59 research outputs found

    Multiple channel maximum entropy spectral estimator and its application.

    Get PDF
    Thesis. 1977. M.S.--Massachusetts Institute of Technology. Dept. of Earth and Planetary Sciences.Microfiche copy available in Archives and Science.Bibliography : leaves 52-54.M.S

    Digital signal processing for the analysis of fetal breathing movements

    Get PDF

    An evaluation of the broadband direction finding capabilities of array signal processing techniques

    Get PDF
    The objective of this study was to determine and compare the direction finding capabilities of high resolution spectral analysis techniques applied to the signals from an antenna array. The maintenance of acceptable resolution over a broad operating frequency range was of particular concern. The comparison was accomplished by computer simulation of the performance of a linear array of eleven isotropic elements, spaced 15 cm apart, over the frequency range from 100 MHz to 1.0 GHz;The two-signal resolution of three linear prediction based algorithms was compared. The variation in performance with signal-to-noise ratio, frequency, and center angle of arrival was also evaluated;An algorithm due to Tufts and Kumaresan which reduces the effects of noise by replacing the noisy signal correlation matrix by a smoothed, least-squares fit to it gave the best performance at the cost of the highest computational complexity. A special case of this method which is easy to compute exhibited blind angles, where performance was severely degraded in spite of wide spacing of the sources;The ratio of the physical length of the array to the length of the modulation envelope set up by the interference of the two incoming signals was found to be a constant at the point of resolution. This led to an expression for the two-signal resolution as a function of look angle, array length, frequency, and this algorithm dependent constant

    Techniques for the enhancement of linear predictive speech coding in adverse conditions

    Get PDF

    Spectral analysis of phonocardiographic signals using advanced parametric methods

    Get PDF

    Modeling and fault diagnosis of broken rotor bar faults in induction motors

    Get PDF
    Due to vast industrial applications, induction motors are often referred to as the “workhorse” of the industry. To detect incipient faults and improve reliability, condition monitoring and fault diagnosis of induction motors are very important. In this thesis, the focus is to model and detect broken rotor bar (BRB) faults in induction motors through the finite element analysis and machine learning approach. The most successfully deployed method for the BRB fault detection is Motor Current Signature Analysis (MSCA) due to its non-invasive, easy to implement, lower cost, reliable and effective nature. However, MSCA has its own limitations. To overcome such limitations, fault diagnosis using machine learning attracts more research interests lately. Feature selection is an important part of machine learning techniques. The main contributions of the thesis include: 1) model a healthy motor and a motor with different number of BRBs using finite element analysis software ANSYS; 2) analyze BRB faults of induction motors using various spectral analysis algorithms (parametric and non-parametric) by processing stator current signals obtained from the finite element analysis; 3) conduct feature selection and classification of BRB faults using support vector machine (SVM) and artificial neural network (ANN); 4) analyze neighbouring and spaced BRB faults using Burg and Welch PSD analysis

    Ship target recognition

    Get PDF
    Includes bibliographical references.In this report the classification of ship targets using a low resolution radar system is investigated. The thesis can be divided into two major parts. The first part summarizes research into the applications of neural networks to the low resolution non-cooperative ship target recognition problem. Three very different neural architectures are investigated and compared, namely; the Feedforward Network with Back-propagation, Kohonen's Supervised Learning Vector Quantization Network, and Simpson's Fuzzy Min-Max neural network. In all cases, pre-processing in the form of the Fourier-Modified Discrete Mellin Transform is used as a means of extracting feature vectors which are insensitive to the aspect angle of the radar. Classification tests are based on both simulated and real data. Classification accuracies of up to 93 are reported. The second part is of a purely investigative nature, and summarizes a body of research aimed at exploring new ground. The crux of this work is centered on the proposal to use synthetic range profiling in order to achieve a much higher range resolution (and hence better classification accuracies). Included in this work is a comprehensive investigation into the use of super-resolution and noise reducing eigendecomposition techniques. Algorithms investigated include the Principal Eigenvector Method, the Total Least Squares Method, and the MUSIC method. A final proposal for future research and development concerns the use of time domain averaging to improve the classification performance of the radar system. The use of an iterative correlation algorithm is investigated

    Interactive digital signal processor

    Get PDF
    The Interactive Digital Signal Processor (IDSP) is examined. It consists of a set of time series analysis Operators each of which operates on an input file to produce an output file. The operators can be executed in any order that makes sense and recursively, if desired. The operators are the various algorithms used in digital time series analysis work. User written operators can be easily interfaced to the sysatem. The system can be operated both interactively and in batch mode. In IDSP a file can consist of up to n (currently n=8) simultaneous time series. IDSP currently includes over thirty standard operators that range from Fourier transform operations, design and application of digital filters, eigenvalue analysis, to operators that provide graphical output, allow batch operation, editing and display information

    Multi-frequency cable vibration experiments

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Ocean Engineering, 2005.Includes bibliographical references (p. 99-101).A series of Multi-Frequency cable vibration experiments at Reynolds number 7600 were carried out at the MIT Tow Tank using the Virtual Cable Towing Apparatus (VCTA). Motions observed in a Direct Numerical Simulation of a flexible cylinder in a shear current were imposed on the VCTA and force measurements taken. Results showed a good agreement between the RMS lift coefficients of experiment and simulation. Complex Demodulation Analysis revealed significant lift force phase modulations. This analysis also showed that to a large extent the 3-dimensional behavior of the DNS was captured by the 2-d experiment in regions of low inflow, and to a lesser extent in regions of high inflow. Applications of results to future vortex induced vibration force models are discussed.by Andrew Wiggins.S.M
    corecore