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Abstract 

The advent of the prosthetic heart valve has dramatically transformed the outcome of valvular heart disease. Valve 
replacement is frequently life-saving and following implantation most patients experience a marked improvement 
in their symptomatic state and quality of life. The most common bioprosthesis currently implanted in Scotland is 
the Carpentier-Edwards bioprosthetic heart valve. However, dramatic as its influence on the outcome of valvular 
heart disease has been, there is a major problem associated with this prosthesis: gradual tissue degeneration leads 
to valvular dysfunction. Generally this is due to tom leaflets or as a result of leaflet calcification leading to valvular 
regurgitation or stenosis. Ultimately, this deterioration limits the duration of the period of implantation. 

As a result of the inevitable patient risk associated with the Carpentier-Edwards bioprosthesis, reliable, peri-
odic, post-operative evaluation of the integrity of the implanted valve is essential. The research detailed in this 
thesis proposes a method whereby diagnostic information concerning the functionality of the valve is extracted 
from the acoustic output produced by the operation of the prosthesis. This is achieved by analysing the spectral 
characteristics of the principal heart sound components contained within this acoustic signal. The aim of this 
investigation is to identify normally functioning and dysfunctioning prostheses by examination of this diagnostic 
information and ultimately to predict impending valve failure. As a clinical physiological measurement technique 
for periodically monitoring patients with implanted Carpentier-Edwards bioprostheses, frequency analysis of valve 
sounds is particularly attractive as it is noninvasive, passive and atraumatic, especially when compared to traditional 
evaluation procedures. 

A data-acquisition system was designed and developed which records and digitises the sounds produced by 
implanted bioprostheses using the Hewlett Packard 21050A phonocardiographic contact microphone. Heart sounds 
were recorded from sixteen patients with implanted mitral Carpentier-Edwards bioprostheses and from twenty-four 
patients with implanted aortic Carpentier-Edwards prostheses. The acquired sounds were preprocessed which in-
volved filtering to accentuate the principal components and automatic extraction of the relevant sounds from each 
recording for subsequent frequency analysis. Various spectral estimation techniques were investigated with a view 
to assessing the performance and suitability of these methods when analysing the heart sound signal. Algorithms 
implemented were: classical Fourier transform-based methods and high-resolution parametric techniques based on 
autoregressive-moving average (ARMA) models, autoregressive (AR)/linear-prediction analysis and a damped si-
nusoidal Prony model. Results are presented which illustrate the performance of these signal processing techniques 
over the range of recorded sounds and demonstrate the diagnostic potential of frequency analysis. Examination of 
the sound spectrum revealed features of diagnostic significance such as the dominant frequency peaks, their relative 
intensities and metrics associated with the overall spectral profile of the sound spectrum. These features were able 
to discriminate between physiological and pathological functionality. 

Results show that normally functioning, leaky and stiffening prostheses each exhibit unique spectral charac-
teristics. Normally functioning aortic prostheses are characterised by four to five dominant frequency peaks, with 
the major concentration of spectral energy occurring in the region between 25Hz and 125Hz. Normally functioning 
mitral prostheses are characterised by two to three dominant peaks with the major concentration of spectral energy 
occurring in the region between d.c. and 100Hz. For leaky regurgitant bioprostheses and prostheses diagnosed as 
having stiffening calcified cusps, a shift was observed in spectral energy. For leaky mitral and aortic prostheses, the 
major distribution of spectral energy now occurs in the region between d.c. and 75Hz, whereas for stiffening aortic 
prostheses, the major concentration of spectral energy now occurs in the region between 50Hz and 200Hz. It was 
observed that the highest frequency which occurs at a level of -10dB below the maximum spectral response (0dB), 
may be used to discriminate between normally functioning, leaky and stiffening aortic prostheses, where mean 
frequencies for these conditions at the -10dB level were observed to be 113.6Hz, 53.7Hz and 238.1Hz respectively. 
A single discriminating parameter was not observed from the analysis of mitral sounds. 
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Glossary of Medical Terms 

Aorta 	 The large vessel arising from the left ventricle and distributing, 
by its branches, arterial blood to every part of the body. 

Aortic valve 	 The semilunar heart valve situated at the junction of the left 
ventricle and the arterial network. 

Artery 	 A vessel which carries blood away from the heart to all parts of 
the body. 

Atrium 	 The upper chamber on either side of the heart which receives 
blood directly from the viens. 

Auscultation 	 The act of listening to the sounds and murmurs produced by the 
operation of the heart using a stethoscope. 

Bioprosthesis 	 A tissue (biological) artificial heart valve. 

Bundle Branch Block 	The delay or block of conduction within the heart causing one 
ventricle to be activated and contract before the other. 

Calcification The deposition of calcareous (limestone) matter within the tis- 
sues of the body. 

Diastole The rhythmic period of relaxation and dilatation of the chambers 
of the heart during which it fills with blood. 	The duration of 
diastole is the time interval between the beginning of a second 
heart sound and the beginning of the first heart sound of the 
following heartbeat. 

Dysfunction An impairment or abnormality in functioning. 

Electrocardiogram A visual record of the electrical activity within the heart. 

Electroencephalogram A visual record of the electrical activity within the brain. 

Electromyogram A visual record of the electrical activity of a muscle. 

Embolus A bit of foreign matter in the bloodstream, e.g. a clot, which is 
carried by the bloodstream until it lodges in a blood vessel and 
obstructs it. 

Endocarditis 	 Inflammation of the heart cavities and its valves. 
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Glossary of Medical Terms 	 ix 

Hemodynamics The study of the interrelationships between blood pressure, blood 
flow, vascular volumes, physical properties of the blood, heart 
rate and ventricular function. 

Mitral Valve The atrioventricular valve of the left side of the heart. 

Phonocardiogram A visual record of the sounds and murmurs heard during aus- 
cultation. 

Prosthetic Man-made limb or other body part. 

Regurgitation A backflow of blood through a heart valve that is defective. 

Stenosis Constriction or narrowing of the heart valve orifice. 

Systole The contraction phase of the cardiac cycle. 	The duration of 
systole is the time interval between the beginning of a first heart 
sound and the beginning of the second sound in the same beat. 

Thromboembolic An embolism due to a dislodged thrombus. 

Thrombus A clot of blood formed during life within the heart or blood 
vessels. 

Ventricle The lower two chambers of the heart that pump blood into the 
arteries. 

Xenograft A transplant from one species to another. 



Chapter 1 

Introduction 

The Carpentier-Edwards artificial heart valve has dramatically transformed the treatment of 

diseased native heart valves. Following valve replacement, most patients experience a marked 

improvement in their symptomatic state and quality of life. However, dramatic as its influence 

on the outcome of valvular heart disease has been, there is a major problem associated with 

the operation of this prosthesis: gradual tissue degeneration leads to valvular dysfunction. 

Generally this is due to torn leaflets or calcification leading to valvular regurgitation or stenosis. 

Ultimately, this deterioration leads to valve failure. 

The risk of severe heart problems as a result of changes in the properties of the Carpentier-

Edwards bioprostheses warrants the follow-up of subjects with implanted valves. Therefore 

reliable, periodic, post-operative evaluation of the integrity of implanted prostheses is essen-

tial. Current monitoring procedures entail the combined use of some the following methods: 

auscultation, ultrasound echocardiography, angiography, cardiac catheterisation and cinefluoro-

scopy. However, the practice of some of these methods involves the use of expensive equipment 

and custom laboratories that are generally only available in medium or large-sized hospitals, 

and the need for personnel specially trained in the use of such techniques. Furthermore, some 

of these procedures are traumatic and not without risk, often necessitating invasive surgery. In 

addition, the reliability and subjectivity of auscultation has always been in question [1, 2]. 

Ideally, a low-cost, repeatable, noninvasive, atraumatic, passive technique is required, 

capable of providing physicians with reliable post-operative evaluation of the functionality of 

the Carpentier-Edwards bioprostheses. In collaboration with the Cardiovascular Research Unit 

of The University of Edinburgh and The Royal Infirmary of Edinburgh, the research detailed 
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in this thesis proposes an alternative physiological measurement technique based on signal 

processing and analysis methods, whereby diagnostic information concerning the functionality 

of the valve is extracted from the acoustic output produced by the operation of the prosthesis. 

The aim is to identify normally functioning and dysfunctioning prostheses by examination of 

this diagnostic information and ultimately to predict impending valve failure. 

The following sections describe the principal motivation for the research reported in this 

thesis including a list of specific objectives, an introduction to the Carpentier-Edwards biopros-

thetic heart valve and current post-operative evaluation procedures, and a discussion of the 

application of signal processing methods to biomedical signals. The chapter ends with a 

conspectus of the work contained in this thesis. 

1.1 Motivation 

The testing of industrial machinery and equipment is often performed nondestructively by ana-

lysing the emitted sounds [3]. This is accomplished by risk-assessment devices that measure 

the energy level and then evaluate the frequency spectrum of the emitted sounds, i.e. a sound 

'signature' is analysed and malfunction is determined noninvasively by using spectral analysis. 

Based on this principle of nondestructive, noninvasive testing, the motivation for the research 

described in this thesis is to investigate whether analysing the sounds produced by the operation 

of the Carpentier-Edwards bioprostheses, using signal processing methods, reveals information 

of diagnostic significance concerning the functionality of the valve. The rationale for this hypo-

thesis is that the sounds produced by the operation of the Carpentier-Edwards bioprostheses are 

a result of its geometric configuration, the density of the materials used in its construction and 

the interaction of the valve components with dynamic blood masses and surrounding tissues. 

It is proposed that changes in any of these factors should affect the frequency spectrum of 

the emitted sounds. Using spectral analysis and examination of the frequency spectrum of the 

sounds produced by the operation of the Carpentier-Edwards bioprostheses, the aim is to identify 

and distinguish between normally functioning and dysfunctioning prostheses and ultimately to 

predict impending valve failure. If a relationship can be found between the functionality of the 

prosthesis and the frequency spectrum of these sounds, this would demonstrate the diagnostic 

potential of frequency analysis as an alternative physiological measurement technique capable 

of assisting physicians in their post-operative assessment of the Carpentier-Edwards biopros-

thetic heart valve. As a clinical technique for periodically monitoring patients with implanted 

bioprostheses, spectral analysis of valve sounds is particularly attractive as it is noninvasive, 
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atraumatic, passive, reliable and sensitive. The very low-cost, repeatability and portability of 

this technique are added benefits. From a signal processing perspective, the specific objectives 

of this thesis are: 

To investigate the development of a data-acquisition system to record and digitise ef-

ficiently and with a high degree of fidelity the heart sounds produced by the operation 

of the Carpentier-Edwards bioprostheses . The data-acquisition system will interface 

to a phonocardiographic transducer to convert the sounds measured at the chest surface 

to an equivalent electrical signal. The design will also consider appropriate sampling 

frequencies, signal-conditioning circuitry and anti-aliasing filters. 

To investigate the preprocessing of the acquired phonocardiogram (PCG) using time 

domain signal analysis methods with a view to accentuating the principal heart sounds 

over background noise and extracting the appropriate sound components for further 

analysis. 

To investigate signal processing methods for the frequency analysis of heart sounds. The 

aim is to refine the application of spectral estimation techniques to heart sounds and to 

identify optimum methods for this thesis. 

To investigate whether a relationship exists between the features derived from the fre-

quency spectrum of heart sounds produced by the operation of the Carpentier-Edwards 

bioprosthesis and the functionality of this valve. 

1.2 The Carpentier-Edwards Bioprosthetic Heart Valve 

Since the first implant of a prosthetic heart valve to replace a defective native heart valve 

in 1960 [4], changes in the design and materials used by early mechanical prostheses have 

resulted in significant improvements in the durability and hemodynamic function of pros-

theses. However, despite these improvements, the risk of blood clotting remains an important 

problem [5]. In a search for a solution to the thromboembolic complications of mechanical 

prostheses, prosthetic heart valves constructed from biological tissue, i.e. bioprostheses, were 

developed, e.g. the Carpentier-Edwards porcine xenograft. However, despite recent improve-

ments in tissue fixation and preservation techniques, tissue deterioration ultimately leading 

to valve failure is a major problem associated with the operation of the Carpentier-Edwards 

bioprostheses. The average lifespan of a porcine xenograft is typically thirteen years [6,7]. 
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1.3 	Current Post-Operative Evaluation Procedures 

There are currently five techniques used to assess the post-operative performance of implanted 

Carpentier-Edwards bioprostheses: 

I 	Auscultation: a diagnosis based on listening to heart sounds, murmurs and other vibratory 

phenomena originating in the heart using a stethoscope. 

Ultrasound Echocardiography: a diagnosis based on a pictorial representation of the heart 

using an active pulse-echo (ultrasound) technique. 

Cardiac Catheterisation: a diagnosis necessitating surgery where a flexible tube is inserted 

into the heart and passed through the dysfunctioning prostheses. 

Angiography: a diagnosis based on determining the arrangement of blood vessels using 

either fluoroscopy or radiography, after the injection of a nontoxic radiopaque substance 

to aid visualisation of blood vessels. 

Cinefluoroscopy: a diagnosis based on fluoroscopic imaging of the prostheses to pho-

tograph cusp movement, after the injection of a radiopaque contrast substance to aid 

visualisation of blood vessels. 

Many pathological conditions of the cardiovascular system are responsible for murmurs and 

aberrations in heart sounds well before they manifest themselves as other symptoms, e.g. 

changes in the electrocardiogram (ECG) signal. For this reason, auscultation is the primary 

diagnosis performed by physicians to evaluate the condition of the heart [8,9]. However, from a 

study of the physical characteristics of heart sounds and the human range of audibility [10-14], 

it is seen that the human ear is poorly suited for cardiac auscultation. Human aural perception 

decreases exponentially as frequency decreases and is sensitive only to frequencies in the range 

from 50Hz to 2kHz. This response severely limits the ability of physicians, as further important 

diagnostic information may be present outside this spectrum of frequencies, or present at the 

low-frequencies where aural insensitivity is highest. Moreover, auscultation is subjective and 

prone to interpreter variations, e.g. qualitative descriptors, such as 'muffled component', of a 

sound, 'musical murmur', 'rumble' or 'whiff' difficult to quantify or measure [15, 16]. Based 

on this lack of objectivity, any prognosis based solely on auscultation is questionable and is, in 

fact, seldom practised. 

Echocardiography provides a method for the examination of bioprosthetic heart valves and 

has been useful in individual patients for detecting the thickening of leaflets and the formation 
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of vegetations [17, 18]. However, visualisation of cusp motion and thrombus by the ultrasound 

beam is made difficult by interference (echoes) from the stents supporting the valve and its 

sewing ring. Doppler methods of analysis offer the potential to assess the functionality of 

prostheses, e.g. accurate analysis of valve movement and blood flow, however, the sensitivity 

of this technique remains to be evaluated. Furthermore, this procedure is relatively expensive 

and is generally only available in medium and large-sized hospitals, requiring the need for 

personnel specially trained in the use of this technique. In addition, bacterial endocarditis, a 

bacterial infection of heart valves, may be missed by echocardiography [18-21]. 

Cardiac catheterisation and angiography are both invasive techniques which necessitate 

surgery. These procedures are traumatic for subjects, with the added risks of patient morbidity 

or even mortality. Furthermore, cardiac catheterisation is performed in a custom laboratory, 

which restricts the evaluation to prescreened patients only. Similarly, cinefluoroscopy requires 

an experienced fluoroscopist for an accurate evaluation of the prostheses, as it entails careful 

positioning of the patient to ensure that the angle of projection of the X-ray tube allows optimal 

visualisation of the prosthesis. The sewing ring is faintly visible and the valve leaflets are 

readily seen only when viewed directly on end [20,22]. 

This thesis proposes an alternative post-operative evaluation technique based on phono-

cardiography, i.e. the graphic registration of auscultatory observations. Heart sounds are first 

recorded from the output of a phonocardiographic transducer, which converts the sounds meas-

ured at the chest surface to an equivalent electrical signal. Then, using signal analysis methods, 

information of diagnostic significance is extracted from the sounds produced by the operation 

of the Carpentier-Edwards bioprostheses. Signal processing of heart sounds is an accurate 

and quantitative procedure based on numerical computation, and reveals information such as 

the timing instants of sounds and their components, the structure of sounds, their frequency 

content and their location in the cardiac cycle. Using frequency analysis methods, the research 

will examine whether a relationship exists between the functionality of the prosthesis and the 

spectral parameters derived from the frequency spectrum of the heart sounds. 

1.4 	Biomedical Signal Processing 

The analysis of physiological signals presents many unique challenges. Unlike the application 

of signal processing techniques to other disciplines, the characteristics of biomedical signals 

are often not well specified, as well as being subject to considerable nonstationarity. Com-

pounded with this is the requirement that the measurement of biomedical signals be performed 
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noninvasively, i.e. without piercing the skin, thus, the transducer if often remote from the point 

of origin of the signal. This separation exposes biomedical signals to contamination by other 

active physiological processes which are simultaneously occurring in the vicinity. Further-

more, electrode, amplifier and instrumentation noise, variations in transducer placement from 

one recording to the next, the effects of respiration, and variations in every aspect of biomedical 

signals across populations and within individuals further contribute to the overall uncertainty. 

1.5 	Conspectus of the Thesis 

The research detailed in this thesis investigates the application of signal processing methods 

to physiological signals, in particular, the heart sounds produced by the operation of the 

Carpentier-Edwards bioprosthetic heart valve. 

Chapter 2 introduces the area of 'Heart Sound Processing' by first describing the function 

of the human heart, followed by a discussion detailing the origin of heart sounds and the 

physiological events which constitute a single heartbeat and hence the cardiac cycle. Examples 

are given of typical phonocardiograms recorded from normally functioning and dysfunctioning 

Carpentier-Edwards bioprostheses. The chapter concludes by reviewing publications reporting 

the analysis and processing of the sounds produced by the operation of prosthetic heart valves. 

Chapter 3 describes the development of a data acquisition system to digitise and record the 

heart sounds produced by the operation of the Carpentier-Edwards bioprosthesis. Each stage 

of the design process is introduced, from signal transduction, following a review of suitable 

cardiac microphones; and the hardware, software and ergonomic decisions which dictated the 

choice of applicable equipment. A breakdown is also provided of the population of subjects 

with implanted Carpentier-Edwards bioprostheses selected for this thesis including details of 

the recording procedure. 

Chapter 4 is concerned with techniques to preprocess the acquired PCG signal in the time 

domain with a view to accentuating the principal heart sounds over the background noise. This 

is followed by the extraction of the principal sound components of the heart sounds for further 

analysis. The chapter investigates the filtering of the PCG and describes the development of an 

automated heart sound extraction technique based on cross-correlation. 

Methods for the frequency analysis of heart sounds are considered in chapter 5 with the 

aim of refining the use of spectral estimation techniques for this thesis. Algorithms considered 

for the frequency analysis were: the periodogram, the Bartlett power spectral density estimate, 

which reduces the variance of a conventional periodogram estimate through ensemble averaging; 
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ARMA-based, parametric linear modelling techniques, which attempt to synthesise the heart 

sound generation process; and Prony's method: a parametric modelling technique based on a 

damped sinusoidal model. Particular attention is paid to the physiological transient-oscillatory 

nature of the heart sound signal and the suitability of the spectral estimation techniques when 

analysing such a temporal signature. 

The number of modelling coefficients used by the parametric spectral estimation techniques, 

i.e. the model order, is a very important variable when analysing bioprosthetic heart valve 

closing sounds. As the precise order of a principal component time series is not known a 

priori, variations in spectra can occur with different orders. Therefore determining an accurate 

order is essential. Chapter 5 also investigates methods which determine the optimal model 

order of time series. The model order selection criteria considered were: hypothesis-based 

methods, decision-based techniques, the FPE, the AIC, the MDL and the CAT; and methods 

which attempt to extract the optimum model order from the heart sound time series by first 

removing the numerical ill-conditioning inherent with the use of linear-algebra-based spectral 

estimation techniques. 

The results from the frequency analysis of the heart sounds are presented and discussed 

as two chapters of this thesis. Chapter 6 focuses on the performance of the signal processing 

methods when evaluating the frequency spectrum of mitral and aortic components. The aim 

is to identify optimum signal analysis techniques for this thesis, capable of identifying fea-

tures derived from the frequency spectrum of the heart sounds, which may be considered for 

use as heuristic parameters. Results are presented over the full range of recorded sounds. 

Chapter 7 concentrates on the relationship between the frequency spectrum of mitral and aortic 

components and the physiological and pathological functionality of the Carpentier-Edwards 

bioprostheses. Results are presented over the range of valve conditions. 

Chapter 8 concludes by summarising the objectives, the methods and the findings drawn 

from the thesis. Finally, suggestions are proposed for possible extensions to the research. 



Chapter 2 

A Preface to Prosthetic Heart Valve 

Sound Processing 

This chapter introduces the area of 'Heart Sound Processing' by first describing the function 

of the human heart, followed by a discussion detailing the origin of heart sounds and the 

physiological events which constitute a single heartbeat. The continuous rhythmic action of the 

heart produces the cardiac cycle, from which, electrical and acoustic measures may be obtained 

to provide an indication of patient well-being. 

Since the first implant of a mechanical prosthesis to replace a defective native heart valve 

in 1960 [4], there have been a number of publications reporting on the analysis and processing 

of the sounds produced by the operation of these valves. The chapter concludes by reviewing 

this work, from the initial investigations which used analogue filter networks to the application 

of sophisticated signal processing methods of the present day. 

2.1 The Human Heart 

Every living organism however primitive, needs a circulatory system to fuel its parts and to 

remove waste. In the human body, this vital exchange is transacted by the fluid known as blood. 

The heart provides the motive power for this circulatory system. 

The continuous rhythmic action of the heart is regulated by an 'electrical' timing system 

initiated by the pacemaker, i.e. a modified muscular tissue which generates the impulses that 
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trigger first the atria and then the ventricles to contract. A graphic record of this electrical 

activity with time is known as the ECG. 

The heart is, in effect, a pump powering a double circuit. In the space of a single heartbeat, 

fresh oxygenated blood arrives from the lungs and enters the left side of the heart for dispersal 

to organs and tissues through the arterial network, while 'stale' or deoxygenated blood returns 

through veins to the right side of the heart where it is pumped to the lungs to be reoxygenated. 

The anatomy of the human heart is illustrated in Figure 2.1. It consists of two upper chambers 

known as the atria and two lower chambers referred to as the ventricles. The flow of blood 

between these chambers and away from the heart is controlled by four valves: the mitral, 

the tricuspid, the aortic and the pulmonary as shown in Figure 2.1. The mitral and tricuspid 

valves are interposed between the atria and ventricles and are collectively referred to as the 

atrioventricular valves. The smaller aortic and pulmonary valves are situated at the juncture of 

the ventricles and the arterial network and are commonly known as the semilunar valves. These 

cardiac valves are composed of tough but flexible cusps or leaflets of fibrous tissue, comprising 

two to three cusps symmetrically arranged around the circumference of an orifice and secured 

at their base by a fibrous ring. The valves permit a unidirectional flow of blood through, and 

away, from the heart. 
Veins 

RA 	I 	LA 

Tricuspid Valve -"l:-- 	\ I 	I 	/- Mitral Valve 

	

RV 	I 	LV 

/ 
Pulmonary Valve 	Aortic Valve 

Figure 2.1: Simplified anatomy of the human heart. RA = right atrium, RV = right ventricle, 
LA = left atrium and RV = right ventricle. 

2.2 	The Origin of Heart Sounds 

The exact means by which heart sounds are produced has been a contentious issue. Two 

opposing theories have been proposed to account for the generation of the sounds: the valvular 
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theory [8, 121 and the cardiohaemic system theory [13, 23]. The valvular theory asserts that as 

a result of the pressure differentials across the valves (which originate and reverse during the 

two contraction phases of the cardiac cycle), the sounds heard by auscultation arise directly 

from the closing of the leaflets. The cardiohaemic system theory, on the hand, ascribes to the 

theory that the sudden halting of blood by the closing of the leaflets sets the whole cardiohaemic 

system into vibration, e.g. the valve leaflets, the cardiac walls and adjacent structures, and the 

blood contained within the chambers of the heart. 

The cardiohaemic system theory arose mainly as a result of work carried out on dogs in 

the United States by Luisada et al. [13,23]. The basic structure of the heart is common to all 

mammals and dogs exhibit the same sound components and characteristics as humans. Luisada 

assumed that heart sounds were nonvalvular in origin and that the apposition of the valve leaflets 

should coincide exactly with the reversal of pressure (assumed as valve closure) in the atrium 

and ventricle. By simultaneously recording PCGs at the chest surface and intracardiac pressures 

using catheter tip micromanometers, Luisada observed a delay of 30ms between the crossover 

of the pressure gradient across the valves and the first vibrations registered in the PCG. As a 

result of this experimental evidence, Luisada concluded by discounting the valvular theory in 

the genesis of heart sounds. He proposed that the sounds were a result of the vibration of the 

cardiohaemic system as a whole. 

As a result of work pioneered by Leatham et al. [8,12], the valvular origin of heart sounds 

was the dominant theory in the U.K. Leatham, who had always been a proponent of the valvular 

theory, pointed out the weakness in the cardiohaemic theory lay in the expectation that the 

reversal of a pressure gradient across a valve should coincide directly with valve closure. 

His objection was that blood flowing through an open valve has momentum and the reversed 

pressure gradient takes a finite time to halt blood flow before the valve can close. Gradient 

crossover thus precedes valve closure by a variable interval influenced by the flow rate and 

the impedance characteristics of the downstream current [24]. To substantiate his argument, 

Leatham [25] later provided evidence using echophonocardiography. This showed that the 

onset of a heart sound as registered by a PCG was coincident with the moment of apposition of 

the valve leaflets. 

Laniado et al. [26, 27] further validated the valvular origin of heart sounds by suturing 

electromagnetic flow probes in the annulus of mitral valves and in the ascending aorta just 

above the aortic valve. By observing valve movement using cinefluoroscopy to photograph 

cusp action, they demonstrated that blood continues to flow for 30 to 40ms after the crossover of 

pressure and that the vibrations registered in the PCG appear simultaneously after the cessation 
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of flow. 

In recent years, data collected using newer methods, e.g. ultrasound echocardiography, has 

led to a reappraisal of the existing theories. The areas of investigation have been concentrated on 

the timing relationship between the amplitude of heart sounds and factors such as the separation 

of the valve leaflets before closing or their speed at closing [28]. In addition, abnormal splitting 

of the sounds has been considered [29] disturbances in the electrical conduction system, e.g. 

left and right bundle branch block, or mechanical defects, e.g. valvular stenosis. Craige et 

al. [30] demonstrated by simultaneously using echocardiography and phonocardiography that 

the first component of the first heart sound is synchronous with apposition of the mitral valve 

leaflets, and similarly, the second component is synchronous with the closing of the tricuspid 

valve. Since then, the valvular theory has been in the ascendant. 

2.3 The Cardiac Cycle 

The functioning of the human heart produces two principal sounds: the first heart sound (Si) 

and the second sound (S2). During ventricular evacuation, i.e. the circulation of oxygenated 

blood from the left ventricle to organs and tissues, the mitral and tricuspid valves are shut. 

Blood having had all the oxygen absorbed from it returns to the right atrium through veins, and 

reoxygenated blood from the lungs enters the heart and flows into the left atrium. The closed 

mitral and tricuspid valves prevent the blood accumulating in the atria gaining access to the 

ventricles. Once ventricular contraction (evacuation phase) has ended, the pressure differential 

reverses across the atrioventricular valves, forcing them to open and allowing the blood in the 

atria to flow rapidly into the ventricles. At this point the ventricles begin to contract, which 

causes the blood to attempt to flow back into the lower pressure atrial chambers. This reverse 

flow of blood is caught and arrested by the snapping shut of the atrioventricular valves which 

causes the first heart sound (Si). The rising ventricular pressure ensures that the leaflets of 

the mitral and tricuspid valves remain tightly sealed. The closure of the atrioventricular valves 

marks the beginning of systole (cardiac action phase), or conversely, the end of diastole (cardiac 

relaxation phase). The ventricular walls continue to contract and the pressure in the enclosed 

blood rises. Whenever the pressure becomes too great for the semilunar valves to withstand, the 

aortic and pulmonary valves open and the pressurised blood is rapidly ejected into the arteries. 

While the ventricles are being evacuated, the pressure in the remaining blood decreases with 

respect to that in the arteries. This pressure gradient causes the arterial blood to attempt to flow 

back into the ventricles. However, this reflux catches the cusps of the semilunar valves and 
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causes them to seal the orifice thereby abruptly stopping the flow and producing the second 

heart sound (S2). The closure of the semilunar valves marks the end of systole or conversely, 

the beginning of diastole. This complete sequence of events repeats and is referred to as the 

cardiac cycle. 

The superior size of the left side of the heart leads to the fact that the sounds produced by the 

shutting of the mitral and aortic valves are often the loudest. In addition, ventricular contraction 

commences in the left ventricle, with left-sided sounds preceding right-sided components, i.e.. 

the mitral component precedes the tricuspid sound in Si and the aortic component leads the 

pulmonary sound in S2. The separation between the aortic and pulmonary components in S2 

can be influenced by respiration: increases with inspiration. This aids the extraction of the 

aortic component from the pulmonary sound for further analysis. S  occurs at the onset of 

ventricular contraction and corresponds temporally to the QRS complex in the ECG signal, 

while S2 occurs during ventricular relaxation and corresponds approximately in time to the 

T-wave in the ECG. Simultaneously recording both signal allows identification of the principal 

heart sounds within the PCG. Figure 2.2 illustrates' a typical ECG and PCG signal set recorded 

from a subject with a normally functioning Carpentier-Edwards bioprostheses. 

The intervals between Si and S2 and S2 and SI of the corresponding cycle (systole and 

diastole respectively) are normally silent. However, murmurs may occur in these intervals, 

i.e. sounds which arise when blood velocity becomes high in the presence of an irregularity 

through which the blood flows. Backflow (regurgitant) murmurs are produced by leaky valves 

while forward ('innocent') murmurs are associated with the ejection or flow of blood. Typical 

examples of the sounds and murmurs produced by the operation of normally functioning and 

dysfunctioning Carpentier-Edwards bioprostheses are illustrated in Figures 2.3 to 2.7. These 

sounds were recorded by the data-acquisition system described in chapter three. 

2.4 	Analysis of Prosthetic Heart Valve Sounds 

Approximately a decade after the first implant of a prosthetic heart valve, Hylen et a1. [31] 

were the first to apply signal analysis techniques to the sounds produced by the operation of 

prostheses. In their evaluation of mechanical prosthetic heart valves, an analogue instrument 

based on the sound spectrograph developed by Bell Laboratories was used to detect abnormally 

functioning Starr-Edwards ball valves. Hylen et al. report that in 24 of 25 control subjects 

'The amplitude of all the sounds plotted in this thesis has been normalised to a value in the range (± 1), which 
represents the amplitude relative to the full input range of the twelve-bit analogue-to-digital convertor used by the 
data-acquisition system described in chapter three, i.e. 212 = 4096: +1 = 4096, 0 = 2048, -1 = 0. 
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Figure 2.2: Typical example of an ECG and PCG signal set recorded from a subject with L- 

a normal/v functioning Carpentier-Edwards bioprostheses. (a) ECG, where 'T' denotes the 
T-wave. (h) PCG (source. tm5). 
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Figure 2.3: Example of a PCG recorded from a subject with a normally functioning aortic 
prosthesis (source: jg3). 
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Figure 2.5: Example of a PCG recorded from a subject with a leaky aortic prosthesis. Both 
systolic (SM) and diastolic murmurs (DM) are present (source: dt3). 
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Figure 2.7: Example of a PCG recorded from a subject with a stiffening aortic prosthesis 
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with implanted normally functioning aortic prostheses, the maximum frequency of the opening 

sound produced by operation of these valves was greater than 1.3kHz. In 11 of 12 patients with 

ball variance  of the aortic prosthesis documented at reoperation, the maximum frequency was 

observed to be less than 1.3kHz. Using an octave-band analyser, Gordon et al. [32] published 

similar results in 1974 from subjects having dysfunctioning mechanical ball and disc valves. 

From 1977-1980, Kagawa et at. [33,34] developed a realtime sound spectral analyser based 

on a ceramic mechanical filter and a heterodyne technique to detect dysfunctioning implanted 

mechanical heart valves. Kagawa et at. observed that the opening and closing sounds produced 

by the operation of normally functioning Starr-Edwards ball and Bjork-Shiley disc prostheses 

are characterised by mean dominant frequencies (normalised maximum amplitude of 0dB) at 

2.25kHz and 2.15kHz and 1.41kHz and 2.07kHz respectively. For thrombosed prostheses, 

the adhesion of thrombus on the valve buffered these high-frequency components, with the 

dominant frequencies observed to decrease by more than 600Hz. For some of these subjects, 

no abnormal findings were obtained using echocardiography or catheterisation. More recent 

results obtained using this instrument [35] demonstrate that the heterodyne spectral analyser is 

useful but not sensitive enough to detect all cases of thrombosed mechanical prostheses. 

In 1981 and then again in 1984, Stein et at. [36-38] were the first to analyse the sounds 

produced by the operation of bioprostheses: the Hancock porcine xenograft. Using the fast 

Fourier transform (FF1), Stein et at. report that the closing sounds (Si and S2) produced 

by the operation of eighteen normally functioning mitral and seventeen normally functioning 

aortic Hancock bioprostheses are characterised by mean dominant frequencies of 51Hz and 

63Hz respectively. Degenerated calcified mitral and aortic valves are characterised by mean 

dominant frequencies at 95Hz and 109Hz respectively. 

In 1983, Foale et at. [39] carried out a study on thirty-seven subjects with implanted 

aortic porcine bioprostheses. Results show that the sounds produced by the operation of sixteen 

Hancock, ten modified Hancock (excision of the supportive band) and nine Carpentier- Edwards 

normally functioning valves implanted from two weeks to sixty-one months are characterised 

by a mean dominant frequency of 89Hz and a second peak of lower amplitude having a mean 

frequency at 154Hz. Patients with dysfunctioning bioprostheses having degenerated leaflets are 

characterised by a mean dominant frequency of 139Hz and a second peak of lower amplitude 

at 195Hz. 

Another study in 1983 conducted by Joo at al. [40] reports that a pattern recognition al- 

2 Ball variance is defined as any physical or chemical alteration to the poppet in the prosthesis. 
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gorithm is useful in the diagnosis of aortic Hancock porcine bioprostheses. A feature vector 

comprising the two most dominant frequencies was derived from the acoustic characteristics 

produced by twenty prostheses: thirteen normally functioning and seven degenerated valves. 

This vector was used to design a Gaussian classifier to distinguish between normally func-

tioning and degenerated bioprostheses. The performance of the classifier was evaluated using 

another test set of 20 implanted Hancock bioprostheses: fourteen normally functioning and six 

dysfunctioning valves. Seventeen of these twenty prostheses were correctly classified. 

From 1986 to 1989 Durand etal. [41-46] characterised the temporal and spectral signature 

of the closing sounds produced by the operation of normally functioning bovine Tonescu-Shiley 

bioprostheses. By investigating the effects of truncation and signal-to-noise ratio on the closing 

sounds, as well as the modelling of sounds using an exponentially decaying sinusoid model, 

results demonstrate that accurate estimation of spectral features, e.g. dominant peaks and 

metrics associated with the frequency bandwidth, cannot be achieved using a single spectral 

estimation technique. It was observed the the FFT is the best technique to extract the most 

dominant frequency peak, while ARMA-based parametric methods are more accurate for 

evaluating the second most dominant peak and indices associated with the bandwidth and area 

of the spectrum. 

Durand et al. [47] also used a Bayesian classifier to evaluate the diagnostic potential 

of spectral features derived from the sounds produced by fifty-seven normally functioning 

and forty-nine degenerated Hancock porcine bioprostheses. Results show that by separately 

considering mitral and aortic prostheses, the mean correct classification rate using the 'holdout' 

method is 77% for normally functioning and dysfunctioning mitral prostheses. The percentage 

of false positives is 15% and that of false negatives 30%. Likewise, for aortic valves, the mean 

correct classification rate is 71%, with the percentage of false positives 32% and that of false 

negatives 26%. Durand et al. [48] also compared the performance of the Bayesian classifier 

to that of the nearest-neighbour classifier using the 'leave-one-out' method. Results show that 

the best performance of both classifiers was above 94%, with sensitivity and specificity above 

90%. 

2.5 Summary and Conclusion 

This chapter introduces the area of 'Heart Sound Processing' by first describing the functionality 

of the human heart, followed by a discussion detailing the origin of heart sounds and murmurs, 

and the dynamic events which constitute the cardiac cycle. Typical examples are illustrated of 
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sounds recorded from normally functioning and dysfunctioning mitral and aortic Carpentier-

Edwards bioprostheses. 

Since the first implant of a mechanical prosthesis to replace a defective native heart valve, 

there have been a number of publications reporting on the analysis and processing of the sounds 

produced by the operation of prosthetic heart valves. The chapter concludes by presenting a 

review of such work. 



Chapter 3 

Data Acquisition and Heart Sound 

Recording 

In this thesis, the data to be processed is real, i.e. must actually be acquired as opposed to 

being generated numerically. This chapter investigates the development of a data-acquisition 

system to digitise and record the sounds produced by the operation of the Carpentier-Edwards 

bioprostheses. The design commences with a review of appropriate cardiac transducers, to 

convert sounds measured noninvasively at the chest surface to an equivalent electrical signal; 

followed by a survey of suitable analogue-to-digital conversion circuitry and computers to 

digitise and store the acquired sound samples respectively. Particular attention is directed 

towards the hardware, software and ergonomic design of the data-acquisition system to ensure 

efficient and high-quality reproduction. In addition, the design is included of some signal 

conditioning circuitry: a PCG preamplifier and an anti-aliasing filter. 

The following sections also provide a breakdown of the population of subjects with im-

planted mitral or aortic Carpentier-Edwards bioprostheses selected for this thesis, and a de-

scription of the procedure for recording signals from patients. 

3.1 	Phonocardiographic Transducer 

An acoustic-electro transducer is required to convert the heart sounds measured at the chest 

surface (displacement) into a proportionate electrical signal. Two major types of phonocar-

diographic transducers are commercially available: air coupled and direct coupled devices. 
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Air microphones are characterised by a cavity which is placed at the appropriate heart sound 

recording site on the chest surface. The air in the closed cavity acts as a transmission medium 

between the chest surface and a membrane coupled to a mechanical-electrical transducing 

device. Direct-coupled transducers, on the other hand, such as contact microphones, have 

an area which is directly applied to the chest surface making contact with a transducing ele-

ment [49].  For both types of cardiac microphone, the transduction principle can be based on 

piezo-electric, magnetic or capacitive devices [13]. 

Recording the acoustic output produced by the operation of the Carpentier-Edwards biopros-

theses presents several unique problems. Foremost, is the requirement that the detection be 

obtained noninvasively. Purely from a measurement perspective, the ideal would be to place 

the transducer within the chambers of the heart. However, adopting such an approach is clearly 

undesirable, particularly as this thesis is investigating the potential of an alternative noninvasive 

physiological measurement technique. The requirement of noninvasive measurement intro-

duces a second problem: that the microphone is remote from the point of origin of the sounds. 

This separation exposes heart sounds to contamination by other active physiological processes, 

with the signal measured at the chest surface conditioned by the these processes and by the 

characteristics of the thorax as the sounds travel to the chest surface. 

The ideal phonocardiographic transducer should produce an electrical output that is a faithful 

undistorted representation of the sound energy present at the input. In terms of dynamic range, 

the microphone should be capable of converting with equal fidelity sounds at both extremes of the 

frequency spectrum. In addition, the transducer should be insensitive to any extraneous ambient 

noise. After a review of cardiac microphone designs and a survey of appropriate transducers that 

were commercially available in 1991 [50-59], a contact microphone was selected to convert the 

sounds produced by the operation of the Carpentier-Edwards bioprostheses into an electrical 

signal. Air-coupled transducers were rejected because of their sensitivity to ambient noise. 

Also, previous work by Schwartz et al. [58] demonstrates that less than 1% of the incident sound 

energy is transmitted across the chest-air surface as a result of the impedance mismatch between 

the chest and air. Two models of contact microphone were available in 1991: the HP-21050A 

contact sensor marketed by Hewlett-Packard and the EMT25C phonocardiographic transducer 

marketed by Siemens-Elema. Due to its superior specification, in particular, a flat-frequency 

response from 0.02Hz to 2kHz, the HP-21050A contact sensor was selected for this thesis. This 

transducer was used in some of the previous research reported in chapter two [40,42-47]. Based 

on the structural properties of the porcine tissue used in the design of the Carpentier-Edwards 

bioprostheses [60-63], and the frequencies in chapter two reported by previous analyses of the 
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sounds produced by the operation of bovine bioprostheses, the Hancock porcine xenograft and 

native heart valves [36-48,64], i.e. valves with similar construction to that of the Carpentier-

Edwards bioprostheses, a flat-frequency response from 0.02Hz to 2kHz is appropriate for 

this thesis. The head of the HP-21050A contact sensor weighes 100c,  with a sensitivity of 

10/iV/dyne. Furthermore, it rejects extraneous ambient noise. The transduction principle of 

the HP-21050A contact sensor is based on the piezo-electric effect, where cardiac sounds at 

the chest surface excite a piezo-electric material which in turn generates a proportionate output 

alternating voltage across a crystal. 

3.2 	Design and Development of Data Acquisition System 

A data-acquisition system based on a portable computer and an analogue-to-digital converter 

was developed to digitise and record the sounds produced by the operation of the Carpentier-

Edwards bioprostheses. Heart Sounds are first measured noninvasively using the HP-21050A 

contact sensor, the output from which is conditioned (a PCG preamplifier and an anti-aliasing 

filter) to provide an analogue signal of a voltage range suitable for input to the data-acquisition 

system. To ensure high-quality reproduction, a number of significant hardware and software 

design considerations dictated the development of this system: 

The need for the complete system to be portable to facilitate the transportation of equip 

ment between recording venues. 

The need for the system to operate from both a standard mains supply as well as a battery. 

During the recording of sounds, a battery ensures that no further electrical isolation is 

required between the subject and the equipment. 

The analogue-to-digital converter should provide the necessary range of sampling fre-

quencies to accurately digitise (reproduce) the recorded heart sounds and provide at least 

two bipolar analogue inputs. Two signals are to be recorded: the PCG and the ECG' 

Furthermore, the analogue-to-digital converter expansion card must physically fit within 

a portable computer, function when the computer is powered by either a mains supply or 

by battery. 

Lead 2 of the ECG signal was recorded from all subjects using the Siemens-Elema Mingocard 3 ECG Recorder. 
This unit was available for use at each of the recording venues and provides an analogue output of lead 2 of the 
ECG which was connected directly to the second analogue input of the data-acquisition system. 
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The power requirements of the analogue-to-digital converter are minimal to conserve as 

much battery power as possible for the actual recording of sounds. Immediately after 

sampling, the power demands of the hard-disc motor when storing the acquired samples 

further limits the overall time available for the recording of sounds. 

The need for the system to provide a full graphical display of the signals being acquired 

before and during the recording of sounds. A display aids verification of signal strength, 

i.e. good signal-to-noise ratio (SNR), as well as avoiding the need to attach an additional 

display unit such as a cathode-ray oscilloscope (CR0) to the data-acquisition system [65-

67]. Figure 3.1 illustrates a typical example of the graphical display provided by the 

acquisition software during the recording stage. The top trace (channel 1) shows an 

ECG. while the bottom trace (channel 2) a PCG. The software allows the timebase and 

amplitude variables of both channels to be preset prior to recording. 

Originally, a digital CR0 was considered for use as the display device. However, utilising 

the display provided by the computer makes the complete system more portable. In 

addition, it was decided that by having only one major item of external hardware attached 

to a subject, that this would present an overall less 'intimidating' and less traumatic 

environment for the subject during the recording process. 

After a review of appropriate computers and analogue-to-digital converter expansion cards 

available in 1991 [68-75], the Elonex LT-320X laptop personal computer and the twelve-bit 

ADC-42 input/output expansion card marketed by Blue Chip Technology were selected for 

this thesis. The specifications of both these items of hardware fulfil the design criteria. In 

total, the data acquisition system comprises three items of hardware: a portable computer 

fitted with an analogue-to-digital converter, the HP-21050A contact microphone and a small 

box containing some conditioning circuitry (a PCG preamplifier and an anti-aliasing filter). 

Figure 3.2 illustrates the major components of the data acquisition system and Figure 3.3 

shows a photograph of the developed system. During the development of the data-acquisition 

system, particular attention was paid to the environment in which the system was to be used. 

During the actual recording of sounds, it is desirable to minimise operator-computer interaction. 

After having located the optimum position in which to place the transducer (best SNR), the 

remainder of the recording process is automatically controlled by the computer. At the start 

of the recording procedure, a tone is emitted by the computer. This is followed by a second 

tone fifteen seconds later to indicate the end of sampling. A final-third tone is emitted after the 

acquired samples have been stored on disc. Writing the samples to disc after recording, ensures 
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Figure 3.1: Typical example of the graphical display provided by the acquisition software 
during the recording of sounds. 
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Figure 3.2: Major components of the data-acquisition system. 

that only a single initiation of the hard-disc motor is required, in order to preserve battery power. 

On average, a battery lasted seventy minutes, equivalent to recording five fifteen-second records 

from four different subjects. A maximum sampling duration of fifteen seconds was imposed 

by the memory management control as a result of the segmented architecture of the Intel 80386 

microprocessor used by the Elonex LT-320X computer [76]. 

3.3 	Phonocardiographic Signal Conditioning 

A PCG preamplifier was designed to amplify the output from the HP-21050A contact sensor 

(+ mV range) to a level suitable for input to the data-acquisition system (+ 5V). The design 

was based on a high-performance, low-noise, low-power operational amplifier, the TL064 

marketed by Texas Instruments: ideal for battery-powered portable instrumentation. The 

phonocardiographic output from the preamplifier was then bandlimited using an anti-aliasing 

filter. The design of the anti-aliasing filter was based on a sixth-order, low-pass Bessel filter. 

A Bessel filter possesses optimum phase linearity (constant time delay with frequency) thus 

preserving the relative phasing of signal events. Based on the structural properties of the 

tissue used in the design of the Carpentier-Edwards bioprostheses [60-63], and the frequencies 

in chapter two reported by previous analyses of the sounds produced by the operation of 

bovine bioprostheses, the Hancock porcine xenograft and native heart valves [36-48,64], i.e. 

the major concentration of spectral energy occurs in the region between 50Hz and 250Hz, 

the cut-off frequency of the low-pass anti-aliasing filter was selected to be 800Hz. Thus, 

the complete data-acquisition system has a flat bandwidth from 0.02Hz to 800Hz, ensuring 

optimum reproduction of all necessary sounds for this thesis. Both the PCG and the ECG were 

subsequently sampled at a rate of 2kHz. 
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Figure 3.3: Photograph of the data-acquisition system. From left to right: the phonocardio-
graphic transducer, the box containing the conditioning circuitry and the computer. 

3.4 	Patient Population 

The population of subjects with implanted Carpentier-Edwards bioprostheses selected for this 

thesis were chosen over an eleven-month period from patients admitted to The Royal Infirmary 

of Edinburgh for post-operative follow-up visits. This included subjects with suspected abnor-

mality in valve function and routine visits by patients in the recovery period following valve 

replacement. Recordings were also obtained from subjects with dysfunctioning bioprostheses 

one day prior to prosthesis replacement. In addition, subjects were contacted who had un-

dergone Carpentier-Edwards bioprosthetic heart valve implantation at The Royal Infirmary of 

Edinburgh between 1990 and 1992 and asked to attend a recording session at the Astley Ainslie 

Hospital in Edinburgh. This involved first writing to the patients' physicians to confirm the 

subject's present state of health, and then directly to the subject. In total, forty recordings were 

obtained, sixteen from subjects with the Carpentier-Edwards bioprostheses implanted in the 

mitral position and twenty-four from implanted aortic valves. The condition of each prosthesis 

was diagnosed by a cardiologist with all patients undergoing a physical examination which 

included: assessing the symptomatic state of the subject at the time of recording, auscultation, 

electrocardiography, chest x-rays and ultrasound echocardiography. 
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3.4.1 Population of Subjects with Mitral Prostheses 

In total, sixteen recordings were obtained from subjects with implanted mitral bioprostheses. 

This group of patients was divided into two groups. Group One consists of twelve subjects 

with no symptoms of valve degeneration or dysfunction, regurgitant murmurs, systolic/diastolic 

beats or other auscultatory signs of valve deterioration, with all aspects of clinical and cardiac 

examination indicating normal prosthesis function. These subjects served as the control set as 

there was no evidence of bioprosthetic heart valve malfunction. Group Two consists of four 

patients diagnosed as having leaky valves. A detailed description of the population group with 

implanted mitral prostheses is given in Table 3.1. For each subject, the following information 

is included: a measure of obesity known as the body mass index (BMI), where BMI = 
weight 

(k-0/M2) [77], the size of each prosthesis in millimeters, where the size denotes the internal orifice 

diameter of the sewing, and the time of recording (TOR) in months after valve implantation. 

3.4.2 Population of Subjects with Aortic Prostheses 

In total, twenty-four recordings were obtained from subjects with implanted aortic biopros-

theses. This group of patients was divided into three groups. Group One consists of thir-

teen subjects with no symptoms of valve degeneration or dysfunction, regurgitant murmurs, 

systolic/diastolic beats or other auscultatory signs of valve deterioration, with all aspects of 

clinical and cardiac examination indicating normal prosthesis function. These subjects served 

as the control set as there was no evidence of bioprosthetic heart valve malfunction. Group 

Two consists of six patients diagnosed as having leaky valves, with several recordings obtained 

one day prior to prosthesis replacement. Group Three consists of five patients with abnormal 

prosthetic valve function diagnosed as due to stiffening calcified cusps. One subject in partic-

ular (patient twenty-four), had a valve which was diagnosed as both leaky and stiffening. A 

detailed description of the population group with implanted aortic prostheses is given in Table 

3.2. 
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Patient No. Age Sex BMI Size TOR 
Group 1 

1 75 M 18.2 35 41 
2 78 F 27.1 29 29 
3 68 M 25.3 29 33 
4 77 M 23.5 35 10 
5 78 M 21.1 29 36 
6 78 F 22.4 29 34 
7 69 F 26.3 29 28 
8 58 F 30.0 27 107 
9 74 F 28.9 27 144 
10 75 M 27.4 29 150 
11 73 F 22.0 35 119 
12 78 M 24.1 33 132 

Group 2 
13 70 F 21.7 29 156 
14 62 M 28.1 27 140 
15 78 M 23.4 29 134 
16 69 F 19.9 35 147 

Table 3.1: Population of subjects with implanted 

mitral prostheses. 

Patient No. Age Sex BMI Size TOR 
Group 1 

76 M 22.1 21 9 
2 79 M 21.7 19 11 
3 82 F 19.3 19 18 
4 77 F 23.5 21 10 
5 78 M 21.1 25 36 
6 78 M 22.4 21 34 
7 80 F 24.7 21 33 
8 63 M 23.5 23 39 
9 83 F 22.4 19 34 
10 84 F 21.7 21 17 
11 73 M 25.5 25 12 
12 76 F 23.3 21 9 
13 69 M 24.8 25 22 

Group 2 
14 55 F 22.9 21 120 
15 81 M 21.3 23 93 
16 80 M 25.6 19 226 
17 74 F 23.7 21 88 
18 67 M 25.4 23 81 
19 81 M 24.6 25 109 

Group 3 
20 76 F 24.0 19 121 
21 78 M 22.6 23 141 
22 66 M 19.9 23 133 
23 69 F 23.8 25 116 
24 42 M 24.8 21 108 

Table 3.2: Population of subjects with implanted 

aortic prostheses. 

3.5 	Recording Procedure 

Recordings were performed with the subjects supine and with the patient's head elevated. In 

addition to greatly facilitating the recording of sounds, a greater appreciation of heart sounds 

is obtained with the subject in this position [1]. The contact microphone was placed on the 

patient's chest using a retaining rubber belt to ensure that the transducer remained in the ideal 

position during the recording. It was observed during initial recordings that not using a suction 

cup to provide an air-tight attachment of the microphone to the chest, resulted in more coherent 

recordings. For mitral prostheses, the microphone was positioned at the apex to emphasise the 

contribution of the mitral component to the PCG. Likewise, for aortic valves, the transducer 

was placed at the 2RIS (aortic area) as illustrated in Figure 3.4. Locally around these recording 

sites, the microphone was positioned at the point where maximum PCG signal strength was 

observed (best SNR). For subjects with aortic prostheses, recordings were obtained both during 

normal respiration and with the patient's breath held at full expiration. Recording at full 
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inspiration eliminates respiratory sounds and other artifacts. In addition, inspiratory separation 

of the aortic sound from the pulmonary component aids extraction of the aortic sound for further 

analysis [12]. For all subjects, lead 2 of the ECG signal was also recorded to provide a reference 

to cardiac events. 

Aortic area 	) 
(2RIS) 

LI 
~\ )4- Mitral area 

(apex) 

Figure 3.4: Microphone positioning sites. 

3.6 Summary and Conclusion 

This chapter investigates the design and development of a data-acquisition system to digitise and 

record the sounds produced by the operation of the Carpentier-Edwards bioprostheses. After a 

review of cardiac microphones, to convert the sounds measured at the chest surface to an equi-

valent electrical output; computers and analogue-to-digital conversion circuitry commercially 

available in 1991, a detailed description is included of the procurement of suitable equipment 

and hence the subsequent development of the data-acquisition system. The computer and the 

analogue-to-digital conversion circuitry chosen were: the Elonex LT-320X laptop personal 

computer and the ADC-42 input/output expansion card marketed by Blue Chip Technology. 

The phonocardiographic transducer selected for this thesis was the HP-21050A contact sensor 

marketed by Hewlett-Packard. The specification of this microphone includes a flat-frequency 

response from 0.02Hz to 2kHz, appropriate for the range of frequencies of the sounds pro-

duced by the operation of the Carpentier-Edwards bioprostheses; as well as being insensitive 

to extraneous ambient noise. 

The chapter concludes by providing a breakdown of the population of subjects with im-

planted mitral or aortic Carpentier-Edwards bioprostheses selected for this thesis, and a de-

scription of the procedure for recording signals from patients. 



Chapter 4 

Time Domain Preprocessing of the 

Phonocardiogram 

Preprocessing the PCG in the time domain prior to the frequency analysis of the principal heart 

sound components, can greatly facilitate the analysis and produce more accurate results overall. 

Effective signal processing results in the enhancement of the principal components and the 

reduction of noise. 

The ultimate aim is the accentuation of the principal heart sounds to expedite the extraction 

of mitral or aortic components from each PCG record for subsequent spectral analysis. In 

this chapter, a technique is developed which automatically extracts these components from the 

PCG. 

4.1 	Enhancement of Principal Heart Sounds 

The acquired PCG typically contains relatively high-frequency principal heart sounds super-

imposed on a low-frequency 'carrier'. The principal components are to be accentuated from 

this 'raw' composite signal' for further analysis. Fortunately, the spectral bandwidth of these 

sounds and the low-frequency artifact do not overlap, thereby, a linear-filtering operation may 

be applied to the PCG to remove the artifact. The time-varying low-frequency vibrations which 

'Although the PCG record has been referred to as raw', at this stage in the analysis, this record will have been 
processed by the analogue, low-pass, anti-aliasing Bessel filter and subsequently digitised. 
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constitute this 'carrier' are due to instrumentation noise, respiration and the associated chest 

movements resulting from muscular contraction and relaxation. 

Prefiltering2  the PCG can be achieved using either dedicated, continuous-time hardware 

filters or equivalently, discrete-time filters implemented by evaluating a difference equation 

using software. The utility of a digital filter offers several inherent advantages over the analogue 

hardware filter. Firstly, a greater degree of precision can be obtained using a digital realisation, 

and secondly, to investigate the optimum filter cut-off frequency for bioprosthetic heart valve 

sounds, a greater range of digital filters can be built and tested with relative ease without 

having to encounter the practicalities of implementing their analogue hardware equivalents, e.g. 

negative inductance, the need for special components and input output impedance mismatch 

associated with cascaded analogue hardware designs [79-81]. 

A high-pass, nonrecursive, causal (impulse response = h[n] = 0 for n < 0) digital filter was 

used to remove the low-frequency artifact from the PCG. With nonrecursive filters, the present 

output, y[n], depends only on present and previous inputs. The difference equation describing 

this digital filter is defined to be: 

b[k] x[n - k] 	 (4.1) 

where, x[n], is the input PCG signal to be filtered, b[k], are the filter multiplier coefficients 

(equivalent to the impulse response of the filter) and, in, is the number of coefficients. This filter 

implements the convolution sum directly where the lower and upper limits reflect the causality 

and the finite-duration characteristics of the filter. As the number of coefficients must be finite, 

a practical nonrecursive filter is known as a finite-impulse response (FIR) filter. Additionally, as 

there is no feedback between output and input, this filter is inherently stable [82,83]. FIR filters 

exhibit a linear-phase characteristic with no phase distortion, i.e. all frequency components 

which constitute a signal undergo the same delay thus preserving the relative phasing of signal 

events. Therefore the use of such a filter is ideal for processing heart sounds [84]. 

Based on the frequencies of the sounds produced by the operation of native heart valves [64], 

bovine and Hancock porcine bioprostheses reported in chapter two, and an investigation of 

suitable cut-off frequencies and an optimum number of coefficients (taps) by filtering many 

of the acquired PCG records, it was observed that the best SNRs were obtained, to a visual 

inspection, with a cut-off frequency of 20Hz and 320 coefficients (weights). The filter was 

2Prior to filtering the PCG, the mean value was removed from each record. Signals with large d.c. levels or 
trends can corrupt the low-frequency end of the resulting spectral estimate [78]. 
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designed using the 'window' method, which applied a Hamming window to truncate the impulse 

response of the filter [82, 85]. Figure 4.1 illustrates a typical example of the improvement 

achieved in the abstraction of the principal heart sounds from the low-frequency artifact using 

these parameters. 
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Figure 4.1: Typical example of a PCG bejbre and after high-pass filtering. (a) Befre filtering. 
(b) After filtering (source: jpl). 

4.2 	Extraction of Principal Heart Sound Components 

The technique to be presented to extract mitral and aortic components from the PCG is based on 

initially manually identifying and selecting a representative sound from each PCG record under 

investigation, and matching this archetypal reference with similar successive occurrences, i.e. 

the other mitral or aortic components within each of the remaining cardiac cycles. The result 

of this comparison will be to identify the location of each of these other components within 

the PCG. A signal processing operation that provides a definitive quantitative measure of the 

degree to which two signal events are similar is cross-correlation [83]. The cross-correlation 

function is a time-averaged measure of shared signal properties, thus, making it particularly 

suitable for comparing random signal events such as heart sounds [86]. 
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4.3 Cross-Correlation 

The cross-correlation function, 	[l], relating two finite-energy sequences x[n] and y[n] is 

defined to be: 

00  Ø[1] =x[n] y[n —1] 	for l=O, +1, ±2, ... 	 (4.2) 

where the index, 1, is the time shift (lag) imposed upon sequence y[n] relative to x[n] and the 

subscripts xv on the cross-correlation function indicate the sequences being correlated. The 

order of these subscripts indicates the direction in which one sequence is shifted relative to the 

other. In (4.2) x precedes y, the sequence x[n] remains unshifted while the sequence y[n] is 

shifted I units in time: to the right for positive values of lag and to the left for negative values 

of lag. 

In practice; however, both sequences x[n] and y[n], i.e. the PCG and the closing sound 

template, will be of finite duration and the cross-correlation function must be estimated from 

these finite records. In particular, when both x[n] and y[n] are causal sequences of finite duration 

N (N data samples indexed from n = 0 to n = N - I and [x] = [y] = 0 for n <0 and n> N), the 

range of the summation is altered in terms of these finite limits. The cross-correlation function 

estimate based on finite data records, I[lJ, for positive values of lag is defined to be: 

= 	x[n]y[n —1] 	for I= 0,1.....N - 1 	 (4.3) 
fl = 

When attempting to automate the extraction of mitral or aortic components from a PCG, a 

further modification is required to (4.3). A fifteen-second PCG record (30,000 data samples) 

is to be correlated with a closing sound template typically having a duration in the range 20 

to 80 ms (40 to 160 samples). If the PCG is x[n], where 0 < n < N - 1, and the closing 

sound template is y[n], where 0 < n < M - 1, the cross-correlation estimate defined in (4.3) is 

amended to account for the difference between the duration of the PCG and the closing sound 

template. As the template will always be of a shorter duration than the PCG, i.e. M <N, 

the cross-correlation of the PCG with the closing sound template for positive values of lag is 

defined to be: 

I[l] =An] y[n—l] 	for l=0,1,...,N—M 	 (4.4) 
fl = I 

[l]=x[n] y[n —l] 	for l=N—M+1,N—M+2,...,N-1 	(4.5) 
fl = I 

Implementation of (4.4) and (4.5) evaluate the cross-correlation estimate to the maximum 
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permissible positive lag based on the length of the PCG record and the closing sound template. 

When, 0 < / < N - M, the template is shifted relative to the PCG and a constant number of 

product terms are involved in each summation. When, N - M < I < N - 1, the template is 

shifted relative to the end of the PCG record and the number of product terms involved in each 

summation decrements as the lag increments. 

The amplitudes of the PCG and the template do not affect the shape of the cross-correlation 

estimate. Therefore as the scaling of these signal events is insignificant, the cross-correlation 

function is normalised to the range -1 to +1. This normalised cross-correlation estimate can 

be expressed as a percentage termed the 'Correlation coefficient', where a normalised cross-

correlation coefficient of +1 equals 100%, i.e. a perfect temporal match between two signal 

events. The normalised cross-correlation estimate of the PCG with the closing sound template, 

ö[I], is defined to be: 
'xv 

=VrII 
I\J0] 	

(4.6) 

where ,I[0], and, [O] are the autocorrelation estimates at zero lag of the PCG and the closing 

sound template respectively. The autocorrelation function is a signal processing operation that 

provides a quantitative measure of the degree to which one part of a signal is similar to another 

part of the same signal. The autocorrelation estimate of a causal sequence x[n] of finite duration 

N (N data samples indexed from n = 0 to n = N - I and x[n] = 0 for n <0 and n > N) is 

defined to be: 

~111 [ 11 =x[n]x[n—I] 	for l=0,1.....N—i 	 (4.7) 
n = 1 I 

The autocorrelation estimate attains its maximum value at zero lag, i.e. a signal matches 

perfectly with itself at zero shift/lag, where it is equal to the mean-square value or average 

power [82]. 

4.4 	Template Selection 

Using cross-correlation, the extraction of either mitral or aortic components from a PCG requires 

the initial identification and selection of an archetypal reference to be used as the matching 

template. There are three options available for this selection: a single universal template 

for both mitral and aortic components for all subjects, a universal template for each principal 

component or the selection of a new template for each subject from the PCG under investigation. 

The first and second options of using universal templates have the attraction that the initial 

user intervention required in selecting a representative sound is unnecessary. Such universal 
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templates would be chosen on the basis that they resembled idealised realisations with little or 

no background noise. However, from the examples of acquired sounds illustrated in section 

2.3, there can be great variability in the temporal characteristics of heart sounds recorded from 

different subjects. Natural physiological differences exist throughout the patient population, 

e.g. differences in the acoustic transmission paths are related to a person's BMI. Variations 

in transducer placement from one recording to the next and the effects of respiration, i.e. 

splitting of A2 and P2, all further contribute to this variability. Consequently, the use of 

universal templates was rejected in favour of the third option, of initially manually selecting a 

representative reference from each PCG under investigation. This allows for the selection of a 

sound 'adaptive' to each patient recording, resulting in a more accurate analysis overall. 

The selection of the closing sound template from the PCG was based on the following 

criterion: that the reference sound was representative of the remaining components within each 

of the other cardiac cycles of the PCG under investigation. The chosen component was extracted 

from the PCG delimited to include all significant data, i.e. the point at which the sound returned 

to the baseline. Figure 4.2 illustrates typical examples of mitral and aortic component templates 

extracted from first and second heart sounds respectively. The variability in the morphology 

of these components is clearly apparent, thus, substantiating the earlier decision of selecting a 

representative template from each PCG under investigation. 

4.5 Mean Closing Sound 

In addition to the automated extraction of mitral and aortic components from the PCG, an average 

component was computed from this ensemble. This mean sound is maximally correlated and 

time-aligned with the reference template, and is to be used by the model order selection 

criteria for quantitatively selecting an optimal order for the spectral estimation techniques 

to be discussed in chapter five. This technique of signal averaging is known as coherent 

time averaging [87-90], where coherence is established by aligning the maxima of the cross-

correlation estimate between the reference template and the extracted sounds. 

Provided that any PCG background noise is largely random (uncorrelated) from one beat to 

the next, the addition of successive repetitions of principal components results in a constructive 

enhanced signal with improved SNR, as the truly additive component time signal reinforces 

itself. The background noise, being random (uncorrelated) relative to the closing sound time 

signal, averages out to a constant level which reflects its mean value [86, 87,91]. The effect 

of coherent time averaging is to maintain the amplitude of the mitral and aortic closing sounds 
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Figure 4.2: Typical examples of mitral and aortic component templates extracted from first 
and second heart sounds respectively. (a-d) mitral component templates (sources: em], jp3, 
jpl and dg4 respectively), (e-h) aortic component templates (sources: an4, jg3, jg] and jh6 
respectively). 

and to reduce the variance of the noise by a factor N, where N is the number of sounds 

involved in the averaging [88]. In the ideal case, N averages will reduce noise by a factor 

ofwith an improvement in the SNR of \/, e.g. a mean aortic component typically 

computed from eighteen aortic components extracted from a fifteen-second PCG record: the 

increase in SNR is V-18= 12.55 dB. In practice; however, properties of the background noise 

and the heart sound signal limit the efficacy of this averaging [82, 92]. For heart sounds, 

the sources of such background noise include: phonomyographic (PMG) muscle vibrations, 

amplifier and instrumentation noise. However, previous work [93] shows that the correlation 

between these noise sources and cardiac signals is negligible. Averaging over cardiac cycles 

also minimises contributions of undesirable transient sounds: Ti from Ml and P2 from A2. 

Figure 4.3 illustrates typical examples of mean mitral and aortic sounds computed from the 

mitral and aortic components automatically extracted from two fifteen-second PCG records. The 

extracted components are shown superimposed, highlighting the temporal alignment (maximum 

correlation) between each sound. 
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Figure 4.3: Typical examples of mean mitral and aortic sounds. (a) Seventeen mitral com-
ponents extracted from a fifteen-second PCG (source: jpl.sndl-17), (b) The computed mean 

mitral sound, (c) Seventeen aortic components extracted from a fifteen-second PCG (source: 

jg3.sndl-17), (d) The computed mean aortic sound. 

4.6 	Cross-Correlation Output 

As with all cardiovascular signals, locating an invariant, synchronising reference point is 

difficult because of biological variability. Normal cardiac function varies to some degree on a 

beat-to-beat basis, as cardiac excitation and contraction are controlled by a closed-loop process. 

This variability is manifest in the overall range in the amplitudes and structure of heart sounds. 

Furthermore, noise contamination from surrounding muscles (PMG vibrations), amplifier and 

instrumentation noise, variations in transducer placement from one recording to the next and 

the effects of respiration all further contribute to this variability. The net result can be an 

unpredictable variation in heart sound morphology from one beat to the next. 

The use of a cross-correlation, template-based extraction approach results in maximally-

correlated time-aligned sounds thereby overcoming the effect of any beat-to-beat delay that 

may have been introduced by biological variability. The result of the cross-correlation between 

the PCG and the reference template is to identify the location of the other mitral or aortic 

components within each of the remaining cardiac cycles of the PCG. Specifically, implementing 

this operation identifies the terminal points of these components, thus allowing for the automated 

extraction of components from the PCG. 
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4.6.1 Correlator Output Results: Method 1 

When one of the principal heart sounds in each cardiac cycle has very large overall structure 

relative to the other, such that it can clearly be regarded to be the only dominant signal event in 

each cycle as illustrated in the examples shown in Figure 4.4, the result of the cross-correlation 

operation is to correctly identify the location of each of the remaining components within the 

PCG. Figures 4.5 and 4.6 illustrate the result of the cross-correlation operation for the PCG 

records identified in Figure 4.4(a and b) respectively. 
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Figure 4.4: Examples of PCG records where one principal heart sound is clearly the dominant 
signal event in each cardiac cycle, Si is the first heart sound and S2 the second sound (a) 
Dominant first sound (source: dg4). (b) Dominant second sound (source: jgl). 
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Figure 4.5: Cross-correlation between a PCG with dominant first heart sounds and a repres-
entative mitral closing sound template selected from the sixth first sound. (a) Fifteen-second 
(30,000 data samples) filtered PCG (source: dg4), (b) Cross-correlation output: seventeen 
sounds are identified using a correlation threshold of 90%. 
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Figure 4.6: Cross-correlation between a PCG with dominant second heart sounds and a 
representative aortic closing sound template selected from the first second sound. (a) Fifteen-
second (30,000 data samples)filtered PCG (source: jgl), (b) Cross-correlation output: eighteen 
sounds are identified using a correlation threshold of 90%. 
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Using a correlation threshold of 90%, the cross-correlation of the PCG with the mitral closing 

sound template shown in Figure 4.5 located sixteen  other mitral components. Likewise, the 

cross-correlation of the PCG with the aortic closing sound template shown in Figure 4.6 located 

seventeen other aortic components. A correlation threshold of 90% was selected on the basis 

that after having examined typical cross-correlation outputs from various subjects within the 

patient population, it was judged that a threshold of 90% was sufficiently large to truly identify 

the remaining principal components only, and reject the extraneous low-correlation output. 

To facilitate the search of the sounds, two further processing operations were performed on 

the correlator output prior to the extraction of the identified components from the PCG: the output 

from the correlator is rectified, i.e. all negative values are made equal to zero, and the rectified 

output is squared. The result of this nonlinear operation is to further accentuate the points of 

very high correlation only (identified principal components), thus aiding discrimination from 

the remaining low-correlation output. The improvement in the interpretation and identification 

of the location of the remaining components between the standard bipolar cross-correlation 

output and the rectified squared unipolar output is clearly apparent from the examples shown 

in Figure 4.7. By rectifying and squaring the bipolar cross-correlation output, the comparison 

threshold of 90% was subsequently lowered to 81% prior to extraction. 

When both principal heart sounds in each cardiac cycle have comparable structure as 

illustrated in Figure 4.8, the result of the cross-correlation operation can be to identify both 

components within each cycle as illustrated in Figure 4.9(b). The correlator output shown 

in Figure 4.9(b) locates seventeen mitral sounds within the PCG. Additionally, the cross-

correlation operation identifies three aortic components which have a correlation of 81 % or more 

with the mitral reference template. In total, twenty sounds were identified, seventeen correctly 

identified mitral components and three conflicting 'potentially hazardous' aortic components 

as illustrated in Figure 4.10. 

The use of the PCG solely in automating the extraction of mitral and aortic components 

functions very well for one class of phonocardiographic signal, i.e. when one principal heart 

sound has very large structure relative to the other and is clearly the dominant signal event in each 

cardiac cycle. However, when both principal sounds have comparable structure, the resulting 

performance is clearly unsatisfactory and is a major shortcoming of this method. During 

the post-operative evaluation of bioprostheses, subsequent frequency analysis of incorrectly 

identified extracted sounds, which may originally have been produced by a native natural heart 

31n total, seventeen mitral components are identified, sixteen from the remaining cardiac cycles as well as the 
sound chosen to be the representative template. 
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Figure 4.7: Examples of rectified squared PCG cross-correlation output. (a) Equivalent output 

of Figure 4.4(b), (b) Equivalent output of Figure 4.5(b). 

valve or by another prosthetic valve, could result in an incorrect diagnosis being made of 

valvular heart disease. Such an outcome could be fatal. Therefore to overcome this potential 

hazard, an alternative method of automatically extracting mitral and aortic components from 

all types of phonocardiographic signals is required, regardless of the structure of one sound 

relative to the next. 
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Figure 4.8: Example of a PCG where both principal heart sounds have comparable structure 

(source: jpl). 
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Figure 4.9: Cross-correlation between the PCG illustrated in Figure 4.7 and a representative 
mitral closing sound template selected front the fifth first sound. The identified components are 

denoted as: Al = Mitral and  =Aortic. 

4.6.2 Correlator Output Results: Method 2 

To overcome the potential conflict of identifying and incorrectly extracting the wrong component 

when both S  and S2 have similar structure, a second method is proposed, which utilises time-

referenced PCG and ECG signals. The technique is based on the following methodology: 

I. Locate the beginning of each cardiac cycle using the ECG. This involves initially manu-

ally selecting a representative QRS complex from each ECG record adopting the same 

template selection criterion as used for PCG. 

Extract all the respective closing sound components from the PCG by repeating method 

1. 

Using the terminal points identified by the ECG cross-correlation and the a priori know-

ledge that S  always occurs before S2, i.e. ventricular contraction occurs before ventricu-

lar relaxation, if the PCG correlation identifies two signal events within the same cardiac 

cycle, i.e. a mitral and an aortic component, reject the respective component and extract 

the appropriate component only. 
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Figure 4.10: The twenty sounds identified by the cross-correlation output of Figure 4.8(b). (a, 
c-f It, j-t) Seventeen mitral components, (hr g, i) Three conflicting aortic components, (ti) The 
seventeen extracted mitral components superimposed with the computed mean mitral sound, (v) 
The three conflicting aortic components superimposed with the computed mean mitral sound. 
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As only one QRS complex occurs within each cardiac cycle, the result of the cross-correlation 

operation between the ECG and the QRS complex template is to locate the beginning of each 

cardiac cycle within the ECG. After careful inspection of all acquired ECG records, it was 

observed that in general, there is much less temporal variation and inconsistency between 

consecutive cardiac cycles within the ECG than typically can be present within a PCG. With 

only one QRS complex per cycle, and the fact that the practice of electrocardiography is much 

more standardised than phonocardiography, the result of the ECG correlation is to consistently 

identify the beginning of each cardiac cycle with a very high degree of fidelity, i.e. correlation 

coefficients typically in the range from 98% to 99.9% were commonly observed throughout the 

patient population as the examples illustrated in Figure 4.11 show. Even after rectifying and 
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Figure 4.11: Cross-correlation outputs computed from filtered ECG records and representative 
QRS complexes. (a) Eighteen identified cycles (source: jpl), (b) Fourteen identified cycles 
(source: jh6). 

squaring the standard bipolar cross-correlation output, correlation coefficients were observed 

typically ranging from 97% to 99.8%. Figure 4.12 shows the rectified, squared, equivalent 

ECG cross-correlation outputs originally illustrated in Figure 4.11. The use of the ECG and the 

subsequent cross-correlation identification of each cardiac cycle provides an excellent fiducial 

synchronising reference point for future analysis. Figure 4.13 illustrates the correlator output 

for the PCG shown in Figure 4.9(a) using method 2. The three aortic components originally 

identified as mitral components have now been rejected for further analysis. The only sounds 



Chapter 4: Time Domain Preprocessing of the Phonocardiogram 	 43 

c 1 
0 

8 0.8 
0 
0 
c 0.6 
0) 

0.4 

0.2 
E 
0 
Z n 

0 	5000 	10000 	15000 	20000 	25000 	30000 

Cross-Correlation Lag 
 

C 1 
0 
a 

0.8 
0 
0 

0.6 
J) 

0.4 

cz 0.2 
E 
0 z 

0 	5000 	10000 	15000 	20000 	25000 	30000 

Cross-Correlation Lag 
 

Figure 4.12: Examples of rectified squared ECG cross-correlation output. (a) Equivalent output 
of Figure 4.10(a), (b) Equivalent output of Figure 4.10(b). 

now extracted are the actual seventeen mitral components. 
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Figure 4.13: Cross-correlation of the PCG illustrated in Figure 4.7 using method 2. The 'R' 
denotes a component rejected forfurther analysis. 

4.7 Summary and Conclusion 

This chapter describes the preprocessing and signal conditioning operations applied to the ac-

quired PCG prior to the subsequent analysis of the principal heart sound components. Effective 

preprocessing in the time domain greatly facilitates this analysis and produces more accurate 

results overall: through the enhancement of the principal heart sounds and the reduction of 

noise. The ultimate aim was the accentuation of the principal sounds to expedite the automated 
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extraction of mitral and aortic components from each PCG for subsequent frequency analysis. 

The various stages of preprocessing are introduced, from the initial conditioning of the 

acquired PCG signal which involves the abstraction of the principal sounds from a low-frequency 

noise artifact, to the automated extraction of the principal components from the filtered PCG. 

Two methods based on a cross-correlation, template-based matching approach were de-

veloped to automatically extract mitral and aortic components. The first method uses the PCG 

signal solely and matches a representative closing sound with similar successive occurrences, 

i.e. the respective closing sound in each of the remaining cardiac cycles. This method is 

shown to give good performance when one principal heart sound is clearly the dominant signal 

event in each cardiac cycle. However, when both principal sounds are evident and have similar 

temporal structure, method 1 can identify a mitral and an aortic component within the same 

cycle, resulting in the possible subsequent analysis of an incorrectly extracted sound. This is a 

major shortcoming of this method, the consequences of which could be fatal. To overcome this 

potential hazard, a second method was proposed which uses an ECG signal referenced to the 

PCG to initially locate the beginning of each cardiac cycle. Using this a priori information and 

the fact that S  always occurs before S2, method 2 demonstrates that the appropriate closing 

sound only is correctly extracted for subsequent frequency analysis. 



Chapter 5 

Methods for the Frequency Analysis of 

Heart Sounds 

The primary motivation for investigating the frequency spectrum of the sounds produced by 

the operation of mitral and aortic Carpentier-Edwards bioprostheses is to assess whether ex-

amination of the sound spectrum will reveal parameterising features that provide information 

of diagnostic significance concerning the functionality of the prosthesis. If such a relationship 

can be confirmed between the sound spectrum and the functionality of the Carpentier-Edwards 

bioprosthesis, this would allow for the identification of valvular heart disease and hence, an 

indication of impending valve failure. In addition, this would demonstrate the diagnostic poten-

tial of frequency analysis (spectral phonocardiography) as an alternative, clinical post-operative 

evaluation technique. 

From the closing sounds produced by the operation of normally functioning, leaky and 

stiffening valves illustrated in section 2.3, some variations are apparent in the temporal charac-

teristics of these sounds, e.g. leaky valves are often associated with a characterising backfiow 

murmur. However, as discussed in section 4.4, there can be great variability in the structure 

and morphology of heart sounds from one recording to the next. Therefore a visual inspection 

solely in the time domain is inadequate to objectively discriminate between normally function-

ing, leaky and stiffening prostheses. Hence, it is in the frequency domain that less subjective 

discriminatory parameters are sought. During clinical auscultation, cardiologists use the sounds 

heard through the stethoscope to diagnose the functionality of bioprostheses. One of the key 

45 
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attributes used is the frequency content of these sounds: identification of low-frequency sounds 

using a bell attachment to a stethoscope and high-frequency sounds, snaps and murmurs using a 

rigid diaphragm. Thus, the frequency domain (sound spectrum) is an appropriate domain from 

which to extract diagnostic features. 

Mitral and aortic components produced by the operation of normally functioning and 

dysfunctioning bioprostheses were transformed into the frequency domain with a view to 

extracting heuristic parameters of diagnostic significance from the resulting sound spectrum. 

Specifically, the objective of the frequency analysis is to identify spectral features which 

uniquely characterise the acoustic components produced by the operation of mitral and aortic 

Carpentier-Edwards bioprostheses. It was envisaged that such parameters would include the 

identification of a number of characterising dominant frequency peaks, their relative intensities 

and metrics associated with the overall spectral profile and bandwidth of the sound spectrum. 

It was then the intention to classify these sounds by associating the derived spectral parameters 

with the functionality of prostheses. 

This chapter investigates signal processing methods for the transformation of mitral and 

aortic components to the frequency domain, i.e. the sound spectrum. Particular attention is 

paid to the physiological transient-oscillatory nature of the heart sound signal and the suit-

ability of the spectral estimation techniques when analysing such a temporal signature. The 

methods considered were: the periodogram, including a description describing its limitations; 

the Bartlett power spectral density estimate, which reduces the variance of a conventional 

periodogram estimate through ensemble averaging; ARMA-based, parametric linear model-

ling techniques, which attempt to synthesise the heart sound generation process; and Prony's 

method: a parametric modelling technique based on a damped sinusoidal model. 

The number of modelling coefficients used by the parametric spectral estimation techniques, 

i.e. the model order, is a very important variable when analysing bioprosthetic heart valve 

closing sounds. As the precise order of a principal component time series is not known a 

priori, variations in spectra can occur with different orders. Therefore determining an accurate 

order is essential. Chapter 5 also investigates methods which determine the optimal model 

order of time series. The model order selection criteria considered were: hypothesis-based 

methods, decision-based techniques, the FPE, the AIC, the MDL and the CAT; and methods 

which attempt to extract the optimum model order from the heart sound time series by first 

removing the numerical ill-conditioning inherent with the use of linear-algebra-based spectral 

estimation techniques. 
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5.1 	Classical Spectral Analysis of Heart Sounds 

Classical methods of spectral estimation are based directly on the Fourier transform of the data 

sequence. The DFT can be used to transform a heart sound time series x[n] of N data samples 

into the frequency domain, i.e. into a sequence, X[k], of N frequency samples, defined to be: 

X[k] =x[n]exp(—j2knIN) 	for k,n=O,1,...,N— 1 	(5.1) 
?1=0 

The squared modulus of(5.1), S[f]If=kIN = I X1kilI2, represents the distribution of signal energy 

as a function of frequency, and for this study of random bioprosthetic heart valve closing 

sounds, is referred to as the power spectral density (PSD) estimate. This method of directly 

transforming a time series of N data samples into the frequency domain is referred to as the 

periodogram, and is defined to be: 

1 
IN—I 	 2 

I 
S[f]If=uN = 	x[n] exp(—j2kn/N) = 	X[k] 	 (5.2) 

In=0 

An efficient evaluation of the DFT hence the periodogram estimate can be computed using the 

FFT algorithms [78, 83,94]. This approach to frequency analysis is robust, computationally 

efficient and produces reasonable results for a large class of signal processes [95]. However, in 

spite of these advantages, a number of inherent performance limitations are associated with the 

use of the DFT to accurately transform bioprosthetic heart valve closing sounds to the frequency 

domain. These limitations arise from the finite nature of mitral and aortic component time series 

records, and in particular, their relatively short duration. The steps commonly employed to 

overcome these shortcomings are discussed. 

5.1.1 Windowing 

Whenever mitral and aortic components are extracted from a PCG, an implicit windowing 

operation is performed on these components: data samples lying on either side of the sounds 

are ignored. This is equivalent to multiplying the extracted sound by a uniform rectangular 

(Dirichlet) window, with unit amplitude for the duration of the sound and zero amplitude before 

and after the sound, expressed as: 

x [n] = X[fllWrect [11] 

	x[n] 	for 	= O,l,...,N— 1 	
(5.3) 

0 	otherwise 
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where, x. [n], represents the implicitly windowed principal component extracted from the PCG. 

The multiplication of two sequences in the time domain is equivalent to convolution of the 

Fourier transforms of both sequences in the frequency domain, such that: 

X[fl = X[f] * W[f] 	 (5.4) 

where X[f],  X[f] and W[f] are the Fourier transforms of the implicitly windowed principal 

component extracted from the PCG, the true desired component and the windowing function 

respectively, and where the '*' denotes the convolution operator. A rectangular window in 

the time domain is equivalently represented in the frequency domain by the sinc function: 

(
sin  v  ) [83]. Hence, the resulting sound spectrum will be the convolution of the spectral 

IV 

response of the desired principal component with the sinc function, i.e. the spectral response of 

the desired principal component will be filtered, producing a smoothed overall estimate X[f]. 

As a result of the sidelobes present in the frequency domain representation of the rectangular 

window, the convolution of X[f] with the sidelobes of W[f] spreads or 'leaks' energy from 

the desired response X[f] across many bands producing sidelobe energy in XJf] in frequency 

bands where the true principal component signal spectrum is zero. This energy might otherwise 

have been concentrated at a single point or in a narrow bandwidth of frequencies. This sidelobe 

energy is referred to as 'leakage' [83] and is a direct consequence of the windowing inherent 

in the computation of the periodogram. The extraction of mitral and aortic components from 

a PCG results in discontinuities at the boundaries of the observation window, such that, the 

periodic extension of the extracted components are not commensurate with their natural period. 

If the signal being analysed has an integer number of continuous cycles within the finite record, 

the frequency bins coincide exactly with the points of zero magnitude within the windowing 

function. However, for a nonintegral number of cycles within the measurement interval, the 

main lobe of the windowing function and the points of zero magnitude are not coincident with 

the computed discrete spectral bins, resulting in sidelobe leakage. In addition to the distorting 

effects of leakage, the resultant spectral spreading has a further detrimental impact on the PSD 

estimate of bioprosthetic heart valve closing sounds: the detectability of responses. The spectral 

response of a weak signal can be completely masked by higher sidelobe leakage in the adjacent 

bins from a stronger spectral response, particularly if the weaker component is located close to 

the stronger response. 

The effects of sidelobe leakage can be reduced by applying a weighting function to the 

signal before it is Fourier transformed. This function has a nonuniform weighting, producing a 
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smoother gradual termination in the time domain rather than the abrupt discontinuity inherent 

in rectangular window truncation. Hence, the extracted windowed component is smoothly 

brought to zero at the boundaries such that the periodic extension appears continuous. 

The requirements for an ideal windowing function are that the central lobe should be narrow 

to give good spectral resolution and that the sidelobes are of insignificant magnitude relative to 

the main lobe to reduce the effects of leakage [96]. The ideal window is the impulse function, 

i.e. if w[n] = 6[n] then W[f] = 1, as this would exactly reproduce the spectral response of the 

desired principal component spectral response after convolution [97]. However, a windowing 

function of 6[n] cannot be readily realised in practice. Other windowing functions [98] reduce 

the overall sidelobe leakage as they have smaller spectral lobes than those of the implicit 

rectangular window. However, concomitant with a decrease in the level of sidelobe leakage is 

an increase in the broadening of the main lobe and hence the resulting smoothing effect, i.e. 

a reduction in spectral resolution. Therefore the selection of a suitable windowing function to 

gradually weight the extracted mitral and aortic principal components involves a compromise 

between two conflicting requirements: the width of the main lobe and the extent of sidelobe 

suppression. The implicit rectangular window has the narrowest main lobe of any window, but 

it also has the highest sidelobe level. 

5.1.2 Hamming Window 

A windowing function which provides a good compromise between frequency resolution and 

reduced leakage is the Hamming window [98-100]. The Hamming window was applied to the 

extracted principal component time series prior to zero padding, and followed by transformation 

to the frequency domain. This windowing function is a member of the family of raised cosine 

pulses and is defined to be: 

/2vn\ 
W[n] a +(1.0 - a) cos 	 for  = 0,1,... ,N - 1 	(5.5) 

where, a, is an adjustable parameter which allows the level of sidelobe cancellation to be 

tailored. Whenever a = 25/46 0.54, such that: 

(2 irn \ 
w[n] = 0.54 + 0.46 cos 	 for n = 0,1,... ,N - 1 	 (5.6) 

there is near perfect cancellation of the first sidelobe [99]. The application of the Hamming 

window to the principal component time series biases the amplitude of each resultant spectral 
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coefficients. Multiplication of the time series by a Hamming window reduces the magnitudes of 

the data samples at the taper reducing the total power of the principal component signal, resulting 

in modified DFT values and distortion of the amplitude response. In addition, windowing affects 

the mean of the data, resulting in the introduction of a d.c. component into the amplitude 

response and an apparent increase in the energy of the lower-frequency components [101]. 

Hence, to obtain an accurate measure of the amplitude response, a compensation factor is 

applied to the computed PSD estimate [96,98]. For the Hamming window, the compensation 

which must be applied is: 

Lt[f1 	0.4 
	 (5.7) 

5.1.3 Frequency Resolution 

The extent to which two spectral responses can be distinguished from one another in the 

frequency domain is referred to as frequency resolution, 4f, defined to be: 

Af = 
	 (5.8) 

where, /3, is a coefficient always greater than unity which reflects the fact that a windowing 

function imposes an effective bandwidth on the spectral response of the principal component, 

and, 7'd  is the duration of the signal under investigation [99]. Therefore the frequency resolution 

of the DFT is inversely proportional to the duration of the signal event under analysis. If 

frequency components present are closer than Af Hz, the DFT is not able to resolve and 

represent these components as separate and distinct frequencies. As discussed in section 4.3, 

the duration of the principal components typically varies in the range from 20 to 80 ms (40 to 

160 data samples). The corresponding DFT resolution ranges from 	= 128OMS.5Hz to 	= 

50Hz. The frequency resolution is also dependent on the choice of windowing function applied 

to the sounds. Regardless of which tapered function is used, the convolution of the Fourier 

transform of the window with that of the spectral response of the desired principal component 

means that the narrowest spectral response of the resultant transform is limited to the width of 

the main lobe of the window transform, independent of the data or its SNR [78]. 

5.1.4 The 'Picket-Fence' Effect 

A consequence of the DFT transformation of a signal to the frequency domain is that the 

resultant spectrum is sampled in the frequency domain. The sample points (or bins) are spaced 

at integer multiples of 	where, f, is the temporal sampling frequency. If the signal being 
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analysed has an integer number of continuous cycles within the finite record, no error will occur 

in the measurement of magnitude or frequency [96]. However, if the signal frequency is not 

one of these discrete frequencies, this results in the 'Picket-Fence' effect, also referred to as 

scalloping loss [101, 1021. A spectral component between two distinct harmonic frequencies 

will be seen by the adjacent bins because of the leakage caused by the spectrum of the data 

window. In the worst case, where a spectral component lies midway between two bins, the 

amplitude is attenuated by 3.9dB and 3.1dB in the adjacent bins for rectangular and Hamming 

windowing functions respectively. This is judged to be analogous to viewing the spectrum 

through the gaps in a 'picket fence', where the pickets represent the inter-bin separation. 

In this thesis, the primary aim is to compute the frequency spectrum of extracted mitral and 

aortic sounds. There is no a priori knowledge concerning the spectral composition of these 

sounds, and from their structure one can not accurately postulate a single stable frequency 

component [3]. However, scalloping loss can be reduced by decreasing the separation between 

the bins in the DET spectrum. This is achieved by increasing the number of points in the 

transform by appending zeros to the principal component temporal record. This allows the 

interpolation of the values of the measured spectrum at more frequencies. The principal 

component finite records typically varied from 40 to 160 data samples in length. These were 

zero padded to construct a 1024-point data sequence which was subsequently transformed to 

the frequency domain. 

5.1.5 Inconsistent Periodogram PSD Estimates 

The periodogram does not produce a consistent estimate of the true power density, i.e. the 

variance of the estimate '[f] does not decay to zero as N - co, such that, S[f]  does not 

converge to the true power density spectrum. For finite data records, the mean periodogram 

spectral estimate ',[f] contains a bias defined to be: 

E(S[f]) = S[f] * WB[f] 	 (5.9) 

where, E, is the expectation operator and Wfl[f],  is the spectral characteristic of the Bartlett (tri-

angular) window. The mean periodogram spectral estimate is the convolution of the true power 

density spectrum S[f] with the Fourier transform of the Bartlett window. This convolution 

results in a smoothed distorted version of the true spectrum and suffers from the same spectral 

leakage problems inherent when analysing finite data records using DFT-based techniques. The 

smoothing and leakage ultimately limit the ability to resolve closely spaced spectra. 
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The Bartlett method of spectral estimation reduces the variance in the conventional pen-

odogram PSD estimate by subdividing the data record into smaller segments and averaging 

the resulting periodograms [103, 1041. Bartlett's method for reducing the variance can be 

summarised as follows: 

the N-point finite data record is subdivided into K nonoverlapping segments, where each 

segment has length M. 

For each segment, the peniodogram is computed: 

1 M-1 	 2 

Jf] = 	x[n] exp(—j2fii) for i =0, I__ . , K - 1 	(5.10) 
to  

The periodograms for the K segments are averaged to obtain the Bartlett power spectrum 

estimate defined to be: 

[f] = 	 X[f] 	
(5.11) 

The effect of reducing the length of the finite record from N points to M = N/K results in a 

window whose spectral width has been increased by a factor K. Consequently, the frequency 

resolution decreases by a factor K [83]. In return for this reduction in spectral resolution, the 

variance of the Bartlett PSD estimate, var{S[f]},  decreases by a factor K such that: 

var{Lf]} = 	Lf] 	 (5.12) 

In an attempt to overcome the inherent performance limitations of the DFI' approach 

to frequency analysis, the motivation for better methods of spectral analysis has resulted in 

alternative, more recent developments, which attempt to circumvent the fundamental limitations 

of classical spectral analysis methods by constructing a parametric model for the random 

process, and then calculating an associated spectrum. Many of the problems of the DFT 

approach to spectral estimation arise from the finite nature of the signal event under investigation 

and the accompanying windowing and leakage problems inherent with the analysis of finite 

data records. Furthermore, DFT-based methods require the availability of long data records to 

yield adequate frequency resolution; however, in this thesis, the signal under analysis is a short-

transient oscillation. In addition, large variances are associated with the estimates of short-time 

data records, which necessitates the need for some sort of pseudo-ensemble averaging to obtain 

statistically consistent periodogram spectral estimates. Ultimately, such spectral smoothing 

invariably leads to a further reduction in frequency resolution. The utility of classical-based 
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methods assumes that either the unestimated autocorrelation sequence is implicitly zero outside 

the measurement interval or that the data is periodic or cyclic. Neither of these assumptions are 

realistic and severely limit the frequency resolution and quality of the resulting PSD estimate. 

Section 5.2 discusses spectral estimation techniques which do not require any such as-

sumptions. These methods extrapolate the autocorrelation sequence outside the measurement 

interval. In such cases, a parametric model for the signal generation process is constructed 

from the observed data, from which a PSD estimate is computed. This modelling approach to 

frequency analysis completely eliminates the need for windowing functions along with their 

distorting impact, as well as the need for assumptions concerning the nature of the data outside 

the measurement interval. This results in spectral estimation methods which provide super-

ior frequency resolution, particularly for short-time finite data records such as transient heart 

sounds, where the amount of available stationary data is limited. Parametric methods accurately 

determine the frequencies in a multicomponent signal without the need for spectral smoothing 

techniques and their subsequent reduction in frequency resolution [105]. 

5.2 	Parametric Spectral Analysis of Heart Sounds 

Often there is some knowledge concerning the process that generated the time series from which 

data samples are used for frequency analysis, or at least, one is able to make a more realistic 

assumption regarding the nature of the observed process outside the measurement interval other 

than to assume that it is zero or cyclic. This allows for the selection of an accurate model for 

the process that generated the data samples, or at least, a model that is a good approximation 

to the underlying process. When using such a model by determining the parameters from time 

series observations, it is usually possible to obtain a better spectral estimate of short-time data 

records than that which would be obtained using DFT-based methods. Hence, in this context 

of time series modelling, the parametric approach to spectral analysis can be summarised as 

follows: 

Select an appropriate parametric time series model that approximates the generated 

observed time sequence. In this thesis, the observed time sequence are the data samples 

of the principal heart sound components produced by the operation of the Carpentier-

Edwards bioprosthetic heart valve. 

Construct the model by estimating the parameters from the heart sound time series. 
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3. Compute the PSD estimate implied by the model by inserting the estimated model 

parameters into a theoretical PSD expression appropriate for that time series model. 

The parametric methods of spectral analysis used in this thesis are based on a linear system 

or model which synthesises a principal heart sound time series x[n] as the output of this linear 

equivalent causal filter (impulse response = h[k] = 0 for k < 0) when excited by an input signal, 

w[n]. These parametric time series models are characterised by stochastic and deterministic 

rational polynomial system transfer functions, H[z],  defined to be: 

q 

b[k]z 
00 

H[z]= B[z] 
	k=O 	 I+ E h[k]Z 	 (5.13) —= 	 = 

A[z] 	1' 
k=1 

k=1 

where, A[z],  and.  B[z],  are polynomials that have all of their roots (zeros) within the unit-circle 

of the z-plane to guarantee that H[z] is a stable minimum-phase causal filter, a[k], and, b[k], 

are the filter coefficients that determine the location of the poles and zeros of H[z] respectively, 

and, P, and, 4, are the number of a[k] and b[k] coefficients respectively, i.e. the order of the 

linear model. 

With the modelling approach to frequency analysis, only the output process from the 

model is assumed available for analysis, i.e. the input driving sequence is not observable [78]. 

However, as a synthesised heart sound can be considered to be a realisation of a stationary 

random process, the exogenous input sequence may also be considered to be a stationary 

random process. The resulting PSD estimate of the modelled heart sound output, S,jf], is 

defined to be: 

= 	[f] H] 12 = 	
B[f] 2 

A 	] I 
(5.14) 

where, S [f], is the PSD estimate of the input driving sequence and, H[f], is the system transfer 

function of the linear model. A principal heart sound time series can be represented as the 

output of a linear causal filter when excited by a white-noise sequence of zero mean and a.c. 

power, o, i.e. constant variance independent of frequency and having a fiat PSD. The resulting 

PSD estimate of the principal heart sound output is defined to be: 

M fl 
f] 2  

= lHV]l2  (5.15) 

It is conventional to assume that the white-noise sequence has unit variance, i.e. G = 1, with 

the filter providing any necessary gain. The resulting PSD estimate of the principal heart sound 
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is now completely characterised by the amplitude response of the filter and the variance of the 

white noise. As the shape of this estimate is dependant only upon the magnitude of the filter 

frequency response, a random process with almost any desired second-order statistics can be 

produced by applying white noise to an appropriate filter [103]. As the model is defined by a 

finite set of parameters, the resulting PSD estimate is also defined by these parameters. The 

overall effect of this process is to colour or shape the PSD estimate of a white-noise sequence 

by an appropriate filter frequency response to produce an estimate of a desired shape. In this 

thesis: the spectral profile of Carpentier-Edwards bioprosthetic heart valve closing sounds. 

However, the hypothetical white-noise input sequence with PSD S[f]  is not realisable and 

the linear filter with system transfer function H[z]  cannot be readily identified. Nevertheless, an 

alternative approach is possible. If an inverse linear causal filter with system transfer function, 

can be found which whitens the PSD estimate of the principal heart sound time series x[n], 

then it too will also completely define or parameterise the PSD estimate of this heart sound time 

series, i.e. a stationary random process x[n] with a PSD estimate SJf] can be transformed into 

a white-noise sequence by passing x[n] through a linear filter with system transfer function 

such that: 

5',w[f] = c:3 = IH[f]I2S[f] 	 (5.16) 

where: 

= H]2 	
(5.17) 

This inverse filter is as a noise whitening filter and its white noise output is known as the 

'innovations process' associated with the stationary random process x[n] [83]. This approach 

of parametrically modelling heart sounds is shown in Figure 5.1. The representation of a 

stationary stochastic heart sound process x[n] as the output of an linear filter with system 

transfer function H[z]  and excited by a white-noise sequence w[n] is known as the Wold 

representation [83]. 

For linear models with a rational system transfer function H[z],  the corresponding linear 

difference equation relating the modelled heart sound output, i[n], to the input w[n] is defined 

to be: 

[n] = - 	a[k]x[n - k] + 	b[k]w[n - k] 	 (5.18) 

where, a[k], and, b[k], are the autoregressive (AR) and moving average (MA) filter coefficients 

respectively and, P, and, 4, are the orders of the AR and MA parts of the ARMA[, 

j] 

 model 

respectively, i.e. the number of AR and MA parameters. This general model is known as the 
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Linear causal filter 

White noise 	H(z) = B(z)/A(z) 	Synthesised heart 
sequence w[n] 	 sound Q[n] 

_ r I 

Inverse linear causal I 

	

whitening filter 	______________ 
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IH(Ol PSD 
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Figure 5.1: Parametric modelling approach to spectral analysis. 

autoregressive-moving average (ARMA) model, denoted as ARMA[, 41. 

If all the MA parameters are zero except b[0] = 1, i.e. b[k] = 0 for k > 0, the resulting 

linear filter H[z] 	is an all-pole filter. The difference equation relating input and output is 

strictly an AR process of order b, i.e. AR[], and is defined to be: 

[n] = — 	a[kx[n - k] +w[n] 	 (5.19) 

The resulting AR PSD estimate is: 

LfJ - (5.20) 
- IA[f]12 

Likewise, if all the AR parameters are zero except a[0] = 1, i.e. a[k] = 0 fork > 0, the resulting 

linear filter H[z] = B[z] is an all-zero filter. The difference equation relating input and output is 

strictly an MA process of order , i.e. MA[21], and is defined to be: 

[n] = 	b[k]w[n - k] + w[n] 	 (5.21) 

The MA PSD estimate is: 

=ojB[f]I2 	 (5.22) ll 

The selection of one of these models requires some knowledge regarding the likely spectral 

shape of the process under investigation [106]. Of the three, the AR model is the most widely 

used. This is due to the fact that the AR model is particularly suitable for representing spectra 

with narrow sharp peaks (resonances) and that the estimation of the AR model parameters entails 

the solution of a set of linear equations. The MA model, however, is suited to representing 

spectra with deep nulls and requires many parameters to adequately model a narrow spectrum. 
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Furthermore, the estimation of the MA model parameters requires the solution of a set of 

nonlinear equations. By combining poles and zeros, the ARMA model is able to represent and 

characterise spectra with both sharp peaks and deep nulls, i.e. a composite of the AR and MA 

models. The ARMA model provides the most efficient representation from the viewpoint of 

the number of parameters, i.e. parsimony [83], however, it requires the solution of a set of 

nonlinear equations. The Wold decomposition theorem [103, 107] asserts that given an AR, 

MA or ARMA model of a finite number of parameters, it is possible to express that model in 

terms of the other two, e.g. an ARMA or MA process may be uniquely represented by an AR 

model of infinite order. Although such a model may not be parsimonious, an ARMA model 

can be approximated by a higher-order AR model, which involves the solution of a set of linear 

equations. 

Thus far the parametric modelling of heart sounds has assumed a white-noise input. 

However, from the sounds shown in chapters two and four, the transient-oscillatory nature 

of these sounds suggests that a rational model excited by an impulse would be more appropri-

ate. When w[n] = ô[n], the resulting PSD output is: 

= H[f] 
12 	 (5.23) 

An alternative ARMA parametric model was also investigated based on a deterministic 

exponential model known as Prony's method [103], where a 'b-term complex exponential 

model is defined to be: 

4n] = 	A[k] exp [(a[k] +j2f[k])(n - 1)T + jO[k]] 	 (5.24) 

for 0 < ii < N - 1, where, N, is the number of data samples, T, is the sampling interval in 

seconds,Ak , is the amplitude of the exponential, (xi, is the damping factor in second 1 ,fk , is the 

sinusoidal frequency in Hz, °k  is the sinusoidal initial phase in radians and fr is the number of 

complex exponentials (model order). A modified version of Prony's method was implemented 

for this thesis. This modified version is based on a damped sinusoidal model, with the resulting 

Prony energy spectral density (ESD) estimate, S[f], being particularly appropriate for transient 

signals such as valvular closing sounds [78]. The Prony ESD estimate is defined to be: 

I (P A[k] exp(j6[k]) 	
2 	

(5.25) f] T 1 - exp[(a[k] +j27rf[k])T] exp (—j27rf T) 



Chapter 5: Methods for the Frequency Analysis of Heart Sounds 	 58 

Evaluating the parameters of the Prony ARMA-based models and hence the PSD estimate is 

achieved by minimising the modelling approximation error between the synthesised heart sound 

output and the actual heart sound, i.e. between the impulse response h[n] of the model and the 

actual heart sound time series. 

5.2.1 Evaluation of ARMA Model Parameters 

When the PSD estimate of a stationary random process is a rational function, a relationship 

exists between the autocorrelation sequence, 	[1], which is estimated from the heart sound 

time series, and the a[k] and b[k] parameters of the linear filter H[z].  Multiplying both sides 

of (5.18) by the complex conjugate of x [n - 11 and taking expected values yields the 'Yule-

Walker' equations: 

—a[k][l—k] 	 for l> 

a[k][1 - k] + a 	 , . . b[k]h[k - 1] for 1= 0, 1 	. 	
(5.26) 

i[-1] 	 for l<0 

where the superscripted '*' denotes complex conjugation and h[0] = 1 [83, 106]. Inspection 

of (5.26) reveals that a nonlinear relationship exists between the autocorrelation lag estimates 

I[1], the parameters a[k] and b[k] and the impulse response h[n]. A best least-squares eval-

uation with optimum a[k] and b[k] parameters involves the least mean-square solution of the 

highly nonlinear Yule-Walker equations. This entails the use of computationally intensive, 

nonlinear iterative programming algorithms with their attendant problems of nonconvergence 

or convergence to the wrong solution [95,108-110]. In this thesis, the a[k] and b[k] parameters 

are evaluated separately: the AR parameters are first calculated followed by the MA parameters. 

This suboptimal approach results in a considerable easing in computational complexity with 

the evaluation of the AR parameters of an ARMA model requiring a linear solution. Although 

this approach is suboptimal (in the maximum likelihood sense), it provides for near-optimal 

modelling [108,111]. 

5.2.1.1 Evaluation of AR ARMA Model Parameters 

The first stage of the suboptimal approach to ARMA modelling is the evaluation of the AR 

parameters. Inspection of (5.26) reveals that the AR parameters of an ARMA model are related 

to the autocorrelation lag estimates by a set of linear equations, which may be expressed in 
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matrix form as: 

Ra = 
	 (5.27) 

where: 

- 11 	... 	- + 11 

+ 1] 	 ... i-.[21 - 	+ 21 
R - 

i- [21+j -1I ',,[4+P- 21 ... 

 

 
a= 	 r= 

a[f] 

This relationship is known as the 'Modified Yule-Walker' (MYW) equations, also referred to as 

the 'extended Yule-Walker equations', and evaluate the P AR parameters of an ARMA model 

from the autocorrelation estimates from lags 4 - to 21 + P. Hence, the AR a[k] parameters of 

an ARMA model are obtained by evaluating the first MYW equations (21 + I < n < 21 + .2) 

and solving the resulting P linear equations for the P a[k] parameters. This approach is 

computationally attractive, however, only a subset of the autocorrelation lag estimates are used: 

2P estimates in total, from lags 21- j to  21 +. Direct implementation of the MYW equations can 

result in poor performance, especially for short-time and noisy finite data records. For higher-

order models, direct implementation of the MYW equations produces poor estimates of the AR 

parameters (large variance) due to the poor estimates of the autocorrelation sequence for large 

values of lag, or that the selected model is not correct, or both [83, 112]. Improved performance 

can be achieved by using more than the minimal number of P MYW equation evaluations with 

more correlation estimates. The improvement in estimation accuracy results from the fact that 

there is valuable information in the high-lag autocorrelation estimates which is not exploited 

by the minimal direct implementation of the MYW equations. Increasing the number of 

equations is particularly effective for narrowband processes, where the autocorrelation estimates 

decay slowly [111]. The net result is a reduction in data-induced parameter sensitivity and 

a corresponding improvement in overall modelling performance: particularly suited for the 

generation of low-order high-quality spectral estimates from short-time heart sound data records. 

The P AR a[k] parameters are evaluated using a least-squares fit to this overdetermined set 

of linear equations, referred to as the 'Least-Squares Modified Yule-Walker' method. In the 
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overdetermined modelling approach, if the autocorrelation estimates can be accurately evaluated 

to lag L, where L > + 4, this yields an overdetermined set of linear equations in the fr unknown 

AR parameters, defined in matrix form to be: 

Ra 
	 (5.28) 

where: 

i[] 	- fl ... 	- + 11 

	

rV Jq + 1] 	[] 	... 	- + 21 - 

	

- I 	[L - 21 ... 	- b] 

	

a[l] 	 + 1] 

a[2] 
a= 	 r= 

	

a[p] 	 I[L] 

5.2.1.2 Evaluation of MA ARMA Model Parameters 

The second stage of the suboptimal approach to ARMA modelling is the evaluation of the 

MA parameters. Inspection of (5.26) reveals that a nonlinear relationship exists between the 

autocorrelation sequence, the impulse response and the MA parameters. However, as only 

a spectral estimate is required, there is no need to solve for the MA parameters, but only to 

estimate the autocorrelation function, as the MA PSD estimate, SA L/1 may be evaluated from: 

q 

	

=iJk]exp(—j2fr) 	 (5.29) 
k= -q 

5.2.2 Evaluation of AR Model Parameters 

For a pure AR model of order P, i.e. AR['], a relationship exists between the autocorrelation 

sequence and the AR a[k] parameters. This linear relationship is referred to as the 'AR Yule-

Walker normal equations' [106] and can be expressed in matrix form as: 

I[0] 	I-[—l] 	... 	I[—] 	 I 	191-11 

i[1] 	I[0] 	... 	[—+l] 	a[l] 	= 	0 	
(5.30) 

	

- 11 ... 	[0] 	) 	\ a[f] ) 	\ 0 
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Inspection of (5.30) reveals that estimating the autocorrelation sequence from the heart sound 

AAR 
time series will subsequently yield the AR parameters and hence the AR PSD estimate S[f]. 

This intuitive approach to AR PSD estimation is known as the 'Yule-Walker' method. However, 

better results are possible from methods which produce the AR model parameters directly from 

the data rather than indirectly via the autocorrelation sequence. For short-time data records, the 

Yule-Walker method produces low-resolution spectral estimates relative to these methods. 

The matrix of autocorrelation estimates in (5.30) has a Toeplitz symmetry (elements 

along each diagonal are identical, i.e. R(i,j) = R(i - j) as well as being Hermitian, 

i.e. R(i,j) = R(J, i). This matrix can be evaluated efficiently using the Levinson-Durbin 

algorithm [78,83,113,114], which sequentially solves (5.30) without the need for matrix inver-

sion: requiring only p2  operations in contrast to standard techniques such as Gauss elimination 

which typically involve operations. The Levinson-Durbin algorithm recursively computes the 

AR a[k] parameter sets: {a i [1], cr,2 }, jai [1],a2[2],  a},. . . , {a4l],ap[2],. . . ,a1,[], a} where 

the leading subscript denotes the iteration number, i.e. ak[b]  for k = 1, 2,. . . , . The final set of 

parameters at order is the desired solution. Hence, the Levinson-Durbin algorithm evaluates 

the AR parameters for all the lower-order AR model fits to the data. This property is particularly 

useful when analysing heart sounds, as the precise model order, Phs'  is not known a priori. The 

Levinson-Durbin algorithm can be used to generate successively higher-order models until o 

is reduced to a desired value. The variance of the excitation noise reaches a constant value for 

a model order equal to or greater than the correct order. Consequently, the order at which o 

does not change can be used as an indication of the correct model order, at which point, cY 

reaches its minimum value, i.e.o =cr2  for k > P. This Levinson-Durbin method of model 

order determination is discussed further in section 5.2.5.1. 

5.2.3 Relationship of the AR Process to Linear Prediction 

The one-step forward linear prediction estimate, £' [n], of the future value of the data sample, 

x[n], is defined to be: 

[n] = - 	at [k] x[n - k] 	 (5.31) 

where, a1 [k], is the forward linear prediction coefficient at time index k of the one-step forward 

predictor of order P. The prediction is forward, i.e. the prediction for the current data sample 

is a weighted linear combination of the P past samples x[n - 1], x[n - 21, ..., x[n - ]. The 

difference between the actual data sample x[n] and its predicted value [n] is the forward 
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prediction error, et [n], also referred to as the 'residual', and is defined to be: 

ef [n] = x[n]—[n] = x[n] +at[k] x[n —k] 	 (5.32) 

The mean-squared value or variance of the forward prediction error is defined as: 

	

41  = E{e[n] 2} 	 ( 5.33) 

Similarly, the one-step backward linear prediction coefficient estimate, .i"[n - f,], of the data 

sample, xL[n - ], is defined to be: 

p-I 

—d'[k]x[n - k] 
	

(5.34) 

where, ab[n],  is the backward linear prediction coefficient at time index k of the one-step 

backward predictor of order i. The prediction is backward, i.e. the prediction for the current 

data sample is a weighted linear combination of the j3 samples indexed later in time, x[n], 4n - 

1],. . . ,x[n - + 1]. The difference between the actual data sample x[n - ] and its predicted 

value ."[n - ] is the backward prediction error, e"[n], and is defined to be: 

p-i 

	

el' [n] = x[n - 	- 	- 	= x[n - 	] +at' [k] x[n - k] 	(5.35) 

The mean-squared value (variance) of the backward prediction error is defined to be: 

	

= E( eb[n]) 	 (5.36) 

The forward linear prediction coefficients are evaluated by performing a least-squares min-

imisation of the mean-squared forward prediction error. Minimisation with respect to all of 

the prediction coefficients yields a set of linear equations structurally identical to the AR 

Yule-Walker equations [83, 106]. Likewise, minimisation of with respect to all of the back-

ward linear prediction coefficients yields normal equations structurally identical to the AR 

Yule-Walker equations. If the underlying process x[n] is autoregressive, i.e. AR['], the a[k]  

parameters of the AR process and the dth[k] prediction coefficients' of the order' predictor will 

be identical. Furthermore, the prediction error variance J"  will be identical to O, the variance 

of the white-noise sequence, i.e. the prediction-error filter is a whitening filter. For heart sounds, 

'the superscript 'f/b' denotes that either forward or backward linear prediction may be used 
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i.e. a non-AR process, the prediction-error filter attempts to remove the correlation between 

the signal samples. As the order of the predictor is increased, the predicted output becomes 

a close approximation to its actual value, with the prediction error approaching a white-noise 

sequence [83, 115]. 

5.2.3.1 Separate Forward Linear Prediction Analysis 

With a heart sound time series (N data samples indexed from n = 0 to N - 1), the forward 

prediction error et [n] may be defined over the range from n = 0 to n = N + j5 - 1. The total 

squared error (energy) to be minimised is defined to be: 

= 	e[n] 	 (5.37) 
n 

where a number of summation ranges may be selected. Selecting the range from W [01 to 

e![N+j - 11 where: 
N+j— I 

41 	Ie[n]V 	 (5.38) 
n=0 

is the windowed case, as it entails an implicit rectangular windowing of the data samples to 

extend the index range for eI[n] from n = 0 ton = N + - 1, i.e. unavailable data samples are 

set to zero. This windowed case is termed the 'autocorrelation' method of least-squares linear 

prediction analysis with the resulting matrix of autocorrelation estimates having a Toeplitz 

symmetry [113]. The autocorrelation method of linear prediction analysis is equivalent to the 

Yule-Walker method of AR parameter estimation, with the windowing of the data responsible 

for the reduction in resolution relative to other linear prediction-based methods. Therefore this 

approach is not suitable for short-time data records. 

Selecting the range from et fr] to et  [N - 1] where: 

= 	Iet[n]12 	 (5.39) 
fl =p 

is the nonwindowed case, as only available data samples are used, i.e. the limits are chosen to 

always remain within the measured data. This nonwindowed method is termed the 'covariance' 

method of least-squares linear prediction analysis with the resulting matrix of autocorrelation 

estimates having the properties of a covariance matrix [113, 116]. 
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5.2.3.2 Combined Forward and Backward Linear Prediction 

Both forward and backward linear prediction have similar statistical information and by combin-

ing the forward and backward linear prediction error statistics, twice as much data is available2  

The combined total error is defined to be: 

N—I 

	

fb( let [n ] 2 + Ieb[n]12) 	 (5.40) 

n =p 

The net result is a reduction in variance and hence an improved estimate of the AR para-

meters [103, 106]. This method is termed the 'forward-backward method' also known as the 

Modified covariance (MCV) method. 

5.2.3.3 The Burg (Harmonic) Algorithm 

An alternative method of AR parameter estimation based on the least-squares minimisation of 

the total forward and backward prediction errors is the Burg algorithm, sometimes also referred 

to as the maximum entropy method of spectral estimation. To obtain estimates of the predictor 

(or AR) parameters, at each order f,, the arithmetic mean of the combined forward and backward 

linear prediction error power is minimised. This combined error is defined to be: 

N—i 

	

Ie'[n]t + I eb[n]1 2 ) 	 (5.41) 

=1' 

	

The minimisation of 	is subject to the constraint that the AR 	parameters satisfy the Levinson- 

Durbin algorithm recursion. This constraint was motivated by the desire to ensure a stable AR 

filter, i.e. poles within the unit-circle. As with the MCV method, the summation ranges only 

over available data. However, with the Burg algorithm, the least-squares minimisation is with 

respect to a single parameter, namely, the reflection coefficient, kp, defined in the equivalent 

lattice filter realisation of the linear prediction error filter [78,83, 106]. For a heart sound time 

series (N data samples indexed from n = 0 to N - 1), at each order, k is defined to be: 

N—I 

—2e 1 [n]e1, 1 [n— 11 

n=il 
= N—i 	

(5.42) 

[n]V + 	[nl ]2 

fl =p 

2the superscript 'Jb' denotes combined forward-backward linear prediction. 
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The Burg algorithm is computationally efficient [78,103,117,118], yields a stable AR model and 

results in high frequency resolution. However, in spite of these advantages, a number of inherent 

performance limitations are associated with the use of the Burg algorithm to accurately transform 

time series to the frequency domain. Firstly, it exhibits spectral line splitting, where one actual 

peak in the sound spectrum is split into two or more closely spaced peaks [119, 120]; and 

secondly, at high model orders, it introduces spurious peaks and detail into the sound spectrum 

which is not actually present. In this thesis, correct interpretation of the sound spectrum is 

paramount before associating spectra with physiological and pathological functionality. In 

addition, for sinusoidal signals in noise, the Burg algorithm is known to exhibit a sensitivity to 

the initial phase of a sinusoid, especially for short-time data records. This sensitivity is manifest 

as a frequency shift from the true frequency resulting in a frequency bias that is phase dependant. 

In order to overcome these limitations, a modification has been proposed to the Burg algorithm. 

The modification involves the application of a weighting or windowing sequence, w[n], to the 

squared forward and backward errors. The least-squares minimisation is now performed on the 

weighted combined squared errors defined to be: 

jh 	w [n1([n]I 2 + I eh[n]12 ) 	 (5.43) 
fl 

which when minimised, yields the reflection coefficient estimate: 

N-I 

—2 	[n]e-[n - 1] 
=1' 

= N-I 	
(5.44) 

wJ,[n]( Iei[n]I 2  + e i [n]I 2 ) 

n= j) 

In this thesis, the weighting sequences used were: the Hamming windowing function and an 

optimum parabolic taper [121,122]. At each order, the recursive Hamming window function 

is defined to be: 

W[k] = 0.54 - 0.46 cos (N—p 
2k + 	

fork =0, 1, ... , N - 1 - 	(5.45) 
N—p 

The optimum parabolic taper is defined to be: 

6(k+ 1)(N—j - k+ 1) 
fork=0,1, ... ,N— 1 -. 	(5.46) 

W[k] = (N—+1)(N—+2)(N—k+3) 
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These weighting sequences are particularly effective in reducing the occurrence of spectral line 

splitting, spurious peaks and frequency bias. In particular, the quadratic optimum parabolic 

taper was derived to minimise the frequency averaged variance of the estimated frequency of 

a real sinusoid over all possible phases. The net result is that both spectral line splitting and 

frequency bias are alleviated without any degradation in spectral resolution while maintaining 

stability [122]. 

Of all the least-squares linear prediction-based spectral estimation techniques, the Burg 

algorithm and the MCV method produce estimates with the least PSD variance. Moreover, 

as the MCV method is based on unconstrained forward-backward linear prediction, it results 

in superior performance over all other linear-predictive methods. The net result is an absence 

of spectral line splitting and less bias and variance in the frequency estimates of spectral 

components. Furthermore, the MCV method is almost as computationally efficient as the Burg 

algorithm with a complexity proportional to the order squared [123, 124]. 

5.2.4 Prony's Method 

Prony's method is an ARMA parametric modelling technique based on a linear deterministic 

model, which synthesises sampled data as a linear combination of exponentials [78, 103, 125, 

126]. The primary motivation for investigating the Prony model is that the modem least-squares 
zD 

version of Prony's method generalises to a damped sinusoidal model. The transient-oscillatory 

nature of heart sounds suggests that the utility of such a model would be more appropriate than 

the ARMA-based methods, providing a more accurate synthesis. Prony's method seeks to fit a 

deterministic exponential model to the data, in contrast to AR and ARMA methods which seek 

to fit a random model to the second-order statistics [106]. The Prony model is defined to be: 

A[k] exp [(a[k] +j2f[k])(n - 1)T + j6[k]] 	 (5.47) 

for 0 < n < N - 1, where N is the number of data samples, T, is the sampling interval in 

seconds, A [k], is the amplitude of the exponential, a [k], is the damping factor in second-', f [k], 

is the sinusoidal frequency in Hz, 6[k], is the sinusoidal initial phase in radians and j' is the 

number of complex exponentials (model order). This p-exponent discrete-time function can be 

expressed in the form: 

[n] = 	h[k]z[k] 	 (5.48) 
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where the complex constants h[k] and z[k]  are defined to be: 

h[k] =A[k]exp(j6[k]) 	 (5.49) 

Z[k] = exp[(a[k] +j2rf[k])7] 	 (5.50) 

The constant h[k] is time independent while z[k]  is a time-dependent parameter. 

When analysing heart sounds, the squared modelling approximation error between the 

synthesised heart sound output and the actual sound, 4 , computed over the N data samples is 

defined to be: 

(5.51) 

where 

€ = x[n] - [n] = x[n] - 	h[k]z[kr 	 (5.52) 

with respect to the parameters h[k] and z[k]  and the number of exponents j,. However, simultan-

eous evaluation of the order P and the parameters h[k] and z[k] for k = I to k = that minimises 

the total, squared modelling approximation error is a highly nonlinear operation, requiring 

the implementation of very computationally expensive algorithms [78]. Consequently, the 

complexity of these algorithms led to the development of a suboptimum minimisation of 

based on a least-squares analysis. The least-squares version of Prony's method, also known as 

the 'Extended Prony Method', utilises a set of linear equations, with an intermediate step that 

concentrates the nonlinear aspects of the exponential model into one of polynomial factoring. 

5.2.4.1 Evaluation of Prony Model Parameters 

When analysing bioprosthetic heart valve closing sounds, the number of data samples N ex-

ceeds the minimum number needed to fit a model of P exponentials, i.e. N > 2. For this 

overdetermined case, the fr equations of (5.48) for 1 < n < N can be expressed in matrix form 

as: 

Zh=x 	 (5.53) 



	

Chapter 5: Methods for the Frequency Analysis of Heart Sounds 	 68 

where: 

h[1] 	 x[1] 

Z= Z[fl zhj21 	 h= h[2] x= 
'H 	

(5.54) 

Z[I]N-1 z[2]'' 	z[]'' 	 h[p] 	x[N] 

from which the time-indexed z elements are first evaluated followed by the solution of the 

linear simultaneous equations for the unknown vector of complex amplitudes. The subsequent 

parameters of each exponential, i.e. the cz[k], f[k], A[k] and O[k]  terms, can then be computed 

from h[k] and z[k]. Equation (5.48) represents the solution of a homogeneous linear difference 

equation which can be evaluated from a polynomial, Ø[z], that has the z[k] exponents as its 

roots, defined to be: 

	

[z] = ff(z - z[k]) 	 (5.55) 

with complex coefficients, a[m], when expanded into a power series becomes: 

ON = 	a[in]z'' 	 (5.56) 
111 =0 

where a[O] = 1. For heart sounds, i.e. N > 2fr, the homogeneous linear difference equation 

whose solution is (5.48) is defined to be: 

[n] = - 	a[n]x[n - nil + et [n] 	 (5.57) 
In = 

for P + 1 < n < N. This is the equation for the forward linear prediction estimate 4n] of 

x[n] previously defined in section 5.2.3, where the term e1  [n] represents the forward linear 

prediction approximation error, i.e. the difference between x[n] and its linear prediction based 

on P past data samples. This in contrast to c, which represents the Prony exponential modelling 

approximation error. Hence, each polynomial complex coefficient a[m] is equivalent to a linear 

prediction parameter. The polynomial coefficients can now be evaluated as those that minimise 

the forward linear prediction squared error,II T J  I et [n]1', previously defined by equation (5.38) 

rather than the squared, exponential modelling approximation error 4 . This minimisation is 

equivalent to the covariance method of linear prediction as detailed in section 5.2.3.1. Thus, the 

extended Prony parameter estimation procedure reduces to that of an AR parameter estimation. 

Moreover, the number of exponentials Ab (number of poles in AR analysis) can be quantitatively 
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calculated from the heart sound time series using AR model order selection criteria to be 

presented in section 5.2.5. However, in terms of PSD estimation, the transient-oscillatory 

morphology of the heart sound signal suggests that the damped sinusoidal Prony model will 

result in a more accurate synthesis and overall better spectral estimate than the AR covariance 

method. The evaluation of the Prony parameters from a heart sound time series can be 

summarised as follows: 

Estimate the order Ph,  of the principal heart sound time series. 

The linear prediction parameters are first computed from the heart sound time series, 

which are equivalent to the complex polynomial coefficients a[m] defined in (5.56) 

The linear prediction coefficients a[m] are used to construct the polynomial defined 

in (5.56) from which the roots are calculated. The damping a[m] and sinusoidal fre-

quency f[m] terms of each exponential can be determined from each root z[in] using the 

relationships: 

a[m] = In Iz[m] I IT 	 (5.58) 

f[m] = tan' [{z[in]}/R{z[in]}I /2irT 	 (5.59) 

The computed roots are used to construct the matrix of z[k] elements of (5.54), which 

is then solved for the unknown vector h. This matrix of time-indexed z elements has a 

Vandermonde structure, i.e. (zij  = zr'). The amplitude A [m] and initial phase 0 [m] terms 

of each exponential can be determined from the h[k] parameter using the relationships: 

	

A[m] = Ih["n 	 (5.60) 

O[m] = tan [{h[in]}/R{h[in]}] 	 (5.61) 

The resulting Prony ESD estimate, Sp{f], is derived on the assumption that the discrete-time 

exponential sum of (5.48) is defined over the interval —cc <n <cc as a one-sided function: 

t 

1' h[k]z[k] 	0 
4n] 

	

	 (5.62) 
I 

= 

0 	n<0 

The z-transform of (5.62) is: 	
h[k] 	

) 	
(5.63) k{z] 

=(1_z[k]z-' 
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and substitution of z = exp (j27rf T) yields the discrete-time Fourier transform of the determin-

istic finite-energy sequence: 

2 

k=1 	
exp[(a[k] +j2f[k])flexp(_j2ffl) 	

(5.64) r[f] = 	
A[k] exp(jO[k]) 

T 	
1 -  

defined over the frequency range - 112T <f < 1/2T. This spectrum is particularly appropriate 

for transient heart sounds, with peaks that are linearly proportional to spectral power. 

5.2.5 Model Order Selection 

When analysing the spectral content of bioprosthetic heart valve closing sounds, correct in-

terpretation of the sound spectrum is paramount before associating spectra with physiological 

and pathological functionality. This is particularly significant when analysing heart sounds 

using parametric spectral estimation techniques, as the precise model order of the principal 

component time series is not known a priori and variations in spectra can occur with different 

orders. Therefore accurate model order determination is essential. 

As a result of the variability in the structure and duration of heart sounds across the patient 

population, the use was rejected of a single universal order for all sounds and universal orders for 

each principal component. An individual analysis of each sound will account for this variability 

and produce more accurate and reliable results. The model order, i.e. the number of poles 

b and zeros 4, is a very important parameter when using parametric techniques to assess the 

spectral characteristics of valvular closing sounds. Ideally, it is desirable to have the minimum 

values for P and 4 that are adequate to represent the process: to reduce computation and to 

minimise the possibility of numerical ill-conditioning which increases with as the prediction 

error variance Jth  decreases. However, too low an order will result in a highly-smoothed 

spectrum with low frequency resolution, containing little or no information of diagnostic value 

concerning the integrity of prostheses. This is due to there being too few pole-zero coefficients 

to sufficiently model the sound spectrum. Moreover, it is required to have large enough values 

of P and 4 to adequately model the process, with the fit of the model improving as P and 4 

increase. However, too high an order introduces spurious detail such as false peaks which are 

not actually present into the spectrum and can also lead to the modelling of background noise. 

This is a result of extra 'noise' poles situated close to the unit-circle [106,108,113]. 
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5.2.5.1 AR Hypothesis-Based Model Order Selection 

For the least-squares, linear predictive AR estimation techniques, examination of the com-

puted prediction error variance can provide an indication of the optimal model order. The 

prediction error (residual) variance j/b  decreases monotonically with increasing order P. The 

Burg algorithm, covariance and modified covariance methods all involve a relationship for the 

mean/least squared error defined to be: 

lb = ji( 1 - tI 2 	 (5.65) 

As the reflection coefficient Ic1, is nonzero and less than or equal to one, the prediction error 

variance decreases with increasing order P, and being a squared error, always remains positive: 

where 0 < 	< 	If the signal spectrum is an all-pole spectrum with p poles, then 

theoretically the prediction error variance Jth remains flat for f 	p. Therefore examination 

of the error curve reveals that the optimal order for the model is the order at which the curve 

becomes flat. However, if the signal is the output of a p-pole filter excited by white noise, then 

this test will not work, as the estimates of the poles are based on a finite number of samples with 

the error curve not being fiat fork > p. In practice; however, the error curve will be almost flat. 

For valvular closing sounds (quasi-periodic transients with background noise, i.e. a non-AR 

process), an indication of the optimal order for the model is obtained by directly monitoring the 

monotonically decreasing prediction error variance. The order at which the rate of change in 

error variance suddenly decreases or the order when the rate of change becomes relatively slow 

is taken to be the optimal order [127]. This method of determining the optimal model order is 

sometimes also referred to as the Levinson-Durbin method of model order selection [128]. 

In this thesis, the optimal number of poles and zeros was evaluated by computing the 

normalised root-mean-square error (NRMSE) between the closing sounds x[n] and the impulse 

response h[n] of the parametric models for different values of P and 4, where the NRMSE for 

the MCV method is defined to be: 

NRMSE = (5.66) 

x[n]2  

11=0 
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5.2.5.2 AR Multiple Decision-Based Model Order Selection Criteria 

The monitoring of the monotonically decreasing prediction error variance or NRMSE is based on 

hypothesis testing methods using maximum likelihood ratios, rather than on some quantitative 

procedure where multiple decisions are used. This has been the major reason for the criticism of 

the use of such techniques [129,130] and the development of alternative less subjective methods, 

where model fitting is regarded as an estimation problem with an associated measure of fit. 

These alternative methods adhere to the philosophy of monitoring the decreasing prediction 

error variance while accounting for the increase in variance of a spectral estimate based on 

an increasing number of parameters. The prediction error variance is central to model order 

selection, because, from the Levinson-Durbin recursion gf 6  decreases monotonically with 

and first reaches a minimum fork = p for an AR[p] process. 

The criteria presented in this section can be used to determine the optimal order and are 

known to work well for computer-generated synthetic AR data. The performance of these 

methods when applied to physiological phenomena such as heart sound signals depends on how 

well the valvular closing sounds can be synthesised by the parametric modelling techniques. 

For each method, the range of AR model orders to be considered is first selected. For each 

value of p, the AR parameters are estimated under the assumption that p is the correct order. 

The prediction error variance is also obtained, from which, the selection criterion for the model 

is computed. The value of p yielding the lowest value of the selection criterion is chosen as the 

best estimate of the true model order. 

5.2.5.2.1 Final Prediction Error 

This criterion selects the order of an AR process so that the mean square error variance for a 

one-step predictor is minimised [131, 132]. The Final Prediction Error (FPE) for an AR process 

is defined to be: 

E] 	f/h N++1) 	 (5.67) 
' N—(b+1) 

where (5.67) assumes that the mean has been removed from the data. The term in parentheses 

increases as the order increases, reflecting the increase in the uncertainty of the prediction error 

variance. The order P selected is the one for which the FPE is a minimum. 

5.2.5.2.2 Akaike Information Criterion 

Akaike [129] extended the FPE method by using a maximum likelihood approach to derive a 

criterion known as the Akaike Information Criterion (AIC). The AIC determines the optimal 
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order by minimising an information theoretic function: 

AIC[] = —2 In (inaxirnised likelihood) -4- 2Ab 

where is the number of independent parameters within the model which are adjusted to attain 

the maximum of the likelihood. The AIC for an AR process is defined to be: 

AIC[] = N 1n(") + 2j' 	 (5.68) 

where the term 2P represents the penalty for the use of extra AR coefficients that do not result 

in a substantial reduction in the prediction error variance [106, 133]. 

5.2.5.2.3 Minimum Description Length 

The FPE and AIC have been found to be statistically inconsistent in that the probability of error 

in choosing the correct order does not tend to zero as N 	[106, 134]. This limitation of 

the FPE and AIC criteria prompted Rissanen [135] to develop a variant information theoretic 

criterion to the AIC known as the Minimum Description Length (MDL), which is defined to 

be: 

MDL[] = NIn(ith) +iln(N) 	 (5.69) 

The MDL is statistically consistent because b In(N) increases with N faster than with P [106, 

135]. 

5.2.5.2.4 Criterion Autoregressive Transfer 

The Criterion Autoregressive Transfer (CAT) function selects the order P to be the one in which 

the estimate of the difference between mean square errors of the true prediction error filter and 

the estimated filter is a minimum [136]. This difference can be calculated without explicitly 

knowing the true prediction error filter. It is defined to be: 

1 	1 
CATL'] = 
	

77h) - 	 (5.70) 

lb 	 - 
where 	= [NI(N - k)]k 

f/b . As before, p  is chosen to minimise CAT[p]. 

5.2.5.3 Linear-Algebra-Based Model Order Selection 

Information regarding the precise model order which should be used when analysing biopros-

thetic heart valve closing sounds is implicitly contained within the autocorrelation and data 
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matrices which characterise linear-algebra-based spectral estimation techniques. This inform-

ation may be obtained by first removing the numerical ill-conditioning inherent with the use 

of such techniques, e.g. the statistical errors associated with the autocorrelation estimation 

procedure and/or the ill-conditioning of data matrices as a result of background noise. 

5.2.5.3.1 ARMA Modelling 

When the ARMA modelling parameters P and 4 are not known a priori, it is usual to select 

the initial order of the model, [pa, q], to be much larger that the eventual order of the prin-

cipal component time series Ph,. The L x (Pe + 1) overdetermined extended-order matrix of 

autocorrelation estimates, Re(), associated with this ARIVIA[pe, qj model is defined to be: 

xx['e] 	1xx[ 2je - 11 ... 	 - Pe + II 

'Je±fl 	xx[''e1 ... hit&jefre+2] 
Re(,)

x[ 
= 	 . 	 . 	

(5.71) 

- 11 	[L - 21 ... ~.JL - e] 

When actual autocorrelation lag information is available for PSD estimation, the rank of 

this overdetermined, extended-order autocorrelation matrix Re() equals the true order [108]. 

However, in this study, samples of acquired heart sounds, i.e. a time series with order p,, 

are used to form the autocorrelation estimate matrix Re( ). The rank of Re() will typically 

be full for all values of P due to the invariable statistical errors inherent in the estimation of 

the autocorrelation function. Even though 	will have full rank, it will generally be found 

that when ' > Ph,, this matrix will have (3 - p,) of its eigenvalues close to zero, i.e. the 

'effective' rank of 	is still equal to Ph,- Therefore an order selection procedure which 

examines the eigenvalue behaviour of the autocorrelation estimate matrix Re() as a function of 

can be used to determine the optimal model order [90, 1371. A method for implementing this 

procedure based on the Singular Value Decomposition (SVD) operation is used to determine the 

precise order. SVD removes the statistical errors from the autocorrelation estimation procedure 

thereby eliminating the inherent numerical ill-conditioning and producing a rank Ph, optimum 

approximation,of the L x (p + 1) overdetermined, extended-order, autocorrelation 

estimate matrixft& The matrix 	is a better estimate of the true autocorrelation matrix 

than R, and is defined to be: 

(5.72) 
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where U and V are unitary matrices associated with the SVD operation and E is a diagonal 

matrix of ordered singular values such that: a11 ~! 22 	~! 0. These singular 

values convey valuable information concerning the rank characterisation of Re(). The quality 

of this optimum approximation based on the standard matrix Frobenius norm, H 112, is given 

by: 
1/2 

0 	Pe 	 (5.73) 
k=pj+1 

The degree to which R approximates 	is dependent on the sum of the (p. - Phs) smallest 

singular values. As Ph, approaches Pe, this sum will become progressively smaller and will 

eventually go to zero at Ph, = p. A convenient measure for this behaviour based on the standard 

matrix norm, I I 
. J, is the normalised ratio: 

, 	1/2 

	

ii 	 r 2 

	

e(xx) II 	- 	 a11 + a2 + ... + 2  
V(ph) = 	 - 	 1 Ph, Pe 	(5.74) 

L + a + ... + 	] 
where 1 < ph, 	Pe' with the actual order p,, being the smallest value of j for which V(Phv ) 

is considered adequately close to one. For matrices of low effective rank, as in this thesis, the 

quantity v(p,,ç) will be close to one for values of p,, significantly smaller than Pe As R 	is 

a less noisy version of Re(x), the resulting estimate PSD will be better than that obtained from 

the direct solution of the extended Yule-Walker equations. 

Therefore upon adopting an extended-order approach, the resultant parameter estimates 

will generally be found to be less sensitive to the errors contained in the autocorrelation lag 

estimates than for the minimal order choice of P. This leads to a significant improvement in 

overall modelling performance: particularly suited for the generation of low-order, high-quality 

spectral estimates from short-time heart sound data records. Furthermore, the PSD estimate 

which is generated using this extended-order procedure will typically have much more sharply 

defined peaks at the P frequencies and better resolution than those obtained from the minimal 

order choice of  [138]. 

Hence as well as alleviating the numerical ill-conditioning of the autocorrelation estimate 

matrix, the relative magnitudes of the heart sound signal-related singular values are larger and 

dominate those related to noise [90]. This allows for the identification of the number of heart 

sound signal-related values (signal modes), i.e. the optimal model order Ph,, in relation to the 

remaining (e - Ph,) relatively insignificant-sized nonzero values. 
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5.2.5.3.2 AR Modelling 

With AR modelling, information regarding the precise order which should be used can be ex-

tracted from the data matrix used by the linear prediction-based methods. The linear prediction 

equations in matrix form can be written as A c 	b, where, A, is the data matrix, b, the 

data vector and, c, the linear prediction coefficient vector. The minimum norm solution can 

be expressed in terms of the pseudoinverse, A', of the data matrix A, where c = Alb. This 

pseudoinverse matrix A' is related to the SVD of A by A' = VEIU*, where V is obtained 

from E by replacing each positive entry by its reciprocal. With an ideal (noiseless) heart valve 

closing sound, the solution is good: the rank of the data matrix A is P/s  with only pk, nonzero 

elements in the diagonal matrices E and V. In practice; however, background noise changes 

the situation, with the data matrix A taking on its full rank. The matrix E then has some 

(or likely all) of its formerly zero singular values becoming small nonzero values. The small 

diagonal values of E introduced by background noise, become large diagonal values in >2' 

causing large perturbations in the prediction coefficient vector. The main perturbation effects 

of a small amount of noise are due to the increase in rank of A over its rank in the noiseless 

case and the associated large perturbations in the directions of the rest of the columns of U 

and V. This ill-conditioning of the data matrix A when analysing heart valve closing sounds 

can be alleviated by using SVD and replacing A with a lower rank optimum approximation, 

prior to calculating the prediction coefficients. The relative magnitudes of the heart sound 

signal-related singular values are larger and dominate those related to background noise and 

examination of these values permits identification Of Ph, - the optimal model order [139]. 

5.2.5.3.3 Prony's Method 

The least squares version of Prony's method requires the solution of the covariance linear 

prediction normal equations used in AR spectral analysis. With low levels of noise, the AR 

decision-based criteria, i.e. FPE, AIC, MDL and CAT may be used to estimate the number of 

exponentials P (number of poles in AR analysis). With higher levels of noise, the frequency 

and damping component estimates are usually inaccurate and biased due to the effects of noise. 

Distinguishing the roots of the Prony characteristic polynomial, i.e. the roots due to weak signal 

exponentials from those as a result of noise, is often difficult. With Prony's method, if too high 

an order is selected, extraneous poles are generated which cause the residues of the true signal 

poles to be inaccurate. Too low an order results in the returned poles deviating from the true 

signal poles [140, 141]. 

As discussed in section 5.2.4.1, the P exponentials are generated by forward linear predic- 
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tion. The same P exponentials may also be generated by backward linear prediction. Examining 

the roots of the forward and backward linear prediction filter polynomials can determine which 

order to use. The roots of the forward linear prediction characteristic polynomial, A[z], fall 

inside the unit z-plane circle, whereas the roots of the backward linear prediction characteristic 

polynomial, B[z], fall outside the unit-circle. With an ideal (noiseless) heart valve closing sound 

consisting of Ph,  exponentials, p,,, zeros would be identified. In practice, however, background 

noise biases the estimates of the zeros. This bias can be reduced significantly by selecting a 

linear prediction order much larger than p,. The Ph,  true signal zeros of B[z] will fall outside 

the unit circle whereas the (p - Ph,) extraneous zeros fall inside the unit-circle. This allows for 

the identification of the number of p,,, heart sound signal zeros (optimal model order) from the 

(p - p) extraneous zeros of B[z] and is the primary reason for using the data backward linear 

prediction. Applying SVD to the data matrix can provide further improvement as it alleviates 

the ill-conditioning caused by selecting an order greater than p.  The p, eigenvectors associ-

ated with the Ph,  largest singular values primarily span the p,., exponential heart sound signal 

components. The (p - p) eigenvectors of the remaining smaller singular values span the com-

ponents of the background noise. The result of applying SVD is that extraneous zeros are much 

less perturbed and form a uniform pattern around the inside of the unit circle [106, 142, 143]. 

This allows for the identification of the number of zeros due to the signal exponentials, i.e. the 

optimal model order Ph,- 

5.3 Summary and Conclusion 

This chapter investigates signal processing methods for the transformation of mitral and aor-

tic components to the frequency domain. Particular attention is paid to the physiological 

transient-oscillatory nature of the heart sound signal and the suitability of the spectral estim-

ation techniques when analysing such a temporal signature. The methods considered were: 

the periodogram, including a description describing its limitations; the Bartlett power spectral 

density estimate, which reduces the variance of a conventional periodogram estimate through 

ensemble averaging; ARMA-based, parametric linear modelling techniques, which attempt to 

synthesise the heart sound generation process; and Prony's method: a parametric modelling 

technique based on a damped sinusoidal model. 

The chapter concludes by addressing the important issue of selecting and determining the 

optimal model order when using parametric spectral estimation techniques. When analysing 

the spectral content of bioprosthetic heart valve closing sounds, correct interpretation of the 
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sound spectrum is paramount before associating spectra with physiological and pathological 

functionality. This is particularly significant when analysing heart sounds using parametric 

spectral estimation techniques, as the precise model order of the principal component time 

series is not known a priori and variations in spectra can occur with different orders. Too low 

an order produces a highly-smoothed spectrum containing little or no information of diagnostic 

value, whereas, too high an order, can introduce spurious detail and false peaks which are 

not actually present into the sound spectrum. The model order selection criteria considered 

were: hypothesis-based methods, which monitor the monotonically decreasing prediction error 

variance for a decrease in the rate of change; and more quantitative techniques based on the 

FPE, the AIC, the MDL and the CAT decision-based methods, and procedures which attempt to 

determine the optimum order from the heart sound time series by first removing the numerical 

ill-conditioning inherent with the use of linear-algebra-based spectral estimation techniques. 



Chapter 6 

Heart Sound Spectral Analysis 

This chapter investigates the application of the methods for the frequency analysis of heart 

sounds to the full range of recorded mitral and aortic sounds: the periodogram, the Bartlett 

periodogram, AR and ARMA-based techniques and Prony's method. The aim is to compare 

the performance and suitability of these spectral estimation techniques in extracting from the 

frequency domain features which may be considered suitable for use as heuristic parameters. 

Results are also presented which assess the performance of model order selection criteria in 

determining the optimal model order when analysing principal heart sound component time 

series using parametric spectral analysis techniques. The overall objective is to identify optimum 

signal processing methods for this thesis. 

6.1 	Evaluation and Presentation of Frequency Spectra 

Following the extraction of mitral or aortic components from a PCG, a PSD estimate was 

evaluated from each component. To minimise the variance between the resulting estimates, an 

ensemble spectral average was computed to represent the overall frequency spectrum for each 

recording. The resultant ensemble estimate was normalised (0dB) with respect to the frequency 

peak with the most dominant amplitude over all frequencies. This allows for a qualitative 

comparison of the spectra evaluated from the full range of recorded sounds, regardless of 

microphone coupling and the variability in the intensity of heart sounds resulting from different 

amplification gain factors from one recording to the next. All spectra were estimated from d.c. 

to 1kHz (Nyquist rate = 2kHz). 

IM 
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6.2 Performance of Methods for the Frequency Analysis of Heart 

Sounds: Results 

Based on the investigation comparing the performance and suitability of the methods for the 

frequency analysis of heart sounds, the periodogram, the Bartlett periodogram, the AR and 

ARMA-based techniques and Prony's method were applied to the full range of recorded sounds. 

The major observations concerning the application and performance of these methods to mitral 

and aortic sounds were: 

The superior resolution of Prony's method in identifying within the frequency domain 

a number of dominant spectral peaks over the full range of recorded sounds and valve 

conditions. 

The covariance, MCV, Burg and weighted Burg (parabolic optimum taper and Hamming 

window) methods all produce almost identical spectra. The resulting estimates are able 

to identify the same features revealed by the Prony PSD estimate, however, the ability of 

these AR methods to completely resolve the same spectral detail is secondary to Prony's 

method. 

For some sounds, a difference was observed between the spectra produced by the covari-

ance method when compared to the estimates evaluated by the other AR techniques. 

The application of the periodogram (with and without a Hamming window) produces 

smoothed spectra relative to the AR and Prony estimates. 

The Bartlett periodogram produces very highly smoothed spectra, containing little or 

no information in the frequency spectrum which may be considered suitable for use as 

heuristic parameters. 

Figures 6.1 and 6.2 illustrate these findings for typical mitral and aortic sounds respectively. 

These spectra were evaluated using Prony's method, the MCV method and the periodogram 

with the implicit rectangular window. 
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Figure 6.1: Typical examples of Prony, MCV and periodo gram ensemble PSD estimates re-
spectively computed from mitral sounds. (a-c) source: mb3, (d-f) source: dg4, (g-i) source: 
tm5, (f-I) source: pw6, (m-o) source: jh2, (p-r) source: is6. 
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Figure 6.2: Typical examples of Prony, MCV and periodo gram ensemble PSD estimates re-
spectively computed from aortic sounds. (a-c) source. em4, (d-f,) source: an4, (g-i) source: 
Cb4r (j-l) source: jm3, (iii-o) source: Fflh4r (p-r) source: sh3. 
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For most sounds, the AR covariance, MCV, Burg and weighted Burg methods all produce 

almost identical spectra. However, for some sounds, a difference was observed between the 

spectra produced by the covariance method when compared to the estimates evaluated by the 

other AR techniques. Figure 6.3 illustrates typical examples of PSD estimates computed using 

the covariance method, with corresponding MCV estimates shown in Figures 6.1 and 6.2. The 

frequency spectrum of Figure 6.3(a) reveals that the most dominant spectral peak originally 

identified by the spectra of Figure 6.1(k) is now the second most dominant peak. Similarly, 

the spectrum of Figure 6.3(d) reveals that the fourth dominant frequency peak identified by the 

spectra of Figure 6.2(b) is only just detected by the equivalent covariance estimate; however, 

the second most dominant spectral peak is better resolved as well as having a larger amplitude. 

In addition, a spurious peak is located at an amplitude of -28.86dB at 948Hz. Previous 

works [78, 106,144-146] report on the limitations of the forward only prediction approach to 

AR spectral estimation when applied to processes consisting of sinusoids in white noise. It 

was observed that the AR parameters produced by the covariance method exhibit a greater 

sensitivity to noise and that the resulting PSD estimates can have more false peaks and greater 

perturbations of spectral peaks from their correct frequency location than other AR estimation 

approaches. Furthermore, spectral line splitting has been observed with the use of the covariance 

method [106, 147]. 
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Figure 6.3: Typical examples of ensemble spectra computed using the covariance method. (a-c) 

PSD estimates of mitral sounds; sources: pw6, is6 and dg4 respectively, (d-f) PSD estimates of 

aortic sounds; sources: eni4, jmn3 and eb4 respectively. 

The Burg algorithm and the weighted Burg methods produced almost identical spectra 

over the full range of recorded sounds and any differences between the resulting estimates are 
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negligible as illustrated in Figure 6.4. Corresponding MCV and covariance PSD estimates 

are shown in Figures 6.1, 6.2 and 6.3 respectively. When applied to processes consisting of 

sinusoids in white noise, the presence of spectral line splitting has been attributed to: high 

SNR, that the initial phase of the sinusoidal components is some odd multiple of 45 or that the 

time duration of the data sequence is such that sinusoidal components have an odd number of 

quarter cycles [119, 120, 147]. In this thesis, spectral line splitting was not observed over the 

full range of recorded sounds. 

The periodogram produces smoothed spectra relative to the AR and Prony estimates as 

illustrated in Figures 6.1 and 6.2. The duration of mitral and aortic components typically 

varies in the range from 20 to 8OmS. The corresponding periodogram resolution ranges from 

approximately 80 MS 
 = 12.5Hz to 20 nis = 50Hz. Figure 6.5 illustrates that the application of the 

periodogram with a Hamming window results in almost identical spectra to those evaluated 

using the implicit rectangular window as shown in Figures 6.1 and 6.2. 

The spectra evaluated by the periodogram are similar in detail to those computed by the 

parametric methods; however, the resultant periodogram estimates are more erratic. The 

smoother, higher-resolution estimates computed by the parametric techniques result from the 

modelling of the mitral and aortic components, i.e. the parametric methods adapt to the 

characteristics of the signal and noise under investigation [97, 148]. A periodogram estimate 

may be viewed as a least-squares fit of a preassigned number of harmonically related sinusoidal 

frequencies to the data [78]. In addition, as the record length increases, the rapidity of the 

fluctuations in the periodogram estimate increases, as the variance of the periodogram becomes 

proportional to the square of the spectrum [104, 106]. The estimate then fluctuates about the 

true frequency spectrum. 

The Bartlett method reduces the variance of the periodogram estimate through averaging. 

However, as illustrated in Figure 6.6, the Bartlett periodogram produces very highly smoothed 

spectral estimates, containing little or no information which may be considered suitable for use 

as heuristic parameters. Each sound was divided into sixteen nonoverlapping segments and then 

augmented to 1024 points by zero padding. A periodogram was evaluated for each segment 

and the resulting sixteen estimates were averaged to compute the Bartlett PSD estimate. This 

procedure was repeated for each sound extracted from a PCG, with a final ensemble average 

calculated for each recording. Figures 6.6(c and f) illustrate Bartlett PSD estimates for mitral 

and aortic sounds evaluated using four and eight nonoverlapping segments respectively. These 

estimates are still highly smoothed, with the increase in erratic behaviour corresponding to an 

increase in the variance of the estimate clearly apparent in Figure 6.6(c). 
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Figure 6.4: Examples of ensemble spectra computed using the Burg algorithm, the Burg 
algorithm with a Hamming window and the Burg algorithm with an optimum parabolic taper 
respectively. (a-i) PSD estimates of mitral sounds; sources: pw6, isó and dg4 respectively, (j-r) 
PSD estimates of aortic sounds; sources: em4, jm3 and eb4 respectively. 
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Figure 6.5: Examples of ensemble spectra computed using the periodogram with a Hamming 
window. (a-c) PSD estimates of mitral sounds; sources: mb3, dg4 and tm5 respectively, (d-D 
PSD estimates of aortic sounds, sources: em4, mh4 and jm3 respectively. 

Figures 6.1(k), 6.2(h), 6.2(n) and 6.4(p) illustrate examples of AR spectral estimates which 

contain spurious peaks as a result of selecting too high a model order relative to the number of 

data points. The orders chosen for these sounds were 36, 50, 28 and 50 for time series of 75, 

82, 61 and 82 samples respectively. When actual autocorrelation lag information is available, 

the AR parameters a[k] = 0 for fi > ph,. However, when analysing heart sounds, estimation 

errors cause a11 [k] 0 for f, > p. Consequently, there will be - Ph.v extra noise poles, and if 

located close to the unit circle, the result will be spurious peaks [146, 149,150]. 
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Figure 6.6: Examples of ensemble spectra computed using the Bartlett periodo grain. (a-c) 

PSD estimates of mitral sounds; sources: dg4, mb3 and pwó respectively, (d-f) PSD estimates 
of aortic sounds; sources: jm3, eb4 and em4 respectively. 
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When analysing sounds with low SNR (high levels of noise), the performance of the AR spectral 

estimation techniques can degrade significantly, resulting in low-resolution spectral estimates. 

This is due to the introduction of spectral zeros caused by noise, with the all-pole model 

assumed in AR spectral analysis no longer valid. The PSD estimate is now characterised by 

an ARMA[p/zc , hc] process [78,151-153]. The effects of noise can be minimised by selecting 

a higher model order, as the ARMA[ph , p,] is equivalent to an AR[oo] model as asserted by 

the Wold decomposition theorem. As the order increases, the resulting estimate approaches 

the true PSD. In practice, a model order as large as possible should be used; however, the 

introduction of spurious peaks into the frequency spectrum by selecting too high an order 

imposes a 'maximum' limit of no more than half the number of data samples [146]. 

6.3 Performance of Methods for Optimal Model Order Selection: 

Results 

From each PCG, the relevant closing sound was automatically extracted from within each 

cardiac cycle and a mean sound computed from this ensemble as described in section 4.5. 

This mean sound was used by the model order selection criteria to quantatively determine the 

optimal order for parametric spectral analysis. 

6.3.1 AR Hypothesis-Based Model Order Selection 

In general, it was observed that when monitoring the NRMSE for a decrease in the rate of change, 

the resulting model orders produce spectra with low-frequency resolution containing little or no 

information of diagnostic significance. Figure 6.7 illustrates typical plots of the monotonically 

decreasing NRMSE for mean mitral and aortic sounds and the resultant PSD estimates computed 

using the MCV method. Table 6.1 shows the orders selected when monitoring the NRMSE for 

all forty subjects. The mean NRMSE values computed for the mitral and aortic components 

are 14 and 8 respectively. 

6.3.2 AR Decision-Based Model Order Selection Criteria 

Likewise, in general, it was observed that the orders returned by the decision-based criteria 

produce low-frequency resolution spectral estimates. Figures 6.8 to 6.10 illustrate typical 

plots produced by the FPE. AIC, MDL and CAT criteria for mean mitral and aortic sounds 

and the resultant PSD estimates computed using the MCV method. Table 6.1 shows the orders 
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Figure 6.7: Typical plots of the NRMSE for mean mitral and aortic sounds and the resultant 

PSD estimate. (a) P = 15 for mean mitral sound (source: gc6.inean), (b) Spectrum of mean 

mitral sound when f' = 15, (source. gcó.mnean), (c) P = 9 for mean aortic sound (source: 

jg3 mean), (b) Spectrum of mean aortic sound when P = 9 (source: jg3.mean). 

selected by these criteria for all forty subjects. The mean values computed for mitral and aortic 

components by the FPE, AIC, MDL and CAT criteria are 16 and 11, 16 and 11, 6 and 4 and 16 

and 11 respectively. 

For a pure AR process, the FPE is found to work well in selecting the correct order [106, 

149, 154. However, when applied to biomedical signals such as an electroencephalogram 

(EEG), the FPE is found to return orders which do not adequately model the EEG time series 

under investigation: producing highly smoothed spectral estimates [155]. As with the FPE, it 

was observed that the order selected by the AIC is often too low to adequately model the heart 

sound time series under investigation, i.e. practical, real non-AR data. This is primarily due 

to the fact that the assumptions of uncorrelated noise excitation and a Gaussian distribution do 

not apply to a principal component time series. 
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Figure 6.8: Typical plots produced by the FPE and AIC model order selection criteria. (a) 
FPE = 1 7for a mean mitral sound (source: gc6.mean), (b) FPE = 12 for a mean aortic sound 
(source: jg3.mean), (c) AIC = 1 7for a mean mitral sound (source: gcó.mean), (d) AIC = 12 

for a mean aortic sound (source: jg3.mean). 
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Figure 6.9: Typical plots produced by the MDL and CAT model order selection criteria. (a) 
MDL = Ofor a mean mitral sound (source: gc6.mean), (b) MDL = 4for a mean aortic sound 
(source: jg3.mean), (c) CAT = 17 for a mean mitral sound (source: gco.mnean), (d) CAT = 12 

for a mean aortic sound (source: jg3.mean). 

Although the orders returned by the decision-based criteria are greater than or in the range 

suggested by theoretical values, i.e. to those expected from anatomical consideration of the 

mechanics and composition of heart sound generation, they are still too low to adequately 

model these sounds. The low orders returned produce spectra with low-frequency resolution 

containing little or no information of diagnostic value. This is as a result of the transient nature 
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Figure 6.10: Resultant spectra. (a) Spectrum of mean mitral sound when P = 17 (source: 

gc6.mean). (b) Spectrum of mean aortic sound when P = 12 (source: jg3.mean). (c) Spectrum 

of mean mitral sound when = 6 (source: gc6.mean) (d) Spectrum of mean aortic sound when 

= 4 (source.- jg3.mnean). 

of heart sounds, the presence of background noise and the fact that heart sounds do not satisfy 

the requirements of an AR model excited by white noise or a Gaussian distribution as required 

by some of these criteria. The orders selected by the FPE, AIC and CAT criteria are always 

identical and the orders selected by the MDL criterion, if not equal to those selected by the 

other methods, are always lower. The FPE, AIC and MDL are all asymptotically equivalent: 

AIC[b] - MDL[b] 
lim 	= urn 	= lim In FPE[] 

N—cc N N—.00 N 
(6.1) 

It was found that when empirically selecting orders, the optimum mean orders across the 

patient population for mitral and aortic components are 42 and 38 respectively. These values 

produced the best spectra, containing heuristic features, e.g. a number of distinct dominant 

frequency peaks as shown in Figure 6.11. The optimum empirical model order was selected 

on the basis that the resulting PSD estimate is consistent in detail with spectra evaluated using 

neighbouring values of order: consistent identification and localisation of features within the 

sound spectrum. Some of these features had not been identified by the spectra computed using 

the lower orders previously returned by the model order selection criteria. In addition, the 

resulting PSD estimate consistent in detail with an equivalent estimate evaluated using the fast 

Fourier transform. Table 6.1 shows the optimum empirical model orders chosen for all forty 

subjects. With some sounds, the orders selected by the decision-based criteria are often very 

close to and in some cases identical to or greater than that which is found to be most suitable 
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empirically. This inconsistency was observed throughout the patient population. In general, it 

was observed that mitral components require a higher order than aortic components, reflecting 

the more complex structure and longer duration of the mitral component relative to the aortic 

component. 

Patient No. NRMSE FPE AIC MDL CAT EMP(AR) ARMA AR Prony 

Mitral 
4 18 18 10 18 32 6 6 6 

2 13 12 12 7 12 36 6 6 6 

3 17 9 9 5 9 34 4 4 4 

4 9 16 16 4 16 44 4 4 4 

5 21 15 15 5 15 36 4 4 4 

6 12 11 11 6 11 40 4 4 4 

7 15 12 12 4 12 42 4 6 6 

8 10 30 30 7 30 38 4 4 4 

9 23 15 15 8 15 44 4 4 4 

10 15 14 14 5 14 40 4 4 4 

11 20 29 29 6 29 48 6 6 6 

12 21 23 23 5 23 36 6 6 6 

13 14 11 11 6 Ii 38 4 4 4 

14 12 17 17 6 17 52 6 6 6 

15 9 13 13 7 13 40 4 4 4 

16 10 13 13 7 13 48 6 6 6 

Mean 14 16 16 6 16 40 5 5 5 

7 4 4 4 4 42 4 4 2 

2 11 22 22 7 22 44 4 4 2 

3 8 17 17 4 17 40 6 4 4 

4 10 13 13 5 13 32 6 4 4 

5 7 2 2 2 2 38 4 4 4 

6 8 20 20 3 20 44 4 4 4 

7 9 19 19 3 19 42 6 6 6 

8 18 20 20 5 20 28 6 6 6 

9 7 11 11 2 11 36 6 6 6 

10 7 9 9 5 9 40 4 4 4 

II 14 12 12 4 12 42 6 6 6 

12 8 10 10 3 10 32 4 4 4 

13 8 12 12 5 12 38 6 6 6 

14 9 8 8 4 8 40 4 4 4 

15 7 10 10 3 10 42 4 4 4 

16 9 8 8 3 8 36 4 4 4 

17 8 13 13 4 13 30 6 6 6 

18 7 6 6 6 6 38 4 4 4 

19 10 8 8 4 8 44 4 4 4 

20 6 10 10 5 10 42 6 6 6 

21 7 13 13 6 13 36 4 4 4 

22 6 8 8 6 8 32 4 4 4 

23 5 10 10 8 10 40 4 4 4 

24 4 6 6 3 6 32 4 4 4 

Mean 8 11 11 4 11 38 5 5 5 

Table 6.1: Optimal model order selection. EMP = Best empirical order observed when using 
the MCV method. The ARMA and AR columns refer to the number of identified heart sound-
related dominant singular values. For all forty patients, v(p,), i.e. equation (5.76), returned a 

value of] for both methods, demonstrating the quality of the lower rank optimal approximation 
and the low effective rank of matrices when analysing hioprosthetic heart valve closing sounds. 
The column for Prony 's method refers to the number of identified heart sound signal-related 

zeros of the backward linear prediction polynomial. All mean values have been rounded to the 

nearest figure. 

Previous work by Foale et al. [39] uses the covariance method of AR/linear prediction 

analysis with an order of three or four to analyse the closing sounds produced by the operation 
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Figure 6.11: Typical plots of PSD estimates evaluated by the MCV method. (a) source: 

gc6.mean; P = 42, (b) source: jg3inean, b = 38. 

of aortic porcine xenografts. Although, theoretically an order of four may relate with that 

expected from consideration of the mechanics and composition of heart sound generation, from 

the results obtained in this study, an order of four initially appears too low to adequately model 

these sounds: firstly, the fact that an AR model is being used, and secondly, the numerical ill-

conditioning inherent with the use of linear-algebra-based spectral estimation techniques was 

not removed. Figure 6.12 shows typical plots of PSD estimates of mitral and aortic components 

produced by the operation of Carpentier-Edwards bioprostheses computed using the covariance 

method with an order of  = 4. The resultant PSD estimates are all highly smoothed, containing 

little or no information of possible diagnostic value. 
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Figure 6.12: Typical plots of ensemble PSD estimates evaluated by the covariance method 

using a model order of P = 4. (a) source: gc6.mean, (b) source: jg3.mean. 

Previous work by Cloutier et at. [43,46] uses the NIRMSE between mitral and aortic closing 

sounds and the impulse response of parametric models to calculate the optimal model order 

when analysing the acoustic output produced by the operation of bovine bioprostheses. Using 

the autocorrelation and covariance methods, they modelled both mitral and aortic closing sounds 

using 16 poles. 

6.3.3 Linear-Algebra-Based ARMA Model Order Selection 

It was observed that the ARIVIA method which uses the SVD operation to remove the statistical 

errors inherent with the estimation of an autocorrelation function from a heart sound time series, 

typically reveals four to six dominant singular values for mean mitral and aortic components. 
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Representative plots and examples of actual values obtained from mean mitral sounds are: 

all = 4670.84, a22 = 4477.52, a33 = 459.72, (T44 = 228.18, 

955 = 78.52, ats, = 32.28, cy = 14.9, an = 7.89, 	, a5555 = 0.013 

(source: gcO.mean) 

ail = 48519.78, a22 = 46907.31, 0~13 = 3502.03, a44 = 1580.54. a55 = 355.34. a66 = 

110.12, a77 = 61.03, ags = 36.73, 	 = 0.097 

(source: ic5.,nean) 

all = 16460.57, 022 = 8918.23, a13 = 451.37, a44 = 117.17, O5 = 20.11, 

966 = 6.28, ... , 	 = 0.053 

(source: jh4inean) 
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Figure 6.13: Corresponding plots showing the relative magnitude of allfiftv singular values. 

(a) gc6: mean, (b) ic5.mean, (c) jh4.m can. 

Representative plots and examples of actual values obtained from mean aortic sounds are: 

all = 260873.26. a:: = 102702.39, a33 = 5345.54, a44 = 717.43, 

G!55 = 12.97, 966 = 0.58, 	. 	,a5o5ii = 0.003 

(source: jgl.inean) 

all = 262688.06. a22 = 234993.34, a13 = 7284.22, a. = 2040.16, 

as: = 194.98, ass = 53.98. . 	 , 950,50 = 0.184 

(source: jp3.inean) 

all = 61953.55, a22 = 22241.42, au = 587.35, a44 = 87.51, 

a55 = 19.67, 0-66 = 3.96, ... ,a5 ,51 = 0.117 

(source: adl.rnean) 

The relative magnitudes of these values clearly show that the first four to six values are related 

to the heart sound signal and that the extraneous relatively insignificant-sized nonzero values 

are related to background noise. Examination of these values reveals the number of dominant 

singular values, i.e. the optimal model order for subsequent parametric spectral analysis. For 

all subjects, an initial overdetermined order was chosen of P. = q = 50 on the knowledge that 

this would be much larger than any eventual value of p10. This allows for easier discrimination 

between the heart sound signal-related singular values and the remaining superfluous values 

related to background noise. Table 6.1 shows the number of dominant values identified for all 

forty subjects using this method. 
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Figure 6.14: Corresponding plots showing the relative magnitude of all fifty singular values. 
(a) jgl .mean, (b) jp3.mean, (c) ad] .mean. 

6.3.4 Linear-Algebra-Based AR Model Order Selection 

Likewise, it was observed that the MCV method which uses SVD to eliminate the effects of 

noise from the heart sound time series, typically reveals four to six dominant values for mean 

mitral and aortic components. Representative plots and examples of actual values obtained 

from mean mitral sounds are: 

all  = 894.51, a22 = 368.42, oo = 43.29, cYst = 16.16, 

(755 = 9.81, cr66 = 5.02, 	a77 = 2.86, ass  = 2.47, 	, 	= 2.19 

(source: gc6.mean) 

all = 2873.51 922 = 971.96. (733 = 132.23, cr.t.t = 37.57, 

(755 = 15.68, (766 = 12.93, 	97 = 12.07, (T88  = 11.27, 	, 912 = 9.99 

(source: ic5. mean) 

Oit = 2653.26, (722 = 1097.17, O'33 = 249.41, a44  = 106.58, 

055 = 47.71, o-, = 25.95, 	U77 = 16.05, an = 13.89, . 	, U12.12 = 9.12 

(source: jh4.mean) 
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Figure 6.15: Corresponding plots showing the relative magnitude of all twelve singular values. 
(a) source: gc6.mean, (b) source: ic5.mnean, (c) source: jh4.mean. 

Representative plots and examples of actual values obtained from mean aortic sounds are: 

all = 5287.19, 922 = 515.85, (733 = 21.11, (744 = 0.68, 

955 = 0.02, (766 = 0.01, ... 	912.12 = 0.0001 

(source: jgl.mean) 

all = 5161.46, (722 = 1894.85, 933 = 116.61, a44  = 26.08, 

O'55 = 8.43, (766 = 3.95, 	'- ,(7t2,12 = 2.22 

(source: jp3.inean) 



Chapter 6: Heart Sound Spectral Analysis 
	 95 

OII = 3531.11, O22 = 1354.21, a-u = 220.09, c44  = 94.17, 

a55  = 36.57, CF66 = 16.17, 	, a12,12 = 8.38 

(source: adl.rnean) 
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Figure 6.16: Corresponding plots showing the relative magnitude of all twelve singular values. 

(a) source: jgl.mean, (b) source: jp3.inean, (c) source: adl.mean. 

The application of SVD reduces the noise contribution within the data matrix effectively 

enhancing the signal-to-noise ratio. Table 6.1 shows the number of dominant values identified 

for all forty patients using this method. 

6.3.5 Linear-Algebra-Based Prony Model Order Selection 

With Prony 's method, it was observed that examining the roots of the backward linear prediction 

polynomial typically reveals two to six signal zeros for mean mitral and aortic components, as 

illustrated by the unit-circle plots of Figures 6.17 and 6.18. After removing the effects of noise 

from the heart sound time series using the SVD operation, an initial overdetermined order was 

chosen of = 12 on the knowledge that this would be much larger than the eventual value of 

The extraneous zeros resulting from selecting a model order greater than the number of 

heart sound signal components are less perturbed and form a uniform pattern around the inside 

of the unit-circle as shown in Figures 6.17 and 6.18. Examination of the signal zeros reveals 

the optimal model order for subsequent analysis using Prony's method. Table 6.1 shows the 

number of heart sound signal zeros identified for all forty patients. 

In general, it was observed that after having removed the numerical ill-conditioning associ-

ated with the use of linear-algebra-based spectral estimation techniques, the Prony, ARIvIA and 

AR methods all report comparable model orders. These methods are able to identify the num-

ber of signal components within each sound accurately and consistently throughout the patient 

population and return model orders which relate closely to those expected from anatomical 

considerations of the mechanics of heart sound generation. 
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(a) (b) 

Figure 6.17: Typical examples of the zeros of the backward linear prediction polynomial 
evaluated from mean mitral components. The unit-radius circle of the z-plane is shown for 

reference. (a) gc6:mean, (b) ic5.mean, (c)jh4.mean. 

(b) 

Figure 6.18: Typical examples of the zeros of the backward linear prediction polynomial 
evaluated from mean aortic components. The unit-radius circle of the z-plane is shown for 

reference. (a) jgl .mean, (b) jp3 mean, (c) adi .mean. 

6.4 Summary and Conclusion 

This chapter investigates the application of the methods for the frequency analysis of heart 

sounds to the full range of recorded mitral and aortic sounds: the periodogram, the Bartlett 

periodogram, AR and ARMA-based techniques and Prony's method. The aim is to compare 

the performance and suitability of these spectral estimation techniques in extracting from the 

frequency domain features which may be considered suitable for use as heuristic parameters. 

The major observations concerning the performance of these methods were: 

The superior resolution of Prony's method in identifying within the frequency domain 

a number of dominant spectral peaks over the full range of recorded sounds and valve 

conditions. 

The covariance, MCV, Burg and weighted Burg (parabolic optimum taper and Hamming 

window) methods all produce almost identical spectra. The resulting estimates are able 

to identify the same features revealed by the Prony PSD estimate, however, the ability of 

these AR methods to completely resolve the same spectral detail is secondary to Prony's 

method. 
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For some sounds, a difference was observed between the spectra produced by the covari-

ance method when compared to the estimates evaluated by the other AR techniques. 

The application of the periodogram (with and without a Hamming window) produces 

smoothed spectra relative to the AR and Prony estimates. 

The Bartlett periodogram produces very highly smoothed spectra, containing little or 

no information in the frequency spectrum which may be considered suitable for use as 

heuristic parameters. 

The optimal model order is a very important parameter when analysing bioprosthetic heart 

valve closing sounds using parametric spectral estimation techniques, as variations in spectra 

can occur with different orders. Accurate model order determination is thus paramount before 

associating spectra with the physiological and pathological functionality of the Carpentier-

Edwards bioprostheses. It was observed that monitoring the NRMSE for a decrease in the 

rate of change, the FPE, the AIC, the MDL and the CAT decision-based model order selection 

criteria returned orders that were too low to adequately model heart sounds, producing spectra 

with low-frequency resolution containing little or no information. The mean values observed 

by these methods were: 14 and 8, 16 and 11, 16 and 11, 6 and 4 and 16 and 11 for mitral 

and aortic components respectively. Although these orders are greater than or in the range 

suggested by theoretical values, as a result of the transient nature of heart sounds, the presence 

of background noise, and the fact that heart valve closing sounds do not satisfy the requirements 

of an AR model excited by white noise or a Gaussian distribution, these values are still too low 

to adequately model the sounds. It was found empirically that mean optimum orders of 40 and 

38 for mitral and aortic components respectively produced the best spectra, containing features 

which may be considered for use as heuristic parameters. 

Consistent determination of the model order was achieved by first removing the numerical 

ill-conditioning inherent with the use of linear-algebra-based spectral estimation techniques. 

Examining the relative magnitudes of singular values or the roots of the backward linear 

prediction polynomial used in Prony's method, produced model orders that relate closely to 

those expected from consideration of the mechanics of heart sound generation. Four to six 

dominant singular values and two to six signal zeros are consistently identified throughout the 

patient population. 



Chapter 7 

Physiological Interpretation of the 

Frequency Spectrum 

Based on the heuristic parameters identified by the application of the frequency analysis tech-

niques to mitral and aortic components in chapter six, the aim of this chapter is to first select 

appropriate features from the sound spectrum and then to examine whether these features 

convey any information of diagnostic significance concerning the functionality of prostheses. 

If a unique relationship can be confirmed, whether the spectral parameters can be utilised to 

distinguish between normally functioning and dysfunctioning prostheses and ultimately predict 

impending valve failure. 

7.1 Diagnostic Feature Selection 

Features considered to be of physiological and pathological significance were extracted from 

the frequency spectrum with a view to investigating the discriminatory ability of these para-

meters to distinguish between normally functioning and dysfunctioning prostheses. During 

clinical auscultation, cardiologists use the sounds heard through the stethoscope to diagnose the 

functionality of bioprostheses. One of the key attributes used is the frequency content of these 

sounds: identification of low-frequency sounds using a bell attachment to a stethoscope and 

high-frequency sounds, snaps and murmurs using a rigid diaphragm. Therefore the frequency 

domain (sound spectrum) is an appropriate domain from which to extract diagnostic parameters. 
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The selection of features from the frequency spectrum of mitral and aortic sounds was based 

on previous work on the mathematical modelling of semi-lunar valve vibration [156-159], as 

well as a visual examination of spectra estimated over the full range of recorded sounds and 

valve conditions. The models of valve sound vibration show that the natural resonance modes of 

bioprosthetic heart valves increase with stiffening of the leaflets. Based on the results of chapter 

six, a visual examination of all the spectra within each of the three population groups revealed 

certain metrics that were consistently identified throughout the patient population. Therefore 

using the a priori knowledge concerning the natural resonance modes of bioprosthetic heart 

valves, as well as the visual examination of all spectra, certain features were extracted from 

the frequency spectrum which highlight the structure, composition and morphology of the 

sound spectrum. A complete description defining these features is given in Table 7.1. These 

parameters are based on identifying the dominant frequency peaks to quantify the natural 

resonance modes of bioprosthetic heart valves, as well as characterising the distribution of 

energy in the sound spectrum by evaluating bandwidth, area and root mean square (RMS) 

measurements over the entire spectral profile. 

No. Feature Description 
1 Fl Dominant frequency peak (0dB) 
2 F2 Second dominant frequency peak 
3 F3 Third dominant frequency peak 
4 F4 Fourth dominant frequency peak 
5 F5 Fifth dominant frequency peak 
6 F6 Sixth dominant frequency peak 
7 F... 3  Highest frequency found at -3dB 
8 F_10 Highest frequency found at -10dB 
9 F_ 20  Highest frequency found at -20dB 
10 F_ 30  Highest frequency found at -30dB 
11 Energy Energy/Area in each interval 
12 RMS RMS value in each interval 

Table 7.1: Description of diagnostic features extracted from the frequency spectrum of mitral 
and aortic sounds. 

The most dominant frequency, F 1, is defined as the frequency peak with the maximum intensity 

(0dB). F2, is the frequency of the peak with the second highest intensity, where the magnitude 

of Fl > F2 > ... > F6. Up to six major peaks were observed in many of the spectra. F_ 3, 

F_ 0, F_ 20  and F_ 30  are parameters associated with the frequency bandwidth of the sound 

spectrum, and denote the highest frequencies observed at the -3dB. -10dB, -20dB and -30dB 

amplitude levels respectively. These bandwidth measures were observed to be very prominent 

in many of the spectra. To completely characterise the distribution of the frequency spectrum, 

the spectrum was subdivided into a number of equal width frequency bands as discussed in 

section 7.2. The energy (area) in each band was evaluated by numerical integration using a 
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trapezoidal method based on Simpson's Rule, and then normalised with respect to the total 

spectral energy and expressed as a relative percentage of this total. This provides a measure of 

the relative proportion of mitral and aortic component energy associated with each frequency 

band. The RMS value in each band was obtained by summing the squared values of the spectral 

coefficients in each band, dividing by the number of coefficients included in the computation 

and taking the square root of this mean value. Similarly, the RMS value in each band was 

normalised with respect to the total spectral RMS and expressed as a relative percentage of this 

total. 

7.2 	Frequency Spectrum of Valve Sounds: Results 

Based on the performance of the methods for the frequency analysis of heart sounds results 

presented in section 6.2, the physiological significance of the spectral characteristics derived 

from mitral and aortic sounds were investigated using Prony's method and the MCV method. 

Examination of spectra from each of the three population groups verifies the superior resolution 

of Prony's method in extracting spectral peaks from the frequency domain. Therefore Prony's 

method was used to identify and characterise the dominant peaks. 

The sound spectrum produced by the MCV method was subdivided into 40 bands each 

of 25Hz (Nyquist rate = 2kHz). With AR spectral estimation, the amplitudes of the spectral 

peaks are nonlinearly related to energy, with the peak values being proportional to the square 

of the energy and the area under the curve proportional to energy [97]. Therefore subdividing 

the frequency spectrum produced by the MCV method provides a quantitative measure of the 

relative proportion of mitral and aortic component energy associated with each band. From 

the results illustrated in section 6.2, spectra estimated by the MCV method are consistent with 

Prony's method in the identification and localisation of features within the sound spectrum. 

7.2.1 Sound Spectrum of Mitral Components 

For the sounds produced by the operation of normally functioning mitral prostheses, Prony's 

method yields spectra which are similar throughout this population of subjects: group 1. Two 

to three dominant frequency peaks and one to two weaker secondary peaks are consistently 

identified. The mean frequencies and amplitudes of the observed peaks within this group were 

computed to be: 
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Fl = 31.6Hz @ 0dB 	F4 = 169.9Hz @ -19.79dB 

F2 = 48 .9Hz @ -6.82dB 	F5 = 252.8Hz @ -22.13dB 

F3 = 95. lHz @ - 14.38dB 	F6=284.1Hz@-21.19dB 

Table 7.2 provides complete details of the observed peaks for all subjects with normally 

functioning mitral bioprostheses. The major concentration of spectral energy occurs in the 

region between d.c. and 10011z, where mean relative energies and RMS energies within this 

population group were computed to be 39.22% and 36.62% respectively. These values are 

significant, as the remainder of the energy is evenly distributed throughout the other thirty-six 

frequency bands as illustrated in Figure 7.1. Figure 7.1 shows typical examples of spectra 

and the accompanying distributions of spectral energy estimated from the sounds produced by 

the operation of normally functioning Carpentier-Edwards mitral bioprostheses. A complete 

summary of observed results for all subjects with implanted mitral bioprostheses is given in 

Table 7.2. 
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Figure 7.1: Characteristics of sounds produced from the operation of normally functioning 
Carpentier-Edwards mitral bioprostheses. (a-b) Prony PSD estimate and energy distribution 
respectively of patient three, (c-d) Prony PSD estimate and energy distribution respectively of 

patient five, (e-f) Prony PSD estimate and energy distribution respectively ofpatient four. 

For the sounds produced by the operation of leaky mitral prostheses (group 2), Prony's 

method yields spectra which identify two to three dominant peaks and one to two weaker 

secondary peaks. The mean frequencies and amplitudes of observed peaks within this group 

were computed to be: 

Fl = 44.75Hz @ 0dB 	F4 = 142.6Hz @ -14.5dB 

F2 = 35.0Hz @ -3.22dB 	F5 = 196.6Hz @ -17.16dB 

P3 = 78.0Hz @ -9.85dB 	P6 = 225.0Hz @ -17.78dB 
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Table 7.2 provides complete details of the observed peaks for all subjects diagnosed as having 

leaky mitral bioprostheses. The major concentration of spectral energy occurs in the region 

between d.c. and 75Hz, where mean relative energies and RMS energies within this population 

group were computed to be 42.75% and 38.25% respectively. Figure 7.2 illustrates typical 

examples of spectra and the accompanying distributions of spectral energy estimated from the 

sounds produced by the operation of leaky Carpentier-Edwards mitral bioprostheses. 
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Figure 7.2: Characteristics of sounds producedfrom the operation of leaky carpentier-Edwards 
mitral bioprostheses. (a-b) Prony PSD estimate and energy distribution respectively of patient 
thirteen, (c-d) Prony PSD estimate and energy distribution respectively ofpatient fourteen, (c-f.) 

Prony PSD estimate and energy distribution respectively of patient sixteen. 

Patient No. F) F2 F3 F4 F5 F6 F_3 F_10  F_ 20  F_30 Energy RMS 

Group 1 
1 28 34 42 93 137 194 32.5 50 NIP NIP 38 33 

2 24 54 107 219 267 NIP 25.0 29.37 307.5 NIP 31 30 

3 34 56 86 154 221 271 58.12 89.37 350.0 NIP 58 53 

4 28 55 106 169 351 292 31.25 59.37 NIP NIP 31 30 

5 41 68 101 162 226 283 40.62 105 440.6 NIP 47 46 

6 35 49 105 131 218 372 40.62 58.75 440.6 NIP 61 50 

7 35 41 68 115 188 269 40.62 43.75 48.75 426.25 36 35 

8 34 52 73 129 238 298 34.37 75 133.12 NIP 46 43 

9 32 47 127 259 355 NIP 31.25 33.12 68.75 NIP 33 33 

10 31 48 150 264 356 NIP 34.47 36.25 65.62 NIP 33 30.5 

11 30 44 113 237 324 383 31.25 32.5 58.12 NIP 27 27 

12 28 39 64 107 153 195 28.75 40.62 71.87 NIP 29.75 29 

Mean 31.6 48.9 95.1 169.9 252.8 284.1 35.7 54.4 198.4 N/C 39.22 36.62 

13 27 52 98 187 159 330 31.25 53.12 193.75 NIP 36 34 

14 45 24 77 141 243 190 45.62 81.25 NIP NIP 51 46 

15 54 28 49 100 188 155 56.25 59.37 270.62 NIP 37 33 

16 53 36 88 NIP NIP NIP 59.37 66.87 188.75 NIP 47 40 

Mean 44.7 35.0 78.0 142.67 196.67 225.0 48.12 65.15 217.7 N/C 42.75 38.25 

Table 7.2: Results obtained from the frequency analysis of mitral sounds: All sounds were 
recorded at the apex, where maximum PCG signal strength was observed (best signal-to-noise 
ratio). NIP = Not Present, N/C = Not Calculated. The Energy and RMS values are percentages 
within regions d.c. to 100Hz and d.c. to 75Hz for groups one and two respectively. 
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7.2.2 Sound Spectrum of Aortic Components 

For the sounds produced by the operation of normally functioning aortic prostheses, Prony's 

method yields spectra which are similar throughout this population of subjects: group one. 

Four to five dominant frequency peaks and one to two weaker secondary peaks are consistently 

identified. The mean frequencies and amplitudes of observed peaks within this group were 

computed to be: 

171=37.4Hz@0dB 	F4=171.1Hz@-14.17dB 

P2 = 77.8Hz @ -7.66dB 	F5 = 245.8Hz @ -16.59dB 

F3 = 116.5Hz @ -10.04dB 	P6 = 292.4Hz @ -17.0dB 

Table 7.3 provides complete details of the observed peaks for all subjects with normally func-

tioning aortic prostheses. The major concentration of spectral energy occurs in the region 

between 25Hz and 125Hz, where mean relative energies and RMS energies within this popula-

tion group were computed to be 36.26% and 34.25% respectively. The remainder of the energy 

is evenly distributed throughout the other thirty-six frequency bands as illustrated in Figure 7.3. 

Figure 7.3 shows typical examples of spectra and the accompanying distributions of spectral 

energy estimated from the sounds produced by the operation of normally functioning aortic 

Carpentier-Edwards bioprostheses. A complete summary of observed results for all subjects 

with implanted aortic prostheses is given in Table 7.3. 

For the sounds produced by the operation of leaky aortic prostheses (group 2), Prony's 

method yields spectra which identify two dominant peaks and two to three weaker secondary 

peaks. The mean frequencies and amplitudes of the observed peaks within this group were 

computed to be: 

Fl = 30.6Hz @ 0dB 	P4 = 149.2Hz @ -19.21dB 

P2 = 55.3Hz @ -7.54dB 	P5 = 2 10.7Hz @ -22.05dB 

F3 = 114.0Hz @ -17.69dB 

Table 7.3 provides complete details of the observed peaks for all subjects diagnosed as having 

leaky aortic bioprostheses. The major concentration of spectral energy occurs in the region 

between d.c. and 75Hz, where mean relative energies and RMS energies within this population 

group were computed to be 28.67% and 26.3% respectively. Figure 7.4 shows typical examples 

of spectra and the accompanying distributions of spectral energy estimated from the sounds 

produced by the operation of leaky Carpentier-Edwards aortic bioprostheses. 
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Figure 7.3: Characteristics of sounds producedfrom the operation of normally functioning 

aortic Carpentier-Edwards bioprostheses. (a-b) Prony PSD estimate and energy distribution 
respectively of patient one, (c-d) Prony PSD estimate and energy distribution respectively of 

patient three, (c-f) Prony PSD estimate and energy distribution respectively of patient ten, (g-h) 
Prony spectral estimate and energy distribution respectively of patient twelve. 
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Figure 7.4: Characteristics of sounds produced from the operation of leaky aortic Carpentier-
Edvvards bioprostheses. (a-b) Prony PSD estimate and energy distribution respectively of 
patient fourteen, (c-d) Prony PSD estimate and energy distribution respectively of patient 
sixteen, (c-f) Prony PSD estimate and energy distribution respectively of patient nineteen. 
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For the sounds produced by the operation of aortic prostheses diagnosed as having stiffening 

calcified cusps (group 3 - patients 20 to 23), a shift was observed in spectral energy, with the 

higher-frequency peaks containing the most energy. The mean frequencies and amplitudes of 

the observed peaks within this group were computed to be: 

El = 186.2Hz @ 0dB 	F4 = 75.0Hz @ -1.49dB 

F2 = 146.7Hz @ -0.77dB 	F5 = 44.2Hz @ -2.97dB 

F3 = 8 1.0Hz @ -0.82dB 	F6 = 2 16.2Hz @ -6.68dB 

Table 7.3 provides complete details of the observed peaks for all subjects diagnosed as having 

stiffening aortic bioprostheses. The major distribution of spectral energy occurs in the region 

between 50Hz and 200Hz, where mean relative energies and RMS energies within this popu-

lation group were computed to be 62% and 61% respectively. Figures 7.5(a-d) show typical 

examples of spectra and the accompanying distributions of spectral energy estimated from the 

sounds produced by the operation of stiffening Carpentier-Edwards aortic bioprostheses. 

One subject (patient twenty-four) had a prosthesis diagnosed as being both leaky and 

stiffening. The dominant frequencies and amplitudes of these peaks were observed to be: 

Fl = 30.0Hz @ 0dB 	F4 = 159.0Hz @ -22.8dB 

F2 = 58.0Hz @ -9.27dB 	F5 = 2 16.0Hz @ -26.7dB 

P3 = 107.0Hz @ -16.52dB 	P6 = 267.0Hz @ -28.7dB 

The major concentration of spectral energy occurs in the region between d.c. and 75Hz, 

where relative energy and RIVIS energies were observed to be 26% and 24% respectively. 

Figures 7.5(e and f) show the spectra and the accompanying distribution of spectral energy 

respectively evaluated for this valve. 
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Figure 7.5: Characteristics of sounds produced from the operation of stiffening aortic 
Carpentier-Edwards bioprostheses. (a-b) Prony PSD estimate and energy distribution re-

spectively of patient twenty, (c-d) Prony PSD estimate and energy distribution respectively of 

patient twenty-one, (e-f) Prony PSD estimate and energy distribution respectively of patient 

ten, (g-h) Prony spectral estimate and energy distribution respectively of patient twenty-four 

Patient No. RS El F2 F3 P4 ES F6 F_ 3  F_ 21, F_ 30  Energy RMS 

Group 1 
1 2RIS 42 77 123 184 306 405 85.9 139.2 237 N/P 46 43 

2 2RIS 46 89 148 209 386 N/P 48.7 234.3 N/P N/P 47 44 

3 2RIS 33 88 132 181 263 337 34.3 88.7 201.8 N/P 35 30 

4 2RIS 43 85 131 164 200 317 43.7 221.8 N/P N/P 46 39 

5 2RIS 29 42 77 223 173 310 85 96.8 523.7 NIP 33.5 33 

6 2RIS 27 55 96 115 164 200 27.1 30.5 35.2 316.6 30 27.5 

7 MIS 29 64 98 133 302 343 30 32.5 150 N/P 29 29 

8 2RIS 25 118 72 250 N/P N/P 25 30.6 36.8 190.6 21 22 

9 2RIS 32 73 184 226 282 N/P 36.8 81.2 N/P N/P 27 24 

10 2RIS 31 98 129 59 218 178 25 134.3 425 N/P 39 37 

11 2RIS 44 101 170 220 350 405 46.8 175 N/P N/P 44 41 

12 2RIS 68 37 105 155 199 293 73.7 117.5 220.6 N/P 46 46 

13 2RIS 37 84 49 105 106 136 73.7 94.4 N/P N/P 28 30 

Mean - 37.4 77.8 116.5 171.1 245.8 292.4 48.9 113.6 N/C N/C 36.26 34.25 

Group 2 
14 2RIS 33 59 108 124 190 N/P 57.5 66.2 137.5 375 41 38 

15 2RIS 30 48 114 148 230 N/P 37.5 61.2 166.2 N/P 21 19 

16 2RIS 29 59 122 176 N/P NIP 30 33.7 143.7 N/P 24 22 

17 2RIS 34 69 144 101 178 N/P 65.85 81.73 219.83 N/P 34.5 30.5 

18 2RIS 27 53 89 153 193 262 26.25 30.0 162.5 N/P 24 23 

19 2RIS 31 44 117 193 262 337 32.5 49.37 65.62 290.62 27.5 25.5 

Mean - 30.6 55.3 115.6 149.2 210.7 N/C 41.6 53.7 149.13 N/C 28.67 26.3 

Group 3 - 

20 2RIS 175 113 63 95 42 210 193.75 233.12 506.87 N/P 60 60 

21 2RIS 181 144 102 66 44 215 190.62 232.5 318.75 N/P 55 54 

22 2RIS 248 167 95 64 37 244 181.58 233.66 N/P N/P 69 74 

23 2RIS 141 163 64 42 54 196 201.25 253.12 367.5 N/P 54 55 

24 2RIS 30 58 107 159 216 267 31.25 34.37 73.75 446.8 26 24 

Mean - 186.25 146.75 81.0 75.0 44.25 216.25 191.8 238.1 N/C N/C 59.5 60.75 

Table 7.3: Results obtained fro,n the frequency analysis of aortic sounds: RS = Recording site where inaxunuin 

PCG signal strength was observed(best signal-to-noise ratio and good separation of aortic and pulmonary coinpon-

ents), 2RIS is the second right intercostal space (aortic area) and 3LIS is the third left intercostal space (Erb 's point, 

auxiliary aortic area). N/P = Not Present, N/C = Not Calculated. The Energy and RMS values are percentages 

within regions 25Hz to 125Hz, dc. to 75Hz and 5011z to 200Hz for groups one, two and three respectively. Patient 

twenty-four was not included when evaluating the means for group three. 
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7.3 	Physiological Significance of Results 

From the results presented in the preceding two subsections, it was observed that the sounds 

produced by the operation of normally functioning, leaky and stiffening Carpentier-Edwards 

bioprostheses each exhibit unique spectral characteristics. Normally functioning mitral valves 

are characterised by two to three dominant frequency peaks, with the major concentration of 

spectral energy occurring in the region between d.c. and 100Hz, whereas, normally functioning 

aortic prostheses are characterised by four to five dominant peaks, with the major distribution 

of spectral energy occurring in the region between 25Hz and 125Hz. For leaky mitral and 

aortic prostheses, a shift was observed in spectral energy: the major concentration of energy 

now occurs in the region between d.c. and 75Hz. Likewise, for aortic prostheses diagnosed 

as having stiffening calcified cusps, a shift was observed in spectral energy, with the higher- 

frequency peaks containing the most energy. The major distribution of energy now occurs in the 

region between 50Hz and 200Hz. It was observed that the frequency occurring at -10dB level 

can be used to identify and discriminate between normally functioning, leaky and stiffening 

aortic prostheses, where mean frequencies for these conditions at the 10dB level were computed 

to be 113.6Hz, 53.7Hz and 238.1Hz respectively. A single discriminating parameter was not 

observed from the analysis of mitral sounds. 

For leaky mitral and aortic prostheses, in general the computed mean frequencies are 

lower than those obtained from the sounds produced by the operation of normally functioning 

prostheses. For leaky mitral prostheses; however, the amplitudes and energies of the observed 

lower-frequency peaks are greater. In particular, the second most dominant peak, F2, which 

characterises the sounds produced by the operation of normally functioning mitral prostheses 

assumes much more energy and becomes the most dominant frequency peak for three of the four 

subjects in this population group. The dominant frequency peak which characterises the sounds 

produced by the operation of normally functioning prostheses has slightly less energy and now 

becomes the second most dominant peak. For leaky aortic prostheses, there is a reduction in 

the amplitude of the higher-frequency peaks F3 to P6. Peaks F3 to F6, which characterise 

the sounds produced by the operation of normally functioning aortic prostheses, now have less 

energy, with the remainder of the energy having been evenly distributed throughout the other 

frequency bands of the sound spectrum as illustrated in Figure 7.4. 

The concentration of energy in the lowest frequency regions of the sound spectrum for 

leaky prostheses can be explained by consideration of the aetiological composition of sounds 

produced by the operation of leaky bioprostheses. For leaky mitral prostheses, this is due 
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primarily to the presence of backward-flow systolic murmurs produced by an incompetent 

regurgitant valve, which coalesce with the mitral closing sound. As soon as the pressure 

in the left ventricle is greater than that in the left atrium, a driving force exists causing a 

backward flow of blood through an incompetent prosthesis resulting in a murmur. The usual 

pansystolic regurgitant murmur associated with leaky mitral prostheses begins with the first 

sound and remains more constant than forward midsystolic ejection murmurs as illustrated in 

Figure 2.6 [160]. Likewise, for leaky aortic prostheses, diastolic murmurs are produced by the 

incompetent regurgitant prosthesis. With mild aortic regurgitation, the early diastolic 'rumble' 

continues throughout diastole (pandiastolic), in contrast to the relatively short decrescendo 

associated with severe regurgitation as shown in Figure 2.7 [12, 160]. 

A previous study of heart valve sounds [128] expresses concern regarding the inconsisten-

cies of past analyses of porcine valve sounds [38, 39], " ... it was not clear whether the peak 

frequencies changed or whether the peaks of higher frequencies assumed more power." In this 

thesis, it has been observed that the overall structure and composition of the sound spectrum ef-

fectively remains the same for normally functioning, leaky and stiffening prostheses. However, 

for leaky prostheses, peaks P3 to F6 have proportionally less energy when compared to peaks 

P3 to F6 produced by the operation of normally functioning valves. With stiffening prostheses, 

the higher frequency peaks assume more power. The frequencies observed in this thesis are in 

the range reported by previous researchers in chapter two. 

A distinction exists between the frequencies which characterise the sounds produced by the 

operation of normally functioning mitral and aortic prostheses. Mitral sounds are characterised 

by two to three dominant peaks whereas aortic sounds are characterised by four to five dominant 

peaks. The mean computed frequencies, amplitudes and energies of these peaks are in general 

observed to be lower for mitral sounds. As the same microphone and instrumentation were 

used for both mitral and aortic sound recordings, the difference between the resulting spectra is 

attributed to the variations in the spectral characteristics of different transmission paths between 

the valves and the recording sites on the thorax. 

7.4 Summary and Conclusion 

This chapter examines whether a relationship exists between the heuristic parameters derived 

from the sound spectrum of mitral and aortic sounds and the functionality of Carpentier-Edwards 

bioprostheses. Results demonstrate that the sounds produced by the operation of normally 

functioning, leaky and stiffening prostheses from different subjects each exhibit unique spectral 
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characteristics. 

Normally functioning mitral valves are characterised by two to three dominant frequency 

peaks with the major concentration of spectral energy occurring in the region between d.c. 

and 100Hz, whereas, normally functioning aortic prostheses are characterised by four to five 

dominant peaks with the major distribution of spectral energy occurring in the region between 

25Hz and 125Hz. For leaky mitral and aortic prostheses, a shift was observed in spectral 

energy: the major concentration of spectral energy now occurs in the region between d.c. and 

75Hz. Likewise, for aortic prostheses diagnosed as having stiffening calcified cusps, a shift was 

observed in spectral energy: the major distribution of energy was seen to occur in the region 

between 50Hz and 200Hz. It was observed that the frequency occurring at the -10dB level may 

be used to identify and discriminate between normally functioning, leaky and stiffening aortic 

prostheses, where mean frequencies for these conditions at the -10dB level were computed 

to be 113.6Hz, 53.7Hz and 238.1Hz respectively. A single discriminating parameter was not 

observed from the analysis of mitral sounds. 

The results reported in this chapter demonstrate the diagnostic potential of frequency 

analysis as an alternative physiological measurement technique capable of assisting physicians 

in their evaluation of the post-operative performance and functional integrity of the Carpentier-

Edwards bioprosthetic heart valve. 



Chapter 8 

Summary and Conclusions 

In collaboration with the Cardiovascular Research Unit of The University of Edinburgh and 

The Royal Infirmary of Edinburgh, the motivation for the research described in this thesis 

was to investigate whether a principle based on noninvasive testing, using signal processing 

and analysis methods, could be applied to the acoustic output produced by the operation of the 

Carpentier-Edwards bioprosthesis. The overall objective of the research was to assess whether a 

relationship existed between the frequency spectrum of this acoustic output and the functionality 

of the Carpentier-Edwards bioprostheses, with a view to identifying and distinguishing between 

normally functioning and dysfunctioning prostheses by examination of the frequency spectrum, 

and ultimately, to predict impending valve failure. If a unique relationship can be found, this 

would demonstrate the diagnostic potential of frequency analysis as an alternative physiological 

measurement technique capable of assisting physicians in their post-operative evaluation of the 

Carpentier-Edwards bioprosthetic heart valve. 

The following sections summarise the methods used in this thesis for the acquisition, con-

ditioning, processing and analysis of the principal heart sound components contained within 

the phonocardiographic signals produced by the operation of the Carpentier-Edwards biopros-

theses. The conclusions and achievements drawn from the research are also given. Finally, 

suggestions are proposed for possible extensions to the research undertaken. 

110 
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8.1 Summary and Conclusions 

Chapter 2 introduces the area of 'Heart Sound Processing' by first describing the function of the 

human heart, followed by a discussion detailing the origin of heart sounds and the physiological 

events which constitute a single heartbeat. The chapter also provides background material for 

this thesis by reviewing previous work reporting on the analysis and processing of the sounds 

produced by the operation of prosthetic heart valves. 

In chapter 3, the design and development is discussed of a data-acquisition system corn-

prising a battery-powered portable computer, analogue-to-digital conversion circuitry and a 

cardiac microphone, to digitise and record the acoustic output produced by the operation of 

the Carpentier-Edwards bioprostheses. The design of the data-acquisition system was based 

on a number of significant hardware, software and ergonomic factors to ensure high-quality 

reproduction. After a review of portable computers, analogue-to-digital conversion circuitry 

and cardiac transducers commercially available in 1991, the Elonex LT-320X laptop personal 

computer, the ADC-42 input/output expansion card marketed by Blue Chip Technology and the 

Hewlett-Packard HP-21050A contact sensor were selected for this research. The specification 

of this microphone includes a flat-frequency response from 0.02Hz to 21CHz, appropriate for 

this thesis; as well as being insensitive to extraneous ambient noise. 

Particular attention was paid to the conditioning of the PCG prior to digitisation to maintain 

the characteristics of this signal. A PCG preamplifier was designed to amplify the output from 

the HP-21050A contact sensor to a level suitable for input to the data-acquisition system. The 

design of the preamplifier was based on a high-performance, low-noise, low-power operational 

amplifier, the TL064 marketed by Texas Instruments; ideal for battery-powered portable in-

strumentation. An 800Hz, low-pass, sixth-order, Bessel anti-aliasing filter was designed to 

bandlimit the phonocardiographic signal prior to digitisation. A Bessel filter is characterised by 

a constant time delay with frequency, thus preserving the relative phasing of all signal events. 

This is an important point which has not been addressed in any of the previous published works 

in this field. 

A database of heart sounds produced by the operation of the Carpentier-Edwards biopros-

thesis and recorded from a range of valve conditions now exists in the Department of Electrical 

Engineering at The University of Edinburgh. Details are provided of the breakdown of this 

database and the recording procedure implemented for this thesis. 

A recorded phonocardiographic signal consists of relatively high-frequency principal heart 

sounds superimposed on a low-frequency respiration 'carrier'. Chapter 4 describes the pro- 
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cessing of this acquired signal in the time domain with a view to accentuating the principal heart 

sounds from the low-frequency artifact, followed by the automated extraction of mitral or aortic 

components from the PCG under investigation for further analysis. A 20Hz, 320 tap high-pass 

FIR filter (linear-phase characteristic) was implemented to abstract the principal heart sounds 

from the low-frequency artifact. 

Two methods based on a cross-correlation, template-based matching approach were de-

veloped to automatically extract mitral and aortic components from the PCG. The first method 

uses the PCG solely and matches a representative closing sound with similar successive occur-

rences, i.e. the respective closing sound in each of the remaining cardiac cycles. This method 

is shown to give good performance when one principal heart sound is clearly the dominant 

signal event in each cardiac cycle. However, when both principal sounds are evident and have 

similar temporal structure, method 1 can identify mitral and aortic components within the same 

cycle resulting in the possible subsequent analysis of an incorrectly extracted sound. This is a 

major shortcoming of this method, the consequences of which could be fatal. To overcome this 

potential hazard, a second method was developed which uses an ECG signal referenced to the 

PCG to initially locate the beginning of each cardiac cycle. Using this a priori information and 

the fact that Si always occurs before S2, method 2 demonstrates that the appropriate closing 

sound only is correctly extracted for further analysis. 

Methods for the frequency analysis of heart sounds are discussed in chapter 5. Particular 

attention was directed towards the physiological transient-oscillatory nature of the heart sound 

signal and the suitability of the frequency analysis techniques when analysing such a temporal 

signature. The emphasis was on refining the application of spectral estimation techniques 

with the aim of identifying optimum methods for this thesis. Algorithms considered for the 

frequency analysis of valvular closing sounds were: the periodogram, the Bartlett power spectral 

density estimate, which reduces the variance of the conventional periodogram estimate through 

ensemble averaging; ARtYIA-based, parametric linear modelling techniques, which attempt to 

synthesise the heart sound generation process; and Prony's method: a parametric modelling 

technique based on a damped sinusoidal model. 

The number of modelling coefficients used by the parametric spectral estimation techniques, 

i.e. the model order, is a very important variable when analysing bioprosthetic heart valve 

closing sounds, as the precise order of a principal component time series is not known a 

priori and variations in spectra can occur with different orders. Chapter 5 also investigates 

methods which determine the optimal model order of time series. Model order selection 

criteria considered were: hypothesis-based methods, decision-based techniques, the FPE, the 
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AIC, the MDL and the CAT; and methods which attempt to extract the optimum model order 

from the heart sound time series by first removing the numerical ill-conditioning inherent with 

the use of linear-algebra-based spectral estimation techniques. 

Chapter 6 presents the results from the frequency analysis of heart sounds. From a signal 

processing perspective, the major observations concerning the application and performance of 

these methods were: 

The superior resolution of Prony's method in identifying within the frequency domain 

a number of dominant spectral peaks over the full range of recorded sounds and valve 

conditions. 

The covariance, MCV, Burg and weighted Burg (parabolic optimum taper and Hamming 

window) methods all produce almost identical spectra. The resulting estimates are able 

to identify the same features revealed by the Prony PSD estimate, however, the ability of 

these AR methods to completely resolve the same spectral detail is secondary to Prony's 

method. 

For some sounds, a difference was observed between the spectra produced by the covari-

ance method when compared to the estimates evaluated by the other AR techniques. 

The application of the periodogram (with and without a Hamming window) produces 

smoothed spectra relative to the AR and Prony estimates. 

The Bartlett periodogram produces very highly smoothed spectra, containing little or 

no information in the frequency spectrum which may be considered suitable for use as 

heuristic parameters. 

It was observed that monitoring the NRMSE for a decrease in the rate of change, the FPE, 

the AIC, the MDL and the CAT decision-based model order selection criteria returned orders 

that were too low to adequately model heart sounds, producing spectra with low-frequency 

resolution containing little or no information. The mean values observed by these methods 

were: l4 and 8, 16 and 11, 16 and ll,6 and 4and l6 and ll for mitral and aortic components 

respectively. Although these orders are greater than or in the range suggested by theoretical 

values, as a result of the transient nature of heart sounds, the presence of background noise, 

and the fact that heart valve closing sounds do not satisfy the requirements of an AR model 

excited by white noise or a Gaussian distribution, these values are still too low to adequately 

model the sounds. It was found empirically that mean optimum orders of 40 and 38 for mitral 
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and aortic components respectively produced the best spectra, containing features which may 

be considered for use as heuristic parameters. 

Consistent determination of the model order was achieved by first removing the numerical 

ill-conditioning inherent with the use of linear-algebra-based spectral estimation techniques. 

Examining the relative magnitudes of singular values or the roots of the backward linear 

prediction polynomial used in Prony's method, produced model orders that relate closely to 

those expected from consideration of the mechanics of heart sound generation. Four to six 

dominant singular values and two to six signal zeros are consistently identified throughout the 

patient population. 

By selecting appropriate features derived from the sound spectrum, chapter 7 identifies a 

relationship between these spectral parameters and the functionality of the Carpentier-Edwards 

bioprostheses. It was observed that the sounds produced from the operation of normally 

functioning, leaky and stiffening prostheses each exhibit unique spectral characteristics. 

Normally functioning mitral valves are characterised by two to three dominant frequency 

peaks with the major concentration of spectral energy occurring in the region between d.c. 

and 100Hz, whereas, normally functioning aortic prostheses are characterised by four to five 

dominant peaks with the major distribution of spectral energy occurring in the region between 

25Hz and 125Hz. For leaky mitral and aortic prostheses, a shift was observed in spectral 

energy: the major concentration of spectral energy now occurs in the region between d.c. and 

75Hz. Likewise, for aortic prostheses diagnosed as having stiffening calcified cusps, a shift was 

observed in spectral energy: the major distribution of energy was seen to occur in the region 

between 50Hz and 200Hz. It was observed that the frequency occurring at the -10dB level may 

be used to identify and discriminate between normally functioning, leaky and stiffening aortic 

prostheses, where mean frequencies for these conditions at the -10dB level were computed 

to be 113.6Hz, 53.711z and 238.1Hz respectively. A single discriminating parameter was not 

observed from the analysis of mitral sounds. 

The range of frequencies and that stiffening valves are characterised by a relative increase in 

higher-frequency energy, agree with previous analyses of the sounds produced by the operation 

of porcine bioprostheses reported in chapter 2 [37,38]. However, the research detailed in this 

thesis has extended previous work by showing that effective and high-quality data acquisition, 

preprocessing and signal processing of bioprosthetic heart valve closing sounds offer the po-

tential of being able to identify and discriminate between different states of valvular function: 

normally functioning, leaky and stiffening prostheses. 

The objective of all the foregoing research has been to examine whether a relationship exists 
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between the acoustic output produced by the operation of the Carpentier-Edwards bioprosthesis 

and the functionality of this prosthesis, and the application of methods for the frequency analysis 

of heart sounds. The proposition of this thesis is that analysing the frequency spectrum of this 

acoustic output successfully meets this objective. 

An automated diagnostic system has been developed which records heart sounds, and then, 

using signal analysis algorithms, processes and analyses the principal components over the full 

range of recorded sounds and valve conditions. Results demonstrate the diagnostic potential of 

frequency analysis as an alternative physiological measurement technique capable of assisting 

physicians in their post-operative assessment of the Carpentier-Edwards bioprosthetic heart 

valve. As a clinical technique for periodically monitoring patients with implanted prostheses, 

frequency analysis of valve sounds is particularly attractive as it is noninvasive, atraumatic, 

passive, reliable and sensitive. The very low-cost, repeatability and portability of this technique 

are added benefits. 

The application of signal processing methods to the PCG signal has quantified the analysis 

of the PCG, which in turn is directly related to auscultation. Processing the PCG reveals valuable 

information such as the timing instants of heart sounds and their components, the structure of 

sounds, their frequency content and their location in the cardiac cycle. Frequency analysis can 

be used to complement other traditional post-operative techniques such as echocardiography, 

with one method providing supplementary information to the other. 

8.2 	Areas of Further Research 

To conclude this thesis, several areas of research are discussed which could possibly extend the 

work undertaken. A prototype system based on the application of signal processing methods to 

the sounds produced by the operation of Carpentier-Edwards bioprostheses is now operational. 

This automated diagnostic system first records the sounds, and then, using signal analysis 

algorithms, processes and analyses the principal components contained within these sounds. 

For this system to be more comprehensively tested and its routine clinical value assessed, there 

is a requirement for a dedicated instrument for the recording and realtime implementation of 

the algorithms. Although computational efficiency was not an issue which was specifically 

addressed during system development, the algorithms can process and analyse a fifteen-second 

PCG record in approximately two minutes on a Sun 4 workstation. The major proportion of 

the computation is absorbed by the automated mitral or aortic component extraction algorithm 

developed in chapter 4 (Method 2), the frequency analysis of each extracted sound, followed 
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by the calculation of an ensemble spectral average for each recording. With the availability 

of high-speed digital signal processing chips, it would be possible to undertake a recording 

followed by a realtime analysis of the acquired phonocardiographic signal. 

From a signal processing perspective, there exist a number of techniques whose application 

to heart sounds could possibly extend the research reported in this thesis: 

Joint time-frequency approaches to signal analysis such as the short-time Fourier trans-

form [161], the Wavelet Transform [162, 163], the Wigner-Ville [164], Choi-Williams [165] 

and the reduced interference distributions [166] offer the potential for better analysis of dy-

namic, nonstationary biomedical processes. Conventional classical and parametric methods 

of spectral estimation assume that the signal under investigation is locally stationary, i.e. the 

signal frequency is assumed to remain constant during the transform interval. However, such an 

assumption is not valid for many physiological processes [167]. Joint time-frequency methods 

of signal analysis produce a 3D-representation of time, frequency and spectral amplitude. This 

interpretation provides a more general perspective, and information such as the time-frequency 

evolution would become apparent of cardiac events, e.g. the regurgitant murmurs which char-

acterise leaky mitral and aortic Carpentier-Edwards bioprostheses. Recent work by Bentley 

ci' al. [168] reports that the application of time-frequency methods to the sounds produced by 

the operation of native heart valves is able to distinguish between normally functioning and 

stenosed valves. In a number of personal communications received from Professor T. E. Posch 

of the Hughes Aircraft Company in the United States (US) (see appendix B), Professor Posch 

informed me that several US heart valve manufacturers are currently considering providing a 

sound spectrum with each valve made. This unique signature would characterise the function 

of a valve in vitro, and would allow for a direct comparison with the spectral characteristics of 

the sounds obtained after implantation. Professor Posch also informed me that the US Army 

are currently assessing the potential of phonocardiography as a screening procedure to evaluate 

the condition of the heart valves of all new potential recruits. 

Recent advances in the technique and application of artificial neural networks have made 

possible the use of these classifiers for pattern recognition [169-17 1]. When a neural network 

is used to perform a pattern recognition task, there is no need for assumptions regarding the 

underlying probability distributions [172-174]. In addition, the parallel architecture of neural 

networks provides the potential for fast data processing. Features derived from the frequency 

analysis of the heart sounds produced by the operation of the Carpentier-Edwards bioprostheses 

may be used as input parameters to a neural network. The diagnostic potential of artificial neural 

networks in the classification of bioprosthetic heart valve sounds is an area which remains to 
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be investigated. 

The application of homomorphic blind deconvolution approaches to signal analysis offer 

the potential to minimise the conditioning effect of the thorax as the transmitted sounds travel 

from within the chambers of the heart to the chest surface. Recent work [175, 176] reports a 

strong correlation between the surface PCGs and the intracardiac PCGs recorded from dogs. 

By eliminating the conditioning effect of the thorax on the sounds recorded at the chest surface, 

this would allow for a direct comparison of the spectral characteristics of the sounds before and 

after implantation. This would be particularly significant if the manufacturers of heart valves 

decide to provide a unique spectral signature with each valve made. 
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ABSTRACT 

This paper examines the performance of least squares 
methods which use a combination of both forward and 
backward linear prediction in estimating the spectral 
distribution of bioprosthetic valve sounds. The Burg al-
gorithm and two weighted variations of this method were 
applied to bioprosthetic valve sounds. A new method 
of analysing the frequency spectrum produced by these 
valve sounds is also proposed, whereby the Levinson re-
cursion constraint imposed by Burg is removed. This 
unconstrained forward-backward method is known as 
the Modified Covariance method (MCV). Autoregres-
sive (AR) spectra of sinusoids generated using this M-
CV method show improved performance over other least 
squares methods, including less bias in the frequency es-
timates of spectral components, reduced variance in fre-
quency estimates over an ensemble of spectra and ab-
sence of observed spectral line splitting. When applied 
to bioprosthetic valve sounds, preliminary results gener-
ated using this MCV method show at least comparable 
performance with other least squares methods. Like the 
Burg algorithm, this MCV method has computational 
complexity proportional to the process order squared. 

INTRODUCTION 

Spectral analysis of the closing sounds produced by 
bioprosthetic heart valves has been used for over a 
decade to monitor the degenerative changes which can 
lead to valvular dysfunction. Previous work [1] has 
shown that the dominant frequency peaks of the closing 
sounds shift towards the higher frequencies as a result 
of valve tissue calcification, fibrosis and stiffening. 

A number of digital spectral analysis techniques have 
previously been used to obtain the spectral characteris-
tics of bioprosthetic valve sounds [2]. Some of these were 
based on the Fast Fourier Transform (FFT) while oth-
ers concentrated on more recent parametric modelling 
techniques. However, due to the short duration of heart 
sounds, FFT-based methods do not provide the frequen-
cy resolution required in order to completely charac-
terise the spectrum of bioprosthetic valve sounds. 

Previous work on AR spectral analysis of bioprosthet-
ic valve sounds [2] has concentrated on least squares esti-
mates using forward linear prediction solely, namely: the 
autocorrelation and covariance methods as defined by 
Makhoul [3]. The autocorrelation method, however, has 
the worst frequency resolution relative to other linear-
prediction based estimation methods. Moreover, the co-
variance method can produce AR parameters whose re-
sulting spectra have more false peaks and greater per-
turbations of spectral peaks from their correct frequen-
cy locations than other AR estimation approaches. The 
covariance normal equations also lead to AR parameter 
estimates with greater sensitivity to noise. Spectral line 
splitting has also been observed with these two methods. 
The use of the MCV method alleviates these problems. 

METHOD 

Data Acquisition 

The phonocardiogram (PCG) was recorded from 
male and female patients with implanted Hancock or 
Carp entier- Edwards bioprosthetic valves in the mitral 
or aortic positions. The PCG was recorded in the supine 
position using a contact microphone (Hewlett Packard 
21050A). 

Spectral Estimation 

The forward and backward linear prediction estimates 
have similar statistical information. By combining the 
linear prediction error statistics of both the forward and 
backward errors more error points are generated, with 
the net result being an improved estimate of the AR 
parameters. Burg minimised the sum of the forward 
and backward prediction errors subject to the constraint 
imposed by the Levinson recursion. At each order p 
the arithmetic mean of the forward and backward linear 
prediction error is minimised: 

N 
fb - 

pp 	- 	[ el [n]12  + je[n]I2 1 	(1) 

The Burg method, however, has the same problems as 
previously outlined. This led some researchers to pro- 

133 



pose variations to the Burg method in order to reduce 
the biases in the estimation of sinusoidal frequencies. 
The basic variation is a weighting applied to the squared 
prediction error. The weightings used in our analysis of 
bioprosthetic valve sounds were a Hamming window [4] 
and a parabolic quadratic taper [5]. 

Performing a least squares unconstrained minimisa-
tion yields significant improvements in the spectral es-
timate of sinusoidal signals. The improvements of this 
MCV method [6] include less bias in the frequency es-
timate of spectral components, reduced variance in the 
frequency estimation and absence of spectral line split-
ting. Previous work [6] has also shown that the Burg 
and MCV methods have the least spectral variance and 
the least frequency variance when tested with nonsinu-
soidal signals. 

RESULTS AND DISCUSSION 

CONCLUSIONS 

Extensive use of the MCV method has been made in 
analysing spectra of sinusoidal processes as a result of its 
superior performance over all other least squares linear 
predictive methods. 

Using this MCV method to analyse bioprosthetic 
valve sounds produces at least comparable spectra with 
other methods. These spectra represent preliminary re-
sults and work is currently continuing with data from 
many more patients to investigate the advantages of 
the MCV method over the other least squares methods. 
Current work also suggests that the MCV method is in-
sensitive to the initial phase of simulated heart sounds. 
We thus conclude that the MCV method can be used 
to determine accurately the PSD estimate of actual and 
simulated bioprosthetic valve sounds. 
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ABSTRACT 

This paper characterises the spectra of closing sounds 
produced by the Carp entier-Edwards bioprosthetic 
heart valve by extracting from the sound spectrum 
heuristic features of diagnostic significance. Algorithms 
were tested on sounds recorded from forty patients with 
the Carpentier-Edwards bioprosthesis (twenty-four aor-
tic and sixteen mitral). Results show that normally 
functioning aortic valves are characterised by four to five 
dominant peaks, with the major concentration of spec-
tral energy occurring between 2511z and 12511z, whereas, 
normally functioning mitral valves are characterised by 
two to three dominant peaks with the major concen-
tration of spectral energy occurring between d.c. and 
10011z. For leaky, regurgitant valves and valves diag-
nosed as having stiffening, calcified cusps, a shift in spec-
tral energy was observed, to the regions between d.c.and 
7511z and 5011z and 20011z respectively. It was found 
that the frequency occurring at the -10d13 level can 
be used to discriminate between normally functioning, 
leaky and stiffening aortic prostheses, where mean fre-
quencies were observed of 113.611z, 53.7 Hz and 238.111z 
respectively. This paper presents the first publication of 
these findings for the Carp entier- Edwards bioprosthesis. 

INTRODUCTION 

Previous related work by the authors [1-3] describes 
in detail the procedures involved regarding the acqui-
sition of phonocardiographic signals from patients with 
implanted bioprosthetic heart valves, as well as the the-
ory, suitability and performance of spectral estimation 
techniques when applied to valvular closing sounds. In 
this paper, heuristic features of diagnostic significance 
are extracted from the sound spectrum produced by 
normally functioning, leaky and stiffening Carpentier-
Edwards bioprostheses, in an attempt to uniquely char-
acterise the sound spectrum of each of these states of 
physiological and pathological functionality. Quantita-
tive analysis of the spectrum of normally functioning 
valves should assist in the detection of leaky and stiff-
ening valves through changes in the sound spectrum; 

DIAGNOSTIC FEATURE SELECTION 

The selection of diagnostic features was based on the 
empirical identification of a number of dominant fre-
quency peaks to quantify the natural resonance modes 
of bioprosthetic heart valves, and to characterise the dis-
tribution of energy in the sound spectrum by evaluating 
bandwidth, energy and root mean square (RMS) mea-
surements over the entire spectral profile. 

RESULTS AND DISCUSSION 

For normally functioning aortic prostheses, Prony's 
method of spectral analysis identified four to five domi-
nant frequency peaks and one to two weaker secondary 
peaks. Mean frequencies and amplitudes of these peaks 
were: Fl = 37.411z © 0dB, F2 = 77.811z © -7.66dB, 
F3 = 116.511z © -10.04dB, F4 = 171.111z © -14.17dB, 
F5 = 245.811z © -16.59dB, F6 = 292.411z © -17.0dB. 
The major distribution of spectral energy occurred in 
the region between 2511z and 12511z, with mean rela-
tive energies and RMS energies of 35.73% and 33.49% 
respectively. 

For leaky aortic prostheses, Prony's method identified 
four dominant peaks and one weaker secondary peak, 
with mean frequencies and amplitudes of: Fl = 30.611z 
© 0dB, F2 = 55.311z © -7.54dB, F3 = 114.011z © - 
17.69dB, F4 = 149.2Hz © -19.21dB, F5 = 210.711z © 
-22.05dB. These results are slightly lower than those pro-
duced by normally functioning prostheses, particularly 
the amplitudes of peaks F3 to F6. The major distribu-
tion of spectral energy occurred in the region between 
d.c. and 7511z, with mean relative energies and RMS en-
ergies of 28.67% and 26.3% respectively. The higher fre-
quency peaks, F3 to F6, which characterised normally 
functioning prostheses have less energy, with the remain-
der of the energy being evenly distributed throughout 
the other frequency bands of the sound spectrum. This 
concentration of energy in the lowest frequency regions 
of the sound spectrum is due primarily to the presence 
of diastolic murmurs produced by incompetent, regurgi-
tant aortic prostheses. 
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For aortic prostheses diagnosed as having stiffening, 
calcified cusps, a shift in spectral energy was observed, 
with the higher frequency peaks assuming more energy. 
Mean frequencies and amplitudes of these peaks were: 
Fl = 181.2Hz © 0dB, F2 = 147.111z © -0.77dB, F3 
= 101.011z © -0.82dB, F4 = 67.111z © -1.49dB, F5 = 
44.211z © -2.97dB, F6 = 216.311z © -6.68dB. The major 
distribution of spectral energy occurred in the region 
between 5011z and 20011z, with mean relative energies 
and RMS energies of 62% and 61% respectively. 

For normally functioning mitral prostheses, Prony's 
method identified two to three dominant frequency 
peaks and one to two weaker secondary peaks. The ma-
jor distribution of spectral energy occurred in the region 
between d.c. and 100Hz with mean relative energies 
and RMS energies of 39.22% and 36.62% respectively. 
A similar shift in spectral energy to the region between 
d.c. and 75Hz was observed for leaky mitral prostheses. 
Figure 1 shows examples of spectra and distributions of 
spectral energy produced by Carpentier- Edwards bio-
prostheses. 

In general, it was observed that for normally function-
ing prostheses, there was a correlation between spectral 
energy and the period of implantation. As the dura-
tion of implantation increased, the amount of energy de-
creased slightly, having been redistributed in the higher-
frequency regions of the sound spectrum. This is a result 
of the inevitable gradual stiffening associated with the 
cusps of porcine bioprosthetic heart valves. 

CONCLUSIONS 

This paper has characterised the spectra of the closing 
sounds produced by the C arpentier- Edwards biopros-
thetic heart valve. Results have shown that normally 
functioning, leaky and stiffening prostheses each exhibit 
unique spectral characteristics. For leaky prostheses, a 
shift in spectral energy was observed, from the higher 
frequency peaks to the lower frequency peaks. For stiff-
ening prostheses, a shift in spectral energy was also ob-
served, with the higher frequency peaks assuming more 
energy. It was found that the frequency occurring at 
the -10dB can be used to discriminate between normally 
functioning, leaky and stiffening aortic prostheses. 

This study has indicated that features extracted from 
the sound spectrum offer the potential of diagnosing 
prostheses as normally functioning, leaky or stiffening. 
The suitability of these features in the development of 
classification and neural network algorithms is currently 
being investigated. 

This work has shown that valuable information re-
garding the physiological and pathological state of bio-
prosthetic heart valves is contained within the sound 
spectrum. The results obtained are very encouraging 
and suggest that it is now possible to develop a low-cost 
prototype system to provide periodic evaluation of aor- 

Figure 1: Characteristics of Carpeniier-Edwards bio-
prostheses. (a and b) Spectral estimate and energy dis-
iribujion of normally functioning aortic prostheses, (c 
and d) Spectral estimate and energy distribution of leaky 
aortic prostheses, (e and f) Spectral estimate and en-
ergy distribution of stiffening aortic prostheses, (g and 
h) Spectral estimate and energy distribution of normally 
functioning mitral prostheses. 

tic and mitral bioprosthetic heart valves. Such a system 
would be non-invasive, passive, atraumatic and accu-
rate, detecting impending valvular malfunctions, dys-
functions and degenerations. 
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Appendix B 

Personal Communication 

The following is an email message received from Professor T. E. Posch of the Hughes Aircraft 

Company in the United States. 

From: 0001913@AMEDEN@EDEN 
Author: Posch, Theodore E 

To: SMTPGATE 
Created: II 

Time: 
Subject: RE: Heart Sound Information 

To : EDEN::SSW::SMTPGATE:RB2  
Date: 8-DEC-1993 11:25:17.00 

Dear Rajan, 

I received your wonderful letter regarding what you and your group are doing 
in the area of phonocardiograms, and your e-mail of 11/15. 

We will be doing a 100 patient case load at Brooke Army Medical Center for t. 
valve study next year. We will be using many -F distributions for the stud 
including the spectrogram, the Zamogram, the binomial, and some positive 
time-frequency distributions. 

Thank-you for your paper on the STFT and wavelet analysis approach. The pap 
looks encouraging to us since in the time-frequency plane we have obtained 
similar results. What is the time resolution and frequency resolution that v 
are using in your analysis. We have been analyzing our data using 4 msec. 
time resolution, and 1 Hz. frequency resloution. In the future I will be 
sending you some of our results and color print outs. 

Thank-you for your kind reply to our conversations and I look forward to 
hearing from you in the future. 

Best regards, 

Ted Posch 
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