239 research outputs found

    Perceptual Echo Control and Delay Estimation

    Get PDF

    Time delay estimation algoritms for echo cancellation

    Get PDF
    The following case study describes how to eliminate echo in a VoIP network using delay estimation algorithms. It is known that echo with long transmission delays becomes more noticeable to users. Thus, time delay estimation, as a part of echo cancellation, is an important topic during transmission of voice signals over packetswitching telecommunication systems. An echo delay problem associated with IP-based transport networks is discussed in the following text. The paper introduces the comparative study of time delay estimation algorithm, used for estimation of the true time delay between two speech signals. Experimental results of MATLab simulations that describe the performance of several methods based on cross-correlation, normalized crosscorrelation and generalized cross-correlation are also presented in the paper

    Stochastic Analysis of the LMS Algorithm for System Identification with Subspace Inputs

    Get PDF
    This paper studies the behavior of the low rank LMS adaptive algorithm for the general case in which the input transformation may not capture the exact input subspace. It is shown that the Independence Theory and the independent additive noise model are not applicable to this case. A new theoretical model for the weight mean and fluctuation behaviors is developed which incorporates the correlation between successive data vectors (as opposed to the Independence Theory model). The new theory is applied to a network echo cancellation scheme which uses partial-Haar input vector transformations. Comparison of the new model predictions with Monte Carlo simulations shows good-to-excellent agreement, certainly much better than predicted by the Independence Theory based model available in the literature

    A Multidelay Double-Talk Detector Combined with the MDF Adaptive Filter

    Get PDF
    The multidelay block frequency-domain (MDF) adaptive filter is an excellent candidate for both acoustic and network echo cancellation. There is a need for a very good double-talk detector (DTD) to be combined efficiently with the MDF algorithm. Recently, a DTD based on a normalized cross-correlation vector was proposed and it was shown that this DTD performs much better than the Geigel algorithm and other DTDs based on the cross-correlation coefficient. In this paper, we show how to extend the definition of a normalized cross-correlation vector in the frequency domain for the general case where the block size of the Fourier transform is smaller than the length of the adaptive filter. The resulting DTD has an MDF structure, which makes it easy to implement, and a good fit with an echo canceler based on the MDF algorithm. We also analyze resource requirements (computational complexity and memory requirement) and compare the MDF algorithm with the normalized least mean square algorithm (NLMS) from this point of view.</p

    System Identification with Applications in Speech Enhancement

    No full text
    As the increasing popularity of integrating hands-free telephony on mobile portable devices and the rapid development of voice over internet protocol, identification of acoustic systems has become desirable for compensating distortions introduced to speech signals during transmission, and hence enhancing the speech quality. The objective of this research is to develop system identification algorithms for speech enhancement applications including network echo cancellation and speech dereverberation. A supervised adaptive algorithm for sparse system identification is developed for network echo cancellation. Based on the framework of selective-tap updating scheme on the normalized least mean squares algorithm, the MMax and sparse partial update tap-selection strategies are exploited in the frequency domain to achieve fast convergence performance with low computational complexity. Through demonstrating how the sparseness of the network impulse response varies in the transformed domain, the multidelay filtering structure is incorporated to reduce the algorithmic delay. Blind identification of SIMO acoustic systems for speech dereverberation in the presence of common zeros is then investigated. First, the problem of common zeros is defined and extended to include the presence of near-common zeros. Two clustering algorithms are developed to quantify the number of these zeros so as to facilitate the study of their effect on blind system identification and speech dereverberation. To mitigate such effect, two algorithms are developed where the two-stage algorithm based on channel decomposition identifies common and non-common zeros sequentially; and the forced spectral diversity approach combines spectral shaping filters and channel undermodelling for deriving a modified system that leads to an improved dereverberation performance. Additionally, a solution to the scale factor ambiguity problem in subband-based blind system identification is developed, which motivates further research on subbandbased dereverberation techniques. Comprehensive simulations and discussions demonstrate the effectiveness of the aforementioned algorithms. A discussion on possible directions of prospective research on system identification techniques concludes this thesis

    Echo Cancellation for Hands-Free Systems

    Get PDF

    Holographic Detection and Reduction of Wind Noise

    Get PDF
    Many devices that include built-in microphone(s) are used in windy situations. Wind noise degrades the quality of audio detected by the microphone(s), causes microphone signal saturation at high wind speeds, causes nonlinear acoustic echo, and reduces the performance of acoustic echo cancellation (AEC). Applications such as voice‐trigger, automatic speech recognition (ASR), and voice over internet protocol (VoIP) communication are negatively impacted by such degradation. This disclosure describes cost‐effective and robust techniques to detect and reduce wind noise. The described techniques deliver optimum removal and detection results by processing the audio signal in a holographic way by dealing with all related domains including time, frequency, and 3D space. This approach can improve the audio detection performance of any device that incorporates the techniques and can thereby improve the user experience of various applications such as voice-trigger, speech recognition, voice communication, event detection, etc. even on devices that have limited computational capability

    Synchronization Controller To Solve The Mismatched Sampling Rates For Acoustic Echo Cancellation

    Get PDF
    Aplikasi-aplikasi Suara melalui IP (VoIP) yang menggunakan set komunikasi bebas tangan semakin meluas digunakan. Voice over Internet Protocol (VoIP) applications are extensively used for handsfree communication (audio conferencing and video conferencing). Although handsfree communication systems may encounter acoustic echo problems, such problems can be solved using acoustic echo cancellation (AEC)
    corecore