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Abstract

Traditionally in target tracking, much emphasis is put aattotion model that realistically represents
the target's movements. In this paper, we first present thssidal constant velocity model and then
introduce a new model that incorporates an acceleratiorpoaent along the heading direction of the
target. We also show that the target motion parameters caofmdered part of a more general feature
set for target tracking. This is exemplified by showing treagét frequencies, which may be unrelated
to the target motion, can also be used to improve the trackegrormance. In order to include the
frequency variable, a new array steering vector is predefotethe direction-of-arrival (DOA) estimation
problems. The independent partition particle filter (IPRF~used to compare the performances of the
two motion models by tracking multiple maneuvering targetgig the acoustic sensor outputs directly.
The treatment is quite general since IPPF allows general t¢ymoise models as opposed to Gaussianity
imposed by Kalman type of formulations. It is shown that bgoirporating the acceleration into the state
vector, the tracking performance can be improved in centaises as expected. Then, we demonstrate
a case in which the frequency variable improves the trackimg classification performance for targets
with close DOA tracks.

Index Terms

Motion dynamics, particle filter, MoBatCarlo simulation methods, reference priors, importaszra-

pling, time-frequency analysis

I. INTRODUCTION

The direction-of-arrival (DOA) estimation problem has bestensively studied in the signal process-

ing literature [1]. Narrow-band solutions based on beamfog such as multiple signal classification
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(MUSIC) [2], minimum variance beamforming, and Pisarenko'stmod suffer degraded performance
when the targets are moving relatively fast during the estion batch (i.e., the snapshot period). The
performance loss in these high resolution algorithms caattsbuted to the nonstationarity of the array
data caused by the rapid target motion. In order to remedy ghoblem, one can incorporate target
motion dynamics to jointly estimate the DOA's while tracitargets [3]. These refined DOA estimates
provide better performance in exchange for increased ctatipnal complexity.

In the case of wideband acoustic signals, the pioneerindg WgrWwang and Kaveh [4] on coherent
subspace processing coherently integrates the arrayaagtation matrices corresponding to the multiple
frequencies of interest, so that signal-to-noise (SNR) a@&swlution gains can be achieved. The work
by Gershman and Amin [5] approximates the signals within DA snapshot period as chirps and
performs time-frequency MUSIC on the acoustic array outplitee varying frequency approximation
enables these wideband methods to tackle more realisimaggin problems. However, these algorithms,
like the narrow-band techniques, produce snapshot DOfasts; and hence, require heuristics for target
association.

Advances in large scale integration of computer systeme h@ade Mor#-Carlo techniques a feasible
alternative to solve the target tracking problem. Conadily, given a target dynamics model, the
underlying motion equations are simplified by linearizateomd Gaussian noise assumptions so that an
analytical solution can be obtained. The extended Kalmarr fdtesuch a method; it is also the best
minimum mean-squares linear estimator for the problem ath&lone-Carlo techniques, on the other
hand, do not linearize or assume Gaussian noise; howesr,ahproximate the posterior density of
interest (e.g., a density that describes the likelihood dérget's position in space) by particles that
represent a discrete version of the posterior. The idea tsiftaasufficient number o&ffective particles
can be used, the estimation performance will be close tohtherétically optimal solution.

A solution to the multiple target tracking problem has beamiy for the narrow-band case by Orton
and Fitzgerald in [6] using an independent partition pagtifilter (IPPF). The independent partition
assumption of the IPPF solves the DOA association problem aomim the multiple target tracking
algorithms. The implementation of the IPPF is shown in [6], gitlee target motion dynamics developed
in [3] to track constant velocity targets with Brownian didiance acting on the target heading directions.
In this paper, the IPPF is again used, but along with a new tangébn model that allows accelerations
along the heading direction of the targets. It is shown withusations that since the new motion model
enables the IPPF to relax the constant velocity assumptiagettéracking is improved when the targets

have high accelerations as intuitively expected.



In target tracking, it is usually a good idea to retain certarget features even if they are not related to
the motion parameters. This may, in turn, also help the datariyproblem with different type of sensors
since the extra algorithmic computational load is usuallychmless taxing on the energy budget of the
sensor than transmitting the raw data to a central proceldsaoice, in addition to the motion parameters,
we also show how to incorporate new features such as timgragafrequency signatures of the targets
into the particle filter algorithm. It is assumed that a sefgatame-frequency tracker is tracking the
dominant instantaneous frequencies of the targets; howineissues related to the frequency estimation
are not considered in this paper. It is demonstrated by sitiouls that in the case of multiple targets, the
introduction of the frequency variable improves the tragkperformance of the IPPF when two targets
have similar motion parameters but different time-frequesignatures.

Observability is one of the main concerns in acoustic tragkiroblems because it must be possible to
determine the target states from the array data uniquelye@ability of a time-varying system depends
on both the observations and the state equation (i.e., thhesic sensor outputs and the motion model)
[7]. However, when the observations are sufficient to deteenthe target DOA's, the observability test
reduces to a simple rank test on the Jacobian of the locatseptation of the motion model [3]. In this
paper, it is assumed that the observations are sufficient texrdme the target DOASs and the system
observability is proved using the observability rank cdiodi. We argue that with the same assumption
on the observations, it is possible to automatically geretze IPPF code to do target tracking for some
other target motion dynamics as long as the rank conditisatisfied. This can enable dynamic switching
of motion models appropriate for different types of targe¢sulting in a more flexible tracker.

The array model employed in the simulations has a speciattatel We use a single node consisting
of a circular omnidirectional microphone array that willpply DOA and frequency information about
the targets. However, the derivations do not depend on the&par structure of the nodes. The reader
should be cognizant of the fact that tracking, in this pajmeplies the temporal estimation of the target
DOA's as opposed to target positions. Spatial diversity oftiple nodes can be exploited in triangulating
the targets of interest, which also presents a data fusiollggn. However, the data fusion from multiple
nodes can be facilitated by some of the variables in the ttdege¢ure set such as the target orientation
and frequency. It should be noted that these two variableshaariant from the node positions when the
nodes have the same reference frantéence, in a simple application such as triangularizatibrhe
DOA information coming from each node also includes thesgufes, the data association for multiple

LIf the nodes have different reference directions, the orientation sutl@rgets can be found in another reference frame by
simple additions and subtractions of the reference angles of the nodes.



targets can be done optimally with minimal information excbe.

The organization of the paper is as follows. Section Il inticetuthe models that account for the
target motion dynamics as well as the acoustic observat®astion Il describes how to construct the
necessary probability density functions as the backborikeoparticle filter solution. The IPPF algorithm

details are discussed in section IV before the simulaticults, which are presented in section V.

I[l. DATA MODELS

ConsiderK far-field targets coplanar with a sensor node consisting @icoustic sensors. The sensor
node (or sensor array) is not assumed to possess any speaglie. Two motion models will be first

presented, differing in the assumptions of constant vlogrsus constant acceleration.

A. Sate Model-I

The targets are assumed to have constant speeds with a Bnogisiarbance acting on their heading
directions [3], [6]. With the introduction of the frequenewriable, the model has the following state

vector:
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where 0.(t), ¢r(t), and fi(t) are the DOA, the heading direction, and the instantanecepuéncy

of the k" target. Q(t) £ logqx(t) is a compound variable wherg,(t) £ v /r.(t). Target DOASs

are measured clockwise with respect to gaxis whereas the target heading directions are measured
counter clockwise with respect to theaxis. Figure 1 illustrates the geometry of the problem. Thgest
update equation can be derived by relating the DOAs of thigetaat timest andt + T' using the
geometrical relation of position at (r(t) sin 6x(t), r(t) cosOx(t)) to position2 at (r(t)sinOx(t) +

vET cos ¢y (t), m1(t) cos Ok (t) + v T sin ¢ (t)). Then, it is straightforward to obtain the following update

relations:
_ 1i(t) sin Oy (t) + v T cos ¢y (t)
— rp(t) cos Ok (t) + v T sin ¢y (t)

tan Oy (t + 1) 2)

and

Pt T) = \[r2() + 2r(t)0uT sin (0(t) + G (1)) + 03T 3)
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Fig. 1. Thek'" target is at positionl at time ¢t and moves to positio? in T seconds with a constant speed. The target is
assumed to be in the far-field of the sensor array whose center cangittethe origin.

Equations (2) and (3) form a scalable system for the targetomatynamics at hand. To elaborate on
this, consider scaling the range and the speed ofithdarget. It can be shown that this scaled target
has the same set of update equations as above since theaalechin be cancelled out. This, in fact,
leads to the introduction of the compound variabj¢t) defined earlier. In the state update, however,
the logarithm ofgy(t) is used since an additive noise component can be employeopfased to the
multiplicative noise whemy(¢) is used). Note that the particle filter can cope with the gdrigpe noise
and that additivity of the noise is not required; howeveg tbgarithm is used to decouple the noise
from the state update, which is given below. Also, note thattarget maneuvers (i.e., the perpendicular

accelerations) are modelled in the state update througktéte noise o (t):

xp(t +T) = fi(xx(t), u(t + T)) = fr(xx(t)) +ut + T)

arctan { S T eoson] | 1 [ uwnt+n |
_ | @) —1/2l0g[1 + 2eQc O T sin (01 (t) + pr(t)) + (€9 OT)?] . ugr(t+17)
P (t) ugk(t +T)
I Fr(t) + 20,.(1)T | [ wprt+1)
(4)

whereu ~ N(0, diag{oj, 0,05, 07}). When the target speed becomes negative due to accelettaton
Q1 term becomes complex due to the logarithm. This problem casohed by updating only the real
part of ), but adding the imaginary part (which iswheng, is negative) to the heading parametegr,

which, in effect, will reverse the direction of the target.



Implicit in (4) is a second order polynomial approximatiooné for the phase of the signals of interest.

Hence, fort € [t;,t; + T, the following relation is assumed on thé&" signal:
sk(t) i~ Oék(ti)ej27l'[f0,k(ti)t-‘,-bk(ti)tz] (5)

where oy (t;) is the complex amplitudefy (t) = fo.r(t;) + 2bxk(t;)t is the instantaneous frequency; and
20, (t;) is the rate of change of the instantaneous frequency ofthsignal at timet during the;* batch
period. The rest of the paper assumes that dominant narrod#bequencies of each target are tracked
by a separate time-frequency filter. Some frequency trackiageles using Markov chains can be found
in [8]-[10]. Note that the state estimate of the IPPF also tednl a distribution on the instantaneous
target frequencies, which can be exploited by the frequéraoker in determiningy (¢;+1)’s for the next
recursion.

The variances of the components of the state noise vectme usually very small, which may lead
to sample impoverishment [11] (explained in Sec. V.A.3). dotf if the process noise is zero, the state
variables can be treated as static variables in an estimptimblem where using a particle filter may not
be appropriate. Techniques to prevent this sample impslveiént or degeneracy are discussed in [6].
Moreover, the state noise vector is chosen to be Gaussiatodts analytical tractability. Justifications

of this model can also be found in [6].

B. Sate Model-I|

In this second formulation, the targets are now assumed e kwly varying accelerations along

their heading directions. The new state vector is the fothgwi

[ ou(t) |
k(t)
k(t)
k(t)
t) |

where 0, (t), Qw(t), ¢x(t), and f,(t) are as defined abovel;(t) is defined using the:!" target's

D <

lI>

(1) (6)
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accelerationa, , along its heading directionyy,(t) £ % Figure 2 illustrates the geometry of the

problem used to derive the state update relations.

The state update equation can be derived similar to the StatkelMo

xp(t+T) = fH(Xk(t), ui(t+ 7)) = frr(xx(t)) +up(t + 7)) (7)
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Fig. 2. Thek" target is at positiori at timet and moves to positiof in T' seconds with constant acceleration. Notice that
B (t) corresponds t@; (¢t + 1) in Fig. 1.

with
_ | T?pr(t) cos(B(t) + ér(t))
Qk(t + T) = ,Bk(t) -+ tan T Tka(t) sin(ﬂk(t) n ¢k(t)> + u97k(t + T) (8)
where 0
L _q | sinB(t) + Te9 V) cos ¢y (t)
Br(t) = tan cos Oy (t) + Te@-® sin Cbk(t)] 9)
and
plt) = o2k (10)

20 (1)
Qr(t +T) = log{2T p(t)[1 + 2T %=V sin(0x (t) + Pp(t)) + T22@D]H/2 4 (R0}
- % log[1 + 2T ®) sin(0y(t) + g (£)) + T221)] (11)
— 5 Toa[l +27pk(t)sin(Bi (1) + Gu(0)) + T*03(1)] + ugu(t +7)

pr(t)

P e @ + o)+ TP D
(1) = Ye()T
PR = 1 2T @@ sin (6, (t) + ox(t)) + 122 O]1/2
Okt +T) = ¢p(t) + upr(t +7T) (13)
fk (t + T) = fk(t) + 2bk(t)T + Uf’k(t + T) (14)

The state noise is defined similarly as- N (0, diag{o3, 75, o?p, ai, a?}). Intuitively, the noise variables



u,, andug need to be correlated due to the dependence of the velocigaeleration along the heading

direction. An expression for the correlation between th@ge noise variables can be derived to better
track the targets when the targets are actually not chanthely directions. However, as the targets
undergo slow maneuvers between each time step, it is therautdbservation that the correlation between
the acceleration along the heading direction at the beggnoi the batch and the actual target speed
becomes much weaker. Hence, the noise variables on theityedod the acceleration related variables

are modelled independently to better accommodate the naarieg targets as well as for simplicity.

C. Observation Model

The sensor array in the simulations consistsPobmnidirectional acoustic sensors situated uniformly
on a circle of radiusk. A steering vector associated with the array defines the aogtay response for
a source at DOA). The received signal at the” sensor corresponding to thi€é target is first derived
using the same second order polynomial approximation orpkiases of the signals shown in (5). For
an isotropic and non-dispersive medium, the signal redeatethep!” sensor can be written as

si(t — (aisz)) ~ Si(t)ej%[—fo,L'(t)(aisz)—2bz:(t)t(aisz)+b7:(t)(aiTZz>)2}

(15)
~ s (t>ej27r[b1;(t)(oz,isz)2—fi () (i "zp)]

i

wherei = 1,2,--- K, z, is thep'" sensor position, and; £ (1/c)[ cos(6;), sin(g;) ] is the i’
slowness vector in cartesian coordinates. Equation (1%sléa the following array steering vector for

the i'" source signal:

[ pi2m{bi(t) (@i 20)>— fi(t) (0 "20) }

ej27r{b7, (t)(iTz2)?2—fi(t) (i Tz2)}
a(t;) = , (16)

eI2m{bi(t)(ai"zp)? —fi(t) (i "zp)}

A similar derivation of the array steering vector for sighalith constant narrow-band frequencies can
be found in [1]. Note that, in the second line of (15), the té#ft)(«;’z,)? can be ignored for small
aperture sizes and slowly varying frequencies to obtainsdrae steering vector used in [5].

As mentioned above, the phase characteristics of the sigrfiahterest are approximated with chirps
within a batch period’. We also require that each steering veei#;) uniquely correspond to a signal
whose direction is the objective of the DOA estimation pewnil Signals coming from multiple targets

are added to form the observations. For the IPPF, these acobstrvations are updated every- T'/M



seconds wherd/ denotes the number of batch samples. Then, the array outgutgriten as follows:
y(t) = A(O@)s(t) +n(t)  t/7=1,2,---, M 17)

In (17),y(t) is the noisy array output vectatt) is additive noise (e.gn(t) ~ N(0,02)), andA(©(t))
has the steering vectors in its columns. It should be notatl ttle sensor positions must be perfectly

known in order to defineA (©(t)) for this model [12].

For notational convenience and tractability, the dataectdid at each time incrementuring the batch
periodT is stacked to form the data vectdt, : M P x 1. The signal vectoB; and the noise vectoW,
are formed in the same manner. Thus, the array data (or otisavenodel for the batch period can be

compactly written as:

~

Y, = h(©(t), W,) = h(B(t)) + W, a5
Y =AS; +W;
where the steering matriA; = diag{A(6(¢)), A(0(t +7)),--- ,A(0(t + (M — 1)7))} implicity incor-

porates the DOA information of the targets.

D. Observability of the Motion Model

Even though the formulation of the problem as a state and wtsen model seems intuitive at first,
it would be unwise to use this type of formulation if the nevatetmodel (7) is not observable given
the measurements (18). For the array model, it is assuméedhbaarray can resolve the target DOA
parameters uniquely. This leaves only the examination ofrtbton model to determine the observability
of the system [3], [7]. It is verified in [3] that the state modelkcribed by (4) satisfies the strongly locally
observability rank condition. The strongly locally obsdaigy rank condition checks if the determinant

of the Jacobian of the state vector with respect to the tddg¥A is non-zero for observability [13].

It follows then that the new state vectef(t) € RS is observable if 0y (t+m7);m = 0,1,--- ,T),—1}
and{by(t);m =0,1,--- ,I', — 1} are sufficient to determine(¢) for a finite integed’;, . The Jacobian
of the state vector (7) with respect to the target DOA's isymedious to calculate by hand. However, a
symbolic algebra manipulator can be programmed to provettigaJacobian matrix is full rank for all

the regions of the system for the new state formulation, ntakine new state vector observable.
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Ill. PDF CONSTRUCTIONS FOR THHPPF

The patrticle filter is a convenient way of recursively updatintarget posterior of interest. In this sec-
tion, we will show the derivations necessary for the operatf the particle filter, which are summarized

in Figure 3.

A. Data Likelihood

While formulating the state update equations in our problen@ encounters two nuisance parameters:
the signal vectoS, and the noise variance for the additive Gaussian noise v&8%to For simplicity, we
will assume that the noise variance is approximately constaring the batch periofd, t+7'). Following
the notation introduced in [6] , we will denote this noiseiaace aso2 (t) corresponding to the batch
period starting at time. The noise has the complex Gaussian probability densitytiim¢pdf) described

by Goodman [14]. The data likelihood given the signal and e@isctors can be written as follows:

Relate the observed dats Construct the pdf for the
to the state variables: state transition:
p(Yi|Ay, Sy, 07 (1)) P(Xpyr|Xy)

Use reference priors| Noise model is cructhI.
to eliminate nuisancg ™| Need an analytical
parameters. relation.
Y Y

ly(Xt) = log p(Y¢|X4) l(X¢) = log p(X¢|X¢—7)

Use Taylor series Ignore h.o.t. and

expansion for the approximate with a

importance function. Gaussian.
Y
Obtain the importance function
7T'()(tD(O:t—T; YO:t) ~ N(,U(X) + X7 Z(X))
B(X) = = LX) + /(X))
p(X) = B(X) [1L(X) + 1(X)] .

Fig. 3. The mechanics of the necessary derivations needed by tthdepfilter. X is chosen to be the predicted state vector by
the state update relation without any noise.

L 2 log p(Y¢| A4, Sy, 02, (1))
(19)

= —MPlogﬂ' —MP log 0'120(15) — (Yt — AtSt)H(Yt — AtSt)

1
o5 (t)
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If the priors are known for the signals and noise variancemithe state vector at timg they can
be integrated out (a procedure also known as marginaligatlbone desires to assume the least about
these parameters and let the observed data speak for itssmifthe use of reference priors comes into
play?. Hence, even for moderate sample sizes, the informatidmeiniata dominates thggior information
because of the vague nature of the prior knowledge [16]. Thative choice of the prior is usually the
uniform prior on thenatural space of the parameter. A good discussion of these issuelsecyund in
[16], [17], and [18].

The square root of the determinant of the Fisher informatiotrim& used as our reference prior
(a.k.a. Jeffrey's prior). The resulting reference prior @& mtegrable (and hence, is improper) on the
entire unbounded space for the parameter vectors. This,rin $stipulates compactness arguments on
the parameter space such as the ones used in [16], [19]. Asguhat the columns oA; are linearly

independent, the reference prior is given by [20]
p(St|Ay) o [Af A1 (20)

where|.| denotes the determinant of a matrix. At this point, we can (@6 to integrate out the signal

vector from our problem.

Pp(Yi[Ar 02 (1) = / P(Y1[Ar, S, 02 (£))p(Si Ar)dS,

YT - AAFA)TTADY,
o5 (t)

Finally, notice that (20) is not integrable 8; has infinite multidimensional support. However, the

(21)

= p(Yi|At, 00 (1) eXp[

condition {S; : |[S¢):| < v} can be easily imposed on th# signal component for some largg. This
makes the prior (20) integrable on the signal vector spack @nturn, the marginalization integrals
become proper. This condition is always satisfied in pracgog.(when the signals of interest have finite

magnitudes at all times.)

B. Sate Likelihood

In the previous section, we omitted the motivation for camsing the pdf for the data and put the

emphasis on the use of reference priors. Now, it is necessaaborate on the reasons for constructing

%Bernardo derives the reference prior using an estimation modet! mseommunication channel with a source and data
[15]. The reference prior maximizes the mutual information betweerstlece and the data.
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the pdf's for the data and the state. The state and observatomtels (4), (7) and (18) form a hidden
Markov model (HMM), which can be compactly described by thkofving pdf’s:

(X | Xe—7)
(22)

p(Y¢[Xy)
whereX; = [xT(t),xI(t), -, xL(®)]T andp(Y:|X:) = p(Y:|As) or p(Yi|As, 02 (t)) depending upon
whether or not we treat the noise variance as a known pararhigee, we introduce a common notation
in the particle filtering literaturezo; = {zo,zr,...,2:}. The recursive update for the HMM model
described by (22) can be written as follows [11]:
(Y| Xe)p(Xe|Xi-7)
p(Y¢|Yo:-7)

Hence, the recursive evaluation pfXo.¢|Yo..) requires the pdf’s shown in (22). The previous section

P(Xo:t| Yor) = p(Xoz—7|Yo:t—1)

(23)

considered the construction of the second pdf in the modes Jéction will concentrate on the first pdf
in (22).

The objective is to fingh(X;|X;_7) given the state model. By inspection of (4) or (7), one cartlsae
X, is also normal with meaiffi 11(X;_7) and covariance equal to that of the additive noise. Thergfore

we can write the pdf for the state update as follows:
P(Xe|Xi-r) ~ N (frnn(Xe—r), diag{o3, 05, 0%, 05, 0%}) (24)

We have two important remarks on the construction of thespftft our problem. The first one is that
we generally need the analytical expressions for the pdfismake use of the particle filter, which does
not assume a Gaussian model in general. The second remarsusthb model order of the HMM. The

motion equations describe a first order HMM model and henceufitate equations (23) depend only
on the previous state. If more complicated motion equatemesformulated in the state model so that

the HMM model order increases, then a new recursive updateulation becomes necessary.

C. The Importance Function

An appropriate choice of the importance functief.) may reduce the variance of the simulation

errors® However, it was shown analytically in [22] that the impoxtanweights have increasing variance

Si.e., if we choose the exact posterior as the importance function thenodie nature of the data generating process the
variance of the estimator is inversely proportional to the number of parti€I¢21].
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with time, which leads to increasing estimation errors {onation errors, will be used interchangeably).
Here, we restate an important result: the unconditionabxae of the importance weights, i.e. with the
observationsy.; being interpreted as random variables, increases over films fact is also known as
the degeneracy phenomenon: after a few iterations, all ieitod the normalized importance weights will
be very close to zero [22].

Itis crucial to note that the optimal importance functi@(th|X(()2_T, Yo.:) is proportional tap( Y| X;) x
p(Xt|Xff_)T) with the proportionality independent aX;. We have previously derived the analytical
relations forp(Y:|X;) and p(X;|X;_7). Moreover, define

ly(Xy) = log p(Y¢|Xy)

(25)
l+(X¢) £ log p(X¢|X;—7)

B(X) = —[I7(X) + (X))
(26)
p(X) = B(X)[1(X) +1,(X)]
then, a suboptimal importance function which minimizeswhgance of the importance weights is given
by the following [6], [22]:

(X[ Xos—1, You) = N(u(X) + X, B(X)) (27)

X is judiciously chosen to be the mode pfX;|X;_7,Y;) so thatu(X) ~ 0 [22].

IV. ALGORITHM DETAILS

In this section, we will give the details of our modifications the independent partition particle
filtering algorithm by Orton and Fitzgerald. The outline of tHPF is given in [6] and is repeated for

completeness.

A. Partitioning and Data Association

Each particle in the IPPF consists of multiple state vectors, éor three targets, a particle consists
of three different state vectors corresponding to eachetargnotion parameters and frequency. The
target association problem is solved by the independermengsion on these partitions. To elaborate,
the independence assumption results in partition impoetdanctionsr(.)’'s. In order to generate the
partition importance functions, (26) is calculated for thigole particle; however, only the block diagonal

portions ofX(X) are used for each partition, which resultstif(x) ~ N (u(x)+x, X (X)) with X (X)
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Pseudo Code for the |PPF
i. Attime ¢, for each particle i (: = 1,..., N) and its partition k£ (k =1, ..., K), xf)(k):
« sample from the partition importance function: x ~ wk(xt(k)\xgi_)T(k), Y:)
o set xgi)(k) = x and calculate the partition weight q,(;’)(x)
« normalize the partition weights across all particles for each partition:
QI(;) = q;j)(i)
> i
« for each partition, resample with replacement across the particles using the distribution generated
by q,(f) and generate a new set of particles XE“ with their respective q,(:) for each partition. Also,
reindex Xii_)T accordingly

ii. Foreach particlei (i =1,...,N), Xf):
« calculate the importance weights using

@ pOYX)p(xX X )
o = W (@) 0
T(Xe| Xy Yo) I 4

« normalize the importance weights wt(i) across the particles

iii. Resample the particles Xii) using a Metropolis-Hastings scheme keeping the reversibility of the chain
|

corresponding to thé' (dim{x} x dim{x}) block diagonal matrix entry o(X). In particular, the
off-diagonal matrices in the particle Hessian correspogdo the cross partitions are ignored. Note that
after the particle is formed, the discrepancies generagatiib method are augmented by the importance

weights, which are calculated using the the full Hessiameged from the new particle.

When the target DOAs cross, previous target states heljindisish the next state through the state
update probability. The important thing to remember is thdess one target is moving in tandem with
the other target, the partitions for two targets will be @liffint from each other by the other elements of
the state vector (e.g, frequency, heading direction, angh$owhich will be emphasized by the partition
probability gx(x). Then, the partition cross sampling is used to help the daacagion by generating
particles having high probability across all partitionsisTmethod of generating particles helps the IPPF

to propagate particles with good predictive states andnaatically handles the data association.

One modification is the use of the state transition probak@4) for the weighted resampling functions
qr(x). This choice alone seems to constrain the particles by thegpaate equation and hence is expected
to have poor performance for maneuvering targets. Howekes, choice of the weighted resampling
function makes sure that the created particles form a cloodra the expected mode of the target

state. The maneuvering target cases, on the other hand, adéeticdby the absolutely critical Mot
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Carlo Markov chain (MCMC) resampling step. A classical Mewlis-Hastings scheme, which keeps the
reversibility of the Markov chain can be used to resamplesthge space using the data likelihood. In the
test cases run, the algorithm seems to handle the maneuwsites s the number of iterations increase
in the MCMC step. Details of an MCMC resampling scheme arergiv [23].

When the targets maneuver, the expected mode of the nestmtadicted by the state update equation
changes. At the resampling state, the particles that asecho this changed mean survive while the
particles around the predicted mean diminish. Hence, teampling step, in effect, not only makes the
particles span most of the state space, but also comperisatbg effects of the maneuver. It should be
noted that maneuvering has more impact on the heading idinetttan the other state variables. Hence,
a slight modification exploiting this fact in the resamplirtggsmay also improve the performance of the

algorithm for a given number of particles.

B. Effects of the Frequency Variable

The new state vectors include new motion variables, but th&t imgportant extension comes from the
frequency variable in the form of deriving new gradients dfebksians (26) for the linearization of the
optimal importance function. We will concentrate fnand/; since it is necessary to approximajeby
a positive definite matrig andl; is used in setting up the equations. Derivationg;oand/; due to the

new motion parameters are straightforward. The notatiomig gection closely follows [3]. Define

J(t) 2 YI(I - AyAFA)TTADYY,

M-1

= mz:o |y (t +mT) — Pa(t +m7)y(t +mr)[* (28)
M-1 M-1

= Z trace{P%(t + m7)Ry(t + m7)} = I (t)
m=0 m=0

whereP 4 and Pj £ 1 — P4 are the projection matrices onto the column and the null epat A
and A", respectivelyR,(t + m7) = y(t + m7)y' (t + m7) is the one-sample estimate of the array

covariance matrix at batch time indexed by Note thatl, = —M.J/o2, hence the gradients and the

4l’y’ represents the local covariance of the particles around their modeis aaguired to be positive definite; however, this
positive definiteness is not always available and modifications are eebgrguarantee thdj remains positive definite at each
iteration of the filter. See [3] for more discussion.
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Hessians of/(t) are linearly related t@, and/;. Define the gradient of (t) asG:

L, 0J(t) 1 ' & , o
=X, vec {M mZ:O [Vm(t)dlag(VQJm) + :m(t)dlag(Vme)} } (29)
where
Vi) 2 V(E+mr) = | vi(t+mr), valt+mr), -, vi(t+mr) | 50
En() 22t +mr) = | Gt+mr), Gt+mr), -, Exlt+mr)
with vi(t +m7) £ %W and&g(t +mr) £ %W. Moreover,
Vodm = | 0J,)001(t +m7), 0T f0s(t +mr), -, 0Jp/O0c(t +mr) | o1
Vidn = | 00u/0fi(t+mr), 0Ju/Ofalt +mr), -, 0Ju/Ofx(t+mr)

Equation (29) follows from the chain rule, where target freogy and its DOA are assumed in-
dependent from each other. Defing ,,(t) and Y,;,,(t) as the Hessian of;(t + m7) and f;(t +
mT) with respect toX;, respectively; and form\,,(t) = diag[A1mn(t),..., Axm(t)] and T, (t) =

diag[Y1m(t), ..., YT im(t)]. Then, the Hessiall = a‘?ﬁfé% is given by

H = Hpg+ Hyy + Hyy (32)
where
M—1
1
Hpp = 57 > {[vggjm @ 1] © [vecVi (t)vec Vi, (1)] + [diag(VeJm @ I)] © Am(t)} (33)
m=0
M-1
1
Hyp = i [V?chm @ 1] © [vecE ., (t)vech Z,, (1)) + [diag(V @ T)] @ Tm(t)} (34)
m=0
M-1
1
Hyp = i Z {[szJm ® 1] © [vecVp, (t)vecH 2, (t) + vecEm(t)VecHVm(t)]} (35)
m=0

vec stands for the concatenation of the columns of a mawriand © denote the Kronecker and Schur
products, respectively. Moreovdr,andI denote a matrix of all ones and the identity matrixdafi{x} x
dim{x}.

In order to guarantee the positive definitenesg;ofthe terms containing\,,,(t) and Y,,(t) on (33)
and (34) are ignored while calculating the Hessian in (32)liasussed in [3]. Defined;(t + m7) =
DA(t +m7)/00;(1), Cn(t +m7) = DA(t +m7) /0 fm(t), andy;(t + mr) = FalLpmXeins The
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following derivatives need to be approximated while cadtinlg (33) and (34):
0?Jm

00,(t)00;(t)
0?Jm

afi(t)af;(t)

Hyy is not guaranteed to be negative definite and can be ignoredkvien, the authors found that with

~ 2Re{~vH (t + mT)ij(t +mr)}
(36)
~ 2Re{tr[A™ (t + m7)CH (t + m7)P1 (t + mT)C]H(t + m7)A™ (t + m7)]}

the approximation below, it almost never affects the defir@gs of the Hessian and can be used in the
calculation of the Hessian (32):

0% Jm

W ~ 2Re{tr[ATH(t + mT)AiH(t + mT)Pj(t + mr)C’jH(t + mT)ATH(t p— (37)

V. SIMULATION RESULTS

In the simulations, our objectives are the following: (i)ngoare the effectiveness of the two state
formulations for tracking targets; (ii) show the effect betfrequency variable on tracking. Comparison
of State Model-I with the extended Kalman filter also can be fbim[6] and hence is not repeated here.

Issues related to initialization of the filters can be found28].

A. Single Target Tracking

A circular sensor array of5 omnidirectional sensors is used to track a single target. radais of
the array is such that the inter-element spacing is equal4® times the wavelength\j of the target
of interest. Figure 4 shows the track and the temporal speellitean of the target. The simulation

parameters are given in Table I.

TABLE |
SIMULATION PARAMETERS (A)

Number of ParticlesV 100
f noiseoy 0.1°
@ noiseog | 0.1
) noiseo,, | 0.0001
¢ noiseoy 4°
Signal to Noise Ratio, SNR 7dB
Target Narrow-band Frequencgy | 200H 2z
Number of Batch Samplesy/ 8

In Table I, some explanation df/, the number of batch samples, is necessary. If the DOA tngcki

was done by a snapshot algorithm, a much higher number oh lstmples would be necessary to
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Fig. 4. (a) One target initially heading in the positivedirection with speed approximately equaltanph, starts to maneuver
att = 30s. The sensor node is situated at the origin. (b) The target has almagtobacceleration between= 0 andt = 35.
The speed of the target is almost constant during the maneuver.

get high resolution DOAs. However, inclusion of the motidgnamics reduces the number of batch
samples required to estimate the target DOA's. Ideally, ghdti number of batch samples also helps
the IPPF estimate the DOA’s better: the gradient and Hessramstthat form the mean and covariance
matrix of the approximate importance function incorponaiere data and hence are expected to improve.
Interestingly, the authors determined on synthetic deah élien)M = 2 makes a good approximation to
these parameters when the target accelerations are srdatheamlgorithm is initialized close to the true
values. Additional improvement in DOA estimation perforroa by increasing!/ is empirically found

to quickly reach the point of diminishing returns. When Steliedels | and Il are run for the same target
track in Fig. 4 withAl = 2, both models perform the same. HoweverMdss increased, State Model-II
starts to perform better.

Figure 5 illustrates the estimation performance of the IPPF. DB& estimation of both filters is
almost identical as shown in Fig. 5 (a). However, if the trugeaatracks were estimated using the IPPF
state estimates in conjunction with the correct targetahiange and speeds (which aret available to
the IPPF), the resulting tracks would be quite different asitated in Fig. 5 (b). Even if the DOA's
are the same, State Model-I explains the increase in targedspith a change in the heading direction,
but leads to an incorrect heading direction estimate, which crucial parameter in data fusion. Figure
6 shows the estimated and @ parameters of the target. As one can observe, differenesab these
parameters can lead to the same DOA track even if they do mogéspond to the true physical target

track.
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Fig. 5. (a) The diamonds are the true DOA track. Dashed line is the estimuateState Model-I while the solid line is the
estimate from State Model-Il. The two estimates are nearly identical in trq¢kntarget DOA's. (b) Small errors in the DOAs
are accentuated by the range. State Model-Il obtains a good estimate tofig¢h@arget track because it uses acceleration.

5L — State Model-Il || 0.161 — State Model-II ]
—— True @(t) —— True v(t)/r(t)
0 - - State Model-I H 0.14F - - State Model-I

0.12r

1r
o

0.081

Target Headingin [°]
)

0.06

0.04

30 35 40 45 50

Fig. 6. (a) State Model-I tries to explain target accelerations through theirige parameter; hence, it fails to capture the true
target parameters. The true target heading direction has additivesi@aummise withoy = 4°, which is marked with diamond.
Solid line is the State Model-Il estimate. (b) Note ta&f" corresponds ta(t)/r(t) for the target. State Model-1l has a better
Q(t) estimate since the target headings are close to the true headings.

B. Multiple Target Tracking with Varying Narrow-band Frequencies

It is challenging to track two narrow-band targets whose Dit¥cks are closer than the Rayleigh
resolution. As the reader has seen so far, the IPPF producksdsglution DOA estimates; however,
it can fail when the target DOAs as well as the movement patans are very close. The objective
in this section is to show that by incorporating a frequenayiable, it is sometimes possible to still

track targets even in this difficult case. In this exampleeghtarget tracks are simulated with different
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frequency scenarios (Fig. 7). Table Il summarizes the sitiomgarameters. Figure 8 shows the tracking
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Fig. 7. Three targets move with constant speed with some Brownian distelacting on their heading directions. State Model-I
is sufficient for the tracking in this case.

TABLE I
SIMULATION PARAMETERS (B)

Number of ParticlesiN | 100

f noisecy | 0.1°

() noiseog | 0.01
¢ noiseoy | 4°

Frequency noise; | 0.001

Signal to Noise Ratio, SNR 7dB
Number of Batch Samples/ 8

performance when the targets have the same time-frequagratsres. Targets marked with the diamonds
(1) and the circles (2) have very similar DOA tracks afterdim= 15s. Initially, the IPPF does a good
job in tracking; however, as targets get closer, it fails.

Figure 9 simulates the same problem, but, in this case, tafgand 2 have different time-frequency
signatures. Note that the IPPF had problems resolving the ®0fAthese targets since they had close
motion parameters and had the same time-frequency sign@ue to the way the particles are generated
(by the partition importance functions,(.) as explained in section 1V), the DOA tracking of target 3

is also affected as shown in Fig. 8. Hence, the change in thefliequency signature of target 2 helps
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the independence assumption on the partitions and imptbeeBOA tracking performance of the filter
as illustrated in Fig. 9 (b). Moreover, the partition weight$x) for each partition not only depends on
the motion parameters, but also the frequency. Hence, wieetimhe-frequency signatures of the targets

differ, the IPPF can create better predictive states, reguiti overall better tracking.
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Fig. 8. (a) Initial target frequencies are 19.50Hz, 19.60Hz, anfiQt®. (b) As the targets 1 and 2 get close to each other, their
motion parameters are not sufficient to distinguish their DOAs; henee|RRF's DOA tracking perfomance deteriorates.
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Fig. 9. (a) Only the frequency track corresponding to the target rdankth circle is changed from the previous example. (b)
The tracking is improved due now to the difference in the frequency ofatgets that move close to each other.



22

VI. CONCLUSIONS

The state and observation equation set is the heart of arkirtgpmodel. In this paper, two new state
models and a new observation model are demonstrated ugn@®¥. Given an observable state update,
it is relatively easy to generate the IPPF equations autoaiigtifor an acoustic observation model that
can resolve target DOAs. When all the targets have either aeceleration or small accelerations, both
state models (I and Il) have nearly identical tracking perfance. Since the computational complexity
of state model Il is about twice that of state model I, thisi&ff favors model I. In one of the examples
shown, two targets with the same DOA track have quite diffeteacks inz-y space depending on the
acceleration model. The ghost track estimated by model Itdtige incorrect heading direction estimate,
is undesirable in the data association process by the reultipdes; hence, model Il is preferred since it
included acceleration in its state.

A derivation for the array steering matrix in the case whaeetarget signal phases are locally chirps
was presented. In addition, it is demonstrated that if theess also augmented to include the frequency
of individual targets, then it is possible to track targeithvgimilar motion parameters when the targets
have different time-frequency signatures. This is an ingrdrtesult, since it enables the acoustic trackers

using these new state models to track multiple targets ngosiose to each other such as in a convoy.
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