21 research outputs found

    Frequency Tracking of Atrial Fibrillation Using Hidden Markov Models

    Full text link

    Continuous Wavelet Transform and Hidden Markov Model Based Target Detection

    Get PDF
    Standard tracking filters perform target detection process by comparing the sensor output signal with a predefined threshold. However, selecting the detection threshold is of great importance and a wrongly selected threshold causes two major problems. The first problem occurs when the selected threshold is too low which results in increased false alarm rate. The second problem arises when the selected threshold is too high resulting in missed detection. Track-before-detect (TBD) techniques eliminate the need for a detection threshold and provide detecting and tracking targets with lower signal-to-noise ratios than standard methods. Although TBD techniques eliminate the need for detection threshold at sensor’s signal processing stage, they often use tuning thresholds at the output of the filtering stage. This paper presents a Continuous Wavelet Transform (CWT) and Hidden Markov Model (HMM) based target detection method for employing with TBD techniques which does not employ any thresholding

    Frequency Tracking of Atrial Fibrillation using Hidden Markov Models

    Get PDF
    A Hidden Markov Model (HMM) is used to improve the robustness to noise when tracking the atrial fibrillation (AF) frequency in the ECG. Each frequency interval corresponds to a state in the HMM. Following QRST cancellation, a sequence of observed states is obtained from the residual ECG, using the short time Fourier transform. Based on the observed state sequence, the Viterbi algorithm, which uses a state transition matrix, an observation matrix and an initial state vector, is employed to obtain the optimal state sequence. The state transition matrix incorporates knowledge of intrinsic AF characteristics, e.g., frequency variability, while the observation matrix incorporates knowledge of the frequency estimation method and SNRs. An evaluation is performed using simulated AF signals where noise obtained from ECG recordings have been added at different SNR. The results show that the use of HMM considerably reduces the average RMS error associated with the frequency tracking: at 5 dB SNR the RMS error drops from 1.2 Hz to 0.2 Hz

    Unsupervised Frequency Tracking beyond the Nyquist Limit using Markov Chains

    Full text link
    This paper deals with the estimation of a sequence of frequencies from a corresponding sequence of signals. This problem arises in fields such as Doppler imaging where its specificity is twofold. First, only short noisy data records are available (typically four sample long) and experimental constraints may cause spectral aliasing so that measurements provide unreliable, ambiguous information. Second, the frequency sequence is smooth. Here, this information is accounted for by a Markov model and application of the Bayes rule yields the a posteriori density. The maximum a postariori is computed by a combination of Viterbi and descent procedures. One of the major features of the method is that it is entirely unsupervised. Adjusting the hyperparameters that balance data-based and prior-based information is done automatically by ML using an EM-based gradient algorithm. We compared the proposed estimate to a reference one and found that it performed better: variance was greatly reduced and tracking was correct, even beyond the Nyquist frequency

    Extraction et détection automatique de pistes fréquentielles en sonar passif

    Get PDF
    Nous proposons une nouvelle approche pour l'extraction automatique de plusieurs pistes fréquentielles de signaux "bandes étroites" par chaînes de Markov cachées. L'algorithme présenté est une extension du Forward-Backward dans un cadre multisources

    A Review of the Frequency Estimation and Tracking Problems

    Get PDF
    This report presents a concise review of some frequency estimation and frequency tracking problems. In particular, the report focusses on aspects of these problems which have been addressed by members of the Frequency Tracking and Estimation project of the Centre for Robust and Adaptive Systems. The report is divided into four parts: problem specification and discussion, associated problems, frequency estimation algorithms and frequency tracking algorithms. Part I begins with a definition of the various frequency estimation and tracking problems. Practical examples of where each problem may arise are given. A comparison is made between the frequency estimation and tracking problems. In Part II, block frequency estimation algorithms, fast block frequency estimation algorithms and notch filtering techniques for frequency estimation are dealt with. Frequency tracking algorithms are examined in Part III. Part IV of this report examines various problems associated with frequency estimation. Associated problems include Cramer-Rao lower bounds, theoretical algorithm performance, frequency resolution, use of the analytic signal and model order selection

    General direction-of-arrival tracking with acoustic nodes

    Get PDF
    In this paper, we propose a particle filter acoustic direction-of-arrival (DOA) tracker to track multiple maneuvering targets using a state space approach. The particle filter determines its state vector using a batch of DOA estimates. The filter likelihood treats the observations as an image, using template models derived from the state update equation, and also incorporates the possibility of missing data as well as spurious DOA observations. The particle filter handles multiple targets, using a partitioned state-vector approach. The particle filter solution is compared with three other methods: the extended Kalman filter, Laplacian filter, and another particle filter that uses the acoustic microphone outputs directly. We discuss the advantages and disadvantages of these methods for our problem. In addition, we also demonstrate an autonomous system for multiple target DOA tracking with automatic target initialization and deletion. The initialization system uses a track-before-detect approach and employs the matching pursuit idea to initialize multiple targets. Computer simulations are presented to show the performances of the algorithms
    corecore