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Abstract

Traditionally in target tracking, much emphasis is put on the motion model that realistically represents

the target’s movements. In this paper, we first present the classical constant velocity model and then

introduce a new model that incorporates an acceleration component along the heading direction of the

target. We also show that the target motion parameters can beconsidered part of a more general feature

set for target tracking. This is exemplified by showing that target frequencies, which may be unrelated

to the target motion, can also be used to improve the trackingperformance. In order to include the

frequency variable, a new array steering vector is presented for the direction-of-arrival (DOA) estimation

problems. The independent partition particle filter (IPPF)is used to compare the performances of the

two motion models by tracking multiple maneuvering targetsusing the acoustic sensor outputs directly.

The treatment is quite general since IPPF allows general type of noise models as opposed to Gaussianity

imposed by Kalman type of formulations. It is shown that by incorporating the acceleration into the state

vector, the tracking performance can be improved in certaincases as expected. Then, we demonstrate

a case in which the frequency variable improves the trackingand classification performance for targets

with close DOA tracks.

Index Terms

Motion dynamics, particle filter, Monté-Carlo simulation methods, reference priors, importancesam-

pling, time-frequency analysis

I. I NTRODUCTION

The direction-of-arrival (DOA) estimation problem has beenextensively studied in the signal process-

ing literature [1]. Narrow-band solutions based on beamforming such as multiple signal classification
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(MUSIC) [2], minimum variance beamforming, and Pisarenko’s method suffer degraded performance

when the targets are moving relatively fast during the estimation batch (i.e., the snapshot period). The

performance loss in these high resolution algorithms can beattributed to the nonstationarity of the array

data caused by the rapid target motion. In order to remedy this problem, one can incorporate target

motion dynamics to jointly estimate the DOA’s while tracking targets [3]. These refined DOA estimates

provide better performance in exchange for increased computational complexity.

In the case of wideband acoustic signals, the pioneering work by Wang and Kaveh [4] on coherent

subspace processing coherently integrates the array autocorrelation matrices corresponding to the multiple

frequencies of interest, so that signal-to-noise (SNR) and resolution gains can be achieved. The work

by Gershman and Amin [5] approximates the signals within theDOA snapshot period as chirps and

performs time-frequency MUSIC on the acoustic array outputs. The varying frequency approximation

enables these wideband methods to tackle more realistic estimation problems. However, these algorithms,

like the narrow-band techniques, produce snapshot DOA estimates; and hence, require heuristics for target

association.

Advances in large scale integration of computer systems have made Mont́e-Carlo techniques a feasible

alternative to solve the target tracking problem. Conventionally, given a target dynamics model, the

underlying motion equations are simplified by linearizationand Gaussian noise assumptions so that an

analytical solution can be obtained. The extended Kalman filter is such a method; it is also the best

minimum mean-squares linear estimator for the problem at hand. Mont́e-Carlo techniques, on the other

hand, do not linearize or assume Gaussian noise; however, they approximate the posterior density of

interest (e.g., a density that describes the likelihood of atarget’s position in space) by particles that

represent a discrete version of the posterior. The idea is that if a sufficient number ofeffective particles

can be used, the estimation performance will be close to the theoretically optimal solution.

A solution to the multiple target tracking problem has been given for the narrow-band case by Orton

and Fitzgerald in [6] using an independent partition particle filter (IPPF). The independent partition

assumption of the IPPF solves the DOA association problem common to the multiple target tracking

algorithms. The implementation of the IPPF is shown in [6], given the target motion dynamics developed

in [3] to track constant velocity targets with Brownian disturbance acting on the target heading directions.

In this paper, the IPPF is again used, but along with a new targetmotion model that allows accelerations

along the heading direction of the targets. It is shown with simulations that since the new motion model

enables the IPPF to relax the constant velocity assumption, target tracking is improved when the targets

have high accelerations as intuitively expected.
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In target tracking, it is usually a good idea to retain certain target features even if they are not related to

the motion parameters. This may, in turn, also help the data fusion problem with different type of sensors

since the extra algorithmic computational load is usually much less taxing on the energy budget of the

sensor than transmitting the raw data to a central processor. Hence, in addition to the motion parameters,

we also show how to incorporate new features such as time-varying frequency signatures of the targets

into the particle filter algorithm. It is assumed that a separate time-frequency tracker is tracking the

dominant instantaneous frequencies of the targets; however, the issues related to the frequency estimation

are not considered in this paper. It is demonstrated by simulations that in the case of multiple targets, the

introduction of the frequency variable improves the tracking performance of the IPPF when two targets

have similar motion parameters but different time-frequency signatures.

Observability is one of the main concerns in acoustic tracking problems because it must be possible to

determine the target states from the array data uniquely. Observability of a time-varying system depends

on both the observations and the state equation (i.e., the acoustic sensor outputs and the motion model)

[7]. However, when the observations are sufficient to determine the target DOA’s, the observability test

reduces to a simple rank test on the Jacobian of the local representation of the motion model [3]. In this

paper, it is assumed that the observations are sufficient to determine the target DOA’s and the system

observability is proved using the observability rank condition. We argue that with the same assumption

on the observations, it is possible to automatically generate the IPPF code to do target tracking for some

other target motion dynamics as long as the rank condition issatisfied. This can enable dynamic switching

of motion models appropriate for different types of targets, resulting in a more flexible tracker.

The array model employed in the simulations has a special structure. We use a single node consisting

of a circular omnidirectional microphone array that will supply DOA and frequency information about

the targets. However, the derivations do not depend on the particular structure of the nodes. The reader

should be cognizant of the fact that tracking, in this paper,implies the temporal estimation of the target

DOA’s as opposed to target positions. Spatial diversity of multiple nodes can be exploited in triangulating

the targets of interest, which also presents a data fusion problem. However, the data fusion from multiple

nodes can be facilitated by some of the variables in the target feature set such as the target orientation

and frequency. It should be noted that these two variables are invariant from the node positions when the

nodes have the same reference frame.1 Hence, in a simple application such as triangularization, if the

DOA information coming from each node also includes these features, the data association for multiple

1If the nodes have different reference directions, the orientation angles of targets can be found in another reference frame by
simple additions and subtractions of the reference angles of the nodes.
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targets can be done optimally with minimal information exchange.

The organization of the paper is as follows. Section II introduces the models that account for the

target motion dynamics as well as the acoustic observations. Section III describes how to construct the

necessary probability density functions as the backbone ofthe particle filter solution. The IPPF algorithm

details are discussed in section IV before the simulation results, which are presented in section V.

II. DATA MODELS

ConsiderK far-field targets coplanar with a sensor node consisting ofP acoustic sensors. The sensor

node (or sensor array) is not assumed to possess any special structure. Two motion models will be first

presented, differing in the assumptions of constant velocity versus constant acceleration.

A. State Model-I

The targets are assumed to have constant speeds with a Brownian disturbance acting on their heading

directions [3], [6]. With the introduction of the frequencyvariable, the model has the following state

vector:

xk(t) ,

















θk(t)

Qk(t)

φk(t)

fk(t)

















(1)

where θk(t), φk(t), and fk(t) are the DOA, the heading direction, and the instantaneous frequency

of the kth target.Qk(t) , log qk(t) is a compound variable whereqk(t) , vk/rk(t). Target DOA’s

are measured clockwise with respect to they-axis whereas the target heading directions are measured

counter clockwise with respect to thex-axis. Figure 1 illustrates the geometry of the problem. The state

update equation can be derived by relating the DOA’s of the target at timest and t + T using the

geometrical relation of position1 at (rk(t) sin θk(t), rk(t) cos θk(t)) to position2 at (rk(t) sin θk(t) +

vkT cosφk(t), rk(t) cos θk(t) + vkT sinφk(t)). Then, it is straightforward to obtain the following update

relations:

tan θk(t+ T ) =
rk(t) sin θk(t) + vkT cosφk(t)

rk(t) cos θk(t) + vkT sinφk(t)
(2)

and

rk(t+ T ) =
√

r2k(t) + 2rk(t)vkT sin (θk(t) + φk(t)) + v2
kT

2 (3)
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2

vkT

φk(t)

rk(t) θk(t)

θk(t+ T )

rk(t+ T )

Fig. 1. Thekth target is at position1 at time t and moves to position2 in T seconds with a constant speed. The target is
assumed to be in the far-field of the sensor array whose center coincides with the origin.

Equations (2) and (3) form a scalable system for the target motion dynamics at hand. To elaborate on

this, consider scaling the range and the speed of thekth target. It can be shown that this scaled target

has the same set of update equations as above since the scale factor can be cancelled out. This, in fact,

leads to the introduction of the compound variableqk(t) defined earlier. In the state update, however,

the logarithm ofqk(t) is used since an additive noise component can be employed (asopposed to the

multiplicative noise whenqk(t) is used). Note that the particle filter can cope with the general type noise

and that additivity of the noise is not required; however, the logarithm is used to decouple the noise

from the state update, which is given below. Also, note that the target maneuvers (i.e., the perpendicular

accelerations) are modelled in the state update through thestate noise onφk(t):

xk(t+ T ) = f̂I(xk(t),u(t+ T )) = fI(xk(t)) + u(t+ T )

=

















arctan
{

sin θk(t)+eQk(t)T cosφk(t)
cos θk(t)+eQk(t)T sinφk(t)

}

Qk(t) − 1/2log[1 + 2eQk(t)T sin (θk(t) + φk(t)) + (eQk(t)T )2]

φk(t)

fk(t) + 2bk(t)T

















+

















uθ,k(t+ T )

uQ,k(t+ T )

uφ,k(t+ T )

uf,k(t+ T )

















(4)

whereu ∼ N (0,diag{σ2
θ , σ

2
Q, σ

2
φ, σ

2
f}). When the target speed becomes negative due to acceleration, the

Qk term becomes complex due to the logarithm. This problem can besolved by updating only the real

part ofQk, but adding the imaginary part (which isπ whenqk is negative) to the heading parameterφk,

which, in effect, will reverse the direction of the target.
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Implicit in (4) is a second order polynomial approximation done for the phase of the signals of interest.

Hence, fort ∈ [ti, ti + T ), the following relation is assumed on thekth signal:

sk(t) ≈ αk(ti)e
j2π[f0,k(ti)t+bk(ti)t2] (5)

whereαk(ti) is the complex amplitude,fk(t) = f0,k(ti) + 2bk(ti)t is the instantaneous frequency; and

2bk(ti) is the rate of change of the instantaneous frequency of thekth signal at timet during theith batch

period. The rest of the paper assumes that dominant narrow-band frequencies of each target are tracked

by a separate time-frequency filter. Some frequency tracking examples using Markov chains can be found

in [8]–[10]. Note that the state estimate of the IPPF also results in a distribution on the instantaneous

target frequencies, which can be exploited by the frequencytracker in determiningbk(ti+1)’s for the next

recursion.

The variances of the components of the state noise vectoru are usually very small, which may lead

to sample impoverishment [11] (explained in Sec. V.A.3). In fact, if the process noise is zero, the state

variables can be treated as static variables in an estimation problem where using a particle filter may not

be appropriate. Techniques to prevent this sample impoverishment or degeneracy are discussed in [6].

Moreover, the state noise vector is chosen to be Gaussian dueto its analytical tractability. Justifications

of this model can also be found in [6].

B. State Model-II

In this second formulation, the targets are now assumed to have slowly varying accelerations along

their heading directions. The new state vector is the following:

xk(t) ,























θk(t)

Qk(t)

ψk(t)

φk(t)

fk(t)























(6)

where θk(t), Qk(t), φk(t), and fk(t) are as defined above.ψk(t) is defined using thekth target’s

accelerationaφ,k along its heading direction:ψk(t) ,
aφ,k

2rk(t) . Figure 2 illustrates the geometry of the

problem used to derive the state update relations.

The state update equation can be derived similar to the State Model-I:

xk(t+ T ) = f̂II(xk(t),uk(t+ T )) = fII(xk(t)) + uk(t+ T ) (7)
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1

2

vk(t)T

φk(t)

rk(t) θk(t)
βk(t)

rk(t+ T )

θk(t+ T )

1
2
aφ,kT 2

dk(t)

Fig. 2. Thekth target is at position1 at time t and moves to position2 in T seconds with constant acceleration. Notice that
βk(t) corresponds toθk(t + T ) in Fig. 1.

with

θk(t+ T ) = βk(t) + tan−1

[

T 2ρk(t) cos(βk(t) + φk(t))

1 + T 2ρk(t) sin(βk(t) + φk(t))

]

+ uθ,k(t+ T ) (8)

where

βk(t) = tan−1

[

sin θk(t) + TeQk(t) cosφk(t)

cos θk(t) + TeQk(t) sinφk(t)

]

(9)

and

ρk(t) =
aφ,k

2dk(t)
(10)

Qk(t+ T ) = log{2Tρk(t)[1 + 2TeQk(t) sin(θk(t) + φk(t)) + T 2e2Qk(t)]1/2 + eQk(t)}

−
1

2
log[1 + 2TeQk(t) sin(θk(t) + φk(t)) + T 2e2Qk(t)]

−
1

2
log[1 + 2T 2ρk(t) sin(βk(t) + φk(t)) + T 4ρ2

k(t)] + uQ,k(t+ T )

(11)

ψk(t+ T ) =
ρk(t)

[1 + 2T 2ρk(t) sin(βk(t) + φk(t)) + T 4ρ2
k(t)]

1/2
+ uψ,k(t+ T )

ρk(t) =
ψk(t)T

[1 + 2TeQk(t) sin(θk(t) + φk(t)) + T 2e2Qk(t)]1/2

(12)

φk(t+ T ) = φk(t) + uφ,k(t+ T ) (13)

fk(t+ T ) = fk(t) + 2bk(t)T + uf,k(t+ T ) (14)

The state noise is defined similarly asu ∼ N (0,diag{σ2
θ , σ

2
Q, σ

2
ψ, σ

2
φ, σ

2
f}). Intuitively, the noise variables
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uψ anduQ need to be correlated due to the dependence of the velocity onacceleration along the heading

direction. An expression for the correlation between thesetwo noise variables can be derived to better

track the targets when the targets are actually not changingtheir directions. However, as the targets

undergo slow maneuvers between each time step, it is the authors’ observation that the correlation between

the acceleration along the heading direction at the beginning of the batch and the actual target speed

becomes much weaker. Hence, the noise variables on the velocity and the acceleration related variables

are modelled independently to better accommodate the maneuvering targets as well as for simplicity.

C. Observation Model

The sensor array in the simulations consists ofP omnidirectional acoustic sensors situated uniformly

on a circle of radiusR. A steering vector associated with the array defines the complex array response for

a source at DOAθ. The received signal at thepth sensor corresponding to theith target is first derived

using the same second order polynomial approximation on thephases of the signals shown in (5). For

an isotropic and non-dispersive medium, the signal received at thepth sensor can be written as

si(t− (αi
Tzp)) ≈ si(t)e

j2π[−f0,i(t)(αi
T
zp)−2bi(t)t(αi

T
zp)+bi(t)(αi

T
zp)2]

≈ si(t)e
j2π[bi(t)(αi

T
zp)2−fi(t)(αi

T
zp)]

(15)

where i = 1, 2, · · · ,K, zp is the pth sensor position, andαi , (1/c)[ cos(θi), sin(θi) ]T is the ith

slowness vector in cartesian coordinates. Equation (15) leads to the following array steering vector for

the ith source signal:

a(θi) =

















ej2π{bi(t)(αi
T
z1)2−fi(t)(αi

T
z1)}

ej2π{bi(t)(αi
T
z2)2−fi(t)(αi

T
z2)}

...

ej2π{bi(t)(αi
T
zP )2−fi(t)(αi

T
zP )}

















(16)

A similar derivation of the array steering vector for signals with constant narrow-band frequencies can

be found in [1]. Note that, in the second line of (15), the termbi(t)(αiTzp)
2 can be ignored for small

aperture sizes and slowly varying frequencies to obtain thesame steering vector used in [5].

As mentioned above, the phase characteristics of the signals of interest are approximated with chirps

within a batch periodT . We also require that each steering vectora(θi) uniquely correspond to a signal

whose direction is the objective of the DOA estimation problem. Signals coming from multiple targets

are added to form the observations. For the IPPF, these acoustic observations are updated everyτ = T/M
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seconds whereM denotes the number of batch samples. Then, the array outputs are written as follows:

y(t) = A(Θ(t))s(t) + n(t) t/τ = 1, 2, · · · ,M (17)

In (17),y(t) is the noisy array output vector,n(t) is additive noise (e.g.,n(t) ∼ N (0, σ2
n)), andA(Θ(t))

has the steering vectors in its columns. It should be noted that the sensor positions must be perfectly

known in order to defineA(Θ(t)) for this model [12].

For notational convenience and tractability, the data collected at each time incrementτ during the batch

periodT is stacked to form the data vectorYt : MP × 1. The signal vectorSt and the noise vectorWt

are formed in the same manner. Thus, the array data (or observation) model for the batch period can be

compactly written as:

Yt = ĥ(Θ(t),Wt) = h(Θ(t)) + Wt

Yt = AtSt + Wt

(18)

where the steering matrixAt = diag{A(θ(t)),A(θ(t+ τ)), · · · ,A(θ(t+ (M − 1)τ))} implicity incor-

porates the DOA information of the targets.

D. Observability of the Motion Model

Even though the formulation of the problem as a state and observation model seems intuitive at first,

it would be unwise to use this type of formulation if the new state model (7) is not observable given

the measurements (18). For the array model, it is assumed that the array can resolve the target DOA

parameters uniquely. This leaves only the examination of themotion model to determine the observability

of the system [3], [7]. It is verified in [3] that the state modeldescribed by (4) satisfies the strongly locally

observability rank condition. The strongly locally observability rank condition checks if the determinant

of the Jacobian of the state vector with respect to the targetDOA is non-zero for observability [13].

It follows then that the new state vectorxk(t) ∈ R
6 is observable if{θk(t+mτ);m = 0, 1, · · · ,Γk−1}

and{bk(t);m = 0, 1, · · · ,Γk− 1} are sufficient to determinexk(t) for a finite integerΓk . The Jacobian

of the state vector (7) with respect to the target DOA’s is very tedious to calculate by hand. However, a

symbolic algebra manipulator can be programmed to prove that the Jacobian matrix is full rank for all

the regions of the system for the new state formulation, making the new state vector observable.
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III. PDF CONSTRUCTIONS FOR THEIPPF

The particle filter is a convenient way of recursively updatinga target posterior of interest. In this sec-

tion, we will show the derivations necessary for the operation of the particle filter, which are summarized

in Figure 3.

A. Data Likelihood

While formulating the state update equations in our problem, one encounters two nuisance parameters:

the signal vectorSt and the noise variance for the additive Gaussian noise vector Wt. For simplicity, we

will assume that the noise variance is approximately constant during the batch period[t, t+T ). Following

the notation introduced in [6] , we will denote this noise variance asσ2
w(t) corresponding to the batch

period starting at timet. The noise has the complex Gaussian probability density function (pdf) described

by Goodman [14]. The data likelihood given the signal and noise vectors can be written as follows:

Relate the observed data
to the state variables:
p(Yt|At,St, σ

2
w(t))

Construct the pdf for the
state transition:
p(Xt+T |Xt)

Use reference priors
to eliminate nuisance

parameters.

Noise model is crucial.
Need an analytical

relation.

Use Taylor series
expansion for the

importance function.

Ignore h.o.t. and
approximate with a

Gaussian.

ly(Xt) , log p(Yt|Xt) lx(Xt) , log p(Xt|Xt−T )

Obtain the importance function

π(Xt|X0:t−T ,Y0:t) ≈ N (µ(X) + X,Σ(X))

Σ(X) = −
[

l′′x(X) + l′′y (X)
]

−1
,

µ(X) = Σ(X)
[

l′x(X) + l′y(X)
]

.

Fig. 3. The mechanics of the necessary derivations needed by the particle filter. X is chosen to be the predicted state vector by
the state update relation without any noise.

L , log p(Yt|At,St, σ
2
w(t))

= −MP log π −MP log σ2
w(t) −

1

σ2
w(t)

(Yt − AtSt)
H(Yt − AtSt)

(19)
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If the priors are known for the signals and noise variance given the state vector at timet, they can

be integrated out (a procedure also known as marginalization). If one desires to assume the least about

these parameters and let the observed data speak for itself,then the use of reference priors comes into

play2. Hence, even for moderate sample sizes, the information in the data dominates theprior information

because of the vague nature of the prior knowledge [16]. The intuitive choice of the prior is usually the

uniform prior on thenatural space of the parameter. A good discussion of these issues canbe found in

[16], [17], and [18].

The square root of the determinant of the Fisher information matrix is used as our reference prior

(a.k.a. Jeffrey’s prior). The resulting reference prior is not integrable (and hence, is improper) on the

entire unbounded space for the parameter vectors. This, in turn, stipulates compactness arguments on

the parameter space such as the ones used in [16], [19]. Assuming that the columns ofAt are linearly

independent, the reference prior is given by [20]

p(St|At) ∝ |AH
t At|

1/2 (20)

where|.| denotes the determinant of a matrix. At this point, we can use(20) to integrate out the signal

vector from our problem.

p(Yt|At, σ
2
w(t)) =

∫

p(Yt|At,St, σ
2
w(t))p(St|At)dSt

⇒ p(Yt|At, σ
2
w(t)) ∝ exp

[

−
YH
t (I − At(A

H
t At)

−1AH
t )Yt

σ2
w(t)

]

(21)

Finally, notice that (20) is not integrable ifSt has infinite multidimensional support. However, the

condition{St : |[St]i| < γi} can be easily imposed on theith signal component for some largeγi. This

makes the prior (20) integrable on the signal vector space and, in turn, the marginalization integrals

become proper. This condition is always satisfied in practice (e.g., when the signals of interest have finite

magnitudes at all times.)

B. State Likelihood

In the previous section, we omitted the motivation for constructing the pdf for the data and put the

emphasis on the use of reference priors. Now, it is necessaryto elaborate on the reasons for constructing

2Bernardo derives the reference prior using an estimation model based on communication channel with a source and data
[15]. The reference prior maximizes the mutual information between thesource and the data.
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the pdf’s for the data and the state. The state and observationmodels (4), (7) and (18) form a hidden

Markov model (HMM), which can be compactly described by the following pdf’s:

p(Xt|Xt−T )

p(Yt|Xt)

(22)

whereXt = [xT1 (t),xT2 (t), · · · ,xTK(t)]T andp(Yt|Xt) = p(Yt|At) or p(Yt|At, σ
2
w(t)) depending upon

whether or not we treat the noise variance as a known parameter. Here, we introduce a common notation

in the particle filtering literature,z0:t , {z0, zT , . . . , zt}. The recursive update for the HMM model

described by (22) can be written as follows [11]:

p(X0:t|Y0:t) = p(X0:t−T |Y0:t−T )
p(Yt|Xt)p(Xt|Xt−T )

p(Yt|Y0:t−T )
(23)

Hence, the recursive evaluation ofp(X0:t|Y0:t) requires the pdf’s shown in (22). The previous section

considered the construction of the second pdf in the model. This section will concentrate on the first pdf

in (22).

The objective is to findp(Xt|Xt−T ) given the state model. By inspection of (4) or (7), one can seethat

Xt is also normal with meanfI,II(Xt−T ) and covariance equal to that of the additive noise. Therefore,

we can write the pdf for the state update as follows:

p(Xt|Xt−T ) ∼ N (fI,II(Xt−T ),diag{σ2
θ , σ

2
Q, σ

2
Ψ, σ

2
φ, σ

2
f}) (24)

We have two important remarks on the construction of the pdf’s for our problem. The first one is that

we generally need the analytical expressions for the pdf’s to make use of the particle filter, which does

not assume a Gaussian model in general. The second remark is about the model order of the HMM. The

motion equations describe a first order HMM model and hence theupdate equations (23) depend only

on the previous state. If more complicated motion equationsare formulated in the state model so that

the HMM model order increases, then a new recursive update formulation becomes necessary.

C. The Importance Function

An appropriate choice of the importance functionπ(.) may reduce the variance of the simulation

errors.3 However, it was shown analytically in [22] that the importance weights have increasing variance

3i.e., if we choose the exact posterior as the importance function then dueto the nature of the data generating process the
variance of the estimator is inversely proportional to the number of particles N [21].
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with time, which leads to increasing estimation errors (or simulation errors, will be used interchangeably).

Here, we restate an important result: the unconditional variance of the importance weights, i.e. with the

observationsY0:t being interpreted as random variables, increases over time. This fact is also known as

the degeneracy phenomenon: after a few iterations, all but one of the normalized importance weights will

be very close to zero [22].

It is crucial to note that the optimal importance functionπ(Xt|X
(i)
0:t−T ,Y0:t) is proportional top(Yt|Xt)×

p(Xt|X
(i)
t−T ) with the proportionality independent ofXt. We have previously derived the analytical

relations forp(Yt|Xt) andp(Xt|Xt−T ). Moreover, define

ly(Xt) , log p(Yt|Xt)

lx(Xt) , log p(Xt|Xt−T )

(25)

Σ(X) = −[l′′x(X) + l′′y(X)]−1

µ(X) = Σ(X)[l′x(X) + l′y(X)]

(26)

then, a suboptimal importance function which minimizes thevariance of the importance weights is given

by the following [6], [22]:

π(Xt|X0:t−T ,Y0:t) ≈ N (µ(X) + X,Σ(X)) (27)

X is judiciously chosen to be the mode ofp(Xt|Xt−T ,Yt) so thatµ(X) ≈ 0 [22].

IV. A LGORITHM DETAILS

In this section, we will give the details of our modifications to the independent partition particle

filtering algorithm by Orton and Fitzgerald. The outline of the IPPF is given in [6] and is repeated for

completeness.

A. Partitioning and Data Association

Each particle in the IPPF consists of multiple state vectors, e.g., for three targets, a particle consists

of three different state vectors corresponding to each target’s motion parameters and frequency. The

target association problem is solved by the independence assumption on these partitions. To elaborate,

the independence assumption results in partition importance functionsπk(.)’s. In order to generate the

partition importance functions, (26) is calculated for thewhole particle; however, only the block diagonal

portions ofΣ(X) are used for each partition, which results inπk(x) ≈ N (µ(x)+x,Σk(X)) with Σk(X)
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Pseudo Code for the IPPF

i. At time t, for each particle i (i = 1, . . . , N ) and its partition k (k = 1, . . . ,K), x
(i)
t (k):

• sample from the partition importance function: x ∼ πk(xt(k)|x
(i)
t−T (k),Yt)

• set x
(i)
t (k) = x and calculate the partition weight q(i)k (x)

• normalize the partition weights across all particles for each partition:

q
(i)
k =

q
(i)
k

∑

i q
(i)
k

• for each partition, resample with replacement across the particles using the distribution generated
by q(i)k and generate a new set of particles X

(i)
t with their respective q

(i)
k for each partition. Also,

reindex X
(i)
t−T accordingly

ii. For each particle i (i = 1, . . . , N ), X
(i)
t :

• calculate the importance weights using

w
(i)
t = w

(i)
t−T

p(Yt|X
(i)
t )p(X

(i)
t |X

(i)
t−T )

π(Xt|X
(i)
t−T ,Yt)

∏

k q
(i)
k

• normalize the importance weights w(i)
t across the particles

iii. Resample the particles X
(i)
t using a Metropolis-Hastings scheme keeping the reversibility of the chain

�

corresponding to thekth (dim{x} × dim{x}) block diagonal matrix entry ofΣ(X). In particular, the

off-diagonal matrices in the particle Hessian corresponding to the cross partitions are ignored. Note that

after the particle is formed, the discrepancies generated by this method are augmented by the importance

weights, which are calculated using the the full Hessians generated from the new particle.

When the target DOA’s cross, previous target states help distinguish the next state through the state

update probability. The important thing to remember is that unless one target is moving in tandem with

the other target, the partitions for two targets will be different from each other by the other elements of

the state vector (e.g, frequency, heading direction, and soon), which will be emphasized by the partition

probability qk(x). Then, the partition cross sampling is used to help the data association by generating

particles having high probability across all partitions. This method of generating particles helps the IPPF

to propagate particles with good predictive states and automatically handles the data association.

One modification is the use of the state transition probability (24) for the weighted resampling functions

qk(x). This choice alone seems to constrain the particles by the state update equation and hence is expected

to have poor performance for maneuvering targets. However,this choice of the weighted resampling

function makes sure that the created particles form a cloud around the expected mode of the target

state. The maneuvering target cases, on the other hand, are handled by the absolutely critical Monté-
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Carlo Markov chain (MCMC) resampling step. A classical Metropolis-Hastings scheme, which keeps the

reversibility of the Markov chain can be used to resample thestate space using the data likelihood. In the

test cases run, the algorithm seems to handle the maneuvers better as the number of iterations increase

in the MCMC step. Details of an MCMC resampling scheme are given in [23].

When the targets maneuver, the expected mode of the next state predicted by the state update equation

changes. At the resampling state, the particles that are closer to this changed mean survive while the

particles around the predicted mean diminish. Hence, the resampling step, in effect, not only makes the

particles span most of the state space, but also compensatesfor the effects of the maneuver. It should be

noted that maneuvering has more impact on the heading direction than the other state variables. Hence,

a slight modification exploiting this fact in the resampling step may also improve the performance of the

algorithm for a given number of particles.

B. Effects of the Frequency Variable

The new state vectors include new motion variables, but the most important extension comes from the

frequency variable in the form of deriving new gradients andHessians (26) for the linearization of the

optimal importance function. We will concentrate onl′y and l′′y since it is necessary to approximatel′′y by

a positive definite matrix4 and l′y is used in setting up the equations. Derivations ofl′x and l′′x due to the

new motion parameters are straightforward. The notation in this section closely follows [3]. Define

J(t) , YH
t (I − At(A

H
t At)

−1AH
t )Yt

=
M−1
∑

m=0

|y(t+mτ) − PA(t+mτ)y(t+mτ)|2

=

M−1
∑

m=0

trace{P⊥
A(t+mτ)R̂y(t+mτ)} =

M−1
∑

m=0

Jm(t)

(28)

wherePA and P⊥
A , I − PA are the projection matrices onto the column and the null spaces of A

and AH , respectively.R̂y(t + mτ) = y(t + mτ)yH(t + mτ) is the one-sample estimate of the array

covariance matrix at batch time indexed bym. Note thatly = −MJ/σ2
w, hence the gradients and the

4l′′y represents the local covariance of the particles around their modes andis required to be positive definite; however, this
positive definiteness is not always available and modifications are required to guarantee thatl′′y remains positive definite at each
iteration of the filter. See [3] for more discussion.
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Hessians ofJ(t) are linearly related tol′y and l′′y . Define the gradient ofJ(t) asG:

G ,
∂J(t)

∂Xt
= vec

{

1

M

M−1
∑

m=0

[

Vm(t)diag(∇θJm) + Ξm(t)diag(∇fJm)
]

}

(29)

where

Vm(t) , V (t+mτ) =
[

v1(t+mτ), v2(t+mτ), · · · , vK(t+mτ)
]

Ξm(t) , Ξ(t+mτ) =
[

ξ1(t+mτ), ξ2(t+mτ), · · · , ξK(t+mτ)
]

(30)

with vk(t+mτ) ,
∂θk(t+mτ)
∂xk(t) andξk(t+mτ) ,

∂fk(t+mτ)
∂xk(t) . Moreover,

∇θJm =
[

∂Jm/∂θ1(t+mτ), ∂Jm/∂θ2(t+mτ), · · · , ∂Jm/∂θK(t+mτ)
]

∇fJm =
[

∂Jm/∂f1(t+mτ), ∂Jm/∂f2(t+mτ), · · · , ∂Jm/∂fK(t+mτ)
]

(31)

Equation (29) follows from the chain rule, where target frequency and its DOA are assumed in-

dependent from each other. DefineΛi,m(t) and Υi,m(t) as the Hessian ofθi(t + mτ) and fi(t +

mτ) with respect toXt, respectively; and formΛm(t) = diag[Λ1,m(t), . . . ,ΛK,m(t)] and Υm(t) =

diag[Υ1,m(t), . . . ,ΥK,m(t)]. Then, the HessianH ,
∂2J(t)
∂Xt∂Xt

is given by

H = Hθθ +Hff +Hθf (32)

where

Hθθ =
1

M

M−1
∑

m=0

{

[∇2
θθJm ⊗ 1] ⊙ [vecVm(t)vecHVm(t)] + [diag(∇θJm ⊗ I)] ⊙ Λm(t)

}

(33)

Hff =
1

M

M−1
∑

m=0

{

[∇2
ffJm ⊗ 1] ⊙ [vecΞm(t)vecHΞm(t)] + [diag(∇fJm ⊗ I)] ⊙ Υm(t)

}

(34)

Hθf =
1

M

M−1
∑

m=0

{

[∇2
θfJm ⊗ 1] ⊙ [vecVm(t)vecHΞm(t) + vecΞm(t)vecHVm(t)]

}

(35)

vec stands for the concatenation of the columns of a matrix;⊗ and⊙ denote the Kronecker and Schur

products, respectively. Moreover,1 andI denote a matrix of all ones and the identity matrix ofdim{x}×

dim{x}.

In order to guarantee the positive definiteness ofl′′y , the terms containingΛm(t) and Υm(t) on (33)

and (34) are ignored while calculating the Hessian in (32) asdiscussed in [3]. DefineAi(t + mτ) =

∂A(t + mτ)/∂θi(t), Cm(t + mτ) = ∂A(t + mτ)/∂fm(t), and γi(t + mτ) =
∂P⊥

A(t+mτ)Xt+mτ

∂θi(t)
. The
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following derivatives need to be approximated while calculating (33) and (34):

∂2Jm
∂θi(t)∂θj(t)

≃ 2Re{γHi (t+mτ)γHj (t+mτ)}

∂2Jm
∂fi(t)∂fj(t)

≃ 2Re{tr[A†H(t+mτ)CHi (t+mτ)P⊥
A (t+mτ)CHj (t+mτ)A†H(t+mτ)]}

(36)

Hθf is not guaranteed to be negative definite and can be ignored; however, the authors found that with

the approximation below, it almost never affects the definiteness of the Hessian and can be used in the

calculation of the Hessian (32):

∂2Jm
∂θi(t)∂fi(t)

≃ 2Re{tr[A†H(t+mτ)AHi (t+mτ)P⊥
A (t+mτ)CHj (t+mτ)A†H(t+mτ)]}, (37)

V. SIMULATION RESULTS

In the simulations, our objectives are the following: (i) compare the effectiveness of the two state

formulations for tracking targets; (ii) show the effect of the frequency variable on tracking. Comparison

of State Model-I with the extended Kalman filter also can be found in [6] and hence is not repeated here.

Issues related to initialization of the filters can be found in[23].

A. Single Target Tracking

A circular sensor array of15 omnidirectional sensors is used to track a single target. Theradius of

the array is such that the inter-element spacing is equal to0.45 times the wavelength (λ) of the target

of interest. Figure 4 shows the track and the temporal speed evolution of the target. The simulation

parameters are given in Table I.

TABLE I

SIMULATION PARAMETERS (A)

Number of Particles,N 100
θ noiseσθ 0.1◦

Q noiseσQ 0.1
ψ noiseσψ 0.0001
φ noiseσφ 4◦

Signal to Noise Ratio, SNR 7dB
Target Narrow-band Frequency,f0 200Hz

Number of Batch Samples,M 8

In Table I, some explanation ofM , the number of batch samples, is necessary. If the DOA tracking

was done by a snapshot algorithm, a much higher number of batch samples would be necessary to
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Fig. 4. (a) One target initially heading in the positivex-direction with speed approximately equal to7 mph, starts to maneuver
at t = 30s. The sensor node is situated at the origin. (b) The target has almost constant acceleration betweent = 0 andt = 35.
The speed of the target is almost constant during the maneuver.

get high resolution DOA’s. However, inclusion of the motiondynamics reduces the number of batch

samples required to estimate the target DOA’s. Ideally, a higher number of batch samples also helps

the IPPF estimate the DOA’s better: the gradient and Hessian terms that form the mean and covariance

matrix of the approximate importance function incorporatemore data and hence are expected to improve.

Interestingly, the authors determined on synthetic data that evenM = 2 makes a good approximation to

these parameters when the target accelerations are small and the algorithm is initialized close to the true

values. Additional improvement in DOA estimation performance by increasingM is empirically found

to quickly reach the point of diminishing returns. When StateModels I and II are run for the same target

track in Fig. 4 withM = 2, both models perform the same. However, asM is increased, State Model-II

starts to perform better.

Figure 5 illustrates the estimation performance of the IPPF. TheDOA estimation of both filters is

almost identical as shown in Fig. 5 (a). However, if the true target tracks were estimated using the IPPF

state estimates in conjunction with the correct target initial range and speeds (which arenot available to

the IPPF), the resulting tracks would be quite different as illustrated in Fig. 5 (b). Even if the DOA’s

are the same, State Model-I explains the increase in target speed with a change in the heading direction,

but leads to an incorrect heading direction estimate, whichis a crucial parameter in data fusion. Figure

6 shows the estimatedφ andQ parameters of the target. As one can observe, different values of these

parameters can lead to the same DOA track even if they do not correspond to the true physical target

track.
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Fig. 5. (a) The diamonds are the true DOA track. Dashed line is the estimate from State Model-I while the solid line is the
estimate from State Model-II. The two estimates are nearly identical in tracking the target DOA’s. (b) Small errors in the DOA’s
are accentuated by the range. State Model-II obtains a good estimate of thetrue target track because it uses acceleration.
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Fig. 6. (a) State Model-I tries to explain target accelerations through the heading parameter; hence, it fails to capture the true
target parameters. The true target heading direction has additive Gaussian noise withσφ = 4◦, which is marked with diamond.
Solid line is the State Model-II estimate. (b) Note thateQ(t) corresponds tov(t)/r(t) for the target. State Model-II has a better
Q(t) estimate since the target headings are close to the true headings.

B. Multiple Target Tracking with Varying Narrow-band Frequencies

It is challenging to track two narrow-band targets whose DOAtracks are closer than the Rayleigh

resolution. As the reader has seen so far, the IPPF produces high resolution DOA estimates; however,

it can fail when the target DOA’s as well as the movement parameters are very close. The objective

in this section is to show that by incorporating a frequency variable, it is sometimes possible to still

track targets even in this difficult case. In this example, three target tracks are simulated with different
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frequency scenarios (Fig. 7). Table II summarizes the simulation parameters. Figure 8 shows the tracking
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Fig. 7. Three targets move with constant speed with some Brownian disturbance acting on their heading directions. State Model-I
is sufficient for the tracking in this case.

TABLE II

SIMULATION PARAMETERS (B)

Number of Particles,N 100
θ noiseσθ 0.1◦

Q noiseσQ 0.01
φ noiseσφ 4◦

Frequency noiseσf 0.001
Signal to Noise Ratio, SNR 7dB

Number of Batch Samples,M 8

performance when the targets have the same time-frequency signatures. Targets marked with the diamonds

(1) and the circles (2) have very similar DOA tracks after time t = 15s. Initially, the IPPF does a good

job in tracking; however, as targets get closer, it fails.

Figure 9 simulates the same problem, but, in this case, targets 1 and 2 have different time-frequency

signatures. Note that the IPPF had problems resolving the DOA’s of these targets since they had close

motion parameters and had the same time-frequency signature. Due to the way the particles are generated

(by the partition importance functionsπk(.) as explained in section IV), the DOA tracking of target 3

is also affected as shown in Fig. 8. Hence, the change in the time-frequency signature of target 2 helps
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the independence assumption on the partitions and improvesthe DOA tracking performance of the filter

as illustrated in Fig. 9 (b). Moreover, the partition weightsqk(x) for each partition not only depends on

the motion parameters, but also the frequency. Hence, when the time-frequency signatures of the targets

differ, the IPPF can create better predictive states, resulting in overall better tracking.
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Fig. 8. (a) Initial target frequencies are 19.50Hz, 19.60Hz, and 19.60Hz. (b) As the targets 1 and 2 get close to each other, their
motion parameters are not sufficient to distinguish their DOA’s; hence, the IPPF’s DOA tracking perfomance deteriorates.
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Fig. 9. (a) Only the frequency track corresponding to the target marked with circle is changed from the previous example. (b)
The tracking is improved due now to the difference in the frequency of thetargets that move close to each other.
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VI. CONCLUSIONS

The state and observation equation set is the heart of any tracking model. In this paper, two new state

models and a new observation model are demonstrated using the IPPF. Given an observable state update,

it is relatively easy to generate the IPPF equations automatically for an acoustic observation model that

can resolve target DOA’s. When all the targets have either zero acceleration or small accelerations, both

state models (I and II) have nearly identical tracking performance. Since the computational complexity

of state model II is about twice that of state model I, this trade-off favors model I. In one of the examples

shown, two targets with the same DOA track have quite different tracks inx-y space depending on the

acceleration model. The ghost track estimated by model I, dueto the incorrect heading direction estimate,

is undesirable in the data association process by the multiple nodes; hence, model II is preferred since it

included acceleration in its state.

A derivation for the array steering matrix in the case where the target signal phases are locally chirps

was presented. In addition, it is demonstrated that if the state is also augmented to include the frequency

of individual targets, then it is possible to track targets with similar motion parameters when the targets

have different time-frequency signatures. This is an important result, since it enables the acoustic trackers

using these new state models to track multiple targets moving close to each other such as in a convoy.
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