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Abstract―The black-box impedance model of voltage source 
inverters (VSIs) can be measured at their terminals without access 
to internal control details, which greatly facilitate the analysis of 
inverter-grid interactions. However, the impedance model of VSI 
is dependent on its operating point and can have different profiles 
when the operating point is changed. This letter proposes a method 
for identifying the impedance model of VSI under a wide range of 
operating points. The approach is based on the artificial neural 
network (ANN), where a general framework for applying the ANN 
to identify the VSI impedance is established. The effectiveness of 
the ANN-based method is validated with the analytical impedance 
models. 
 

I.  INTRODUCTION 
 

In recent years, the massive use of voltage-source inverters 
(VSIs) makes the power system more flexible, sustainable and 
efficient, yet it also imposes new challenges to the grid stability 
[1]. The impedance-based modeling and analysis of VSIs have 
been increasingly used to address the grid-VSI interactions [2]. 
A prominent feature of this approach is that the impedance of 
VSI can be directly measured at its terminal without the prior 
knowledge of internal control systems, which enables a ‘black-
box’ modeling and analysis. However, in practical applications, 
the impedance model of VSI can be changed with the operating 
point of the system, due to the nonlinear control dynamics of 
VSIs, e.g., the Phase-Locked Loop (PLL), the power control 
and the dc-link voltage control loops [3]. Hence, it is hard to 
screen the worst scenarios with the impedance measured from 
a single operating point of the system. 

Considering the operating-point dependence, a large-signal 
impedance model is reported in [4], where the operating-point 
variation is translated into an impedance model as a function of 
the amplitude of the perturbation signal. Hence, it is an indirect 
representation of the converter impedance at different operating 
points. An alternative way is to derive the polytopic model for 
VSIs or dc-dc converters [5], [6], where the identified small-
signal models at multiple operating points are combined with 
weighting functions, and thus a multi-operating-point 
impedance model can be obtained for predicting the impedance 
at different operating points, yet its accuracy depends on the 
number of small-signal models (operating points) combined in 
the polytopic model. The more small-signal models combined 
make the polytopic model more accurate, yet more complex to 
be calculated. Considering the complex process to combine the 
small-signal models in a linear way, a nonlinear model is more 
suitable for mapping the nonlinear relationships between the 
multi-operating-point impedance model and the measured data. 

The artificial neural network (ANN) provides a powerful 
nonlinear modeling method, which can be used to generate the 
complex nonlinear model by feeding the data. The ANN-based 
method features an automated training procedure with 
sufficient accuracy. A recurrent neural network (RNNs) based 
impedance measurement technique is reported for the power 
electronic systems [7], where the impedance is calculated by the 
trained RNN. Nevertheless, this method can only generate the 
impedance at a specific operating point.  

This letter proposes an ANN-based impedance identification 
method to develop an impedance model that can cover multiple 
operating points. The impedance measurement method in the 
dq-frame is adopted first to obtain the impedance data of VSIs. 
Then, the measured data on a given set of operating points are 
used to train the ANN, in order to identify the impedance at the 
unmeasured operating points. Comparisons of the ANN-based 
identification against the analytical model are provided, which 
confirm the effectiveness of the proposed method. 

 
II. ANN-BASED IMPEDANCE IDENTIFICATION 

 
A. ANN-Based Impedance Identification Framework 

ANN is a nonlinear mathematical model that mimics the 
structure and function of a biological neural network, which can 
directly map the data to the model.  

Fig. 1 illustrates a general framework of applying the ANN 
to identify impedance profiles of VSC at multiple operating 
points. The framework is organized with three levels, which are 
1) the concept level, 2) the mapping level, and 3) the supporting 
level. 

The concept level is composed of three conceptual steps in 
the machine learning algorithm, including the data-sourcing, 
the model generation, and the model verification. 

The mapping level maps the machine-learning concepts to 
the physical domain of the impedance identification. First, in 
the data-sourcing step, the measured data, which can reflect the 
operating-point-dependent characteristic of the impedance, is 
obtained by the impedance measurement. The parameter range 
and interval of sweeping need to be defined at the beginning of 
the measurement, and then the commonly used dq-impedance 
measurement technique is executed to obtain the impedance 
data. As the impedance model of VSI can be changed with the 
operating point, a multi-operating-point impedance model will 
be established in this letter. Therefore, the parameters of 
operating point (Vd, Vq, Id, Iq) are used as inputs to relate the 
impedance model with different operating points, while the 
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frequency fp is also used as the input to reflect the frequency-
dependent feature of the impedance model. The magnitude and 
the phase of impedance in the dq-frame are selected as the 
outputs. Thus, the measurement and calculation need to be 
repeated by changing the operating point of the inverter and the 
frequency of perturbation. After the impedance measurement at 
pre-defined operating points, the dataset is established. The 
measured dataset is then split into two parts, one is used for 
training the ANN, and the other for verifying the generated 
ANN model. The ANN-based model generation technique is 
next executed to generate a multi-operating-point impedance 
model that can identify the VSI impedance with the continuous 
changes of operating points. Prior to using the generated ANN 
model, the model accuracy is verified by comparing it with the 
measured data which are not used in model training.  

The supporting level provides the detailed procedures of two 
techniques used to support the mapping level, which are the dq-
impedance/admittance measurement technique and the ANN-
based model generation technique. More detailed principles of 
these two techniques are explained in the next two parts.  

B. DQ-Impedance/Admittance Measurement 
Fig. 2 shows the admittance measurement diagram of grid-

connected VSI with the PLL, the dc-link voltage control loop, 
and the current control loop.  The perturbation is injected into 
the VSI, and by extracting the response at PCC, the output 
admittance of VSI can be obtained. Ydq is a two by two 
admittance matrix. 

The flowchart of measuring the VSI impedance/admittance 
in the dq-frame is illustrated in Fig. 1, which consists of 

excitation-signal design, perturbation injection, data processing, 
and impedance/admittance calculation. 

Before the measurement, the excitation signals need to be 
designed. The single-frequency injection is adopted to measure 
the admittance, considering the dynamic effect of PLL and dc-
link [8]. The magnitude of this excitation signal has to be 
appropriately designed to extract the converter dynamics [9]. 
The magnitude of the excitation should neither be too large to 
change the operating point of the system, nor too small to be 
interfered by measurement noise. In general, the magnitude of 
the excitation signal is chosen between 5% and 10% of steady-
state values [10], [11]. 

The next step is to inject the perturbation into the system and 
obtain the voltage and current response of the converter at PCC. 
Then the measured output current and voltage of the converter 
are transformed into the dq-frame. By applying the fast Fourier 
transform (FFT) to transformed variables, the magnitude and 
phase information for each voltage and current at the injected 
frequency can be extracted. To acquire the four entries of the 
admittance matrix Ydq shown in Fig. 1, two linearly 
independent perturbations are applied [8], [12]. Based on the 
extracted magnitude and phase information, the dq-frame VSI 
admittance Ydq can be derived as 

1

1 2 1 2

1 2 1 2

dd dq d d d d

qd qq q q q q

Y Y I I V V

Y Y I I V V

−
     

= =     
     

dqY     (1) 

C. ANN-Based Model Generation 
The aim of the ANN-based model generation step is to obtain 

the multi-operating-point impedance model with the measured 
dataset and the ANN training technique. This step is split into 
two parts, i.e. the model initialization and the model training, 
which are elaborated as follows:  

1) Model Initialization 
Numerous types of ANN structures have been reported in the 

literature [13]. The choice of network structure depends on the 
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Fig. 1. General framework of the ANN-based impedance identification.  
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Fig. 2. A general diagram of dq-frame admittance measurement. 
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nature of the physical relationships of the trained data and the 
type of training task. The impedance identification is a 
regression task that generates the model from the measured 
data. The relationship between the output and input of the multi-
operating-point impedance model is static. Hence, the 
feedforward ANN is selected in this letter. 

The next step is to initialize the ANN structure, where the 
number of hidden layers and the neurons in each layer needs to 
be initialized. As the multi-operating-point impedance is 
defined as a five-input eight-output model, there are five 
neurons in the input layer and eight neurons in the output layer. 
Further, as the input-output relationship of the multi-operating-
point impedance model is continuous, the single hidden layer is 
sufficient to solve the impedance identification application in 
this letter as one hidden layer is able to approximate any 
function that contains a continuous mapping from one finite 
space to another [14]. Yet the number of neurons in the hidden 
layer is selected by trial-and-error.  

Therefore, a three-layer feedforward ANN is established. As 
shown in Fig. 3, the ANN contains an input layer, an output 
layer, and a hidden layer. In the hidden layer and output layer, 
each neuron is a processing unit, which first calculates their 
inputs by multiplying outputs of all neurons in the upper layer 
x with the given weights w, and then adds them together with 
the bias b. The result is next processed through the nonlinear 
function that is named as the activation function. In the hidden 
layer, the sigmoid function is selected as the activation function 
[15], since a shallow three-layer feedforward ANN is selected 
in this work. Therefore, the output of neurons in hidden layers 
is given as follows: 

( )5

, ,11
, 1,...,j i j i ji

n S w x b j m
=

 = ⋅ + =             (2) 

In the output layer, the activation function in the impedance 
identification is the linear function as the outputs are 
unbounded. Thus, the output of neurons in hidden layers is 
given as follows: 

( ), ,21
, 1,...,8

m

j i j i ji
y w x b j

=
= ⋅ + =                (3) 

2) Model Training 
The process that generates the model with the data is named 

as the model training, which determines the accuracy of the 
resulted model. The purpose of the ANN model training in the 
impedance identification is to generate the multi-operating-
point impedance model of the VSI with the measured operating 
point and impedance data. Prior to training, the training data 
used in model training step are split into two parts, 75% of the 
data is used for the ANN training, while the rest 25%  is used 
for performance testing during the training process. 

The next step is to train the model based on the initialized 
ANN structure. The back-propagation algorithm with the mean 
squared error (MSE) loss function between the ANN output and 
measured impedance data are used to train the ANN model. A 
stochastic gradient descent (SGD) algorithm is performed in 
mini-batches with multiple epochs to improve the learning 
convergence [16]. The MSE loss function is used as a default 
metric for evaluating the performance of regression algorithms, 
which is given as follows: 

 ( )( )2

1 1

1 ˆ ,
N D

d l l d
n n

n d

MSE X X
N = =

= − w b               (4) 

where ( )ˆ ,d l l
nX w b  and d

nX  denote the d-th ANN output and 

measured impedance data at the sample index n, respectively, 
N represents the mini-batch size, D is the size of the ANN 
output vector, and (wl, bl) denotes the weights and bias 
parameters to be learned at the l-th layer. 

The random initialization of the weights and bias parameters 
based on the Gaussian distribution shows more probability and 
is suitable for the unknown or highly nonlinear relationship 
[17]. The training process is to minimize the MSE loss function 
by optimizing the weights and bias parameters. The updated 
procedure with a learning rate λ, can be computed as follows, 

( ) ( ) ( )1 1

1 1

, ,
,

l l l l
k k k k l l

k k

MSEλ− −
− −

∂= −
∂

w b w b
w b

               (5) 

After the training, the generated model is evaluated by the 
coefficient of determination (R2) to show the performance of 
training, which is given by 

( ) ( )222 1 /i i i
i i

R y f y y= − − −                   (6) 

where yi denotes the training data, ⎯y denotes the average value 
of yi. fi denotes the corresponding generated data by the trained 
model. If the calculated R2 is smaller than 0.98, the number of 
neurons in each hidden layer needs to be redefined. 

 
III. CASE STUDY AND VALIDATION 

 
To verify the proposed method, the method is applied to 

identify a grid-connected VSI shown in Fig. 2 with the PLL, the 
dc-link voltage control loop, and the current control loop. To 
simplify the measurement, only the variation of d-axis current 
in the dq-frame is taken into consideration. 

The parameters of the inverter are shown in Table I. In this 
letter, the data are extracted by the analytical model, which is 
validated by the field measurements [8]. The dataset is split into 
two parts, i.e. training dataset and verification dataset. In the 
training dataset, the frequency fp was swept from 1 Hz to 100 
Hz with an interval of 1 Hz, whereas the operating current Id 
was swept from 2.16 A to 9.84 A with an interval of 0.16 A. To 
make the result easily visible, the results are separated into Ydd, 
Ydq, Yqd, Yqq. The obtained output admittance dataset for training 
is shown in Fig. 4. Then the obtained dataset is fed into the 
initialized ANN. After the training process, the operating-point-
dependent admittance model YANN is generated as shown in Fig. 
5. 

To verify the accuracy of the proposed method, the generated 
ANN-based model needs to be compared with the verification 
dataset that is not used in training with the corresponding 
frequency fp_v and operating current Id_v. In the verification 
dataset, the frequency fp_v was swept from 1 Hz to 100 Hz with 
an interval of 0.1 Hz, whereas the operating current Id_v was 
swept from 2.16 A to 9.84 A with an interval of 0.04 A. 

The corresponding errors between the verification data and 
the generated model are shown in Fig. 6, where the errors 
become large when the data used in training is sparse, yet the 
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largest error is only 1 % of the verification data. Hence, the 
proposed ANN-based impedance identification method can 
accurately model the VSI considering the operating point 
variation. 
 

IV. CONCLUSION 
 

This letter has discussed an ANN-based impedance 
identification method to consider the operating-point variation 
in the VSI impedance model. A framework for illustrating the 
use of ANN for the impedance estimation has been introduced. 
The case study has demonstrated the effectiveness of the 
method. 
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TABLE I. INVETRTER PAERMETERS 

Symbol Description Value 

Vdc0 Inverter input dc voltage reference 730 V 

Vd D channel grid voltage 250V 

Vq Q channel grid voltage 0 V 

Iq Q channel output current 0 A 

fsw Switching frequency 10 kHz 

f0 Line frequency 50 Hz 

Lf Inductance of inverter output inductor 3 mH 

Cdc DC capacitor 1000 μF 

Kp_dc Proportional gain of dc voltage controller 0.1 

Ki_dc Integral gain of dc voltage controller 10 

Kp_i Proportional gain of current controller 7.85 

Ki_i Integral gain of current controller 2741.5 

Kp_pll Proportional gain of inverter PLL 0.56 

Ki_pll Integral gain of inverter PLL 80.75 
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Fig. 4. Output admittance dataset of VSI used for training. 
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Fig. 5. Generated multi-operating-point admittance model of VSI. 
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Fig. 6. Corresponding errors between generated multi-operating-point admittance model and verification data. 
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