = O and 1 = 0, the centre of 

mass of a igid beam may be extracted. In this manner, may be separated into 

a "rigidn component and flexible *correctionv terms. Also, it is clear from (3.66) 

that: 

3.7.2 Cross-Coupling 

The quantity z2 is part of the cross-coupling terms in the fl J matrix. In partidar.  

it wilI be shown that E2 indudes the couphg terms between the two modes of 

vibration. Also, it should be noted that E2 contains no contributions fiom the base 

robot. It is purely a flexible term. 

Rom equations (D.1) and (3.55): 



CHAPTER 3. MODELLING 80 

Define the constant n x 1 vectors p, and p,, and the constant n x n matrix, 7, as 

follows: 

Hence: 

The quantity 7 is worth further consideration. Consider each element of the 

matrix 7: 

7 clearly represents dl the cross-coupling terms between the two modes of vibration. 

However, consider the factors which detennine the mode shapes. From equation 

(B.8) in Appendix B, when an Euler-Bernoulli beam model is assumed the mode 

shapes take the same fom regardless of the physical parameters: 

This mode shape is the general solution to the unforced Eder-Bernoulli beam equa- 

tion. The constants are solved by substituting the appropriate boundary conditions, 

as well as the modulus of elasticity, moment area of inertia, and linear m a s  density. 

The fiequenues, pi, of the mode shapes &O depend on these boandary conditions. 

For example, for the clamped-fiee mode shapes in Appendix B, the modal frequen- 

cies are determined by the characteristic eqnation (B.9): 



CHAPTER 3. MODELLING 81 

The clamped-free mode shapes are also orthonormal, another property that often 

arises. Hence, if the boundary conditions and moment areas of inertia are the same 

for both directions of vibration (for a uniform beam), then the mode shapes, p and 

+, wili be identical. In this case, assuming orthonomality of the mode shapes, 

7 = 1. 

3.7.3 Moment of Inertia of the Flexible Beam 

Consider the elements of the mat* XJ: 

From the f o m  of x3, clearly pS3 = J x3dm is the mass moment of inertia. Assuming 

orthonomality of the mode shapes: 

and 

Hence: 

uTu +TTiI -pfu 
i 4 Y . r  
s(~)= ~ ( ~ ) d z  

= 

+yu i P + ? p q  -uTrq 

-ph -vTTq y + U ~ U  I 
Note once again that if the mode shapes are the same for each direction and are 

orthonormal, then 7 = I. Also observe that is quadratic in the g e n d e d  

coordinates. 
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3.7.4 Purely Flexible Component 

The quantity E4 represents the purely flexible component of the kinetic energy term. 

From the definition of @ in equation (3.55), the integrand of E4 may be expressed 

in block matrix form as: 

Assuming orthonormality of the mode shapes, clearly: 

3.7.5 Inertia Matrix 

Now that the integrah El through El have been evaluated, define: 

Then the flexible inertia matrix, Df , is: 

Thus, the kinetic energy contribution of the flacible beam may be written: 

U T  v Consider the individaal terms in (3.76). The tenn p(Jv)TJVI = mf(J ) J r e p  

resents the purely translational kinetic energy of the f l d e  beam based on the 
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motion at the clamped end of the beam. The term ( J u ) T ~ t i  Jn and its transpose 

represent the correction terms due to the fact that the damped end of the beam 

was used as a reference rather than the centre of mass. This fact is readily apparent 

from the relationship between and the centre of mass of the flexible beam in 

(3.65). The centre of mass was not used as the reference point in the derivations 

because it is constantly changing for the flexible beam, while the clamped end is 

dways fixed. 

Finally, the term ( J " ) * Z ~  J" is clearly the purely rotational component of the 

kinetic energy since pEa is the moment of inertia of the flexible beam. The cross- 

coupling terms of Z2 are naturally in the off-diagonal matrices of the inertia rnatrix. 

Note that the inertia rnatrix is symmetric as expected. 

3.8 Potential Energy 

The potential energy is also needed to derive the dynamic equations using the 

Euler-Lagrange approach. Both the gravitational potential energy and the elastic 

strain energy must be examined. Let: 

Vj = gravitational potential energy of the flexible link 

Vj, = elastic strain energy of the flexible link 

3.8.1 GraMtational Potential Energy 

The gravitational potential energy is readily computed using the centre of mass. 

Using (3.6?), the height , h, of the centre of mass, in base frame coordinates, is: 
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. . h = [O O f ]  ( R [ $ P  vTa, q ~ ~ w ] T  + ld) 

The gravitational potential energy is: 

5, = ml& 

E = rnodulus of elasticity of the beam 

IV = area moment of inertia in the v-direction 

1 .  = area moment of inertia in the Y-direction 

From standard vibration theory (see (A.4) in Appendix A), the elastic strain energy 

of the flexible link is: 

However, assuming orthonormality of the mode shapes and an Euler-Bemonlli beam 

rnodel, there exists x,i = 1,. . . , R such that: 

This fact is clear fkom Appendix B by combining (B.16) and (B.20). Note that the 

A: are a funetion of the natural fiequencies of the beam. A similar relationship 

holds in the w-direction, with correspondhg constants kW, i = 1,. . . ,n. Define the 



cons tant diagonal matrices: 

and 

Hence, the elastic strain energy m 1 be written: 

3.9 Dynarnic Equations 

3.9.1 General Equations 

Before addressing the detailed expressions for the dynamic equations, it is instruc- 

tive to examine the Euler-Lagrange formulation in a general form so that the resdts 

may be applied to the ngid robot as weU. Hence, consider any robot which satis- 

fies the conditions for the Principle of Virtual Work and for which the kinetic and 

pot ent i d  energies t ake the folIowing fom: 

Q = generalized coordinates of the robot, Q(t) = [Qi(t)] E PX' 
1 'T K = a~ D(Q)Q 

v = V(Q) 

where D ( Q )  is a symmetric, positivedefinite inertia matrix. 

Most conventional robot manipulators satisfy these conditions. Indeed, fkom 

the previous section, it is clear that the flexible beam energies also satisfy these 
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assumptions. Now, let: 

Fat = the net external force acting on the robot end-effector, Fat E C3" 

J (  Q) = the Jacobian mapping joint velocities to end-effector velocities 

r = the torque exerted by the robot motors 

and define the Lagrangian: 

The Euler-Lagrange equations stipulate [12], in vector fom,  t hat : 

Examine the second term in the Euler-Lagrange formulation: 

From (3.15), (3.16) and the form of K: 

Similarly, horn (3.13), (3.15), (3.18), (3.19) (3.20) and the fact that D(Q)  is sym- 

metric and only a function of Q: 

Thus, fiom (3.14) and (3.17) 
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For convenience, define: 

and 

Then from the symmetry of D ( Q )  and (3.7), the equations of motion are: 

To simpkfy further, use the transformation of (3.2) nnd define the Na x N2 constant 

matrix: 

and let: 

Thus, application of (3.4) yields the general dynamic equations: 

The mat& C(Q) lies in !Rf lxN.  Partition C(Q)  into submatrices &(Q) E BNxN 

such that: 

The expression (IN @ Q~)c (Q)Q may be rewritten in the fom: 
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Let d, denote the (i, j)-t h element of the inertia matrix D ( Q )  and let G j k  represent 

the (il j)-th element of Ck(Q). It may be sliown that: 

The terms ci jk  are known as the Christoffel symbols of the first kind [12]. Hence, 

C(Q) in (3.81) is actually a matrix of all the Christoffel symbols. Furthermore, 

since c i jk  = cj&, each submatrix Ck is symmetric Le., CI. = Cz. This fact can also 

be deduced from (3.81), (3.9), (3.2) and the symmetry of D ( Q ) .  

3.9 .2 Flexible Dynamics 

Since expressions for the kinetic and potential energies have been derived in terms 

of the mode shapes, p and qb, and the generalized coordinates, v and q, the Euler- 

Lagrange equations for o u  particular configuration may now be forrnulated. Define 

the Lagrangians: 

where subscript b denotes the base robot components, and subscript f denotes the 

flexible link components. Note that while Kr is a fanetion of Q and Q , as deibed 

in (%TT),  VI is only a fnnction of Q. Clearly, Kt and Vf satisfy the assnmptions of 

the preceding section. Assume the base robot also satides these conditions. Let: 
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Then due to the additive nature of the Lagragians, the dynamic equations for the 

overall system may be written: 

Note that the terms involving only the dynamics of the base robot have been 

separated from the terms comprising the dynamic contributions of the flexible link. 

Furthexmore, the structure is hieradical. The base robot t m s  are a function 

of only the base robot generalized coordinates, q(t)  E !Rmxl. The flexible terms 

are a function of both the base robot coordinates, q, and the flexible coordinates, 

v and q. Also note that the derivatives of the generalized coordinates have been 

extracted fiom the centripetal and Coriolis terms, so that the quadratic nature of 

these terms is dearly evident. 

Now consider each of the flexible link components. Rom (3.79) and (3.80), the 

total potential energy for the flexible link is: 

Note that h is a function of Q. By (3.15): 

But by (3.21), (3.13), (3.18), (3.19), (3.20) and symmetry of 4: 
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Similady, 

Substituting these results back into (3.84) yields: 

Now, by (3.21): 

and by (3.78) and the matrix calculus properties (3.15), (3.16) and (3.22): 

The flexible inertia matrix, Dt has aheady been defined in (3.76), but for con- 

venience, define its submatrices as: 

such that: 

By (3.22) and (3.23): 
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and by (3.21): 

8 Dij aD, aD, dDG 

- = p [ %  
=], i , j =  1, ... , 2  BQ 

(3.93) 

Thus, consider each of the matrix Jacobians in equations (3.92) and (3.93): 

ml v T s J v  a ( ( ~ " ) ~ )  
- = ) )(L * J V )  + I (  p ) T -  - 
8s 89 8s Bq 

( I ,  g~ E ~ R ~ J ~ )  

- ( J ~ ) T = T -  a (RT)  ( I ~  g~ J v )  - (J n ) TzTRT ,, 8 J~ 
-l d q  aq 

- a((  J v ) T )  ( I ,  8 RZ, J n )  - ( J " ) ~ - ( I ,  d R  8 Z, J") - ( J ~ ) ~ E ,  - d J n  
as acl d q  



Applying the matrk calculus properties, and the parti tioning equations (3.22), 

(3.23) and (3.11), the partial derivatives of the flexible terms E i , i  = 1 , .  . . , 3  are: 
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3.9.3 State-Space Representation 

Consider the dynamic equations in section 3.9.1. To put these generd dynamic 

equations into state-space fonn, let: 

Thus, fiom equation (3.82): 

D(X& + (IN 8 X:)C(&)& + g(&) = [IN - J(xI)~]U 

or in state-space form: 
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3.9.4 Linearizat ion 

Once the non-linear state-space equations are defined, it is a simple matter to derive 

a linearized state-space representation. Indeed, from ( X l M ) ,  it is clear that the 

general dynamic equations are dready Linear in U. For convenience, let: 

and define: 

To linearize (3.114) about an operating point, (Xo, Uo), compute constant matrices 

A and B: 

and define the increment al signals: 

and 

so that: 

AX = AAX+ BAU 

Now fiom (3.21) and (3.22): 

and 

Consider each of the partial derivatives in turn: 
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where the partial derivatives of P(X) are: 

N 

Now, typically the operating point is chosen to be stationary with zero input, Le., 

Substituting this partial operating point into the partial derivatives yields the state 

matrices: 

Note that for any system for which g(&) 7 0,  such as 

manipulator, the A matrix reduces to a constant matrix independent of Xy: 
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While the A matrix will not be independent of Xy once damping is introduced, it 

is straightforward to add a damping term B(X1)X2 to the model. 

Sirnilarly, for any system with a constant inertia matrix, D(Xi) = M, such as 

the single flexible link example of section 3.3, the A matrut reduces to: 

The general model derived here is a fd matrix representation of the Euler- 

Lagrange dynamic equations. Hence, it is readily convert ed t O s tat e-space form 

and coupling terms, etc. are easily discerned, and the quadratic nature of the 

centripetal and Coriolis terms is clearer. Indeed, the Christoffel symbols are isolated 

into a single matrix, C(Q) and a simple expression for C(Q)  in terms of the matrix 

Jacobian of the inertia matrix, D(Q), is presented. The model may be applied 

to a ngid (or flexible) manipulator picking up a flexible payload. Separation of 

the flexible terms aids in understanding the impact of flexibility on the dynamic 

equations. In particular, it may be benefiüal for understanding the &ect of flexible 

payloads on the dynamics of the manipulator. The model is hierarchical and may 

be applied recursively to consider manipulators with multiple flexible links. 

3.10 Rigid Links 

The equations of motion were derived based on a flexible link. However, the same 

derivation could equally well be applied to a rigid Iùik. Indeed, the equations are 

greatly simpliiied because in the case of a rigid link: 

n-O Le., with no modes, matrix dimensions are reduced 

v = w = O  i.e. there is no link deflection 



As a resdt of these simplifications, the equations in the derivation are modified as 

follows : 

O in (3 .32) ,  p = [Z 0 0jT 

in (3 .43) ,  po = R[z O 0IT + d 

O in (3 .47) ,  = R 

in (3 .56) ,  J = J" - R S ( ~ ) J ~  E W3'" 

in (3 .72) ,  no longer relevant 

in (3.74), no longer relevant 

in (3 .76) ,  Df = p ( ( J ~ ) ~ J ~ ~  - ( J " ) ~ ~ R = J "  - ( J V ) * l E I  J" + ( J ~ ) ~ E ~  J") 

0 in (3.78), h = [O 0 11  il 0 O]= +d) 

O in (3.8O), Vf. = O since there is no strain 

ah 
O in (3.85), gf(q)T = mfg- 

8s 
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3.11 Force Sensing 

One objective in using flexible structures in robotics is to employ the robot structure 

itself as a force sensor. Since strain gauges are inexpensive yet fairly accurate, such 

an approach has evident cost advantages. To use a flexible iink as a force sensor, 

consider the Euler-Bernoulli beam model. Rom standard beam theory (see (B.2) 

and (B.4)), the shear force acting on the beam due to bending, in the v-direction, 

is: 

While the derivative of strain is not measured directly, it can be approximated from 

strain measurements using a first-order Euler Merence, whence for two strain gauge 

positions, 11 and xl: 

For small deflections, a crude approximation is obtained by considering zl = O and 

x2 = 2. For a damped-Bee beam, the strain at the tip of the beam is always zero, 

so this approximation yields: 

Hence, the shear force on the beam is approximately proportional to the strain 

measured at the damped end. In practice, as seen in section 5.2, this approximation 

ends up being quite effective. Note that a more accurate resdt may be obtained 

by using multiple strain gauges. The reader is refmed to [80] for snch a case. 
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3.12 Single Flexible Link Revisited 

In order to demonstrate the validity of the derived equations, the generd mode1 will 

be applied to the traditional single-flexible link experiment depicted in Figure 3.1. 

The apparatus consists of a flexible beam attached rigidly to a motor shaft at one 

end, and fiee to vibrate at the other end. The homogeneous transformation relating 

the base fiame to fiame e consists of the rotation: 

and a translation: 

There is ody one base generalized coordinate, qo. Hence, m = 1. It is easily seen 

that: 

Substituting these equations into (3.56): 

This Jacobian provides both the velocity kinematics and the relationship between 

the motor torque and the restiiting force anywhere h g  the length of the beam. 
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Now consider the flexible inertia matrix, LIf. Substituting (3.116) into (3.89) - 
(3.91): 

Note that Dii contains only the purely flexible term because there is no tram- 

lation of the clamped end of the beam - it is attached to the hub. Substituting 

(3.117) into these terms: 

Hence, the flexible inertia matrix has the very simple form: 

Knowledge of the flexible inertia matrix d o w s  the kinetic energy in the system due 

to the flexible beam to be cdculated via equation (3.77). The inertia matrix is &O 

present in the final dynamic equations. Now, fiom the above Jacobians: 

Thus, fiom (3.94)-(3.103), the partial derivatives of the inertia matrix elements are: 
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Note that: 

Hence, substituting (3.117) into these equations, dong with the partial derbatives 

of S2 and S3 yields: 

1 n n Zn 2 n  
Evaluating the centripe t al and Coriolis tezms using t his expression and (3.81) 
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Also, looking at the rotation, R axid equations (3.86)-(3.88): 

Let Ih be the hub inertia of the motor. Then substituting the above results into 

the general dynamic equation (3.83) and (3.85): 

Cornparison with the single flexible link example in section 3.3 verifies that the 

general dynamic equations have yielded the correct result3. Note that the extra 

rows corresponding to r )  are present because deflections in the vertical direction 

are included in this more general model. The term f mf12 reptesents the rotary 

inertia of an equident rigid beam. Hence, the extra factor p T u  acconnts for the 

ddection of the flexible beam in the horizontal plane. It is &O dear fkom the 

off-diagonal dements of the inertia matrix that there will be coupling between the 

hub angle and horizontal vibrations, as expected4. 

The model predicts that at equilibrium (presuming Fd = O), there will be a 

here is equivalent to [ql . . . g,] earlier 
'~here is no interaction with the vertical modes, q, because axial extension and compression 

of the beam has not been modeiled 
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sag in the beam due to gravity such that: 

lim 9(t) = -pg(EI,Aw)-'a ,  
t+ao 

3.13 Five-Bar Linkage Robot 

link 5 
k m~ 

link 1 

Figure 3.5 : Five-Bar Linkage Robot 

The mode1 derived in this chapter applies to a flexible link attached to an arbitrary 

robot. The experimental setup used for most of the experiments in this research 

comprises a five-bar linkage robot with all  links rigid except the last link, whkh 

is flexible. A simpHed schematic of the robot is depicted in Figure 3.5. The 

hst four links are rigid and the fifth luik represents the flexible Iink. There are 

three adjustable counterbalances whose purposes are desaibed in section 4.2. The 

"payload" mass % actudy represents a strain gauge unit used to measure &al 

forces. 
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Figure 3.6: Reference Frames for the Five-Bar Robot 



In order to apply the modelling results of this chapter to such an apparatus, 

the homogeneous transformation, &(q, t), mapping the base frame to the fiexi- 

ble hame must be determined. For the purposes of this derivation, the Denavit- 

Hartenberg (DH) convention [12] will be followed. Note t hat the counterbalances 

will be treated as constituting part of the associated link. Figure 3.6 illustrates 

the various reference frames involved in the analysis. Each link has a centre of 

mass with an associated reference frame x,-y,-te. The base frame is 10-yo-ro and 

the "end-effector fiamen for the purposes of this section is xe-1~c-z .  The reference 

fiame for each link is considered to have the same orientation as the fiame at the 

centre of rnass, but having its origin at the end of the link. 

Since the frames are chosen using the DH convention, it is possible to define 

the homogeneous transformation mapping the reference fiame of one link to the 

reference fiame of the next link in the kinematic chah in terms of two rotations 

and two translations. Consider the transformation fÎom link i to link i + 1. Rotate 

frame i about its z-axis tkough an angle 0 such that the x; and xi+l axes are 

parallel. Then translate a distance d dong the t-axis to make the xi and xi+l axes 

collinear. Next, translate dong the resulting 2-axis to make the origins coincident. 

Finally, rotate about the x-axis tkough an angle # to make the &es identical. 

This series of four operations is eqnivaent to the homogeneous transformation: 

cos (0) - sin (O) cos (a) sin (0) sin (a) a cos ( 8 )  

sin(0) cos(8) cos(a) - cos(0) &(a) a sin(6) 

O sin(a) cos(cz) d 

O O O 1 

The four transformation parameters for the mapping &om each hame to the 

next h e  are Iisted in Table 3.1. The mapping fÎom hune e to the centre of mass 

of link 5 assumes that link 5 is rigid. It is induded for the parposes of section 4.2. 
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Map ping 

Table 3.1: Homogeneous Transformation Parameters 

Figure 3.7: Link Lengths for the Five-Bar Robot 
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The distances to each centre of mass and the link lengths cited in the table are 

depicted in Figure 3.7. 

The mapping from one coordinate frame to any other can be determined simply 

by multiplying the coordinate transformations together in the appropriate order. 

For example, using Ci to denote cos(qi) and Si to represent sin(qi), the homogeneous 

transformation fiom the base hame to frarne e is simply: 

Hence, using (3.42), (3.52) and (3.53): 

Let: 
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Substituting Ju, Jn and Z. from (3.120) - (3.122) into (3.56) yields: 

Recall that v rpTv and w x l/'Ttl Hence, in the product JQ, the vT and i>T 
ternis above will multiply ù and i respectively to yield 6 and W. 

Now consider the flexible inertia matrk, Dt, as defined in (3.76). El, S2 and 

Za are defined in (3.66), (3.72) and (3.73) respectively. The Jacobians Jv  and J" 

for the five-bar robot are described by (3.120) and (3.121). Finally, the rotation 

R of Bame e with respect to the base frame is evident fkom (3.118) and (3.119) 

above. Before substituting these equations into (3.?6), consider each of the terms 

in (3.76). For brevity, let (72-1 denote cos(q2 - pl) and S2-i represent sin(q2 - ql). 

Recall that ( J " ) ~  J"L is proportional to the translationel kinetic energy of the 

flexible beam based on the position of the ckmped end, while ( J " ) T ~ l ~ "  is the 



rotational kinetic energy of the beam. The term (JV)TREIJn and its transpose 

account for the fact that the reference fiame for the beam is at the clamped end 

rathei than at the beam's centre of mass. 

The coupling between the ngid robot and flexible beam is represented by II as 

defined in (3.75). Substituting for the five-bar robot in particular: 

These te rms may be substituted into (3.76) to obtain the h a 1  flexible inertia 

matrix, D I .  The Coriolis and centripetal terms for the flexible beam are then 

computed by taking the matrix Jacobian of this inertia matrix, as described by 

(3.92)-(3.113). Since the equations are quite cornplex, they are not included here. 

In order to calculate the gravitational potential energy of the beam, the height 

of the beam centre of mass is required. Rom (3.78), (3.118) and (3.119): 

As expected, h is independent of the horizontal modal coordinates, r ) ,  of the flexible 

beam. The role of the fiexibility in shifting the location of the centre of m a s  is 

also clear fiom this equation. 

The strain energy is independent of the base robot so (3.80) does not require 

any substitutions for base robot parameters. 

To obtain the fidl dynamic equations as described in section 3.9.2 reqaires all the - 

partial derivatives mentioned above. While many terms have been eliminated in the 

equations of that section, the final dynamic equations are extremdy complicated 

and tRin not be included here. The algebra is mechanical and the pnrpose of this 

example is only to highlight certain aspects of the model, particularly the Jacobian, 
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J7 and flexible inertia matrix, Df. Derivation of the f d  dynarnic equstions requires 

the dynamics of the rigid base robot as well. The dynamics of the ngid robot are 

considered in greater detail in the discussion on decouplhg and balancing of the 

robot in section 4-2. 



Chapter 4 

Apparat us 

It is difficult to assess the empirical results of the literature on hap tic interfaces and 

force control without performing experiments to ascertain the "feel" provided by a 

haptic interface and the associated problems, such as high fiequency limit cydes 

present in the implementation of virtual walls [7]. Hence, a simple one-dimensional 

experimental apparatus was employed to validate existing results in the literature 

and explore new control dgorithms. 

However, the key to a mechatronics approach is the balance of mechanical struc- 

ture and control. While the &st apparatus was used for some preliminary exper- 

iments, it exhibited significant friction and was k t e d  to one degreeof-Eeedom. 

For more sophisticated control dgorithms, a better device was required. Hence, 

a modified version of the three degree-of-freedom robot of Ching and Wang [IO] 

is employed for the more advanced control algorithms in this work. In [IO], the 

robot is rigid and specifically designed to be gravity-balanced and dynamically de- 

coupled in order to simpiify the contiol problem. In this work, the last link of the 

robot is replaced by a "fiexiblen link. Strain gauges on the link d o w  the robot 
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structure itself to be employed as a three degree-of-freedom force sensor and these 

measurement s are u tilized for con trol. 

4.1 One D.0.F. Experiment 

Bushings 

Figure 4.1: One D.O.F. Apparatus 

The first experimental apparatus' consists of a one degree of fkeedom manipdator 

with approximately 42 cm of travel. An optical encoder is used to measure the 

end-dector position with an accuracy of about 40 pm. The end-efFector rides 

dong two pardel metal rods, driven by a timing belt connected to a p d e y  on 

the motor shaft. The apparatas is h t r a t e d  in Figure 4.1. The motor is a DC 

swomotor. Due to the use of bushings instead of bearings, there is a fair amount 

of friction in the system. The motor has a 4:1 gear reduction and the p d e y  radius 

constructed with the assistance of Kevin Ktauei, a Research Associate at the University of 

Waterloo 
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is approximately 0.5 cm. Define: 

T = the gear ratio 

J = motor and gear inertia 

B = motor and gear damping 

T = motor torque 

7-1 = load toque 

8 = motor shaft angle 

Then the motor dynamics may be modelled as: 

Now, let: 

p = pulley radius 

Mt = m a s  of carriage 

Bi = damping of carriage 

f = fiction of bushings 

x = carriage position 

Then the load presented to the gear shafk by the carriage is: 

Using the relationship between x and 0, z = ~ p 8 ,  then the overall dynamics of the 

system are: 
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Let F denote the motor torque reflected onto the linear travel of the carriage i.e. 

T = rpF .  Then the above equation can be rewritten as: 

Thus, neglecting friction, it is easily seen that the haptic device has a simple second- 

order tramfer function of the form: 

where a and b are defined appropriately. 

4.2 Direct-Drive Robot 

Most of the experiments are performed using a unique five-bar robot designed 

and built at the University of Waterloo. The robot uses direct-drive motors so 

issues such as the non-hear effects of gear backlash or harmonic drives are not 

present. Furthemore, a novel counterbalancing scheme developed by David Wang 

and Mennas Ching [IO] allows the robot to be gravity balanced and dynamically 

decoupled. Hence, this direct-drive robot is ideally suited for research into force 

control and hap tic devices. 

A schematic of the five-bar robot is illustrated in Figure 4.2. The robot consists 

of five Links. Links 1 tkough 4 form the traditional parallelogram stmcture of 

a five-bar robot. Link 5 is considered a YBexible" M.  All the links comprise 

square altiminum tubing in order to reduce the weight of the links while maintainhg 

strnc t ural rigidi t y. 

The joints are referenced according to the links they join. For example, the joint 

between links 2 and 3 is refmed to as joint 2-3. Thas, there are five joints: 1-2, 
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link 4 link 5 

Figure 4.2: Five-Bar Robot Apparatus 

2-3, 3-4, 4-5 and 1-4. All joints but joint 4 5  are rotational joints with bearings. 

Joint 4-5 is simply a clamp binding links 4 and 5 together. Note that the aluminum 

tubing typically extends beyond the joint in order to provide room for the bearings 

to attach to the link. For example, the length of the link 2 tubing, lta, is longer 

than 12,  which is traditiondy considered to be the length of link 2 in a five-bar 

configuration. All Mnables associated with duminum titbing are demarcated with 

a subscript t, fouowed by the link numba. Variables associated with joints are 

denoted using a subscript j, followed by the numbers of the links being joined. For 

example, mj2r is the mass of the bearings, etc. constituting joint 2-3. 

There are three adjustable counterbalances on the robot, which are nnmbered 

according to the link upon whieh they are fastened. Cornterbalances 1 and 4 are 

strictly for balancing the robot. Counterbalance 3 is used to dynamically decoaple 

the robot. All variables associated with counterbalances are denoted with a sub- 

script b, followed by the link number. Positioning of the counterbalances wil l  be 
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explained in greater det ail in subsequent sections. 

4.2.1 Balancing 

Balancing the robot against gravity may be accomplished by adjusting the various 

counterbalances. The balancing equations may be extracted fkom the dynamic 

equations by equating the gravitationai t m s  to zero, but this section presents the 

derivation of the balancing equations in a more intuitive fashion. It should be noted 

however, that bdancing can only be accomplished ûlink 5 is assumed to be rigid. 

This observation can be proven from the general dynamic equations when flexibility 

is incorporated, but it WU become clear from the ensuing discussion. Let: 

ml = mass of Iink 1, including link 1 counterbalance, mbl 

ma = mass of link 2 

na:, = mass of link 3, including link 3 counterbalance, r n ~  

m, = m a s  of link 4 and 5, including counterbalance and "payload" 

lC1 = centre of mass of link 1, including counterbalance 

Zc2 = centre of mass of h k  2 

Id = centre of mass of link 3, including counterbaiance 

1, = centre of mass of links 4 and 5, induding counterbalance and "payloadn 

Consider the robot in the home position as depicted in Figure 4.3. For the robot 

to be balanced, the net moment about the Mcrum (shown as a large caret) must 

be zero. Hence a condition for balance is: 
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Figure 4.3: Horizont al Moment Balance 

Figure 4.4: Vertical Moment Balance 
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Now consider the robot in the rotated position depicted in Figure 4.4. For 

the robot to be balanced, the net moment about the fulcrum must again be zero, 

yielding the following condition for balance: 

In turns out that these are the only conditions for the robot to be gravity 

balanced. In other words, by satisfying these two conditions? the centre of mass 

of the robot is positioned at the origin (the fdcnun position). Furthemore, this 

centre of m a s  is independent of the joint angles. Since the origin is fixed in space, 

being in the centre of joint 1-2, no moment acts upon the robot due to gravity. 

Thus ail gravitational terms are reduced to zero, independent of robot configu~ation. 

Thus, the non-hear effects of gravity have been completdy eliminated by the novd 

medianical design. 

It should also be noted that the key quantities are mostly moments, rather than 

individual masses or distances. Hence, when designing the robot, it is possible 

to solve for the moments associated with each counterbalance without speufying 

a par t ida r  counterbalance mass. Thus, the counterbalance mass can be chosen, 

for example, such that the counterbalance will be positioned in the centre of its 

adjustable range. Then, if there are any errors in the computations, there is more 

room left for adjusting the counterbalance positions. 

Now consider the flexibility of link 5. The vertical moment balance is unchanged, 

but the link WU sag under the influence of gravity when the robot is in the home 

position of Figure 4.3. This sag will shift the centre of mass and affect the robot 

moment b h c e .  Even if the robot is balanced in the home position, accounting for 

the link flexibility, it will not be balanced in an intermediate position where the sag 

wîU cliffer. Hence, flexibility des troys the perfect gravity compensation theoretically 
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offered by the counterbalances. However, in the case of the experimental apparatus, 

the deflection of link 5 under gravity is imperceptible to the naked eye and the a e c t  

of the flexibility on the centre of mass is negligible. Let: 

m = mass of flexible Lx& 

g = acceleration due to gravity (9.81 m/s2) 

1 = length of Illik 

ut = width of square tubing 

d = thickness of tube w d  

E = modulus of elasticity 

I = area moment of inertia 

For a cantilever beam under d o r m  gravitational load, the maximum deflection of 

the tip, vma, is [89]: 

m9l3 
v,, = - 

8EI 

The parameters of the flexible link [go] used with the experimental apparatus are: 

Substituthg these parameters into (4.4), the maximum defiection of the flexible 

link for this apparatus is ody  v,, = 0.0114 cm or 0.1 mm. Hence, for aIl intents 

and purposes, the experimental apparatus is gravity balanced. 
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4.2.2 Decoupling 

Figure 4.5: Decoupling 

The condition for dynamic decoupling is less readily apparent. For the dynamic 

equations to be decoupled, the inertia mntrix must be diagonal and the entries 

in the inertia matrix should preferably be constant. Hence, consider the robot 

schematic in Figure 4.5, which shows the centre of mass of each link. Since link 5 

is essentidy rigid, let the combination of link 4 and link 5 be called link T, with 

centre of mas ,  mer. 

Suppose the robot is restricted as depicted in the figure, so that qa - qi is 

constant, yet qi is fiee to rotate. Let the inertia of link i about its cenke of m a s  

be denoted Ik,i = 1, 2, 3, P. Define the inertia of link i with respect to the fulcrum 

axis by Ii. By the parallel axîs theorem, the inertias of links 1 and 2 are constant, 
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being: 

Il  = I c i  + 
12 = Ic2 + m21:2 

Define a = ?r - (q2 - q l ) .  Applying the cosine law dong with the pardel axis 

theorem, the inertias of the other two links are: 

Hence, the total inertia, 1, of the robot is: 

The only term in the inertia that depends on the robot configuration is the term 

in cos(q2 - q l ) .  However, this term may be eliminated by carefdy adjnsting the 

position of the link 3 counterbalance such that 

m&1, - rnJ,ll = O (4-6) 

Satisfying (4.6) results in a total inertia that is constant. In fact, 13+ Ir is constant, 

so there exists a position of the counterbalance for which the sum of the link 3 and 

Iink T inertias is independent of the angle, q2 - ql, between the two links. As one 

h k ' s  centre of mass moves away fkom the pivot, the 0th- link's centre of mass 

moves toward the pivot in exactly the right proportion to maintain a constant 

moment of inertia. 

It tunis out that (4.6) is the condition reqnired to dynamically decouple joints 

ql and q2,  not only in terms of inertia, but also in the Coriolis and centripetal 

components of the dynamics. This intriguing characteristic of the robot will be 

investigated more thoronghly in the next section. 
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4.2.3 Robot Dynamics 

The previous three sections explore the balancing and decoupling of the five-bar 

robot fkom an intuitive perspective. The full dynamics of the robot are calculated 

in this section in order to ngorously defend the analysis of the preceding sections. 

Reconsider Figures 3.6 and 3.7, whidi depict the frames associated with each 

link and its centre of mass. For this analysis, it will be assumed that link 5 is 

rigid, in which case it may simply be considered an extension of Iink 4. Hence, 

as before, let the combination of link 4 and link 5 be c d e d  link T ,  with centre of 

mas ,  m,. Trent the links as lines and. the counterbalances as point masses. Thus, 

a scalar, Ii, May be used to represent the inertia of link i with respect to the z-axis 

through its centre of mass. Using the DH parameters defined in Table 3.1 then, it 

is relatively straightforward to derive the inertia matrix of the robot. Define the 

constant coefficients: 

For convenience, assame the following notation for i = 1,2: 

Then the inertia matrix for the five-bar robot is: 
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The only off-diagonal term is By adjusting the link 3 counterbalance such 

that a3 = (m3bf2 - m,l& = 0, the inertia matrix becomes diagonal. Notice that 

t his expression is the decoupling condition derived in section 4.2.2. 

Now consider the Coriolis and centripetal terms when a3 = O. From (3.81), 

the Coriolis and centripetal terms are cornpletely characterized by @. Evaluating 

(3.81) yidds Coriolis and centripetal terms of: 

The second and third rows correspond to the ql and q2 joints respectively. Yet the 

second row does not depend on q2, nor does the third row depend on q l .  Hence, there 

is no coupling between ql and q2 even in the Coriolis and centripetal terms! Thus, 

adjus ting the link 3 counterbalance to satisfy the decoupling condition dynamically 

decouples ql and q2. There are, of course, interactions with the base joint which 

cannot be eliminated. 

Now consider the gravit ational terms. According to section 4.2.1, it is possible 

to completely eliminate all gravitational t ams  fiom the dynarnics of the robot. It 

is relatively straightfomard to show that the potential energy of the ngid robot is: 

The potential energy is clearly zero for all robot configurations if the coefficients of 

SI and SI are zero. Hence, the robot is dynamically balanced if: 
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These two balancing conditions are exactly the same conditions derived in sec- 

tion 4.2.1. Combining these results together, the final dynamic equations of the 

rigid robot are: 

(d: + a2C;)Qo - 2(~1ClSlql + ~2C2S242)qCJ = 7 0  

al  91 + a l c l s l ~ ~  = 71 

a 2  92 + alC2S2$i = 72 

Note that damping has been ignored but could readily be included. Also, 

Furthemore, in the case of a virtual w d ,  Pi may be large but qi is typically s m d .  

Indeed, in any case where a human operator is manipulating the robot end-dector, 

the velocities are typically srnall and thus, the Coriolis and centripetal terms, which 

are related to the square of velocity, are even smder. Hence, the robot behaves 

very much like a set of singleinput singleoutput (SIS0 ) double-integrator systems 

in this case. If damping is included, then each joint of the robot behaves like a 

simple second-order system and only the base joint has an inertia that depends 

upon the robot configuration. This behaviour motivates the sys tem identification 

of section 5.3.2. 

4.2.4 Adjusting the Counterbalances 

The purpose of the counterbalances is to adjust the positions of the centres of m a s  

such that the balanhg equations (4.2) and (4.3) and decoupling equation (4.6) are 

satisiied. The counterbalances are screw-mounted so that th& positions may be 

Link 2 has no counterbalance, so Id is iixed. Thus, the only quantity which 

can be adjusted in (4.2) is 1,. By changing the position of counterbalance mk, 1, 
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may be tuned such that (4.2) is satisfied. In practice, this feat is accomplished by 

placing the robot in the home position and adjusting the location of rnh until the 

robot is balanced in that position. 

Once the position of mw has been established, the decoupling equation described 

in the previous section determines the value of 13, and hence the location of the 

link 3 counterbalance. It may be possible to determine the correct location of the 

counterbdance experimentally as follows. Attach a lightweight brace near joint 1 

that fixes the angle between link 1 and link 2 such that the robot is in the f d y  

extended position i.e. (q2 - q l )  + r. Apply a brief torque pulse to joint 1 fiom rest 

and measure the velocity at the end of the pulse. Now fasten the brace such that the 

robot is in the f d y  contracted position Le. (q2 - qi) + O. Repeat the experiment 

using an identical torque pulse. Adjust the position of the link 3 counterbalance 

until the velocity is the same in both cases. 

The final degree of freedom is the location of the link 1 counterbalance mbi. 

Adjusting its position enables the second balancing condition, (4.3), to be satisfied. 

In practice, this balance may be accomplished by adjiisting the the location of the 

link 1 counterbalance until the robot is balanced in any configuration. 
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Syst em Identification 

As in any control application, control design is facilitated by having a relatively 

accurate mode1 of the system dynamics. The experimental apparatus of Figure 4.2 

comprises several components, induding the curent amplifiers, strain gauges, mo- 

tors, joints and robot links. Since the dynamic equations of the ngid structure are 

derived in the preceding section, only those components or non-linear effects which 

warranted system identification will be examined here. 

5.1 Power Amplifiers 

Since the dynamics of mechanical systems are generally much slower than the dy- 

namics of electrical systems, the dynamics of the power amplifiers are not consid- 

ered. However, the amplifier gain and offset are critical factors because they affect 

the magnitude of the controlIer parameters. These factors are experimentdy d e  

termined in [go]. The results of these experiments are enumerated in Table 5.1. 

The torque constants of each motor are also indnded in the table. 
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Torque Constant 

(N-m/A) 

Table 5.1: Current Amplifier Measmement s 

Offset 

(A) 

-0.116 

0.054 

0.001 

Axïs 

Base 

Axial 

Vertical 

5.2 Strain Gauge Calibration 

Transconductance 

( A m  

3.98 

3.87 

3.96 

Equation (3.115) in section 3.11 encapsulates the approxirnate relationship between 

the strain sensed at the clamped end of the flexible beam and the force exerted 

on the beam at the tip. Indeed, the force is approximately proportional to the 

strain, since the coefficients E, IV, h and 1 in (3.115) are all constant (within 

the assumptions of the Euler-Bernoulli beam model). Hence, by identifying this 

constant of proportionality, it should be possible to estimate the torques at the 

joints based on the generalized coordinat es and the strain readings. 

5.2.1 What is Measured 

Section 3.6 describes the relationship between the force, F, ût the end-efTector and 

the joint torques, T.  However, as discussed in that section, the force F is expressed 

in base frame coordinat es. The strain gauges are not configured to measure strain 

along the axes of the base fiame coordinate system. Instead, they mesure strain 

along the end-efEector coordinate axes. Thus, equation (3.58) of section 3.6 may 

not be applied directly. Fortunately, the robot geomehy is relatively simple, and 

the relationship between the forces deduced fkom the strain gauge readings and the 
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Ye 
t Strain gauges 

(a) Gauges at clamped end of beam (b) Axiai measurement unit 

Figure 5.1: Strain Gauge Positions 

joint torques is s traightforward to derive. 

5.2.2 Mapping to Joint Space 

The positions of the strain gauges are illustrated in Figure 5.1. Figure 5.1 (a) shows 

the strain gauges that measure the strain of the beam in the horizontal (s) and 

vertical directions. Strain gauges were hand-mounted in pairs, on either side of 

the beam. Since the strain in the beam dong the neutral axis, x., is negligible, the 

unit depicted in Figure 5.l(b) is used to measure forces exerted dong the neutral 

axis. The unit is an LCLOlO load c d  fkom Omega Engineering Inc. 

The horizontal and axial strain gauge signals are amplified using Intelligent 

Instrumentation PCI-5B38 strain gauge amplifiers. The vertical strain gauge signal 

is amplified nsing a higha gain DataForth SCM5B38 amplifier. The arnpNers are 

mounted directly on the robot base to minimire the distance between the strain 

gauges and the amplifiers. A separate 12V power supply, line regulated to 5V using 



Figure 5.2: Mapping Strain to Torque 

an MC7805ACT regulator on the robot, is used to power the strain gauge amplifiers. 

The amplifier outputs are measured using 13-bit analogtedigit al converters on a 

Quanser Consulting MultiQ data acquisition card. 

Consider Figure 5.2, which depicts the forces acting upon the end-effector. The 

sabscripts z, y and z correspond to the axes of the end-efEector fiame. The magni- 

tudes of F,, F, and Fz can be deduced fiom the strain gauge readings via (3.115). 

Let Ti denote the torque contributed to joint i by the end-effector forces. Assuming 

s m d  deflecti~ns~ the beam may essentidy be considered rigid and thus by simple 

geomet ry : 
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where: 

Given the tiny displacement of the beam tip in cornparison to the link lengths il and 

II, the treatment of the beam as rigid for the purpose of rnapping the end-effector 

forces to joint torques is reasonable. It must be rernembered that the device is 

intended as a haptic interface and srnall torque errors will be indistinguishable to 

the human operator. 

The joint angles are measured using PMI Motion Technologies type B 250213 

op tical encoders. Table 5.2 enurnerates the conversion factors between encoder 

counts and angular position in radians for each joint. 

1 Horizontal (q~) 1 Axial (pl) 1 Vertical ( q 2 )  

Table 5.2: Optical Encoder Conversion Factors 

5.2.3 Calibration Experiments 

Using an FT3623 nano force/torque sensor system manufactured by AT1 Indushial 

Automation, the strain gauge readings were calibrated to end-dector forces (in 

Newtons). 

Figure 5.3 illustrates the agreement between the force measured nsing the corn- 

metcial sensor and the force deduced fiom the strain gauge readings. The solid 
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Base Strain Gauge Calibration Axial Strain Gauge Calibration 

I L 

O 10 20 30 
Time 

10 20 30 
Time 

(a) Horizontal S train (z,-direction) (b) Axial S train (x,-direction) 

Vertical Strain Gauge Calibration 

03/ V piEGGll Strain Gauge 

" A ï  

I I 

10 20 30 
Time 

(c) Vert i d  S train (y,-direction) 

Figare 5.3: St ra in  Gauge Calibration Experiments 



lines correspond to the commercial sensor and the dotted lines depict the cali- 

brated s train measurements. Note t hat despite the crnde approximation of equa- 

tion (3.115), agreement between the commercial sensor and the strain gauge read- 

ings is excellent. These measurements confirm that the robot structure itself can 

be used as a force sensor. It should &O be observed that the %exiblen beam is 

actually quite ngid - tip deflections are typicdy less than 1 cm, even when simu- 

lating a Wtual wall. The calibration constants between the forces in Newtons and 

the amplified strain gauge voltages are listed in Table 5.3. 
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5.2.4 Force Cancellation 

The calibration experiments in the preceding section verify that the flexible link of 

the robot may be used as a reliable force sensor. However, equations (5.1)-(5.3) are 

not used in those experiments. To assess the accuracy of these equations and the 

efficacy of using strain gauge readings as force measurements, a force csncellation 

experiment was condncted. By applying an eqnd and opposite reaction force to the 

force ererted by the user on the end-efFector, it should be possible, given reliable 

force measurements, to cancel the user's applied force so that the net force acting 

on the robot is zero. In this case, the robot will not move (assuming the initial 

velouty is zero). 

Vertical (pz) 

5.3 1 

Figure 5.4 ihstrates the force cancdation conhol strategy. The unshaded 

Table 5.3: Strain Gauge Calibration Constants 

Axial ( q l )  

13.4 Force (N) 
Vottage (v) 

Horizontal (qo) 

8.05 
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Encoder Counts to 
Counts 

.-. -. - . Voltage Strain St& to Decouple 
Readingi Force 

Figure 5.4: Force Cancellation 

blocks denote simple b a r  transformations that are implemented as matrix gains. 

The shaded block represents the non-linear transformation defined by (5.1)-(5.3). 

The strain gauges outputs are read and converted to end-efFector forces using 

the calibrstion constants defined in Table 5.3. Now, some cross-coupling occurs 

between the strain readings. Since the gauges were hand-mounted they are not 

pdectly aligned with the neutrd axis of the flexible beam. Hence, the axes the 

horizontal and vertical gauges measure are not perfectly orthogonal, resulting in 

some cross-coupling. Furthermore, resistive gauges are not immune to strains in 

non-measurement directions. For example, a gauge aligned for measuring strain 

in the +-direction will still produce a s m d  reading when perturbed in the y or z 

clirections. The ratio of the strain in the mesurement direction to the strain in the 

orthogonal direction is known as Poisson's ratio [89]. 

Let Fi, i = z, y, z denote the scaled strain readings, such that Fi has units of 
- ' 

Newtons. Deno te the forces after compensation as Fi. Hence, the compensation 

may be expressed as the matrix equation: 

These compensation equations were not applied during the s t r a i n  cabration tests 
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of Figures 5.3 (a)-5.3 (c) since the experiments were performed on each joint individ- 

ually anyway. However, similar experiments were conducted in order to ascertain 

the degree of cross-coupling between the different s train readings. 

The non-linear equations (5.1)-(5.3) are applied to t hese compensated end- 

effector forces to map them to joint torques. The joint torque values are negated 

and then converted to output voltages for the digital-to-analog converters based on 

the pulse-width modulated current amplifier transconductances in Table 5.1 and 

each motor's torque constant. The net d e c t  should be an equal and opposite force 

being exerted on the user, preventing them fkom moving the end-effector of the 

robot. The operation is sensitive to any erroa in the measurements, calibration 

constants or parameters of the non-linear transformations fkom end-effector forces 

to joint torques. 

Position information is only used to mesure the generalized coordinates in the 

transformation equations. No position control is performed. The controiler repre- 

sents pure explicit force control. The results for each axis are shown in Figure 5.5. 

Note that the axes were tested concurrently, not individually. The force exerted 

by the user is represented by the solid line. The spikes indicate where the user has 

pushed or p d e d  on the end-dector. 

The dotted line depicts the displacement of the corresponding robot joint as a 

result of imperfect force cancellation. While defiections of approximately 1 cm rnay 

seem large, two observations must be made. First, since expliut force control is 

used, the total deflection may be expected to be large because any error in the force 

cancdation will cause the robot to accelerate as long as the force is applied. Yet, 

the deflection is still quite smd,  even after 70 seconds of prodding by the user. It 

is instructive to compare the amount the robot rnoves to the magnitude of the force 

and the duration for which it is applied. Second, the moment arm is also large so 
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Figure 5.5: Open-Loop Force Cancellation Ekperiments 
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the applied torque is substantial. For the horizontal and vertical axes, the moment 

arm is 61 cm and for the axial direction it is 30 cm. 

5.3 Friction Identification 

5.3.1 Motivation 

System identification techniques applied to the robot of Figure 4.2 produced incon- 

sistent and typically impractical results. Many of the techniques available in stan- 

dard control systems packages, such as Matlab, were at tempted but the solutions 

either failed to predict the system response for different inputs, or dearly did not 

match the physical parameters of the system. However, around a given operating 

point, particularly with the dynamically decoupled, gravity balanced mechanical 

design, the system was expected to be essentidy linear. Since system identifica- 

tion techniques were producing poor results, the non-linear dec t s  of fnction were 

assumed to be the confouding factor and a set of experiments were conducted to 

verify the presence of friction. 

5.3.2 Identification Technique 

Consider the proportiond control system depicted in Figure 5.6(a). The plant, 

P, represents the operator mapping torque to  velocity. The signal, f ,  denotes 

the Coulomb Kction, T denotes the reference input and y represents the output 

position. Without the presence of friction, the output y wodd scale linearly with 

the input T .  Hence, for a step input, the peak magnitude of the output step response 

should be a linear funetion of the input magnitude. 
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(a) Proportiond Control System 
(b) *Equivalent" Mode1 

Figure 5.6: T h e  Domain Friction Modelling 

With friction, the output becomes a non-linear function of the input. According 

to the simple Coulomb kinetic friction mode1 depicted in Figure 5.6(a), the friction, 

f ,  has constant magnitude with the same sign as the plant velocity. 

The robot motors may be modelled approximately as second-order, minimum- 

phase systems. In the unit step response of second-order, minimum-phase systems 

under proportional control, the velocity is positive mtil  the first peak. Addition of 

friction does not change this fact since Coulomb fiction is a dissipative force. As 

long as the velocity does not change sign, the friction f wïü also not change sign, 

and d, in fact, be constant. Hence, from time zero to the time of the first peak, 

the system may be modelled as shown in Figure 5.6(b). Note that the constant 

friction term has been combined with the reference signal zt the input. 

The system shown in Figure 5.6(b) is linear. The reference signal for this "equiv- 

dentn system may be considered as the combination of r and the friction term, K .  
Let F denote the new reference signal. Then: 

Since the system is linear, the magnitude of the first peak wil l  vary linear1y with 

the magnitude of the input F. This fact can be exploited to identify the Coulomb 
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friction, f .  Let P(s) = f and let T(s) denote the transfer function of the "equiva- 

lent" closed-loop system depicted in Figure 5.6(b). Let Yi be the magnitude of the 

h s t  peak for a step input of magnitude ri. Denote the inverse Laplace transform 

by L-'. Note that f is a constant independent of the input in this simple friction 

model. Then: 

To identify the friction term, plot the magnitudes of the first peaks, y&) versus 

the magnitudes of the input steps, ri, where t, is the time to the f i s t  peak. The 

r-intercept of this plot is ro = 6. Since K is known, the T-intercept may be nsed 

to determine the value of the fiction via: 

Of course, once the fkiction is known, it is still important to identify the linear 

model of the plant, P. Suppose the robot actuator may be modded as: 

1 

where J is the combined motor and link inertia and B is the combined motor and 

joint viscous friction. Hence, when Coulomb fnction is ignored in Figure 5.6(a), 

the closed-loop transfkr fonetion is the standard second-order system: 
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where: 

It is well known that for the step response of an underdamped second-or der sys tem 

as expressed in (5.7), the time to fmt peak is: 

and the magnitude of the peak given an input T - is: 

such that y, = a ( ~  - ff ). Hence, the shpe of the yi ( tp )  versus Ti plot is a. Let: 

Thus, given a ,  the damping factor C is: 

Given the time to fust peak, t,, the natural fiequency, w,, may be then be computed 

as: 

Note that since the time to first peak, b, for a linear second-order system is inde- 

pendent of the input step magnitude, r, and the equident Ection mode1 depicted 
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Dir. Slope 

(rad/rad) 

1.98 

1.95 

1.96 

2, = axial axis y, = vertical axis ze = horizontal axis 

Table 5.4: Friction Identification Results 

in Figure 5.6(b) is valid for this minimum-phase second-order sys tem up to the time 

of the first peak, then (5.8) and (5.9) may be used to determine the parameters of 

the plant, P, based on the slope of the y$,) versns Ti c w e  and the time to first 

peak, t,. The fiiction is identified from the T-intercept of the same curve. 

J 

(kg-m2) 

r-Int. 

(rad) 

5.3.3 Results 

B 

(N-m-s/rad) 

~a 

(rad/s) 

t ,  

(sec) 

While using an intercept to determine a quantity is typically a numerically sensitive 

operation and thus not ided, it was found to be a reasonably reliable method for 

this experiment . Consider Figure 5.7, which illus trates the relationship between 

yi(t,) and ~i for each joint. The responses are surprisingly linear with a dearly 

defined intercept. Note that for the base, both positive and negative step responses 

were conducted, in which case the fiction changes sign &o. 

c' 

The results of the fiiction identification for each joint are enamerated in Ta- 
- 

ble 5.4. Linear regression was used to determine the slope, a, and r-intercept of 

these -es. The average time to peak t, is also shown. The nattud kequency 
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Vertical Friction Identification 

(c) Verticai Friction (y,-direction) 

Figure 5.7: fiction Identification Experiments 
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w, and damping factor ( were computed using (5.8) and (5.9). The inertia, J, and 

damping, B, were derived from w, and C using: 

r'he fkiction f was determined fkom the r-intercept using (5.6 

1 Direction 1 Value (kg m2) 1 

Table 5.5: Theoretical Inertias 

Table 5.5 contains the inertias calculated for the robot based on the mass and 

dimensions of each component of the robot's links, motors and joints [go]. In other 

words, the inertias in Table 5.5 are the theoretical inertias based on knowledge of 

the robot structure. The value for the te direction is based on the home position 

of the robot. Note that the identsed inertias of Table 5.4 agree quite well with 

the calculated inertias of Table 5.5. The identified inertia in the axial direction is 

0.204 kg-m2, compared to 0.199 kg-rn2 for the calculated model, or a percentage 

error of less than 2.7%. 

The identiiied inertia in the vertical direction is 0.026 kg-m2 compared to the 

caldated inertia of 0.032 kg-m2, or a percentage enor of 20%. This error may seem 

fairly large, but it is important to note that the inertia in the vertical direction is 

the hardest to identify becanse it is an order of magnitude smaller than the inertia 

for the other axes, and the range of motion in the vertical direction is mnch smder. 
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The range of motion is important because it affects the magnitude of the step input 

that can be used in the identification process. Larger magnitude steps generdy 

yield more reliable results since the non-linear eEects of fiction are less noticeable. 

The identified inertia in the horizontal direction, for the robot in the home 

position, is 0.733 kg-m2. The calculated inertia for the robot in the home position, 

is 0.708 kg-m2, for a percentage error of less than 3.5%. 

These percent age errors are well within the rnargin of error in bot h the calculated 

inertias and the system identification. Indeed, the correlation in the horizontal and 

axial directions between the calculated and identified inertias is surprisingly good. 

Simulation of the friction modd for the same dosed-loop step responses reveals 

that the T-intercept calculated by linear regression does not necessarily result in the 

closest match between simulation and experiment . S m d  adjustments to the friction 

coefficient can improve the simulation results. For the axial joint, for example, using 

a friction coefficient of 0.061 N-m instead of 0.088 N-rn yielded better results. While 

the percentage error between the hand-tuned friction coefficient of 0.061 N-m and 

the identified coefficient of 0.088 K m  is 30.6%, this error is not unreasonable given 

the intercep t method of identification and the simple kinetic kiction modd utilized. 

Figure 5.8 illustrates t k e e  different closed-loop s tep responses used to evaluate 

the fnction in the axial joint. In each figure, the solid curve depicts the experimen- 

ta1 data and the dashed m e  represents the simulated system with Glction. The 

dotted cnrve conesponds to a linear model without Coulomb friction. To compen- 

sate for the lack of Coulomb friction, the viscons fiction has been increased. The 

linear model employed for the simulation is: 

Note that the inertia is the same in all cases. The magnitude of the reference signal 
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Figure 5.8: Underdamped Closed-Loop Step Responses 
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is different in each figure. Note that 0.1 rad corresponds to a 3 cm displacement of 

the end-effec tor. 

If the plant were perfectly iinear, then the plots would look identical and only 

the scale of the y-axis would change. However, friction dearly plays a role, since 

fewer oscillations occur for smaller reference inputs. Also, while the envelope of the 

linear model is exponential, fnction causes the experiment al sys tem and friction 

model to decay faster than an exponential. The model that includes Coulomb 

fnction clearly performs better than the linear model. 

The open-loop responses of the system to two different sinusoidal inputs are illus- 

trated in Figures 5.9 and 5.10. The sinusoid in both cases has the same magnitude 

- the only dinerence is in the initial conditions. The torque input for Figure 5.10 

is 180" out of phase fkom the torque input in Figure 5.9. In each plot, the solid 

c w e  represents the experimental data. The dashed c w e  denotes the simulated 

response using the friction model and the same torque input. 

The simulated response agrees very w d  with the actud experimental data in 

Figure 5.9. As expected, the simdated response for Figure 5.10 is just the negative 

of the the fmt  response. since only the phase of the input has dianged. However, the 

experimental data in Figure 5.10 is not symmetric. It appears that the ribbon cable 

transmitting the strain gauge signals to the robot base imparts a small torque on 

the axial joint. Since the equilibrium position of the ribbon cable "springn does not 

correspond to the home position of the robot, this s m d  torque results in a slightly 

asymmetric response i.e., the step response to a negative step input is not the same 

as the response to a positive step. Since this ribbon cable effect is unmodded, it 

also contribates to the clifference between the simulated and experimentd redts ,  

both in the open-loop sinusoid responses and in the dosed-loop step responses. 
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Figure 5.9: Positive Open-Loop Sinusoid Response 

Open-Loop Sine-Wave Response 
0.1 1 I 1 

O 1 , 1 -  - - -  Simulated ~xperimentall 

-osL 1 
O 2 4 6 8 10 

Time (sec) 

(a) Axial Joint Angle 

Open-Loop Sine-Wave lnput 
0.51 

-0.5~ 1 
O 2 4 6 8 10 

Time (sec) 

(b) Torque Input 

Figure 5.10: Negative Open-Loop Sinusoid Response 
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5.4 Vibration 

A mode1 of the experimental five-bar robot would be incomplete withont the dy- 

namics of the flexible Link. The link consists of in (1.27 cm) square aluminum 

tubing with a w d  thickness of &" (0.127 cm). The length of the beam, not 

including the area which is clamped, is 43.3 cm. 

5.4.1 Nat ural Fkequencies 

The natural frequencies of vibration of the flexible link were determined by tapping 

the end-effector and obsenring the resulting vibrations in the frequency domain. 

Figure 5.11(a) illus trates the response of the robot in the horizontal direction 

when the robot is in the home position i.e., q, = 90' and qz = 180'. The corre- 

sponding fkequency content of these vibrations is depicted in Figure 5.11(b). The 

frequency labelled 1.4 Hz may be ignored - it is the result of manually moving the 

robot into position for the test. 

The fiequencies of vibration for the horizontal direction were determined for 

a variety of robot configurations. The resulting frequencies are enumerated in 

Table 5.6. 

Both the axial and vertical directions exhibited only one measurable fkequency 

of vibration. The natural fiequency in the axial direction is 133 Hz and in the 

vertical direction is 53 Eh. 

Consider horizontal vibrations of the flexible link. Since the hnb hertia is quite 

large, assume that the Iink may be modded as a damped-fiee catilever beam. 
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Figure 5.11: Horizontal Vibrations 
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Table 5.6: Dependence of Horizontal Modes on Robot Configuration 

Since the modal frequencies of a pinned-fiee beam are higher than those of a 

clarnped-free beam, this assumption should result in the natural fiequencies be- 

ing slightly underestimated. This point is important and should be remembered 

for subsequent analysis of the actual system. 

The mode shapes for the damped-free besm are derived in Appendix B. In 

particular, the characteristic equation for the modal Bequencies is defined by equa- 

tion (B.9). The f i s t  solution of this equation is pl = 1.875. The normalized 

fkequency p is related to the natural fkequency of the beam by (B.6) and (B.?). 

Combining these relationships: 

whence the fiequency of the first mode is approximately: 

Let h denote the height of the beam, 2 its length and d the w d  thiekness. Then 

the moment area of inertia is: 
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and the cross-sectional area is 

For aluminum, E = 69 GPa and p = 2800 kg/m3. Substituting these values into 

(5.10) yields wl = 436 rad/s or 69 Hz. The high value of the first natural fie- 

quency indicates the high stifhess of the beam. In other words, while the beam is 

sufficiently flexible to act as a force sensor, it is actually fairly rigid. Yet , the exper- 

iments in section 5.4.1 indicate that the actual fiequencies for horizontal vibrations 

are lower. 

Now, the mass of the flexible beam is plA = 71 g. The mass of the axial sensor 

unit at the end of the beam is 43 g. Hence, the payload mass represents 60% of 

the beam mass, so while the sensor assembly is small, it does actually contribute 

significantly to a lowering of the natural fkequency of the beam. 

Hence, consider a more accurate mode1 of the beam which considers the hub 

inertia and sensor "payload massn. Let: 

JO = hnb inertia for base joint, qo (kg m2) 

MP = payload mass (hg) 

L = length of beam (m) 

p = linear mass density of beam ( k g l m )  

E = Young's modulus of beam (lV/m2) 

I = area moment of inertia of beam (m4) 

w = natural frequency (radis) 

and define: 
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From the work of Rossi [91], the characteristic equation of a flexible beam with hub 

inertia and point payload mass is: 

For the experirnental apparatus, 

Hence, 

Solving the characteristic equation, @.Il), with these numbers yields the first fan- 

damental fkequency, w ,  of: 

This fkequency is quite a bit lower than the frequency predicted by a simple 

clamped-£iee beam model. The impact of the payload mass is evident. It is &O 
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closer to the observed frequency of approximately 19 Hz. However, it is not close 

enough to conclude that the beam is the sole source of vibration in the system. 

Since the hub inertia is so large, errors in the hub inertia have little effect on 

the predicted frequency of vibration. Increasing the hub inertia by a factor of 

106 reduces the vibrational frequency by less than 0.4 Hz. Hence, errors in hub 

inertia canno t explain the discrepancy be tween the predict ed value and empirical 

observation. 

While the predicted fiequency is more sensitive to mors  in the leugth of the 

beam, the length of the beam is very w d  known. Even adding 4 cm to the beam 

length only reduces the predicted fkequency to 31 Hz and the length is known to 

fat  geater accuracy than to within 4 cm. 

Thus, the inescapable conclusion is that the flexible link is not the only source of 

vibration in the system. The robot structure itseif must be pezible. Given that link 2 

and link 3 are constructed of the same duminum tubing as the scwalled "fiexiblen 

link 5, this conclusion is hardly surprising. Since link 2 is only 9 cm in length, most 

of the flexibility in the robot pardelogrsm is likely to be contnbuted by the 30 cm 

link 3, particularly given the 235 g counterbalance at one end of the W. Indeed, 

s m d  vibrations of the counterbalance are visible during the horizontal vibration 

experiments. 

Various experiments were pedormed to try to discern the source of vibration for 

m o d e h g  purposes. For example, if a single link was primarily responsible for the 

vibration, then mounting a mass at an appropriate location on the robot structure 

would change the fkequency of vibration in a predictable way. However, experiments 

sach as this fded to pinpoint a pa r t ids r  source of vibration. Hence, further 

reseazch into the source of oscillation, perhaps through fmite element modelling, is 
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necessary. 

However, even wi th another source of vibration in the system, the natural fie- 

quencies of the beam should s t a  appear in the frequency spectrum. Close exam- 

ination of Figure 5.11(b) reveals a very srnall peak at 34.5 Hz. This measured 

frequency is very close to the predicted frequency of 35.5 Hz derived above. The 

percentage error is only 2.7%. 

Unfort unately, the presence of vibration in the robot s tnicture itself prevents 

the generd mode1 derived in chapter 3 fiom being applied. The model of chapter 3 

only applies to iexibility in the last link and not the whole structure. A proper 

model of the structural vibrations would require finite element methods or similar 

techniques appiied to the entire structure. However, it shodd be possible to make 

controller designs robnst to vibrations in the robot structure by miaimizhg the 

dosed-loop sensitivity at the naturd frequencies of the robot. Note also that the 

flexibility in the robot structure does not invalidate the mechatronics approach of 

this work. Better construction and more substantial tubing for links 1 through 4 

would undoub tedly eliminate the structural vibration problem. S turdier construc- 

tion does not negate the ability to gravity balance and dynamically decouple the 

robot. 



Chapter 6 

Controller Design 

Hap tic devices are designed to emulate the physical characters of some physical 

object or environment by providing force feedback to a human operator. One 

perspective on the problem is that the goal of the controller is to present a specific 

mechanical impedance to the human operator. A virtual wall designed to emulate 

aluminum, for example, would need to provide a stinnessl of approximately 70 GPa. 

Hence, it is not surprising that implementation of a virtual w d  is one of the 

more challenehg problems in haptic interface control. This chapter investigates 

a variety of control strategies for achieving a target impedance. The performance 

with respect to virtual walls is used as a basis of cornparison. 

6.1 Implicit Force Control 

The simplest closed-loop control strategy for achieving a desired target impedance is 

the impliut force control scheme depicted in Figure 6.1. The operator P denotes the 
p p p p p  

'Refn t o  section 2.2.4 for background on virtual wall implementations 

154 
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Figure 6.1: General ImpIicit Force Control 

plant. Interaction with an environment is included only as a disturbance, d, in the 

dîagram because the human operator acts as the "environment". It was decided to 

mode1 the operator as a purely external force because the user actively manipulates 

the haptic end-effector. Salcudean [92] also includes a passive component for the 

human operator, but this approach is not investigated here. Implicit force control 

offers the advantage of not requiring a force sensor, as discussed in section 2.1.4. 

While implicit force control demands a plant t hat is backdriveable, position senson 

such as optical encoders generally produce much deaner signals than force sensors 

and so control based solely ou position d g k t  be expected to be less susceptible 

to high-frequency vibration. Hence, implicit force control was investigated fmt 

as a benchmark control strategy to which more sophisticated controllers could be 

compared. 

In the general strategy of Figure 6.1, the Jacobian, J ,  maps the force computed 

by the controller, Cp, to a torque suitable for input to the plant. For the sake for 

simplicity, the control strat egies of t his chap ter are implemented in joint-space, so 

that the non-linear Jacobian is not necessary i.e., J = I. Since virtual walls already 

inchde the nonlinearity of a datera l  constraint, it wodd be harder to isolate the 
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source of  limit cycles or other performance considerations if further non-hearities, 

such as the Jacobian, were also included in the control system. 

From section 2.1.4, the impedance produced by the implicit force control scheme 

of Figure 6.1 at Yequilibriumn is Zo(s) = s-'Cp(s). Thus, the stifhess at 'equilib- 

rium" is Ko(s) = Cp(s). Heuce, a particular stitfness is achieved at "equilibrium" 

simply by setting the controller equd to the desired stihess. 

A w d  rnight be expected to behave as a damped spring. Let Kp denote the 

proportional gain (Hooke's Law) of the spring and let Kd be the viscous damping 

coefficient. Then the stiffness of the damped spring may be represented by the 

trausfer fimction: 

Hence, according to section 2.1.4, the corresponding controller is simply K ( s ) .  

However, K ( s )  is improper and c m  not be implemented in practice. Hence, for 

the sake of implementation, let the derivative Lerm be band-limited by a first-order 

low-pass fdter with cutoff frequency, w ~ .  Thus, 

The term s* simply yields a filtered version of the angular velocity. Since only 

the position measurements are available, the veloûty can be estimated nsing a first- 

order Eder difference equation. Due to quantkation, the derivative can be noisy 

and the filtering is necessary. Note that at the very low angular velocities involved, 

tachometer readhgs wodd also be very noisy. 

The response of the &al joint for Kp = 400 and Ka = O, a light grip and a s u -  

pling period of 1 ms is depicted i~ Figure 6.2. The output torque is Umtrated in 
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Figure 6.2: Virtual Wall by Implicit Force Control: Angular Position 
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Figure 6.3: Virtual Wall by Implicit Force Control: Output Torques 
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Figure 6.5: Magnified View of Output Torques 
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Figure 6.3. Note that the torque graph has been truncated at the negative satura- 

tion torque for the motor. For this large proportional gain, there is a small amount 

of vibration when the robot is in contact with the virtual wall. This vibration can 

be observed more readily in the magnified view of Figure 6.4. Figure 6.5 shows a 

magnified view of the corresponding output torques. The rna&ed views focus on 

a particular impact, where the end-effector is moved into the wall and then held 

gently against the wall. As presented in section 2.2.3, gentle pressure against the 

virtual wall with a light grip on the robot end-effector has been shown to be more 

destabilizing than ^m pressure and a tight grip. This distinction is also observed 

in practice with the experimental apparatus employed for this work. Hence, only 

the situations where gentle pressure is applied are examined in detail. 

Since no viscous damping term is present , impacts with the wall feel much like 

contacting a hard rubber surface using a rubber mallet. The effect is distinct, but 

does not have the "crisp" feeling one might expect. Neglecting the vibration, even 

the sound of impact resembles contact with hard rubber. 

The quantization of the encoder measurements is readily apparent in the mag- 

nified view, as is the resulting quantization of the output signal. Note that the 

force being exerted by the user on the virtual w d  is rather slight at  this point. 

However, the d e c t  of quantization is audibly noticeable as a buzzing sound and 

the oscillations can be fd t  on the fingertips. Low-pass filtering the encoder signals 

to smooth out the quantized signal results in low-fiequency oscillations induced by 

the delay inherent in the filtered position measarement. If higher cutoff fiequenues 

are used, the bnzz is not eliminated. Hence, the proportional gain of 400 N-mfrad 

appears to be slightly beyond the maximum gain for acceptable performance. 

Addition of a viscous damping term is ineffective. If the damping term is high 

enough to be perceptible, it causes the oscillations to become completely nnaccep t- 
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able. Increasing the proportional gain also results in oscillations. At a proportional 

gain Kp of 600 N-mfrad, the vibrations are so severe that they trigger one of the 

hard limit switches and disable the robot power. 

6.2 Implicit Impedance Mat ching 

In section 2.1.4, the impedance produced by the implicit force control scheme of 

Figure 6.1 at uequilibriumn is derived as &(s) = S-'Cp(s). However, suppose the 

control is done in joint space so that the Jacobian transformation in Figure 6.1 is 

not necessary. In this case, the system is linear (assuming a linear plant). Hence, 

the closed-loop 

x is: 

transfer function, T ( s ) ,  from the user input, d, to the plant output 

- (1 + ~(s)C(s))-IP(s) T(s) = - - 
44 

T(s) represents the compliance of the dosed-loop system, and is the inverse of 

the stiffness. Of interest is designing a controller C(s)  such that the dosed-loop 

compliance of the system is identically equal to a desired compliance. Let G(s) 

denote the desired compliance. For the actual compliance to equal the desired 

compliance: 

But G(s)-' is simply the desired stiffness, while P(s)-' is the plant stinaess. Hence, 

the controllet C(s) is again determined by the desired s tf iess ,  but in this case the 



CHAPTER 6. CONTROLLER DESIGN 

plant stifiess also enters into the controller equation. It is assumed that unstable 

pole-zero cancellations do not occur. 

Of course, if the plant transfer function is strictly proper, then P(s)-I d be 

improper and the controller may not be implemented. Note that it is not possible 

to reduce the relative degree of the closed-loop systern by the addition of linear 

feedback, so an inner control loop cannot be employed to make the plant non- 

strictly proper. However, a proper controller that approximates G(s)-' - P(s)-' 

over a sui table bandwid th may be implernented ins tead. 

Consider the one degree-of-fieedom apparat us presented in section 4.1. Rom 

(4.1), the form of the plant transfer function is: 

1 

Suppose the desired impedance is that of a mass-spring-damper i.e., for some desired 

mas,  M, viscous damping, B, and spring constant, K, the desired cornpliance is: 

The resulting controller fkom (6.3) is: 

The inertia of a system is a difficult quantity for a human operator to jadge. To 

implement a virtual wall, a spring-damper mode1 is often used, as in the work of 

Colgate and Brown [Il]. The mass of the wall is not such a concern. Thus, consider 

dowing the mass, M, of the desired system match the inertia of the plant, a, 

exactly. Then, the controller is simply the proportional-derivative controk: 
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Using this controller, the sys tern will behave exac tly Like a mass-spring-damper 

sys tem wi t h corresponding coefficients of a, B and K respec tively ( provided friction 

is cancelled). Note that for free motion, K = B = O, yielding the proportional- 

derivative control law : 

i.e., to achieve "free" motion, the controller must provide negative damping to 

compensate for the inherent damping of the plant (assuming M is small). To avoid 

internal stability problems, the con t rok  may be implemented as: 

where provides low-pass filtering with a cutoff fiequency of wo and a is a small 

quantity used to avoid the pole-zero cancellation at the origin. 

To test the validity of the simple analysis above, the proportional-derivative- 

derivative controller (6.4) was implemented on the experimental apparatus. The 

derivative and double derivative terms were calculated using standard Euler back- 

ward ciifference formulae. The controller was implemented digitally on an IBM PC 

with an kit4486 CPU running at 66 MHz and the Windows 3.1 operating system. 

Sampling times of less than 400 microseconds were achieved. Different sampling 

rates were attempted to examine the &ect of sampling period on performance. 

The results for the one-dimensional apparatus inclnded here are based on a 5 ms 

sampling period, except where indicated. 

The motor was driven by a PA0103 voltage-tecarrent amplifier, provided by 

Qnanser Consulting. To cornpensate for fiction, a preload function, Ft, was used. 

Figure 6.6 illustrates the preload hct ion,  Ff , as a fimction of velocity. The dead- 

band region was nsed to filter ont noise in the velocity estimates. 
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Figure 6.6: Preload Function wi t h Deadband 

Free Motion 

Figure 6.7 shows the response of the system to a user-applied impulse, using Mction 

compensation alone. Note that since no force sensors were implemented, it was not 

possible to rneasure the force exerted by the user during the impulse. Nor was 

it possible to rneasure the force exerted by the user for the purposes of control. 

However, similar results were obtained for various user-applied impulses. 

The impulse was applied at approximately 0.5 seconds. Prior to the impulse, 

the carriage was at rest . The end-dector changed direction when it gently collided 

with the mbber stopper at the end of its travel. Ideally, the position versas t h e  

c w e  should be linear, indicating constant velocib, before and after the collision 

with the robber stopper. Observing the dope of the position versas time m e ,  

it is evident that the velocity is not perfectly constant daring the motion. The 

variation in velocity is caused by friction differences dong the length of the travel, 

as well as the motor sh& being slightly bent. (The apparatas is a modification of 

an old, discarded printer.) There is also a s m d  amount of viscous damping in the 
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(a) Position vs, T'me (b) Control Signal 
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Figure 6.7: Friction Compensation for Free Motion 

system, possibly due to the lubricant. The deadband of 200 counts/s in the preload 

function is so s m d  that it does not appear in Figure 6.?(b). 
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Qualitatively, the carriage was quite easy to move with the preload function 

enabled. The friction in the system with the power amplifier disabled is substantial 

- 

- the carriage does not glide ficeely dong the length of the apparatus withont active 

compensation, even for very large impulses. Thus, the use of a preload function 

greatly improves the 'Lfeel" of the system. 

However, use of a preload function is not without problems. While a continuous 

preload function can be implemented for systems with non-unjform friction, the 

greatest difEculty arises when starting to move the carriage fiom a standstill. Since 

no force sensors are used on the system, the direction the user is applying a force 

cannot be detected. Instead, the velocity of the system is used to determine the 

sign of the preload fuaction. Unfortnnately, when the end-dector is at rest, the 

velocity is zero. Thus, the preload function cannot compensate for static ikiction. 

It can only compensate for kinetic fiiction once the carnage begins moving. As a 
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result, it is very difficult to position the rnanipulator accurately. While the carriage 

is at rest, the control system cannot compensate. Hence, to get the carriage to 

move, the operator must apply a force equal in magnitude to the static friction. 

Once the end-effector begins to move, the active compensation Wtually cancels the 

kinetic friction and no force is required to move the end-effector. The sudden drop 

in the force required to move the carriage causes it to "jumpn, since the operator 

camot compensate quickly enough to stop applying a force. 

The problem of static vs. kinetic friction is less of a problem, of course, when 

such impliut force control is used to control actuator stiffness for a pre-defined 

trajectory. In this case, the actuator is rarely at rest anyway, and even if the 

trajectory does bnng the robot to a stop, the trajectory is primarily pre-planned so 

t hat direction of motion as the end-effector begins to move is known. Thus, it rnay 

be possible to compensate for static friction using implicit force control in these 

If fine positioning is required of the experimental 

haptic interface, altemate preload functions may be 

used. For example, fine positioning would Uely be dif- 

ficult on a fkictionless surface when the operator has 

nothing upon which to brace th& wrist or hand. Thas, 

it may not ody be acceptable, but perhaps preferable, 

to allow some friction at low speeds while compensating 

M y  at high speeds. 
Figure 6.8: Preload 

Consider the preload function illus trated in Fig- 

ure 6.8. As the veloaty increases fkom zero, the perceived fkiction will decrease 

from the static frietion magnitude to zero, once a certain threshold velocity is 

reached. Up to the threshold, the preload fnnction is essentidy identical to nega- 
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Figure 6.9: Simulation of a Spring 

tive damping. While this technique met with greater success for fine positioning, 

the slope of the linear portion of the preload function had to be quite shallow, so 

that the velocity threshold was rarely reached by the operator. This observation 

suggests that a more non-linear preload fanction may better match human capa- 

bilities. Note that the use of force sensors eliminates the difficulty because then 

even the static friction can be measured as the operator applies a force to move the 

manipulator. 

Simulation of a Spring 

Figure 6.9(a) depicts the response of the system to an impulse when the desired 

tramfer function, G(s), is set to that of a h e m  spring i.e., G(s) = K-'. The solid 

line represents the position in encoder counts, while the dotted line represents the 

velocity in encoder counts per sampling period. The sampling period was 5 m. 

For simplicity, the carriage inertia and viscous damping were Ieft nncompen- 

sated, so that the controller was s h p l y  C(s) = K = 0.001 V/count. Adding a 
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s m d  amount of negative damping to the controIler eliminates the slight decay in 

the response seen in Figure 6.9(a). It must be noted, however, that too much 

negative damping (i.e. B < O )  leads to instability. With damping added to the 

controller, the transfer function fiom the operator's input to the carriage position 

is G(s) = ( B s  + K)-'. If B < O then G(J) has a pole in the right-half plane, 

resulting in instability. With B = 0, the system behaves as an undamped spring 

i.e., G(s) = K-' and the system is marginally stable. 

Figure 6.9(b) shows the response of the system to an impulse when the same 

controller is used, except an "inertial" term of M = (a + 2 x 1OW6) V/(counts/s2) 

is added, yielding: 

Addition of the "inertial" term to the controller results in a desired transfer func- 

tion, G(s), with a higher mass than the actual mass of the carriage. Thus, one 

would expect the fkequency of oscillation to be lower than the previous case. A 

cornparison of Figure 6.9(b) with Figure 6.9(a) confirms this hypothesis - the con- 

troller with added "inertia" resdts in a system which feels heavier. Although not 

shown here, adding a negative "inertial" term to the controller resdts in a higher 

frequency of osdation since the effective mass of the system is actnally reduced. 

This mas-reduction &ect was observed experiment ally. Once again, however , it 
is important not to decrease the inertia too much (Le. M < O) or instability will 

result . 

Simulation of a Wd 

One of the most di&cdt effects to simalate is a virtnal wd. Figures 6.10(a) through 

6.11(b) illustrate the response of the system when the operator moved into contact 
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(a) Loose Grip 
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(b) Tight Grip 

Figure 6.10: Virtnal Wall Using 5 ms Sampling Period 

(a) Looae Grîp (b) Tight Grip 

Figure 6.11: Virtual Wall Using 10 ms Smpling Period 
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with a virtual wd. The w d  was simulated by using a controller of the form: 

when the end-effector came "into contactn with the virtual wall. Outside the virtual 

wall, only fiee motion was implemented, using the simple preload function Ff with 

deadband already descrîbed in the previous subsection. Using this controller, the 

system behaves as a very strong compression spnng with a small amount of viscous 

damping. Only a small viscous damping term was used so that the result would 

emphasize the difference in response caused by changing the sampling period and 

the operator's grip. 

Figure 6.10(a) depicts the response when the operator uses a very loose one- 

finger grip and the controller employs a 5 rns sampling period. As reported in the 

experimental results of Colgate and Brown [7], oscillations occur when the end- 

effector cornes into contact with the Wtual wall. At a 5 ms sampling period, with 

a loose one-fingered grip, the amplitude of the oscillations is at most 350 encoder 

count S. At a 10 ms samphg period, the amplitude increases t O at leas t 600 encoder 

counts, as shown in Figare 6.11(a). Note that no oscillations occur if the operator 

simply releases the end-effector. The user must push gently against the virtual wall 

to incite vibration. A similar inaease in the amplitude of oscillations was observed 

for difkrent operators when reducing the sampling period fiom 5 ms to 10 ms. 

With a tight fd-fingered grip, the amplitude of oscillation is significantly re- 

duced, as observed by both Colgate and Brown [7], Lawrence and Chape1 [6], and 

Hannaford and Anderson [93]. Figue 6.1O(b) depicts the response of the system 

to a virtual w d  for a tight W-fingered grip and a 5 ms sampling period. Fig- 

ure 6.11(b) illustrates the response when the sampling period is increased to 10 ms. 

In Figure 6.10(b), the ampIitude of oscillations is approxhately 11 encoder counts, 
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while in Figure 6.11(b), the amplitude is approximately 15 encoder counts. Once 

again, s slower sampling period leads to larger oscillations, even with a tight @p. 

Ctearly, it is desirable to use the minimum sampling period possible. It is also 

evident, as concluded by Lawrence and Chape1 161, that the "loosegrip regime" 

determines the stability of the virtual wall implementation. While not induded 

here, expehen t s  performed at a 400 microsecond sampling period demonstrated 

greatly improved responses, even for the loose one-fingered grip. 

The experiments of this section were performed using the one-dimensional appa- 

ratus. It is interesting to note that the limiting factor in this apparatus appears to 

be the sampling rate. Faster sampling rates yield less oscillatory responses. Yet for 

the five-bar robot, it is the quantization, not the sampling rate, that is the limiting 

factor. This observation is less surprishg when two facts are considered. First, the 

one-dimensional apparatus has an encoder resolution of about 40 Pm. The five-bar 

robot has a position resolution of only 160 pm for the axial joint. Hence, the one- 

dimensional apparatus has 4 times the positional accuracy and quantization might 

be expected to be less of an issue. Furthemore, the one-dimensional apparatus 

has far more friction than the five-bar robot. Like viscous damping, fnction may 

be expected to improve the performance of vktual walls since it naturdy damps 

out vibrations. Indeed, Colgate and Brown [7] assert that increasing the physical 

damping is the "le& expensive and highest payoff measure availablen 

the pd&mance of virtual walls. Friction, then, should yield similar 

6.3 State Estimation 

for improving 

"payoffsn . 

Udortunately, implicit force control suffers fiom a number of drawbacks when po- 

sition measurements alone are available, as demonstrated in the preceding sections. 
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If the desired stiffness includes some damping, then velocity estimates are required. 

Using a derivative to calculate velocity can be a noisy operation and employing fil- 

ters can introduce undesirable lags into the system. For virtual w a b ,  these phase 

lags may be destabilizing, particularly for very stin walls. 

Quantization is also an issue. Ironicdy, as the s t f i e s s  of the Wtual wall is 

increased, the quantization problem becomes more severe. Higher stiffnesses lead 

to less wall penetration and fewer encoder counts being traversed. In the extreme 

case, for a very stin wall, the user rnay only be able to penetrate the virtual wall 

to a depth of one encoder count. For a proportional implicit force controller, where 

the output torque is simply a large gain, I r ,  times the position in encoder counts, 

there would be a large step in the output torque as the user entered the Wtual w d .  

Given the sampled nature of the controller, it is not difncult to see how this wodd 

be destabilizing since the sys tem would be non-consemative. This destabilizing 

effect is investigated by Gillespie and Cutkosky [24] (see section 2.2.5). The output 

torque is maint ained by the digital- to-analog converter between sampling periods, 

so while the torque may force the user out of the wall, the output would not go 

to zero until the next sampling instant. Figure 6.5 illustrates the staircase control 

signal that can result from insnfficient encoder resolution2. 

An obvions solution is to increase the encoder resolution. However, direct-drive 

robots, which are wd-suited for haptic interfaces, have no gearing, and thus it is 

more difficult to obtain the requisite encoder resolution for very s t S  walls. 

An alternative is to use state estimation to predict the velocity and position of 

the plant. It may seem odd to estimate position when it is a meastired quantity, 

'The problem is not Iimited to encoders. Any analog signal is dtimately converted to a digital 

signal for cornputer control &g a finite word-Iength analog-tedigital converter. Hence, all 

analog aignah will be quantid. 
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but the state-estimator naturally produces a smooth, rather than quantized, out- 

put. Furthmore, the velocity estimate is improved because the plant mode1 is 

incorporated into the estimator design. Also, by including the net torque acting 

on the plant as one of the estimator inputs, the lag problem introduced by filtering 

can be greatly reduced. The net torque is simply the diffaence between the torque 

exerted by the user through the robot end-efFector, and the torque commanded by 

the controller. Hence, to compute the net torque, the torque applied by the user 

mus t be rneasured. In the five-bar apparatus employed for this research, the force 

applied to the end-dector is measured using the strain gauges mounted on the 

flexible link. The torque may then be deduced using the techniques of section 5.2. 

This approach is simiIar in some respects to the work of Hacksel and Sdcud- 

ean [94], who used a model-based observer to estimate the environment forces acting 

on the plant. The velocity is also estimated using an observer and corrections based 

on the estima t ed environment forces. 

In this work, the forces are actually rneasured using the strain gauges moanted 

on the last link. The measured forces are then fed to a linear quadratic estimator 

to produce a velocity and position estimate since quantization of the position mea- 

surements proved to be a problem. Nonlinear correction terms are applied to the 

estimator to account for the kinetic fiiction observed in section 5.3.3. 

Consider the axial joint for the five-bar apparatus. From Table 5.4, the identified 

plant mode1 for the axial joint is: 

Since a mechatronics approach was applied to the design of the manipulator, the 

plant dynamics are wd-suited for control, being h e a r  and low order. The lin- 

dynamics d o w  a state estimator to be employed to estimate the position and 
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velocity of the plant. While some Coulomb friction is present, its magnitude is 

small because the robot motors are direct-drive. However, non-linear correction 

terms are added later to account for the friction as weil. Now, let the plant mode1 

be represented in state-space form as: 

The signal w = (wl W2)T represents the process noise and v denotes the noise in 

the cncoder measurements. Since the position and velocity are the states of interest, 

let the (A, B, C, D) state-space matrices be derived using the control canonical forrn, 

so that the states x = (21 z,)T are, indeed, position and velocity: 

Define the noise covariances: 

NormaIly, for state-estimators, the input to the plant, u, is known, being generated 

by the controller. Hence, the Iinear quadratic estimator design is not stmctured 

speaficdy to accotmt for noise in the input, u. However, in the case of the haptic 

interface, the input u is the net torque and is a hc t ion  of both the control signal 

and the torque imparted by the user. This user "disturbance" is measnred asing 
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the strain gauges and thus is also susceptible to noise. To account for this input 

noise in the state-estirnator design, let G in (6.6) be defined as follows: 

Substituting for G, (6.6) may be rewritten in expanded form as: 

Thus, wt may be interpreted as noise in the input torque u rather than process 

noise. It could also be interpreted as weighted process noise B2wa, so the linear 

quadratic estimator design procedure should minimize the error covariance: 

given Gaussian white noise in the torque measurements derived from the strain 

gauges, as well as some Gaussian process noise, and noise in the encoder readings. 

Now, the covariance matrix, Q, may be 

Q = E(WW=) = E 

expanded as follows: 

Assuming the process noise and input noise are uncorrelated, let Q be diagonal. 

Thus, the ( 1 4  element of Q corresponds solely to the process noise, and the (2,2) el- 

ement relates to input noise. Since the input torque is a function of the strain gauge 

readings, it may be expected to have a larger variance. Hence, the (2,2) element 

should be larger than the (1,l) element. 

Disregarding the non-Gaussian nature of quantization errors, the encoder mea- 

surements have little noise and so the associated noise covariance, R, is expected 
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to be s m d .  Thus, for the purposes of design, let: 

Q = [ L  O ]  and R=O.l 
O 41.6 

The resdting gain matrix, L, for the stationary Kalman filter is: 

The gain matrix rnay be calculated by solving an algebraic Riccati equation [86]. 

The estimator takes two inputs: the net input torque, a, and the encoder mea- 

surement, p. Hence, the state-space matrices for the estimator may be calculated 

as: 

Substituting for the actual values of A, B, C, D and L, the estimator state-space 

represent ation is: 

The Ce matrix is set to the 2 x 2 identity mat& so that both states - the position 

and velocity - are a d a b l e  to the controller. 

To verify the design, a sine-wave was fed to the axial joint motor of the actual 

experimental apparatus and the resdting joint position was measured and recorded 

over a period of 10 seconds. The sinusoidal torque input was &O recorded. This 

torque was then input to the state estimator in simulation. 
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Figure 6.12: Block Diagram for State Estimator Simulation 

D/A Cunent hlotor Motor 
Saturation Amplifier Torque Saturation 

A block diagam of the s tate estimator simulation is shown in Figure 6.12. The 

simulation is complicated by practical considerations. Firs t , the rneasured position 

is in encoder counts and must be converted to radians for the state estimator, 

which was designed using SI units. The measured position in raw encoder counts 

is denoted q in the figure. Encoder counts are converted to radians using a factor 

K, of -&. based on Table 5.2. 

Similady, the interface to the analog domain is achieved using a digit al-to-andog 

converter. Since these converters have a finite word length and limited output range, 

the output must be saturated in order not to exceed the capabilities of the digital- 

to-analog converter. The raw voltage output to the digit al- t<~analog converter is 

dernarcated as û, in the figure and is followed by a saturation operator to limit its 

range. The saturation of the digital-t~analog converter occars at a voltage of 

5 v. 
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widt h modulated current amplifier with transconductance Ka, as seen in the figure. 

The curent amplifier has a transconductance, Ka, of 3.87 A/V, as recorded in 

Table 5.1. The output current drives the motor and results in a motor torque of u,. 

It is assumed that the electricd t h e  constant of the motor is much faster than the 

mechanical time constant. Hence, the electrical dynamics of the motor are ignored 

and the motor is modelled by the motor torque constant and a saturation operator 

to represent the peak torque of the motor. The motors have a peak torque, T,,, of 

36.8 N-m. The torque constant for the motor, Km, is 0.373 N-m/A, from the motor 

specifications. Note that for the open-loop simulations, the saturation operators for 

the digital-to-analog converter and peak motor torque are not required, since the 

torque output is known to lie within the linear range. However, they are induded 

here for consistency - all the simulations performed in this work include these 

saturation operators. The operators are important in the closed-loop simulations 

where saturation may, in fact, occur. 

The torque produced by the motor is not the net torque operating on the plant. 

Friction reduces the torque output of the motor. The fiction, ut, is modelled as 

simple kinetic friction in the simulation. Its magnitude, fo, is constant (except at 

zero velocity), but its sign depends on the sign of the robot velocity. Let sgn(*) 

denote the signum h c t i o n .  Then the kinetic fnction may be expressed as: 

The net torque, u, is computed as the control torque, u., minus the friction 

torque, uf. Note that the direct-drive servomotor design of the mechanical system 

means that non-linearities caused by gearing, such as badash,  are not present. 

These non-linearities can be complicated to model. Here, due to the mechatronics 

approach to mechanical design, only the simple torque caldations ontlined above 
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are required to compute the net torque acting on the plant. The force exerted on the 

end-effector by the human operator is incorporated into the net torque calculation 

later. It is not needed for the open-loop test described here. 

The net torque u and position q are fed to the linear quadratic estimator to 

yield the estimated position and velocity, Q and respectively. Since friction is 

not measured, but is included in the model, it is considered as part of the overall 

estimator. Hence, the estimator is non-linear due to the inclusion of a non-linear 

kinetic friction model. A friction magnitude, fo, of 0.061 N-rn is employed in the 

simulation, as discussed in section 5.3.3. 

The position predicted by the state-estimator is compared to the measured 

position in Figure 6.13. The presence of the friction model noticeably enhanced 

the estirnator performance. Since the measured and estimated cnrves are v~tual ly 

indistinguishable, a magnified view of part of the curve is depicted in Figure 6.14. 

The quantization of the measured position is dearly visible in the magnified view, 

yet the estimated position is smooth. Furthemore, there is no appreuable phase 

lag in the estimate. Thus, if the assertion that quantization destabilizes virtual 

walls is correct, then the estimator should yield improved performance. 

The other claim is that daivative caldations are noisy but the phase lag in- 

troduced by filtering the derivative also destabilises Wtaal walls. Hence, it is 

instructive to compare the estimated velocity to the velocity calculated fkom the 

measured position. Figure 6.15 illustrates the estimated velouty superimposed on 

the calculated velocity. The velocity was calculated fiom the position measurements 

using the simple first-order Etiler clifference method: 

where h is the sampling period of the controller. For these experiments, h was 
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Figure 6.13: Non-Linear Estimation of Axial Joint Angle 
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Figure 6.14: Non-linear Estimation of Axial Joint Angle - Magnified View 
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Figure 6.15: Non-linear Estimation of Axial Joint Veloci ty 

1 millisecond. The calculated velocity is extremdy noisy due to the fast sampling 

rate. As mentioned in section 2.2.4, there is a paradox when deaüng with quantized 

signals: the faster the sampling rate, the noisier the calculated velocity. This 

observation is graphically illustrated in Figure 6.15. 

Colgate and Brown [7] reported improved results when they digitally fdtered the 

calcdated velocity. This improvernent is validated by Figure 6.16, which depicts 

the estimated velocity and the calculated velocity after filtering using a fist order 

low-pass flter with a 20 rad cutoff fkequency. A magnified view of this graph is 

shown in Figure 6.17. Note the phase delay in the fütered velocity. While 20 rad 

is a low cutoff fiequency, it still does not yield a signal as smooth as the velouty 

produced by the state estimator. The cutoff fiequency could be increased to reduce 

the phase lag, but the noise wodd increase proportionately. Although not shown 

here, the velocity estimate, 6, was integrated to verify that the integral did indeed 
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Figure 6.16: Filtered Velocity Measurement 
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Figure 6.17: Filtered Veloaty Meastuement - Magnified View 
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reproduce the position, q, with no apparent phase delay. 

Similar experiments were performed for the other two joints. The results were 

comparable, so they are not included here. Note that 0th- values of Q and R could 

have been chosen for the estimator design, although choosing Q too large or R too 

s m d  leads to numerical problems in the estimator implementation. 

While the above results demonstrate the effectiveness of the non-linear state esti- 

mation approach for generating smooth position and velocity estimates, the results 

would no t be complet e without experiment al verdication of the es timator employed 

in a closed-loop control sys tem. However, t here are difficulties in implementing the 

Çic tion compensation depic ted in Figure 6.12. 

Consider the kinetic friction operator of Figure 6.18(a), which is given by (6.7). 

Due to the sampled nature of a digital controller, a ~ d  the zero-order hold, this 

block cannot be used in the actual controller. Even for a very s m d  velocity, 

(6.7) stiU produces an output torque of magnitude fo. If this torque is sufnuent 

to reverse the direction of motion of the robot before the next sampling instant, 

then the robot could oscillate bock and forth in a sustained limit cycle. Also, the 

derivative operation used to calculate the velocity has already been shown to be a 

noisy operation, and filtering is undesirable. 

To compensate for these two factors, the friction operator used in the ac- 

tual experimental state estimation is the saturation-type operator depictsd in Fig- 

ure 6.18(b). For small velocities, the friction is modded as viscous damping so 

that the limit cycle described above does not occur. The fiction saturates at the 

value fol so that at velocities greater than vo the simple kinetic Ection mode1 is 

employed. The velocity input to the friction operator is derived from the state 

estimator to reduce noise. 
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(a) Coulomb Friction (b) Friction Approximation 

Figure 6.18: Fiiction Compensation 

The resulting compensator is depicted in Figure 6.19. The encoder connts, ?& 

and q2, are converted to radians using the conversion factors of Table 5.2: 

The axial strain measurement, E ,  is mapped to a force, f i ,  on the end-eEector via 

the cons tant of proportiondity, K. = 13.4 N/V, fiom Table 5.3. The resdting force, 

F,, is mapped to a torque on the axial joint, ru, via the nonlinear equation (5.2). 

ru represents the torque due to the user exerting a force on the robot end-effector. 

The net torque exerted on the robot is a combination of the torque applied by 

the user, the torque commanded of the motors, and the fiction. The friction is est& 

mated using the nonlinear sat uration-type operat or dready described. The Ection 

saturates at an amplitude of fo = 0.061 N-m when the velociky reaches a magnitude 
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of 0.03 rad/s. At the 1 millisecond sampling period used for the experiments, this 

velocity corresponds to 3 x IO-' radfpexiod, or 0.057 encoder counts/period. At 

first glance, a velocity resolution of less than one encoder count per sampling period 

may seem impossible to resolve. However, it must be remembered that both the 

strain measurement and encoder measurement are employed by the state estimator 

to arrive at the es timated velocity, 6. Also, finite word length effects can introduce 

s m d ,  yet noticeable, errors in the vicinity of zero. Using viscous damping within 

this very s m d  velocity range, [-vo, vol, rather than just implementing the kinetic 

fnction block as it appears in the simulation of Figure 6.12 does actnally make a 

clifference in the controller performance. 

The torque commanded of the motors, u,, is not used directly in the net torque 

calculation due to potential saturation of the digital-to-analog converter. Hence, 

when the command torque is fed back in order to compute the net torque acting 

on the plant, it is first saturated at a magnitude r d .  Since the digital-to-analog 

converter saturates before the peak motor torque is reached, the value of may 

be cornputed as: 

where: 

Km = 0.373 N-m/A (motor torque constant) 

Ka = 3.87 A/V (amplifier tramconductance) 

V , = 5 V  (DIA saturation voltage) 

The values for the motor torque constant and amplifier transconductance are taken 

fiom Table 5.1. 

Once the position and velocity are estimated with the state estimator, the same 

control strategy used for the implicit force control scheme of section 6.1 is employed. 
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The controller is simply set to equal the desired stiffness, in this case: 

The unilateral constraint for the virtual wall is applied based on the estimated 

joint angle, Q. It is depicted as a step function multiplying the output torque in the 

diagram. The user enters the virtual wall when the joint angle becomes positive. 

No te t hat t his cons traint is different fiom the unilateral cons traint mode1 proposed 

by Colgate and Brown [7] in Figure 2.10. In the scheme of Colgate and Brown, the 

user is subjected to the zero-input response of the controller whenever the user exits 

the virtual wail. Hence, the user may feel a force even after they have left the wall 

surface. In the scheme employed here, the output torque is completely eliminated 

the instant the virtual wall is exited. In section 6.1, the maximum stiffness that 

couid be achieved was less than Kp = 400 N-rnfrad. For the state estimator results 

shown later in this section, the stifbess and viscous damping terrns are Kp = 800 N- 

mirad and Kd = 5 N-m-sirad. 

Finally, the commanded torque, u,, is converted to a voltage, ù, for the digital- 

teanalog converter via the motor torque constant, Km and amplifier transconduc- 

tance, K,. 

The result of this state estimation strategy is depicted in Figure 6.20, which 

illustrates the joint angle when the user taps upon the Wtual wall using the robot 

end-dector. Both the measured and estimated joint angle are shown. Note the 

quaatization of the meamred joint angle, while the estimated angle remains tela- 

tively smooth. The presence of the virtaal wall is readily apparent, since the user 

only enters the wall by a couple of encoder counts. 

The corresponding output torque and the torque applied by the user are depicted 

in Figure 6.21. The dot ted 'contactn h e s  below the zero Iine indicate those areas 
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Figure 6.20: Virtual Wall by S tate Estimation: Angular Position 
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Figure 6.21: Virtual Wall by State Estimation: Torqaes 
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where the user is in contact with the w d ,  based on the position measurement. Note 

that the output torque tracks the user's input torque within the virtual wall. This 

force cancellation is to be expected, since the clifference between the two curves is 

the net torque acting on the joint. A net torque of zero results in no displacement, 

as seen in the graph of the joint angle in Figure 6.20. 

The spikes which occur on initiai impact are due to the derivative t e m ,  Kd, and 

help to slow the robot down on impact. The result is a "crisp" fed to the virtual 

w d  so that the w d  does not simply resemble hard rubber. This "improvedn feel 

may result from the fact that introducing damping reduces the velocity at which 

the end-effector leaves the virtual w d  surface. This reduced velocity has two 

consequences. First, it decreases the efFect of the robot inertia outside the Wtual 

wall, for which there is no compensation in this experirnent. The impact of the 

robot inertia is addressed in the work of Ching and Wang [IO]. 

Second, in an impact between two bodies, there is energy loss when the coef- 

ficient of restitution is not unity. The velocity just d e r  impact is related to the 

velocity just before impact by the coefficient of restitution (951. While linear damp 

ing does not accurately mode1 the coefficient of restitution, it does result in energy 

loss and a reduced velocity after impact, and it is these factors which may improve 

the qualitative feel for a human operator. Yigit et al [95) also make the interesthg 

observation that the impact velocity required to cause yield in even hard steel is 

actually very small (0.14 m/s) and that, as a consequence, "most impacts between 

metallic bodies involve some plastic deformation" [95). 

To demonstrate the success of the nonlinear state estimator at producing a 

smooth velocity estimate, the estimated velocity and a filtered version of the raw 

veloûty are compared in Figure 6.22. The filtered velocity is computed by nsing 

the fmst-order Eder difference f o d a  on the raw encoder measurements and then 
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Figure 6.22: Virtual Wall by S tate Estimation: Velocities 

passing the result through a 10 Hz first-order low-pass filter. As seen in the figure, 

the fütered velocity is still noisier than the estimator output, despite the 10 Hz 

cutoff fiequency of the füter. The dashed c w e  indicates the regions of robot 

contact. 

The performance of the non-linear state estimator design is superior to the 

standard implicit force control technique investigated in section 6.1. Much higher 

stifhesses are achievable as well as higher damping terms, leading to a more realistic 

virtual waU. The problem of quantization is addressed by this design technique. 

The state estimator approach is successfd because of the simpler plant dynamics 

resulting fiom the mechatronics approach to the robot design. Also note that the 

same sampling rate was used in both the standard implicit force control design 

and the state estimator design. Mhermore, it was observed that removing the 

Ection estimation reduces the achievable stifhess. Hence, the fnction modelhg is 

an integral part of the estimator strategy. 
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6.4 Hm Control 

w - 
- 

6.4.1 General Fkamework [2, 3, 41 

- 2 

While state estimation addresses the need for lllgher resolu tion position and velocity 

coordinates, the design does not necessarily optimize the con t rok  to best match 

the desired mechanical impedance. Since the goal of this research is to provide 

the user with realistic force feedback, it seems natural to minimise the clifference 

between the impedance of the controlled system and the target impedance. 

The general framework typically ased for H, optimal control is illustrated in 

Figure 6.23. G represents the augmented plant and C depicts the controller. Let 

G and C be linear time-invariant so that they may be represented by real-rational, 

prop er t r a d e r  func tions. 
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The input vector w represents exogenous inputs such as the reference signal 

in a trajectory tracking problem. The input vector u denotes the control signal. 

The output vector z represents the quantities to be minimized, such as the control 

effort or tracking error while the output vector y represents the signals used by the 

controller, such as position or velocity. Many standard control problems can be 

formulated usbg t his general framework. 

The equations governing this general h e w o r k  are: 

Let G,,, denote the transfer function h m  w to z. Hence GW,. is simply the linear 

fractional transformation (LFT): 

Let C denote the set of all admissible controllers which stabilize the closed-loop. The 

H, optimization problem seeks to minimixe the H, norm of the linear fiactional 

transformation, LFT(G, C), over this set of stabilizing controllers. i.e., the goal is 

to find C" such that: 

C* = arp min II LPT(G, C) 11, 
CEC 

The Hm-nom of G,, represents the system gain fiom w to z a3 follows: 

1IGw.s Il- 

Since it represents the system gain wi 

- - sup - 11412 

IlwlI2#0 Ilalla 
.th respect to the Lrnonns of the inpnt and 

output signals, w and z, the Hm optimization problem minimizes based on the en- 

ergzes of the signals r a t h a  than their amplitude. Eowever, for Iinear t h e  invariant 
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systems the distinction is partly academic because L2 stability implies bounded- 

input bounded-output s tability (961. For further discussion on noms and st abili ty, 

refer to [96]. An algorithm to solve the H, optimization problem was developed 

by Doyle, Glover, Khargonekar and Francis [2]. Their result will be refmed to as 

the "DGKF algorithmn. Only the assumptions behind the algorithm are included 

here, since the algorithm is implemented in commercial software packages such as 

MatlabTM . 
Let the augmented plant, G, be represented in state-space f o m  as: 

where G,, i, j = 1,2  fkom (6.8) is represented by the quadruple (A, Bj,  Ci, DG). 

Define ml = dimw, m2 = dim u, pl = dimz and p2 = dimy. The following 

assumptions on the general fiamework of Figure 6.23 are made for the DGKF 

algorit hm 1971 : 

1. (A, BI)  is stabilizable and (4, A) is detectable 

2. (A, B2)  is stabilizable and (C2, A) is detectable 

3. DI2 is tall (m2 < pl) and full colamn rank 

4.  D21 is wide (ml 2 h) and fidl row rank 

These assamptions are necessary for the algorithm but are not ail required for a 

solution to the Hm problem to exist. The necessary and suffiCient conditions for a 

solution to exist may be f o n d  in [2, 3, 41 and others. The assnmptions are listed 

here becanse they atfect the f0mdation of the H, implicît force control and Hm 

impedance control problems discussed in subsequent sections. 
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6.4.2 H, Implicit Force Control 

As outlined in section 2.1.4, implicit force control employs measurements of the gen- 

eralized coordinates alone to produce the desired closed-loop mechanical impedance. 

Force sensors are not used. While disposing of the need for costly force/torque sen- 

sors has hanua l  merit, it should be noted that implicit force control only has 

utility for a haptic interface that is backdriveable. The user must be capable of 

moving the device, since the user's input can only be detected through the position 

sensors of the haptic device. 

Furthemore, static friction has a detrimental impact on the quality of the haptic 

simulation in implicit force control and should be minimized. The problem is simply 

that the device does not move until static friction is overcome. Once moving, a 

"fiee-spacen controkr can counteract kinetic friction, but the net result is that 

the haptic device feels "stickyn to the operator, because every time the device is 

brought to rest, it gets "stuckn by the static fi-iction. 

These two factors generally reduce the applicability of implicit force control 

to direct-&ive haptic devices, or devices with a 1ow gearing ratio. However, since 

haptic devices are ofken designed as direct-drive devices in order to be backdriveable 

and to avoid gear backlash, and since force/torque sensors are typically costly units, 

optimal model matching in the context of implicit force control d l  be considered. 

Consider Figure 6.24. The plant P represents the haptic device, and C denotes 

the controller. The input u designates the force or torque applied by the user and 

n signifies the sensor noise. Since the user applies forces directly to the haptic 

device, the user input appears ah the plant input, where, "traditionallyn, there is 

a disturbance. In essence, the user is a disturbance on the haptic device, but the 

tramfer function of interest is the rnapping frorn the user Ydistu~bance" to the plant 
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Figure 6.24: Implicit Force Control for Hap tic Devices 

output, ' ~ p  Again, the user is treated as a purely external force - a model of the 

human opaat or is no t included . 

Note that due to the direct interaction between the haptic device and the user, 

the controller cannot appear between the user and the plant input, so it is necessady 

in the feedback loop. Without a force/torque sensor to measure the user input, 

feedforwar d t erms are no t feasible. 

Define the sensitivity S and cornplement ary sensi t ivi ty, T: 

Then the mappings fiom u and n to the signals, y, and y, are: 
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The compliance of this controlled system, as perceived by the user, is the transfer 

function fkorn u to y,, or SP. A quantity of interest then is the clifference between 

this compliance and the desired system compliance, Pd. Hence, to ensure nominal 

performance, the weighted difference should be minimized. i.e., find C such that: 

The weight Wl is chosen to limit the fiequency range over which "tracking" of the 

compliance is deemed important. Hence, it is chosen to have a low-pass characteris- 

tic since a human operator will typicdy probe the wall very slowly. From the work 

of Lawrence and Chape1 [6], the user's probing motions should have a bandwidth 

of less than 20 rad/s. 

In practical control systems, the torque output of the actuators is limited. 

Hence, it is desirable to bound the control effort in order to avoid the non-linear 

dec t s  of motor saturation. The transfer function kom the user input, u, to the 

control output, v,, is: 

The control effort can be restricted 

dependent weighting function, W2, 

according to frequency by defining a fiequency- 

and requiring: 

The weighting fnnction, W2, is typically chosen to be high-pass since the control 

d o r t  needs to be large at low fiequencies (particularly within the bandwidth of 

human sensation) to provide good compliance tracking, but should be s m d  at 

hi& frequencîes to avoid osdations due to high fiequency noise or anmodeUed 

dynamics. 
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However, it is instructive to consider the nature of the input signals. The user 

input, u, has a fairly Limited bandwidth e.g. 20 radis [6], since it is produced by a 

human operator. Most plants also have low-pass characteristics, being mechanical 

sys tems. Thus, the input u is not expected to be a source of high-frequency noise. 

The restriction II W2Tllo. < 1 is based on the transfer function from the input, u, 

to the control signal, y,, so due to the bandwidth limitation of u and P, it may not 

be necessary to make W2 high-pas. 

Indeed, the expected source of high-fiequency noise in the system is the sensor 

noise, n. Thus, the transfer function of interest as fat as limiting the control effort, 

is ac tudy the transfer function fiom n to y,: 

Hence, using a frequency weighting W3, a further control effort constraint is: 

Like Wz, the weight W3 should be high-pass, based on the prior discussion. For 

most systems, liml,l,, S(s) = 1, since both the plant, and the controller, tend to 

roll off at high fiequenues. Hence, typicdy, limlal+m C($)S(s) = O, as desired. 

At first glance, there would appear to be no tradeoffs. The key transf'er functions 

in (6.lO), (6.11) and (6.12) are SP, T and CS respectively. All three typicdy tend 

to zero at high fkequencies, as desired. (SP represents the cornpliance of the dosed- 

loop. The smaller the closed-loop compliance, the stiffer the robot appears to the 

user.) 

However, the h s f e r  fûnction SP - Pa desemes closer examination. As demon- 

strated in section 6.2, perfect compliance matching is achieved for: 
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However, for the experiment al apparat us, P is s trictly proper wit h relative degree 

two and a pole at the origin. For a virtual wall consisting of a very stifF spring, Kp, 

and damper, Kd, the desired cornpliance is: 

which is also strictly proper. Hence, the controller which achieves perfect mode1 

matching is high gain due to the pi1 terrn, and actudy inmeases in magnitude 

with frequency due to P-'. Let the controuer be Cs. Then: 

The nominal performance is ideal, but T and C'S have very poor characteristics. 

Since P has relative degree two and a pole at the origin, and Pd only has relative 

degree one, the magnitude of T has a peculiar frequency response. At low fre- 

quencies, where the gain of P is high and Pd is s m d ,  T is close to one. At higher 

fkequencies, the magnitude of l'-'Pa wil l  increase continuously since P has a higher 

relative degree than Pd. Indeed, it will increase at 20 clBidecade. Hence, T will 

also increase in magnitude at high fiequenues. Thus, the control dort  required to 

achieve perfect tracking becomes exorbit antly large at high fkequencies, and may 

never be small. 

The behaviour of CRS is similar, since C'S = P-'T. The diffaence is that CDS 

is very s m d  at low fiequencies due to the pole at the origin and relative degree of 

P. At high fiequencies, it will increase even faster than T, again due to the relative 

degree of P. Indeed, CRS will increase at 60 dB/decade! Hence, while the effed 

of sensor noise on control d o r t  is small at low fiequencies, it gets quickly worse at 

higher fieqnencies and the controller must roll off quickiy to compensate. 
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while the outputs of the system are: 

zl = weighted error between controlled plant and target 

z2 = weighted control effort 

y = measured plant output 

Typically, the measured plant output is position rather than velocity. Hence, the 

plant, P, maps torque to position and thus represents the plant compliance rather 

than its impedance (see section 2.1.3). Similady, Pd denotes the target compliance. 

Thus, the quantity zl is the weighted meastue of the error in plant compliance 

described by (6.10). The operator C represents the controller. 

The weighting function Wl d o w s  the compliance cornparison to be restricted 

to the bandwidth of interest. The weight W2 limits the control effort while W3 

weight s the sensor-noise. 

The output equations corresponding to this framework are: 

or in matrix form: 
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Let the state-space representation of Gij be denoted by the matrix quadruple 

(A,, B,, CG, Dij ) .  The addition of a non-strictly proper weight, W2, on the control 

effort ensures that D12 is f d  column r d ,  as per assumption 3. Without W2, 

the only term in D12 would be due to Wl P. Since P is strictly proper, and Wl is 

preferably low-pass (hence proper), Wl P is strictly proper. Strictly proper transfer 

fimctions have a zero D matrix in th& state-space representation, and hence D l *  

woidd not be f d  column rank in this case. 

Similarly, the addition of a non-strictly proper weight W3 on the sensor noise 

ensures that DZ1 is fd row rank, as required by assumption 4. Let: 

A v = [vl V21T - exogenous inputs 

The transfer function minimized in the H, problem is the mapping fiom v to Z, 

which is the linear fiactional transformation (LFT) of G(s) and C ( s ) :  

Snbstitnting for the components of G into the LFT and using the rdationships: 

P(I - cp)-'  = (1 - P C ~ P  

and ( I  - PC)-' = I + C(I - PC)-'P, 
it is readily shown that: 
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Notice t hat the three transfer functions of interest: S P - Pd, T and CS are included 

in the linear fractional transformation, with appropriate weightings. However, the 

fact that there is a combined weight of W1W3 on T and W2W3 on CS can make it 

more difficult to choose the weighting functions. 

The objective of the standard H, control synthesis problem is to amve at a 

stabilizing controller, C, which minimizes the H, norm of this linear fractional 

transformation. 

Now, let Q denote the &th column of the identity matrix and consider a matrix 

function G E H&xP. Let gij denote the (i, j)-  th element of G. Clearly, 

Hence, using the submultiplicative property of induced norms: 

The DGKF algorithm solves for C sach that IILFT(G,C)II < 1. Bence, it also 

ensures that the oo norm of each element of LFT(G, C) is less than one. Thus, 

the above design fiamework resdts in the satisfaction of the constraints defined 

by (6.10), (6.11) and (6.12) [bearing in mind that the weight on CS is now the 

combined weight W2W3], although the results may be conservative. 

Now, consider the axial joint of the five-bar robot, as before. The plant mode1 

is defined in (6.5). Let the desired plant cornpliance be: 
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to match the wail characteristics used in section 6.1 and defined by (6.1). In 

particular, to compare the results to section 6.1, let Kp = 400 N-m/rad and let 

Kd = O N-m-s/rad. 

To get perfect cornpliance matching, the controlle. C' in this case is: 

The conesponding transfer functions, T and CS, are: 

and 

The magnitudes of T and C'S are depicted in the fkequency response of Fig- 

ure 6.26. The control effort T(s) has two zeroes at approximately 44 radfs. Hence, 

it is virtually constant at its DC gain of one, and then inmeases at 40 dB/decade 

for fiequencies higher than 44 rad/s, or 7 Hz. 

The effect of noise on the control do r t ,  CS(s), has the same zeroes as T (4, as 

w d  as zeroes at the poles of the plant: O and -0.0564. It crosses the OdB point at 

approximately 2.2 rad/s. It inmeases at 40 dB/decade unta it reaches 44 radfs, at 

which point it begins to increase at 80 dB/decade. 

Note that the zero crosshg point is actnally due more to the plant than the 

particular form of the controller. Omitting the Laplace variable for darity, notice 
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Figure 6.26: Control Effort for "Idealn Controlles C' 

Figure 6.27: Frequency Response for the Axial Joint 
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that: 

But the OdB frequency of P-' is 

10 N-m/rad, the OdB frequency of 

I -- = P-' for large C 
- & + P  

b .  

2.2 radis. Even for a stiffness, Kp, as low as 

CS is still 2.1 rad/s. 

Clearly, it is likely to be very difficult to achieve good tracking over a bandwidth 

larger than 44 radla, and problems may begin to appea. between 2.2 rad/s and 

44 rad/s. 

Consider as well the Bode plot of the plant, as shown in Figure 6.27. The 

cross-over frequency is approximately 2.2 radis. Note that the phase at the cross- 

over frequency is almost -180' because the plant has relative degree two. For 

good performance over a bandwidth larger than 2.2 rad/s, the controller must have 

high gain over this bandwidth, resulting in a loop gain, PC, with a higher cutoff 

frequency. 

At higher fkequencies, the phase of the plant is even doser to -180' , so for a 

minimum-phase controller to stabilize the system, it must have positive phase at 

the cross-over fiequency of PC. But, for a stable, minimum-phase controller, C, 

normalized such that C(0) > 0, the magnitude uniquely determines the phase [3]. 

In particdar, consider the following lemma: 

Lemma 6.4.1 [3] Given a proper transfer finction C svch that C(0) > 0, and C 

and C-' are analytic in %c{s) 2 0, for euh fiepuency, wo: 
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Therefore, as a generai rule of thumb, the faster the magnitude Bode plot 

changes dose to a particular fkequency, wo, the greater the magnitude of the phase 

at that point. For example, if the magnitude of C is decreasing at wo, then the 

phase of C will generally be negative at wo. If the magnitude of C is increasing, 

then the phase will generally be positive. 

Thus, for the phase of C to be positive at the cross-over fkequency of L, then the 

magnitude of C mus t be inc~easzng at t hat fiequency. This fact results in somewhat 

of a paradox. The loop gain, L, determines the bandwidth of the system. And 

generally, it is desirable, due to noise considerations, io have the controller roll off 

outside this bandwidth. Yet, due to the relative degree of the plant being two, the 

controller gain must be increasing at the edge of the operating bandwidth. Hence, 

it is expected that the optimization wiII produce a s m d  peak in the controller 

transfer function jus t pas t 

Consider the following 

the loop gain cutoff fiequency. 

H, design. Let the weighting fmctions be: 

Hence, the nominal performance ha9 a weight, Wl, of 100 over a 10 rad/s bandwidth. 

A weight of 100 may seern very large, but consider the anits of the transfer function 

SP - Pd. The units are rad/N-m. If the robot is being operated about the home 

position, then the axial force exerted by the user is amplified by a moment arm of 

II = 30 cm. Hence, 1 N-m of torque is produced by a force at the end-dector of 

3.3 N or 0.34 kgf. Now, for a SIS0 systern, the H, n o m  may be written: 
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Suppose IIGllm 5 u for some constant a. Then IG(jw)l 5 a for any choice of 

fiequency w .  Hence, if the input u is a sinusoid of frequency wo i.e., u(t )  = sin(wot), 

then the output will be sin~soidal~ with amplitude less than a. 

Returning to the choice of weight, Wi, consider a sinusoidal torque input of 

1 N-m magnitude at a frequency wo. A constant weight, Wl, of 100 ensures that 

II SP- Pdll, < 0.01. Hence, the ciifference in the actual position of the robot and the 

desired position will be a sinusoid of magnitude less than 0.01 rad when this 1 N-m 

sinusoidal torque is applied. Applying the moment arm, this error corresponds to 

a distance of 3 mm at the end-effector, which is reasonable. 

Similady, W2 weights the transfer function fiom the user input torque to the 

control torque. Setting W2 to 0.1 allows the control torque to exceed the torque 

applied by the user. The control torque must exceed the torque applied by the u s a  

if the user is to be pushed out of the virtual w d .  Setting W2 to a constant puts a 

limit on this control torque. 

Finally, W3 weights the sensor noise. Since the encoders generate very clean 

signals, the sensor noise is expected to be s m d .  For example, each encoder connt 

corresponds to & rad, or 0.00052 rad. Hence, for a sinusoidd input vz of magni- 

tude one, the sensor noise injected as an output disturbance will have magnitude 

0.001 rad, or approximately 2 encoder counts. 

In order to perform the op timization using the DGKF algori th,  a state-space 

representation of the augmented plant, G, of (6.13), must be formed. The s ta te  

space representation should be minimal to ensure that the reqnisite stabhability 

and detectabiüty requirernents are satisfied3. A minimal representation (assaming 

3~orming the augmented plant in trader function form, and then converthg to a minimal 

state-space realisation, Ied to occasionai numericd problems that produced spurious results. Other 

"reduction" techniques oIso failed when certain weights were chosen. 
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no pole-zero cancellations due to the choice of weights) was derived manudy. For 

the augmented plant of (6.13), the state-space representation is: 

The controller is cdculated using the DGKF algorithm. Substituting for the 

plant and weights fiom (6.5) and (6.14), in (6.15)-(6.18), the resdting controller is: 
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Figure 6.28: Bode Plot of Controller 

Figure 6.29: Bode Plot of Loop Gain 
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The Bode plot of the controller is depicted in Figure 6.28. The solid curve 

represents the fkequency response of the controller, C', that results in perfect corn- 

pliance matching. The dot ted curve illustrates the frequency characteristics of the 

optimal controller of (6.19). Notice that the optimal controller is close to the ideal 

controller over the bandwidth of interest (10 Hz or 62 radis). Also observe that 

the phase of C' only appears flat because it is non-minimum phase (the zeros are 

-44.30 and 44.25). There is a dip in the phase around 44 rad/s but its magnitude 

is too s m d  to be visible at the scale of Figure 6.28. 

Note the s m d  peak in the controller magnitude aronnd 100 rad/s. The rea- 

son for the peak becomes dear by examination of the loop gain. The loop gain 

is depicted in Figure 6.29. The loop gain cross-over fiequency is approximately 

41.7 rad/s. The phase ventures very close to -180° around 2 rad/s but the phase 

peaks at the cross-over frequency. Evidently, the optimization at tempts to pro- 

vide some measure of robustness to the system by adding phase near the cross-over 

frequency. This additional phase is provided by the controller. 

The extra phase can also be seen in the phase plot of the controlles in Figure 6.28. 

As discussed previously, the plant is relative degree two and thus has a phase dose 

to -180' at higher fiequenues. Hence, the loop gain, PC, also has a phase dose 

to -MO0, excep t where the controller provides additional phase. The controller in 

this case is stable and minimum-phase, so by Lemma 6.4.1, its magnitude must be 

increasing where additional phase is required. This phenornenon is readily visible in 

Figure 6.28. The phase peaks where the magnitude is increasing. As the magnitude 

levels off, the phase returns to zero. As the magnitude decresses, the phase goes 

negative. The result of this peak in the controller magnitude after the loop gain 

cross-over frequency of 41.7 rad/s is the needed positive phase contribution. Note 

that even when a s m d  cntoff fieqtlency is chosen for the performance weighting, 
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Wl, the controller stU exhibits a peak just above the loopgain cross-over fiequency. 

Tt should dso be noted that this design is not standard in that the transfer 

function of interest is SP rather than S. Typically, the sensitivity S measures 

performance because it is the transfa function fiom the input to the tracking 

error. Multiplicative uncertainty in the plant is then managed by weighting the 

complementary sensitivity, T. Since S + T = 1, there is a dearly defined tradeoff. 

Ln the case of the Hm implicit force control framework developed in this section, the 

tradeoff is not as well-defined, and thus may be more difficdt to manage. However, 

it should be noted that the problem itself is essentially equivalent to requiring that 

the robot be of such high stifFness that it is perceived by the human operator as 

coming to an immediate stop upon contact with the virtual w d  - not an easy task 

for any control system. 

The frequency responses of the performance measure, 11, and control effort 

measure, z2, to the user torque input are shown in Figure 6.30. The responses for 

the sensor noise input are illustrated in Figure 6.31. In all cases, the responses fd 

well below the O dB h e .  Hence, the specifications are easily met. 

Of course, it is important to veriS. that the controller ac tudy works on the 

experimental apparatus. Figure 6.32 illustrates the output torque of the controller 

as the user probes the virtual wd. The solid line denotes the motor torque, and 

the dotted line depicts the torque applied by the user. The corresponding joint 

angles are iIlustrated in Figure 6.33. 

The controller only produces a torque when the user enters the wall. While 

damping was not speufied as part of the desired cornpliance, the spikes in the output 

torque as the user enters the wall seem to indicate that there is some damping in 

the controller. Notice that when the user holds the end-aector against the w d  
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ûrtpuu w.r.t. User Toque Input 
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Figure 6.32: Toque Applied By Operator 

Figure 6.33: Axial Joint Angle as User Probes Wall 
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the output torque approximately cancels the user torque, as expected. However, 

the motor torque signal is noisy, and this noise is perceived as a small vibration 

by the user. The frequency of the noise is 19.6 Hz, or 123 radis, according to 

a Fast Fourier Tkansf0r-m analysis of the recorded data. Adding damping to the 

desired cornpliance model, Pd, and redoing the design failed to elimlliate the s m d  

vibrations. 

Note that the frequency of the vibrations changed depending on the controller 

and appeared to have some correlation with the location of the peak in the controller 

transfer function, although a definitive relationship has yet to be ascertained. For 

this particular controller, it is also very dose to the natural fkequency of the robot 

stmcture in the horizontal direction of 19.2 Hz (see section 5.4.1), even though the 

axial joint is being controlled. Hence, presumably these is some interplay between 

the natural frequency of the robot structure and the controller. The horizontal 

direction is uncontrolled in these experiments. 

The displacement when the user holds the end-effector against the wall is quite 

small, as depicted in Figure 6.33. The magrufied view of Figure 6.34 shows that the 

oscillations apparent in the torque translate into displacements of only one encoder 

count. As in the other experiments, the sampling rate is 1 kHz, much faster than the 

bandwidth of the dosed-loop system and the fkequency of the vibrations. Hence, 

it is the encoder resolution that appears to be the cause of the vibrations. 

6.4.3 H, Impedance Control 

The state estimator approach yields a better vistual wall than both the impliut 

force control schemes addressed up to this point. The addition of the torque mea- 

surement dows the state estimator to smooth out the velocity measarement and 
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Figure 6.34: Magnified View of Joint Angles 

Figure 6.35: Preliminary H, Impedance C o n i d  Ekamework 
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quantized encoder signals. Hence, a naturd extension of the H, implicit force con- 

trol scheme of the preceding section is to incorporate the measured torque signal 

int O the controiler design, yielding an H, impedance controller . 

A preliminary framework for optimal H, impedance control is Uustrated in 

Figure 6.35. The output zl is the same nominal performance rneasure employed for 

the H, implicit force control of the preceding section. Similady, zl is the weighted 

control effort rneasure. 

The key ciifference is in the controIler. The controuer takes two inputs instead 

of one. The f i s t  input, yl, is the measured user torque. However, the torque is 

weighted to d o w  sensor noise considerations to be accommodated in the design. 

The second input, y*, represents the position as measured by the encoder. Hence, 

like the state estimator design, the controller has both the torque and position at its 

disposal. Presumably, then, this framework should yield results comparable with 

the state estimator design. 

The augmented plant, G, may be represented in transfer h c t i o n  form as: 

Wl(P - P d )  

O 

As before, let the state-space representation of the transfer fnnction matrices, G,, 

be denoted by the quadrupIe Bij, CG, DG) of constant matrices. Provided the 

weight on the control effort, W2, is non-strictly proper, DI2 Will be füll row rank, 

satisfying assumption 3 of the DGKF algorithm. Similady, if W3 is non-stnctly 

proper, Dll will be f d I  column rank and assnmption 4 will be satidied. 

While ad the conditions for the DGKF algorithm are satkiied, the opthhation 
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produces an interesting, but irn~ractical result. Let the controiler be denoted as 

C = [& &] SU& that: 

The optirniration produces a controlles in which, regardless of the choice of W3, 

Kl = WC' and Kz = O. The logic is simple. To prevent the robot fiom moving, it 

is sufficient, by Newton's Law, to apply an equal and opposite torque to the torque 

being applied by the user, VI. Since W3 is necessarily non-strictly propq in this 

design kamework, in order to satisfy assumption 4 of the DGKF algorithm, it is 

always invertible. Hence, the optimizaiion produces: 

Due to noise in the strain gauge measurement and potential calibration errors, 

it is not practical to implement a Wtual w d  using pure force control. Hence, the 

framework must be adjusted to prevent the op timization algorithm fiom producing 

u = vb The new framework is depicted in Figure 6.36. The inputs to the new 

augmented plant are: 

VI  = user torque input 

vl  = noise in the strain gauge measurement 

v3 = noise in the encoder measurernent 

and simitarly the outputs are: 

xl = weighted nominal pafonnance 

22 = weighted control effort 



CHAPTER 6. CONTROLLER DESIGN 



CHAPTER 6. CONTROLLER DESIGN 

yl = measured user toque, including noise 

y, = measured position, including noise 

The transfer function matrix for the augmented plant, G, is: 

By adding a separate input for the strain gauge noise, the optimization algorithm 

can no longer eliminate the weighting faction, W3. In fact, W3 may now be strictly 

proper without affecting the row rank of D2l. 

However, due to the change in structure, the weight W3 could not be nsed to 

force Dzl to be f d  rank. Hence, another input, the noise of the encoder signal, 

v3, had to be added. Thus, the noise for both the strain gauge measurements and 

encoder measurements is modelled, and can be shaped using the weighting functions 

W3 and W4 respectively. 

Typicdy, W3 and W4 are chosen to be constants or high-pas filters to reduce the 

efFect of high-frequency noise on the controllet performance. Let a be a constant 

parameter. Suppose W3 = aW4. By Yarying a, the relative contribution of the 

strain gauge measarements versus the encoder readings to the controller output 

may be adjnsted. 

The state-space representation of the augmented plant, G, was manudy de- 

rîved. Provided there are no pole-zero csncellations between the weighting func- 

tions, the plant, P, and the desired plant, Pd, this state-space representation will 

be minimal. Let the state-space representation of the plant be (%,B,, C', 4) 



as before. Similarly, let the desired plant be represented by the matrix quadru- 

pie (Ad, Bd, Cd, Dd) and weight i by (Awi, Bwi7 Cwi, Dwi). Then the state-space 

representation of the augmented plant, G, is: 

Notice the similarity between the s t ate-space represent ation of the augmented plant 

for the ET, impedance control fkamework above, to the state-space representation 

of the H, impliat force control augmented matrix of (6.15)-(6.18). 



CHAPTER 6. CONTROLLER DESIGN 220 

Let S kk (1 + K2 P)-'. The iinear fiactional transformation for the augmented 

plant is: 

r 1 

Note that if KI = O then the LFT reduces to the impliut force control transfer 

function. Unfor tunately, wit h the number of transfer func tions involved, the results 

are likely to be conservative. 

The above H, impedance control fiamework was applied to the axial joint of 

the experimental apparatus. Numerous designs were attempted and many con- 

trollers were implemented successfully on the experimental apparatus, but only the 

following design will be presented here. 

Let the weighting functions be chosen to be: 

The nominal performance weighting Wl is chosen as a high gain low-pass filter 

so that performance is emphasized at low fkeqnencies, but becornes less important 

at high fiequencies. A large DC gain is necessary to get reasonable performance. 

Recall that Wl weights SP - Pd, which has units of rad/N-m, or compliance. For 

very s t X  virtud walls, the compliance is very smd. Hence, Wr may be large. 

The weighting on the control effort, W2, is chosen to be small at low fiequenues 
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so that the control effort may be large, achieving a stiff virtual wall. However, at 

higher fkequencies it increases so that the control effort is lower at high frequencies. 

The weight on the strain gauge noise is chosen as a low-pas filter. It was 

observed that the noise in the encoder measurements was leading to vibration in 

the response, so by lowering the weight on the strain gauge measurements at high 

frequencies, the strain gauge readings are used more by the controller at high fie- 

quencies. One might expect the strain gauge readings to be noisier than the encoder 

measurements, but due to the high controUer gain on position and the quantization 

of the encoders, the strain gauge readings actually yield smoo ther results. 

Finally, the encoder noise is weighted by a constant. Note that W4 must be 

non-strictly proper to satisfy assumption 4 for the optimization. 

The H, controller was implemented at a 1 kHz sasipling rate. The results of 

one test are depicted in Figures 6.37 and 6.38. Figure 6.37 illustrates the axial joint 

angle as the operator moved the end-effector in and out of the virtual w d .  Positive 

angles lie within the Wtual wall. Negative angles are outside the wall. The user 

probed the wall a dozen times within the 20 second interval, pushing with varying 

intensity. The resulting torque is depicted as a dotted line in Figure 6.38. The 

outpnt torque, represented by the solid line, spikes as the user enters the wall, but 

tracks the applied torque fairly well when the users presses up against the wall Le. 

the output torque cancels the applied torque, and the displacement inko the w d  is 

small. 

Howevg, when the user presses lightly against the wall, there is some vibration. 

Figure 6.39 shows a magnified view of a time intaval over which the user pressed 

Iightly against the w d .  The deflection is ody  a couple of encoder comts and the 

vibration is not obvious, but it can be fdt by the operator and the performance is 



CHAPTER 6. CONTROLLER DESIGN 

Figure 6.37: Axial Joint Angles 

Figure 6.38: Axial Joint Torques 
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Figure 6.39: Magmfied View of Joint Angle 
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Successive design iterations were unable to completely eliminate the vibration 

without compromising too much on performance. It is interesting that the vibration 

can be eliminated by reducing the magnitude of W3, the weight on the strain gauge 

noise, so that the controller uses more of the strain gauge measusement in produchg 

its output. However, this increased emphasis on the measured torque eventudy 

introduces a "sticky" feel to the wd. The virtual w d  is very stiE but appears to 

be highly damped. Indeed, once the user entas the w d ,  even just a little, the force 

canedation that makes the wall stin &O prevents the user fiom exiting the wall. 

Experiments with walls that are less stiff but have very hi& damping resalted in a 

similar problem. Making the output torque unidirectional eliminates the stickiness, 

but negates the bendts of damping for redueing oscillations. The ideal solution 

may be to have diff'ent gains for motion entering the w d  than for motion leaving 

14.2 
fhwr 
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the wall. For example, Saludean [98] addresses the issue by generating a b&f torque 

pulse the instant the user enters the virtual w d .  Ching and Wang [IO] focus on the 

moment the user exits the virtual w d .  A combination of these techniques, dong 

wi t h the non-linear s t ate estimation discussed in section 6.3, may yield excellent 

results. This combined approach is not investigated here but is left for future 

research. 

An alternative approach to reducing the vibration problem is to increase the 

weight s Wz and/or Wa at the frequency of vibration. The increase forces the control 

effort to be smaller at that fiequency. Hence, the controller is less likely to excite the 

natural frequency of the robot structure. Likewise, the weight Wl can be notched 

at the fiequency of vibration, leading to reduced performance at that kequency 

but less vibration. The drawback of rnodifjring the weighting functions to account 

for the vibration is an increase in the controller order. These approaches were 

attempted with some success, but the vibration could not be eliminated completely 

wi thou t degrading the performance. 



Chapter 7 

Conclusions and 

Recommendat ions 

7.1 Conclusions 

A general model has been presented for a flexible beam mounted on an arbitrary 

robot. Vibrations in two directions are modelled. The model describes the dynamics 

in a concise form that separates the base robot dynarnics fkom the flexible dynamics 

in a hierarchical structure. The equations are maintained in a block matrix form 

that allows various elements, such as the inertia of the flexible beam, to be readily 

identified. Since the model may also be applied to the transportation of a flexible 

beam payload by a base robot, the block matrix form also dows the contributions 

of the payload 0exibility to the overd dynamics to be ascertained. 

The Jacobian relating end-dector forces to joint torques is also expressed in a 

concise matrix fom. The qnadratic nature of the centripetal and Coriolis terms is 

more obvious than in the haditional C(q,3 representation of these terms. The 
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matrix form allows an arbitrary number of flexible modes to be represented without 

resorting to cumbersome summations. 

A s t ate-space represent ation is derived from t his general mode1 and linearized 

about a common operating point. The impact of certain design decisions can be 

observed directly in the resulting equations. For example, the advantages of gravity 

balancing become immediately apparent since it grossly simplifies these linearized 

equations. 

Experiments are performed using two different apparatus: a one-dimensional 

linear act uator wi t h gearing and significant friction, and a t hree degree-of-freedom 

five-bar robot. The five-bar robot was designed using a mechatronics approach - 
its medianical structure is specificdy tailored to yield simpler dynamics throngh 

gravity balancing and dynamic decoupling, and to incorporate force sensing directly 

into the robot structure. The two experimental setups highlight two distinct issues 

related to kap tic interface control - sampling rates and quantization. 

Excellent position resolution and high friction combine to yield good virtual 

walls in the onedimensional device, without the problems inherent to quantized 

measurements. Hence, in this device, the sampling period is the key factor in 

determining stability. The experiments on this device verify the resdts of Lawrence 

and Chape1 161. Limit cycles are observed that disappear at faster sampling rates. 

The difkrences in response between a loose grip and tight grip are also v d e d .  

The use of a prdoad fanction to address h e t i c  friction is also investigated and 

its shortcomings are discussed, partidarly with regard to haptic devices. It is 

conclnded that while fiction can enhance the stability of a virtual wall implemen- 

tation, it is a difficult not to compromise the perf'ormance of %ee motionn, even 

with compensation, d e s s  a force/torque sensor is atilized. 
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The five-bar robot also has good position resolution, but its low viscous and 

Coulomb friction, and large torque capability, result in quantization problerns when 

the standard proportional-derivative implicit force control strategy is applied. The 

large torque capacity is an issue because the stXer the Wtual w d ,  the more quan- 

tization may be a destabilizing factor. Hence there is a tradeoff between position 

resolution and torque output in any haptic device. 

It is demonstrated that this tradeoff can be alleviated somewhat by employing 

a non-linear st ate es timator s trategy that compensates for Coulomb friction. While 

the strategy introduced here is shown to outperform the conventional techniques, 

it must be noted that the strategy is only possible because of the mechatronics 

approach taken to the robot design. Hence, the merits of a mechatronics design 

philosophy are verified by the experimentd results. 

The passivity result of Theorem 2.2.1 and the Iimit cycle theorem introduced 

as Theorern 2.2.2 are not applied to the resulting control system because they do 

not address the problem of quantisation present in the five-bar robot experiments. 

The three degrees-of-fieedom of the five-bar robot have not been exploited. 

However, due to the dynamic decoupling inherent in the mechanical system, the 

axial and vertical joints can be considered independently. Again, this decouphg 

is a result of the mechatronics approach to the robot design. The dynamics are 

simple enough that it may be possible to implement the inverse dynamics techniques 

outlined in section 2.1.5. 

Friction in the five-bar robot is identiiied usi~g a technique that, as far as 

the anthor is aware, is new, albeit spe&c to the problem at hand. However, 

the technique is very simple and proved to be effective. More general fkiction 

iden tifmation techniques were at temp t ed but with inconsis t ent result S. 
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General fiarneworks for optimal implicit force control and impedance control (or 

more properly, compliance control) based on H, optimization are also introduced. 

Controllers are designed and implemented successfully using these frameworks, but 

prove to be less effective than the state-estimator approach. Both approaches are 

based on a model-matching paradigm, where the controller is designed to shape the 

dosed-loop transfer function to mat ch a desired compliance. 

7.2 Recommendat ions 

There are many potential areas of future research, both experimental and theoret- 

ical. These two areas are exemined separately. 

7.2.1 Experirnental Work 

The five-bar robot used as the primary research platform for this research s u f f e r s  

fiom unanticipated structural vibrations. By increasing the ngidity of the robot 

links it should be possible to eliminate these structural vibrations. Hence, the 

main source of vibration would be the last Li&, which is 9k ib l e2 .  However, the 

modelling results of this work could then be applied and the flexibility of the 1 s t  

iink incorporated into the plant model. Alternatively, the fiexibility of the Iink 

could be increased so that its flexibility dominates the system response. Hence, 

the model could again be applied. Note however that increasing the link flexibility 

is likely to degrade performance because the robot's structural vibrational modes 

wonld still fd within the bandwidth requîred for s t 8  &na1 walls. Furthexmore, 

the maximm achievable wall stiffhess is limited by the stifhess of the robot. 

Visual observation of the robot vibration suggests that the problem may be 
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Linked to torsional vibration in the five-bar pardelogram structure. Hence, the 

oscillations cause unmodelled coupling between the axial joint being controlled in 

chapter 6 and the base joint. By implementing a multi-input multi-output compen- 

sation scheme to account for this cross-coupling, the vibration may be eIiminated 

more efFec t ivdy. 

Gravity-balancing of the five-bar robot is accomplished by designing the centre 

of mass to be at the origin of the robot base coordinate frarne. The centre of mass 

location is fked and does not change with configuration. Hence, by designing a 

three degree-of-fi-eedom wrist with the same characteristics it should be possible to 

extend the number of degrees of freedom of the robot to six without jeopardizing 

the gravity balancing, nor the dynamic decoupling of the axial and vertical joints. 

(Indeed, by "chaining" versions of the m e n t  robot together, it is theoretically 

possible to build an n-degree-of-fkeedom gravity-balanced, dynamically decoupled 

manipulator . ) 

7.2.2 Theoretical Work 

The model of chapter 3 allows for vibration of the flexible Iink in two directions. 

However, extension and compression of the beam is not considered. It should be 

relatively straightforward to add this component to the model. 

ki the H, designs of chapter 6, the target compliance is not actually included 

in the final controller - it is ody present in the framework employed for the design. 

As a result of the diffidties encountered while implementing these approaches, 

however, it is felt that better resnlts may be obtained using an alternative approach. 

In particular, Yan and Salcudean [92] present a general h e w o r k  for teleoperation 

and H, optimuiation. By replacing the slave robot and its environment with a 
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mode1 of the desired compliance, it should be possible to apply their results to the 

problem of simulating a particular compliance, such as a virtual wall. The target 

compliance would then be incorporated into the controller structure itself. The 

time delays in the Yan-Saicudean frarnework may be used to partidy account for 

comput ational delays in a discrete- time implement ation. 

Of course, in most, if not all, virtual wall implementations in the literature, the 

unilateral constraint inherent to virtual wails is not included in the controller design 

procedure. While the theoretical results of Colgate and Brown 171, for example, 

may be applied to the final system to verify stability where the same unilateral 

constraint is applied, it would be useful to include the unilateral constraint in the 

design itself. For example, Yan and Salcudean [92] suggest the inclusion of passivity 

constraints into the design procedure through the use of "wave" variables. By using 

a similar concept to incorporate the passivity results of Colgate and Brown [7] (see 

Theorem 2.2.1) into the H, design it may be possible to guarantee stability even 

with the unilaterai constraint. The division of the human operator mode1 into an 

active and a passive component in the work of Yan and Salcudean [92] is &O very 

interesting. 

The consenmtive nature of H, design approaches in g e n d  can be addressed 

using p-synthesis and it may be necessary to use sach an approach to obtain high 

quality Wtual walls. 

Also, heuristic approaches codd be combined to improve the performance of 

virtnal walls. For example, it would be interesting to combine the non-linear state 

estimation examined in this work with the braking palse suggested by Salcadean 

and Vlaar [98] and the inertial compensation of Ching and Wang [IO]. 



Appendix A 

Strain Energy of a Flexible Beam 

The following analysis is derived fiom the in- 

vestigation of Ghanekar [88]. Consider a beam 

element as shown in Figure A.1. The radius of 

cwature  of the neutrd axis is r. The angle 

subtended by the beam element is 68. The neu- 

tral axis is deltnited by the points a and B.  The 

arc length of the neutral axis is 6s. Note that 

since the neutral axis is fiee of stress, 6s is also 

the length of the unddormed beam element. It 

is also the original length of the other beam "fi- 

bres", such as the arc c-d. The strain in each 

beam fibre is €(y), where y is the radial distance 
Figure A.l: Strain in Beam 

of the fibre from the neutral axis. The strain is defined as the change in length 

over the original length. Recalling that 6s is the original length of the fibre, the 

arc length of each beam fibre is (1 + e ( y ) ) b ~ .  But the arc length can &O be fotmd 



from the subtended angle. Hence: 

(T - y)60 = (1 + ~ ( y ) ) b s  

Similady, the arc length of the neutrd a i s  is 6s = ~ 6 9 .  Consequently: 

-y89 = € ( y ) &  

or equivalently, in the limit: 

Figure A.2: Element Geometry 

Now, consider Figure A.2. The in- 

set represents the beam segment of Fig- 

ure A.l ,  where the line of arc length 6s 

is the neutral axis of the segment. The 

rest of the beam is also shown, in the XI- 

y1 hame. Let 6v and Sz be defined such 

that: 

and 

In the K t ,  the above expression d i s  

ferentiated with respect to s yields: 
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From the inset of Figure A.2 it is evident that in the limit: 

For s m d  beam deflections, the angle of curvature, 8, is very srnad so cos(@) 1. 

Hence: 

Substituting this expression into (A. l), the strain €(y) becomes: 

Let E be the modulus of elastic- 

ity of the beam. Denote the length of 

the beam by 1 and an element of cross- 1 
sectional area as dA at location y.  Fig- 

ure A.3 depicts this elemental area and 

its position. The potential energy of a 

beam fibre of unit volume within the 

segment is ~ E E ( ~ ) ~  and the total po- 

tential energy of the flexible link is: Figure A.3: Beam Cross-Section 



The term, 1, is called the cross-sectional area moment of inertia. Using ( 9 ) '  to 

denote differentiation with respect to x, the potential strain energy may be written 

in concise form as: 



Appendix B 

Clamped-Free Beam 

Eigenfunct ions 

This appendix describes the Euler-Bernoulli beam model and applies it to the solu- 

tion of the mode shapes for a clarnped-fkee beam. Orthogonality and normalkation 

of the mode shapes is discussed. 

B. 1 Euler-Bernoulli Beam 

To derive a reasonable modal shape hc t ion ,  9(x),  consider the 6ee-body diagram 

of an Mfotced beam element, as depicted in Figure B.1. The width of the beam 

eIement is dx and the beam element is located at a position, z, dong the axis x i  

and a displacement v (refer back to Figure 3.1). The qnantity, qo, of Figure 3.1 is 

assumed to be identically equal to zero. The mass of the beam element is dm. Only 

transverse vibrations are considered. The expression () refers to differentiation with 

respect to tirne. Let ()' denote partial differentiation with respect to x. 



Figure B. 1: Bernoulli Beam Element 

The inertial forces due to acceleration of the beam element in the displacement, 

v, direction are vdm. The moments experienced by the beam element are M ( r )  

and M ( z  + dg). h o ,  the beam element undergoes shear forces of F(x) and F ( z  + 
d x ) .  Note that other factors, such as rotary inertia and shearing deformations are 

ignored; plane faces of the beam element are assumed to remain plane [82]. These 

assumptions are standard and are reasonable for a beam whose cross-section is small 

with respect to its length. Such a beam is known as an Euler-Bernoulli beam. 

Using a Taylor's series expansion for the moment and shear force at x + dx 
and applying Newton's law in the transverse direction produces the following two 

relationships: 

üdm = F(x) - F(x + d x )  i- F(x) - ( F ( z )  + Ft(z)dz) = - Fr(x)dx (B.1) 

F(x) -Mr(x) ( B 4  

It will be presumed that the cross-sectional area, A, of the beam is constant. Sub- 

stituting equation (B.2) into equation (BA), and replacing dm with p h ,  where p 

is the linex m a s  density of the beam element: 



Now, the moment M ( x )  is generated by internal stresses in the beam. Referring to 

Figures 3.2 and A.3, the moment acting on an elemental area dA, a dis tance y from 

the neutral axis, under a stress o(y) is yo(y)dA. (The quantity o(g)dA represents 

the force due to the internal stress). Thus, the moment acting on the beam element 

is: 

But o(y) = E E ( ~ ) ,  where E is the elastic rnodulus of the beam element. Hence 

from this relationship and equation (A.3) ,  the magnitude of the moment is: 

M ( X )  = j E ~ V ~ A  

= E1vft where I =  y2dAasbefore 1 
Subs tituting this expression for the moment into equation (B .3): 

Using the separation of variables assumption, v ( x ,  t )  = @ ( z ) Q ( t ) ,  the above equa- 

tion becomes: 

The two sides can only be the same if they equal a constant. Denote this constant 

or as two homogeneous equations: 

w2 EI 
@""(x) - $D(z) = O, where a2 = - 

P 
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Since the time and spatial components have been separated, these twu equations 

may be treated as ordinary differential equations. A particulas solution to (B.5) is 

Q ( t )  = ejwt. Define: 

The solution to equation (B.6) takes the fom': 

The constants Ci, Ca, C3 and C4 rnay be found by applying the boundary conditions 

for the overall beam, 

Boundary Conditions for the Clamped-Free Beam 

Consider the flexible link depicted in Figure 3.1. The beam is essentidy Uclampedn 

to the hub at one end, and fkee to move at the other end. Hence, this configuration 

is known as a clamped-free beam. The boundary conditions at the hub are trivial. 

Clearly, the displacement of the beam from the xi-axis is always zero. Similarly, 

as the xi-axis is always tangentid to the link, the dope of the beam at the hub is 

also zero. These two conditions rnay be expressed mathematically as: 

v(0, t) = O (displacement is zero) 

vr(O, t) = O (slope is zero) 

Applying the separation of variables assumption, these conditions rnay also be 

expressed in terms of the modal shape function, a(%), as: 

@(O) = O ( displacement is zero) 

@'(O) = O (slope is zero) 

'This solution is easily derived using Laplace t r d o r m s  



The boundary conditions nt the free end (x 5: 1) arise from the la& of both a 

moment and a shear force at the end of the beam. Rom equation (B.4) and the 

separation of variables assumption, the moment is: 

M(x) = EIBM(x)Q(t) 

and, similady, fiom equation (B .2), the shear force is: 

F ( x )  = -EI@'"(x)Q(t) 

For these two quantities to be zero at the end of the beam, for all time, 

W'(1) = O (moment is zero) 

Q'"(1) = O (shear force is zero) 

Note that the boundary conditions for other beam configurations, such as pinned- 

free or simply-supported, are similar; in each case, the modal shape function and/or 

one or more of its derivatives will be zero at each end of the beam. 

Mode Shapes for the Clamped-Fkee Beam 

Evalnating these clamped-free boundary conditions in equation (B.8) yields the 

four equations: 

Q(O)=O 4 + C 3 = 0  

V(O)=O * C2+C*=O 

atr(I) = O -Cl cos(p1) - C2 sin($) + C3 cosh(p1) + C4 sinh@l) 

G"'(1) = O Cl sin (p l )  - 4 COS (pl) + C3 sinh (p l )  + C4  COS^@^) 

The only solution to this set of linear homogeneous equations in 4, C2, C3 and C4 

is either the trivial solution Cl = C2 = C3 = C4 = O or the restriction: 

cos(p2) cosh@l) = -1 (and C3 = -Cl, C4 = -Ca) 



on the mode shape "fkequency", p. Note &O that given equation (B.9), the con- 

stants CI, C2, C3 and C4 can all be scaled by an arbitrary factor, a, and equations 

(B.6) and (B.9) are still satisfied. Thus, the modal shape function a(,) can be nor- 

malised by an arbitrary constant. Normalization WU be discussed in more detail 

in a later section. 

Totai Solution for the Clamped-Fkee Beam 

The particular solution for the mode shape of equation (B.8) was derived based on 

the assumption that Q ( t )  = ejwt for some angolar frequency W .  Recalling equation 

(B.7), the derivation of @ ( x )  above illus trates that there are some restrictions, (B.9) ,  

on this angular fiequency based on the boundary conditions. However, equation 

(B.9) has an infinite number of solutions. For each solution, pi, of equation (B.9) ,  

there is a corresponding mode shape function, & ( x ) .  Thus, the total solution for 

the displacement v(x, t  ) may be writken as the sum of all the particular solutions. 

Let qi(t)  = e"', where pi2 = 2 sati&es equation (B.9). Then the total response is: 

Orthogonality Conditions for the Modal Shape hinctions 

Since the product of the mode shapes often arises during the process of developing 

the dynamic equations of a flexible system, it is revealing to examine the relation- 

ship between two mode shapes, +;(x) and #j(~). Equation (B.6) must be satisfied 

by both modal shape fanctions. Wnte: 



Then &(x) and q5j(x) satisfy: 

#y(.) = &q5i(x) (B. 12)  

#y(.) = X j # j ( x )  (B. 13)  

Multiplying equation (B. 12) by #j ( x  ) , and multiplying equation (B. 13) by # i ( x )  

and then integrating across the length of the beam: 

The dependence on x has been omitted for clarity. Integrating the left-hand sides 

by parts twice: 

Substituting the boundary conditions for the clamped-fkee beam: 

Subtracting equation (B.17) fkom (B.16): 

(B. 14) 

(B. 16) 

(B. 17) 

Thus, for i # j ,  equations (B.18) and (B.16) yield the orthogonality relationships: 

(B. 19) 
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Normalisation of the Modal Shape Functions 

In the prior section, Mode Shapes for the Clamped-Ree Beam, the observation is 

made that the mode shape can be scaled by an arbitrary constant without violating 

the damped-free boundary conditions. The orthogonality conditions of equation 

(B.19) are also independent of the scaling of the modal shape functions, & and 

Thus, for convenience, the mode shapes will be normalised by adding the following 

constraint, for each i: 

This normalization constraint is useful in analysis for simplifpg the Euler- 

Lagrange dynamic equations. 



Appendix C 

Strain Measurements 

Consider the cross-section of the flexible beam depicted in Figure C.1. 

Define the following quantities: 

h = height of beam cross-section 

b = breadth of beam cross-section 

E,(x, y, t ) = strain at displacement (x, y, O) 

E,(x, z, t ) = strain at displacement (%,O, z) 

The relationship between the strains and the 

beam deflec tions are: 

Et,(%, y, t )  = -y+, t)" 

&(x ,  z, t )  = -ZW(%, t)" 

Figure C. 1: Cross-Section 

Suppose strain gauges are mounted on each side of the beam. Taking the difference 

between the measnrements on opposing sides of the beam resnlts in the amplified 
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strain measurements: 

Hence, from (3.40) and (3.41), the amplified strains may be writ ten: 

The quantities h p " ( ~ ) ~  and b 1 , 6 " ( x ) ~  are constant with respect to tirne, and thus 

may be precomputed based on the positions of the strain gauges along the flexible 

beam. Also note that v(t) and ~ ( t )  are independent of the position of each strain 

gauge. 

Suppose 4n strain gauges are mounted at locations xi, i = 1, . . . , n along the 

beam. Using equation (C.3), the amplified strains in the v-direction at each loca- 



The matrix ECU is a constant dependent only upon the locations of the strain gauges 

and the beam cross-section. Equation (C.5) indicates that the generalized coordi- 

nates of the flexible beam may be computed readily from the strain measurements 

p~ov ided  Ku is non-szngula~. Thus, the strain gauges must be placed such that 

det (M) # O. This restriction ensures, for example, that the strain gauges are not 

all placed at the nodes of the same vibrational mode. Futt hermore, the location of 

the s train gauges may be op timized by solving the non-linear op timization problem: 

Note that if K,, is non-singular then the strain measurements may be used as gen- 

eralized coordinates. Assuming s m d  deflections, the tip deflection, v(1, t), may be 

derived in t his case as: 

The quantity c p ( f ) T ~ ; l  is constant and may be precomputed off-line. In a similar 

fashion, a matrix Et, may be defmed whereby Ew = K,q. 



Appendix D 

Common Matrix Operations 

This appendix merely enurnerates the well-known properties of rotation matrices 

and skew-symmetric matrices that are used in Chapter 3. For a detailed discussion 

of these properties and definitions, refer to [12]. 

D. 1 Rotation Matrices 

Definition D.1.1 Rotation Mat* 

A matriz R is a propet rotation rnatrix if and only if it satisfies: 

Let S0(3), ~efewing to Speual Orthogonal Gronp, denote the set of al1 rotation 

matrices in px3. 
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D.2 Skew-Symmetric Matrices 

Definition D.2.1 Skew-Sgmmetn'c Matriz 

A mat* A is skew-symmetric i f  and only if it satisfies: 

Let SS(3) denote the set of ail skew-symrnetric matrices in Vx3. 

Definition D.2.2 Skew-Symrnetric Operator, S ( * )  

B y  virtue of the d e f i i t i o n  of SS(3), al1 matn'ces in SS(3) have only Mree indepen- 

dent eiements. Hence, every matr i z  A E SS(3) may be wrietten in the  f o n :  

Altematively, let a = (a, a, a3)*. Define the slrew-symmetric operator S(-) by: 

C I e a ~ l y  every A E SS(3) m a y  be -Ben as S(a) for some a E 913. 

D.2.1 Properties 

The skew-symmetric operator, S(*), has a number of usefiil properties. The prop 

erties enumerated below are particularly relevant for the ensning derivation of the 
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general dynamic equations. Let a, b, w ( t )  E 913 and a, p E R. Let R E SO(3). Let 

(j denote differentiation with respect to time. 

Linearity: S(aa + Pb) = a S(a) + P S(b) (D-2) 

Vector product: S(a)b = a x b (D-3) 

Anti-commutatzvily: S(a)b = - S(b)a ( a s a x b = - b x a )  (DA) 

Distributiuity: R(a x  b) = R a  x Rb (De51 

IPransfomation: R S ( ~ )  R~ = S(Ra) (from (D.5) and (D.3)) (D.6) 

Angular velocity: R = S(w)R P . 7 )  
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