548 research outputs found

    Performance Trade-off Investigation of B-IFDMA

    Get PDF
    A performance trade-off investigation is carried out between different possible uplink multiple access schemes, that are based on Orthogonal Frequency Division Multiplexing (OFDM), for International Mobile Telecommunication (IMT) Advanced systems. Between the Discrete Fourier Transform (DFT) precoded systems with different subcarrier allocation mappings and systems lacking DFT-precoders, Block Interleaved Frequency Division Multiple Access (B-IFDMA) is shown to provide a good trade-off between the frequency diversity collected, envelope properties achieved, and channel estimation performance compared to the other mapping schemes. The schemes are analyzed in the presence of the different possible modules which include equalizers, modulators, interleavers, and channel codes. In particular, robust codes such as Turbo codes are able to collect the diversity provided by such schemes, and B-IFDMA systems is shown to be able to beat the other systems in bit error rate (BER) performance terms

    Low-complexity iterative frequency domain decision feedback equalization

    No full text
    Single-carrier transmission with frequency domain equalization (SC-FDE) offers a viable design alternative to the classic orthogonal frequency division multiplexing technique. However, SC-FDE using a linear equalizer may suffer from serious performance deterioration for transmission over severely frequency-selective fading channels. An effective method of solving this problem is to introduce non-linear decision feedback equalization (DFE) to SC-FDE. In this contribution, a low complexity iterative decision feedback equalizer operating in the frequency domain of single-carrier systems is proposed. Based on the minimum mean square error criterion, a simplified parameter estimation method is introduced to calculate the coefficients of the feed-forward and feedback filters, which significantly reduces the implementation complexity of the equalizer. Simulation results show that the performance of the proposed simplified design is similar to the traditional iterative block DFE under various multipath fading channels but it imposes a much lower complexity than the latter

    Inter-carrier interference mitigation for underwater acoustic communications

    Get PDF
    Communicating at a high data rate through the ocean is challenging. Such communications must be acoustic in order to travel long distances. The underwater acoustic channel has a long delay spread, which makes orthogonal frequency division multiplexing (OFDM) an attractive communication scheme. However, the underwater acoustic channel is highly dynamic, which has the potential to introduce significant inter-carrier interference (ICI). This thesis explores a number of means for mitigating ICI in such communication systems. One method that is explored is directly adapted linear turbo ICI cancellation. This scheme uses linear filters in an iterative structure to cancel the interference. Also explored is on-off keyed (OOK) OFDM, which is a signal designed to avoid ICI

    Performance of SC-FDMA with diversity techniques over land mobile satellite channel

    Get PDF
    La demanda de la alta velocidad de datos resulta en una importante interferencia entre símbolos para los sistemas monoportadora en canales de ancho de banda y potencia limitada. Superar la selectividad en el tiempo y la frecuencia del canal de propagación requiere el uso de potentes técnicas de procesamiento de señales. Ejemplos recientes incluyen el uso de múltiples antenas en el transmisor / receptor, en la técnica conocida como Multiple-Input Multiple-Output (MIMO). En ciertos entornos (tales como el enlace ascendente de un enlace móvil) por lo general sólo una antena está disponible en la transmisión. Por lo tanto, sólo esquemas con entrada individual y salida única (Single Input Single Output, SISO) o transmisiones con entrada única y múltiples salidas (Single Input Multiple Output, SIMO) son factibles. La multiplexación por división ortogonal en frecuencia (Orthogonal Frequency-Division Multiplexing, OFDM) es una técnica de modulación ampliamente utilizada por su robustez frente a la selectividad en frecuencia de los canales, su escalabilidad y su compatibilidad con MIMO. Sin embargo, sufre de una alta relación de potencia de pico a promedio (Peak-to-Average Power Ratio, PAPR) que necesita amplificadores de alta potencia muy lineales, lo que resulta costoso energéticamente para la transmisión. La técnica monoportadora con acceso múltiple por división de frecuencia (Single Carrier Frequency-Division Multiple Access , SC-FDMA) se ha convertido en una alternativa a la técnica de OFDM que se utiliza específicamente en el enlace ascendente de LTE. SC-FDMA es capaz de reducir la PAPR en la transmisión, dando lugar a una relajación de las limitaciones en cuanto a la eficiencia de potencia necesaria en los terminales de usuario y las unidades satélite. SC-FDMA puede ser descrito como una versión de OFDMA en el que se incluyen una etapa de pre-codificación y de pre-codificación inversa en el transmisor y el receptor respectivamente. Así, los símbolos se transmiten en tiempo, pero después de ser procesados en la frecuencia. Incluso con el uso de OFDMA o SC-FDMA, la ISI tiene que ser compensada por la igualación, que normalmente se realiza en el dominio de frecuencia. El objetivo de esta tesis es proporcionar un análisis matemático del comportamiento de SC-FDMA en un canal móvil terrestre por satélite (Land Mobile Satellite, LMS). Para este propósito, el canal se modela como un canal Rice sombreado tal que la línea de visión (Line of Sight, LOS) sigue la distribución de Nakagami. En primer lugar, se describen las técnicas de modulación multiportadora OFDMA y SC-FDMA. A continuación, se lleva a cabo un análisis de OFDMA y SC-FDMA basado en el ruido complejo recibido a la entrada del detector. Se evalúa la probabilidad de error de bit (Bit Error Rate, BER) de SC-FDMA para diferentes profundidades del desvanecimiento y de la diversidad de antena en el receptor. También se evalúa la eficiencia espectral de SC-FDMA para el canal LMS. Por último, se abordan las técnicas de diversidad y se evalúan las técnicas conocidas como Maximal Ratio Combining (MRC) y Equal Gain Combining (EGC)

    Analysis and mitigation of carrier frequency offset for uplink of OFDMA

    Get PDF
    Orthogonal Frequency Division Multiplexing (OFDM) is being used in many wireless standards because of its immunity to multipath fading, high spectral efficiency and simple implementation, making it suitable for high data rate multimedia wireless applications. One of the significant drawbacks of the OFDM is its sensitivity to Carrier Frequency Offset (CFO). CFO causes Inter Carrier Interference (ICI) between subcarriers and Multiple User Interference (MUI) at Uplink between different users. ICI and MUI at uplink cause significant degradation in the performance of the receiver, therefore, to improve the receiver performance up to acceptable level, compensation of the CFO becomes necessary. In this research, Suppression of MUI by Minimum Mean Squared Error (MMSE) Feedback Equalizer in frequency domain which was originally proposed for Single Carrier- Frequency Domain Multiple Access (SC-FDMA) has been studied for Uplink of Orthogonal Frequency Division Multiple Access (OFDMA). However, calculation of MUI power required in this algorithm for all users impose very high computational burden on the receiver. In the proposed Low Complexity MUI Suppression by MMSE Equalization for Uplink of OFDMA approximation to the calculation of MUI power is applied to reduce its complexity. Simulation result & calculated complexity show that proposed method obtains good performance with much lower complexity
    corecore