2,369 research outputs found

    Generalized Voltage-based State-Space Modelling of Modular Multilevel Converters with Constant Equilibrium in Steady-State

    Get PDF
    This paper demonstrates that the sum and difference of the upper and lower arm voltages are suitable variables for deriving a generalized state-space model of an MMC which settles at a constant equilibrium in steady-state operation, while including the internal voltage and current dynamics. The presented modelling approach allows for separating the multiple frequency components appearing within the MMC as a first step of the model derivation, to avoid variables containing multiple frequency components in steady-state. On this basis, it is shown that Park transformations at three different frequencies (+Ļ‰+\omega, āˆ’2Ļ‰-2\omega and +3Ļ‰+3\omega) can be applied for deriving a model formulation where all state-variables will settle at constant values in steady-state, corresponding to an equilibrium point of the model. The resulting model is accurately capturing the internal current and voltage dynamics of a three-phase MMC, independently from how the control system is implemented. The main advantage of this model formulation is that it can be linearised, allowing for eigenvalue-based analysis of the MMC dynamics. Furthermore, the model can be utilized for control system design by multi-variable methods requiring any stable equilibrium to be defined by a fixed operating point. Time-domain simulations in comparison to an established average model of the MMC, as well as results from a detailed simulation model of an MMC with 400 sub-modules per arm, are presented as verification of the validity and accuracy of the developed model

    A VHDL-AMS Simulation Environment for an UWB Impulse Radio Transceiver

    Get PDF
    Ultra-Wide-Band (UWB) communication based on the impulse radio paradigm is becoming increasingly popular. According to the IEEE 802.15 WPAN Low Rate Alternative PHY Task Group 4a, UWB will play a major role in localization applications, due to the high time resolution of UWB signals which allow accurate indirect measurements of distance between transceivers. Key for the successful implementation of UWB transceivers is the level of integration that will be reached, for which a simulation environment that helps take appropriate design decisions is crucial. Owing to this motivation, in this paper we propose a multiresolution UWB simulation environment based on the VHDL-AMS hardware description language, along with a proper methodology which helps tackle the complexity of designing a mixed-signal UWB System-on-Chip. We applied the methodology and used the simulation environment for the specification and design of an UWB transceiver based on the energy detection principle. As a by-product, simulation results show the effectiveness of UWB in the so-called ranging application, that is the accurate evaluation of the distance between a couple of transceivers using the two-way-ranging metho

    Techniques and Challenges in Conducted EMI Analysis of Renewable Energy Systems

    Get PDF
    Renewable energy sources have been widely integrated into modern power systems, leading to the massive use of power converters, which represent the main sources of conducted electromagnetic (EM) noise. Furthermore, power grids employ interactive devices including smart meters that resort to powerline communication (PLC) technology and are usually more susceptible to EM noise than traditional electrical machinery. This paper provides a state-of-the-art overview of conducted EM interference (EMI) analysis in power systems, focusing on EMI prediction models, PLC coexistence issues, and measurement challenges. Insights into the use of various methods in different application scenarios are provided, and relevant future studies are foreseen

    DQ-Frame Impedance Measurement of Three-Phase Converters Using Time-Domain MIMO Parametric Identification

    Get PDF
    The dq- frame impedance model is increasingly employed to analyze the grid-converter interactions in three-phase systems. As the impedance model is derived at a specific operating point, it is required to connect the converter to actual power grids during the impedance measurement. Yet, the nonzero grid impedance causes cross-couplings between perturbation and response signals, which consequently jeopardize the accuracy of impedance measurement. This article analyzes first the coupling effect of the grid impedance on the measured impedance, and then proposes a multiple-input multiple-output parametric impedance identification method for mitigating the effect. Instead of using the fast Fourier transform, the method allows for obtaining the parametric impedance model directly from the time-domain data. Further, with the simultaneous wideband excitations, only a single measurement cycle is needed. The effectiveness of the method is verified in both simulations and experimental tests

    Artificial Neural Network Based Identification of Multi-Operating-Point Impedance Model

    Get PDF
    The black-box impedance model of voltage source inverters (VSIs) can be measured at their terminals without access to internal control details, which greatly facilitate the analysis of inverter-grid interactions. However, the impedance model of VSI is dependent on its operating point and can have different profiles when the operating point is changed. This letter proposes a method for identifying the impedance model of VSI under a wide range of operating points. The approach is based on the artificial neural network (ANN), where a general framework for applying the ANN to identify the VSI impedance is established. The effectiveness of the ANN-based method is validated with the analytical impedance models

    Analysis And Simulation Tools For Solar Array Power Systems

    Get PDF
    This dissertation presents simulation tools developed specifically for the design of solar array power systems. Contributions are made in several aspects of the system design phases, including solar source modeling, system simulation, and controller verification. A tool to automate the study of solar array configurations using general purpose circuit simulators has been developed based on the modeling of individual solar cells. Hierarchical structure of solar cell elements, including semiconductor properties, allows simulation of electrical properties as well as the evaluation of the impact of environmental conditions. A second developed tool provides a co-simulation platform with the capability to verify the performance of an actual digital controller implemented in programmable hardware such as a DSP processor, while the entire solar array including the DC-DC power converter is modeled in software algorithms running on a computer. This virtual plant allows developing and debugging code for the digital controller, and also to improve the control algorithm. One important task in solar arrays is to track the maximum power point on the array in order to maximize the power that can be delivered. Digital controllers implemented with programmable processors are particularly attractive for this task because sophisticated tracking algorithms can be implemented and revised when needed to optimize their performance. The proposed co-simulation tools are thus very valuable in developing and optimizing the control algorithm, before the system is built. Examples that demonstrate the effectiveness of the proposed methodologies are presented. The proposed simulation tools are also valuable in the design of multi-channel arrays. In the specific system that we have designed and tested, the control algorithm is implemented on a single digital signal processor. In each of the channels the maximum power point is tracked individually. In the prototype we built, off-the-shelf commercial DC-DC converters were utilized. At the end, the overall performance of the entire system was evaluated using solar array simulators capable of simulating various I-V characteristics, and also by using an electronic load. Experimental results are presented

    Wide-Area Time-Synchronized Closed-Loop Control of Power Systems And Decentralized Active Distribution Networks

    Get PDF
    The rapidly expanding power system grid infrastructure and the need to reduce the occurrence of major blackouts and prevention or hardening of systems against cyber-attacks, have led to increased interest in the improved resilience of the electrical grid. Distributed and decentralized control have been widely applied to computer science research. However, for power system applications, the real-time application of decentralized and distributed control algorithms introduce several challenges. In this dissertation, new algorithms and methods for decentralized control, protection and energy management of Wide Area Monitoring, Protection and Control (WAMPAC) and the Active Distribution Network (ADN) are developed to improve the resiliency of the power system. To evaluate the findings of this dissertation, a laboratory-scale integrated Wide WAMPAC and ADN control platform was designed and implemented. The developed platform consists of phasor measurement units (PMU), intelligent electronic devices (IED) and programmable logic controllers (PLC). On top of the designed hardware control platform, a multi-agent cyber-physical interoperability viii framework was developed for real-time verification of the developed decentralized and distributed algorithms using local wireless and Internet-based cloud communication. A novel real-time multiagent system interoperability testbed was developed to enable utility independent private microgrids standardized interoperability framework and define behavioral models for expandability and plug-and-play operation. The state-of-theart power system multiagent framework is improved by providing specific attributes and a deliberative behavior modeling capability. The proposed multi-agent framework is validated in a laboratory based testbed involving developed intelligent electronic device prototypes and actual microgrid setups. Experimental results are demonstrated for both decentralized and distributed control approaches. A new adaptive real-time protection and remedial action scheme (RAS) method using agent-based distributed communication was developed for autonomous hybrid AC/DC microgrids to increase resiliency and continuous operability after fault conditions. Unlike the conventional consecutive time delay-based overcurrent protection schemes, the developed technique defines a selectivity mechanism considering the RAS of the microgrid after fault instant based on feeder characteristics and the location of the IEDs. The experimental results showed a significant improvement in terms of resiliency of microgrids through protection using agent-based distributed communication

    A Pipeline Analog-To-Digital Converter for a Plasma Impedance Probe

    Get PDF
    Space instrumentation technology is an essential tool for rocket and satellite research, and is expected to become popular in commercial and military operations in fields such as radar, imaging, and communications. These instruments are traditionally implemented on printed circuit boards using discrete general-purpose Analog-to-Digital Converter (ADC) devices and other components. A large circuit board is not convenient for use in micro-satellite deployments, where the total payload volume is limited to roughly one cubic foot. Because micro-satellites represent a fast growing trend in satellite research and development, there is motivation to explore miniaturized custom application-specific integrated circuit (ASIC) designs to reduce the volume and power consumption occupied by instrument electronics. In this thesis, a model of a new Plasma Impedance Probe (PIP) architecture, which utilizes a custom-built ADC along with other analog and digital components, is proposed. The model can be fully integrated to produce a low-power, miniaturized impedance probe

    Behavioral Modeling Paradigm for More Electric Aircraft Power Electronic Converters

    Get PDF
    To control the power flow among various energy sources and loads of a power system of modern more electric aircrafts, power electronics converters are employed. The integration of multiple sources into distribution system and their interconnection with variety of loads through power electronic converters results in a complex dynamic system. Modeling of these systems prior to implementation becomes necessary to analyze and predict systemā€™s behavior. The classical modeling approaches require detail knowledge about the topology and parameters of the active and passive components of the power electronics converters. While in modern system, most of the power electronics converters are ready to use power electronics modules. These modules come from different manufacturers, lacking the necessary information to build the conventional switch or average models. The chapter would cover dynamic behavioral modeling technique for power electronics systems to be employed in more electric aircrafts, which do not require any prior information about the internal details of the system
    • ā€¦
    corecore