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Abstract 

The use of spectral analysis of heart sounds has been found to be an effective method for detect-
ing different valvular diseases, monitoring the condition of prosthetic heart valves and studying 
the mechanism of heart action. In this context, the method of analysis is of crucial importance 
because diagnostic criteria depend on the accuracy of estimating the spectrum of heart sounds. 
The research detailed in this thesis investigates the performance of several advanced signal 
processing techniques when analysing heart sounds, and investigates the feasibility of such a 
method for monitoring the condition of bioprosthetic heart valves. 
A data-acquisition system was designed and developed which records and digitises heart sounds 
in a wide variety of cases ranging from sounds produced by native heart valves to mechanical 
prosthetic heart valves. Heart sounds were recorded from more than 150 patients including sub-
jects with normal and abnormal native, bioprosthetic, and mechanical prosthetic heart valves. 
The acquired sounds were pre-processed in order to extract the signal of interest. Various 
spectral estimation techniques were investigated with a view to assessing the performance and 
suitability of these methods when analysing the first and second heart sounds. The performance 
of the following methods is analysed: the classical Fourier transform, autoregressive modelling 
based on two different approaches, autoregressive-moving average modelling, and Prony's spec-
tral method. 
In general, it was found that all parametric methods based on the singular value decomposi-
tion technique produce a more accurate spectral representation than conventional methods (i.e. 
the Fourier transform and autoregressive modelling) in terms of spectral resolution. Among 
these, Prony's method is the best. In addition a modified forward-backward overdetermined 
Prony's algorithm is proposed for analysing heart sounds which produces an improvement of 
more than 10% over previous methods in terms of normalised mean-square error. Furthermore, 
a new method for estimating the model order is proposed for the case of heart sounds based 
on the distribution of the eigenvalues of the data matrix. Five parameters are used to describe 
the spectral composition of heart sounds: the distribution of the number of frequency com-
ponents, the distribution of the amplitudes of frequency components, the distribution of the 
energy of frequency components, the frequency of the largest amplitude component, and the 
frequency of the largest energy component. Results show that the relative distribution of the 
amplitudes of spectral components is strongly related to the functioning of the heart valves, 
whereas the number of frequency components and their relative energy are more dependent on 
the characteristics of lung-thorax system. Clear differences have been found with respect to 
the distribution of amplitude of the frequency components for different kinds of heart valves 
and amongst the normal and malfunctioning cases of the same valve. The diagnostic potential 
of spectral analysis combined with pattern classification methods is investigated for the case 
of Carpentier-Edwards bioprosthetic valves implanted in the aortic position. The structure 
presented in this thesis is based on the combination of a modified overdetermined forward-
backward Prony's method combined with an adaptive single layer perceptron classifier. Results 
show 100% correct classification of the normal and malfunctioning cases of Carpentier-Edwards 
bioprosthesis for the investigated patient population. It is believed that this high accuracy in 
correct classification can mostly be attributed to the accurate representation of the information 
contained in heart sounds by the modified forward-backward overdetermined Prony's method. 
Thus, the proposition of this thesis is that when the appropriate signal processing and classific-
ation methods are used to analyse heart sounds, the diagnostic potential of spectral phonocar-
diography can be exploited with a high degree of success. In the long term a larger population 
of patients with implanted Carpentier-Edwards bioprosthesis is needed in order to validate the 
clinical use of the method. 



Declaration of originality 

I hereby declare that this thesis and the work reported herein were corn-

posed and originated entirely by myself, in the Department of Electrical 

Engineering at the University of Edinburgh. 



Acknowledgements 

Many people deserve thanks for their guidance and support throughout this research. In 

particular, I wish to express my sincere gratitude to Dr. Edward McDonnell, without 

whose insight and encouragement this work would not have been possible. Also, to 

Professor Peter Grant who has been a constant source of support throughout the course 

of this work, I am especially indebted. 

There are numerous other members of the Signal Processing Group who I would like 

to thank. Foremost among these are Mr. Paul Bentley and Dr. Rajan Bedi, for their 

assistance in the recording of heart sounds. Special thanks must also go to my good 

friend, Dr. lain Scott, for his useful comments during the writing up of this thesis. 

I would also like to thank the Cardiovascular Research Unit at the University of Ed-

inburgh, The Royal Infirmary of Edinburgh and the Astley Hospital in Edinburgh for 

providing access to subjects with implanted prosthetic heart valves and recording ven-

ues. In particular, I wish to thank Professor Keith Fox, Dr. Peter Bloomfield, Dr. Ian 

Todd, Mrs. Ann Colthart and the staff at both hospitals for their kind cooperation. 

Finally, I should like to thank The University of Edinburgh, the European Union, and 

the British Overseas Research Scholarship Committee for awarding me the financial 

support to carry out this research. 

1!] 



Contents 

List of Figures 	 vi 

List of Tables 	 ix 

Abbreviations 	 xii 

List of principal symbols 	 xv 

Glossary of Medical Terms 	 xvii 

1 Introduction 	 1 

	

1.1 	Introduction ..................................1 

1.1.1 	Biomedical signal processing 	....................2 

1.2 Evaluation of prosthetic heart valves ....................3 

1.2.1 	Thesis organization ..........................6 

2 Spectral Phonocardiography 	 9 

	

2.1 	Introduction ..................................9 

	

2.2 	Phonocardiography ..............................9 

2.3 Relationship between heart sounds and valve motion ...........11 

	

2.4 	Prosthetic heart valves ............................13 

2.4.1 	Mechanical prosthetic heart valves .................13 

2.4.2 	Bioprosthetic heart valves ......................15 

2.5 Spectral analysis of heart valve sounds ...................15 

	

2.6 	Summary and conclusion 	..........................19 

3 Data Acquisition and Conditioning of the Phonocardiographic Signal 20 

3.1 Design and development of the data acquisition system ..........20 

3.1.1 	Analogue preprocessing .......................22 

3.1.2 	Phonocardiographic transducer ...................25 

	

3.2 	Recording protocol ...............................28 

	

3.3 	Patient population ..............................30 

3.4 Phonocardiogram preprocessing .......................31 

	

3.5 	Conclusion 	..................................36 

ff 



Contents 

4 	Spectral Analysis Techniques 37 

4.1 Introduction 	.................................. 37 

4.2 Power spectrum estimation 	......................... 38 

4.3 Nonparametric methods of PSD estimation 	................ 38 

4.4 Parametric spectral estimation techniques 	................. 40 

4.5 Autoregressive spectral analysis 	....................... 42 

4.5.1 	The Burg algorithm 	......................... 43 

4.6 SVD-based techniques 	............................ 45 

4.7 Sinusoid subspace identification 	....................... 47 

4.8 Autoregressive moving average modelling 	................. 48 

4.9 Prony's method 	................................ 52 

4.9.1 	MFBPM algorithm .......................... 53 

4.10 Model order selection criteria ........................ 58 

4.11 A numerical example 	............................. 59 

4.12 Summary and conclusion 	.......................... 63 

5 Application of Spectral Analysis Methods to PCG Signals 	 65 

	

5.1 	Introduction ..................................65 

	

5.2 	Modelling of Si and S2 ............................66 

5.3 Performance of different spectral methods when applied to analysis of 
Sland S2 	....................................76 

5.3.1 	Performance of the FFT .......................76 

5.3.2 	Performance of AR estimator .................... 77 

5.3.3 Performance of SVD-based techniques ...............78 

	

5.4 	Model order selection .............................82 

	

5.5 	Conclusion 	..................................85 

6 	Spectral Characteristics of PCG Signals 87 

6.1 	Introduction 	.................................. 87 

6.2 	Signal 	parameters ............................... 88 

6.3 	Difference in spectra before and after mechanical heart valve implantation 89 

6.3.1 	Model of the system 	......................... 90 

6.3.2 	Spectral characteristics of the first heart sound 	.......... 91 

6.3.3 	Spectral characteristics of second heart sound ........... 96 

6.3.4 	Difference in spectral components between Si and S2 	...... 98 

6.4 	The impact of prosthetic heart valve type on the spectral composition 
of Si 	and 	S2 .................................. 100 

6.4.1 	Differences in spectral composition between monostruct Bjork- 
Shiley and Carbomedics valves implanted in the aortic position 102 

iv 



Contents 

6.4.2 Differences in spectral composition between monostruct Bjork-
Shiley and Starr-Edwards valves implanted in the mitral position 106 

6.5 Differences in spectral composition between normal and malfunctioning 
Carpentier-Ed wardsbioprosthetic heart valves in the aortic position . 	109 

6.6 	Summary and conclusion 	..........................113 

7 Classification of Normal and Malfuntioning Carp e nt ier- Edwards Biopros- 
thetic Valves Implanted in the Aortic Position 115 

7.1 Introduction 	.................................. 115 

7.2 Adaptive single layer perception 	...................... 116 

7.3 Functional classification of bioprosthetic valves 	.............. 121 

7.4 Conclusion 	.................................. 123 

8 Conclusions 	 124 

	

8.1 	Introduction ..................................124 

	

8.2 	Achievements .................................124 

	

8.3 	Future work ..................................129 

References 	 132 

Appendix A: Data Records 	 147 

Appendix B: Authors publications 	 153 

V 



Chapter 2: Spectral Phonocardiography 

prosthetic heart valve. 

I igu re 2.2: 	t ar-Ldvard iru.tIii ic heart valve. 

The main advantages of the tilting disc prosthesis over the caged ball valve are the ease 

of insertion in the aortic position, the narrow sewing ring, and the absence of a pro-

truding cage which is particularly helpful to the surgeon when working in a small aortic 

root or small-volume left ventricle. Nevertheless, the reported incidence of mechanical 

malfunction of implants in the mitral position has been higher with disc valves than 

with bail valves [48]. 

Although a standardised procedure has not yet been developed for the determination 

of the functional characteristics of valves, some general characteristics for mechanical 

prostheses can be derived: 

. The number of MPHV implants is much higher nowadays compared with biopros-

thetic implants. 

• The main advantage of all MPHV is that they have an excellent record of dur-

ability: more than 20 years in the case of caged—ball valves. However, patients 

with any mechanical prostheses, regardless of design or site of placement, require 

long-term anticoagulation because of the incidence of thromboembolism [49-51]. 

The incidence of thromboembolism tends to be slightly higher for prostheses in 

the mitral position; the reported incidence of mechanical malfunction of mitral 

valves has been higher with disc valves [48], thrombosis in the tricuspid position 

is quite high, and for this reason a bioprosthesis is preferred in this position. 

• Mechanical failure is another well-known complication of these valves. Whether 

it is a change in ball characteristics leading to ball escape in ball valves, leaflet es- 
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Chapter 2: Spectral Phonocardiography 

cape in bileaflet valves or strut fracture in tilting disc valves, these complications 

may causes acute severe heart failure associated with instantaneous death espe-

cially in the aortic position. However, in the mitral position mechanical failure is 

compatible with life for several hours [51-54]. 

• Ischemic stroke in patients with MPHV is often considered to result in a high rate 

of mortality and morbidity. For this reason these types of valves are not recom-

mended for elderly patients, since this group of patients is known to experience 

more difficulties with anticoagulation therapy. 

2.4.2 Bioprosthetic heart valves 

In a search for a solution to the thromboembolic complications of MPHV, prosthetic 

heart valves constructed from biological tissue were developed. Carpentier- Edwards

porcine xenograft is most commonly used among the bioprosthetic heart valves. The 

valve is specially treated so that they not only become tougher and more resistant to 

wear, but are also rendered incapable of causing rejection by the human body. 

However, despite recent improvements in tissue fixation and preservation techniques, 

tissue deterioration ultimately leading to valve failure is a major problem associated 

with the operation of the Carpentier-Edwards biprosthesis. Bioprosthetic valves are 

less durable than mechanical valves because the valve leaflets begin to degenerate after 

being implanted for 5 years or more. Therefore a further follow-up operation is needed 

which carries an operative mortality of more than 10% in many centres [53,55]. 

Regarding these problems, attention is being focussed on techniques for early detection 

of valvular malfunction. However, detecting abnormal function of a valve can be diffi-

cult because even a properly functioning prosthetic valve may cause turbulent flow and 

have some degree of stenosis and regurgitation. Moreover, significant valve problems 

may not cause noticeable haemodynamic changes until later, or in the worst case, until 

sudden catastrophic failure occurs. 

2.5 Spectral analysis of heart valve sounds 

Work using SPCC began in the early 1970s. An early example of SPCG was published 

by Kingsley [56] followed by Yoganathan et al [30,31], Iwata et al [27], and Hearn et 
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Chapter 2: Spectral Ph on o cardiography 

al [26]. In the early 1980s Stein et al [32,42] and Durand et al [20,57] analysed the 

closing sounds produced by prosthetic heart valves. 

These early studies showed the improvement that digital signal processing methods 

could provide over analogue-based techniques [56,58-60] in the investigation of the 

origin of heart sounds and the diagnostic potential of phonocardiography. 

With respect to native heart valves, several studies have been conducted in order to 

investigate the relationship between heart valve motion and the spectral composition of 

the respective heart sound [24-31, 61, 62]. These studies have shown that the spectral 

signature of Si is composed of peaks in the low frequency range (10 to 50 Hz), medium 

frequency range (50 to 140 Hz), and sometimes even in frequencies greater than 300 Hz. 

In an attempt to relate spectral components to heart valve motion it was suggested that 

the frequency components up to 50 Hz are caused by the ventricular vibrations [26], 

whereas the peaks in the medium frequency range are related to the closure of the 

mitral heart valves. In the case of S2, it was found that S2 has more high-frequency 

components than Si [31]. The spectrum of S2 was observed to contain spectral peaks in 

the low (10-80 Hz), medium (80-220 Hz), and high-frequency ranges (220-400 Hz). From 

the power spectrum produced by the Fast Fourier transform (FFT), it was shown that 

S2 contains two to three peaks and the dominant peak was located somewhere between 

30-70 Hz. It has also been shown that the aortic valve size parameters correlate best 

with the spectral energy in the range 120-140 Hz [62]. This suggested that frequencies 

ranging between 120-140 Hz should be related to the condition of the aortic heart valve. 

Computer programs have also been developed for automated classification of cardiac 

diseases based on frequency domain features of PCG signals along with time domain 

information [29, 61, 63]. These techniques make use of one of the linear classification 

techniques such as discriminant methods or other linear classifiers using parameters of 

linear prediction method. 

Regarding MPHV, two categories of studies can be distinguished: in vitro [17,64-66] 

and in vivo [48, 56, 58, 67-72]. Studies in vitro have allowed the study of fluid flow 

through prosthetic valves, measurements of pressure drop, reflux volume, velocity pro-

files and turbulence. They also give information about the design, size, and orientation 

of implantation on the sound made by a valve in a closely controlled dynamic state. 

From the findings of frequency characterisation these studies have shown that the fre-

quency spectra of sounds produced by MPHV reach more than 15 kHz [65] and with the 
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simulation of thrombosis not only does the intensity of higher frequency components 

drop, but, even more, a shift of energy from the higher frequency components to the 

lower frequencies becomes evident [64]. Information provided by these studies improves 

the understanding of results obtained from the in vivo studies, which are of crucial 

importance because they are directly related to the actual function of the prosthetic 

heart valve, thus they give a good understanding of the condition of the patient. 

In vivo closing sounds of MPHV in the mitral and aortic position have been analysed 

by several investigators [48,56,58,67-72]. The conclusion of these studies is that: due 

to the fact that the strut and ring are composed of hard materials which produce 

higher-frequency components than the valvular sound of the natural heart, MPHV 

contain higher frequencies than those of the natural heart valves, and in the case of 

ball variance or thrombosis, the high frequency components decrease in the very early 

stages after implantation. The adhesion of thrombosis onto the prosthetic valves may 

interfere with high-frequency components because of their buffering effect or may de-

crease the natural frequency of the material of the prosthetic valve. Kagawa et al [67] 

have reported that the normalised maximum frequency (NMF) of the power spectrum, 

which is defined as the frequency component occurring at the -30 dB level relative to 

the strongest frequency component, decreases during the post-operative course with 

thrombosis. 

Koymen et al. used another approach to detect malfunction of MPHV [68-71]. They 

suggested that the anatomy of the thorax plays the most important factor in the power 

distribution of the spectral components associated with Si and S2. This was based on 

the fact that the frequencies of the two major resonance modes, between 200-600 Hz, 

are not different in patient groups implanted for up to 32 months in the post-operative 

period. However, the energy ratio of the higher resonance mode to that of the lower 

resonance mode decreases during the postoperative course with the accumulation of 

thrombus. 

In 1987, Stein et al [54] evaluated in vitro the potential of using spectral analysis of 

the opening sound produced by Bjork-Shiley convexo-concave valve as a non-invasive 

indicator of strut fracture. They found a clear difference of the dominant frequency 

between the normal and the malfunctioning case. This work was extended for the in 

vivo case by Durand et al [79] and clear differences were also observed between spectral 

composition of normally and malfunctioning cases. 
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Several studies were also conducted by different authors to investigate the spectral sig-

nature of the bioprosthetic heart valves either in the mitral or aortic position [10, 32,37, 

42, 57, 73-771. Degenerated calcified mitral and aortic bioprosthetic heart valves were 

characterised either by mean dominant frequencies [32,77] or feature vectors compris-

ing the two most dominant frequencies [10]. The presence of high frequency compon-

ents, i.e. greater than 400 Hz, were observed in the case of stiffening lonescu-Shiley 

bioprosthetic heart valves. Bayesian classifiers were extensively used to evaluate the 

diagnostic potential of spectral features derived from sounds produced by fifty-seven 

normally functioning and forty-nine degenerated Hancock porcine bioprostheses [78]. 

Results show that the best performance was above 94% [78]. 

Although a lot of work has been done regarding the SPCG, it must be emphasised that 

most of these studies make use of the FFT [48,56,58,67,72,79] or autoregressive model-

ling [62,80], which, as will be shown later in this thesis, are not appropriate techniques 

to represent accurately the spectral composition of Si and S2. In this context, the 

availability of the spectral investigations presented in the above-mentioned works re-

quires further investigations especially with regard to the accuracy of the method used 

to represent Si and S2. This accurate representation of Si and S2 is of paramount 

importance when one bears in mind the controversies still present about the origin of 

heart sounds and the fact that the diagnostic potential of the SPCG method is, almost, 

entirely dependent on the spectral characteristics presented by the power spectrum. 

In an attempt to overcome the inherent limitation of the FFT, several autoregressive 

moving average modelling algorithms [10, 37, 57, 76] and Prony's method [68-71] were 

used by other investigatiors. With regard to the accuracy of representation of Si and 

S2, it was found that no single spectral estimation technique can estimate accurately 

the two most dominant peaks of the spectrum produced by bioprosthesis [57,74]. 

From a signal processing point of view, there are two main drawbacks with the studies 

based on parametric methods: (a) the criteria used to select the model order, and (b) 

a neglect of certain specific characteristics of Si and S2 such as their transient nature. 

It must be said that not only does the model order vary widely from one study to 

another, but the same model order has always been used to analyse data from different 

patients. The discrepancy in the latter case consists in the fact that while some of these 

studies [68-71] are assuming that the anatomy of thorax is the most important factor in 

the distribution of the power spectrum, the same model order has always been used to 

analyse data from subjects with totally different thorax sizes. As a result of individual 
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characteristics of the thorax in different subjects, one would expect that the model 

order should be varied from one subject to another. One possible way to investigate 

the impact of the thorax system on the distribution of the power spectrum would have 

been to compare the power spectrum in the case of patients who underwent heart valve 

surgery before and after the operation, especially when a MPHV was implanted. In 

this method, the heart valve is the only factor that has changed after surgery and the 

lung-thorax system remains more or less the same in both cases. Thus the differences in 

the spectrum before and after surgery can give useful information regarding the impact 

of the lung-thorax system on the number, location, and the relative energy of spectral 

components in heart sounds. 

The use of non-reliable estimators for classifying the condition of prosthetic heart valves 

is another drawback of some of these studies. For instance in the studies using the NMF 

as a criterion for detecting the malfunctioning of MPHV, it is not clear whether the 

NMF has decreased because the discrete frequency values have decreased, or whether 

the resonant frequencies have remained constant but the energies of higher frequency 

modes have declined due to the smearing of the initially impulsive excitation of the 

valve, as the thrombosis develops [69]. An even more serious problem is that NMF 

does not seem to be a stable estimator, because different values for this parameter have 

been reported in different studies [24,26,56,58-60,67], even for the same kind of valve. 

This is related to the fact that NMF is very dependent on analogue preprocessing and 

the monitoring technique used. 

In the overall context, further investigations are required to understand better the 

impact of the lung-thorax system and heart valves on the spectral composition of the 

externally recorded PCG and the reliability of spectral parameters used in diagnostic 

methods of monitoring the condition of cardiac system. 

2.6 Summary and conclusion 

This chapter described the area of SPCG by first introducing the relationship between 

heart valve motion and PCG signals. A brief review of prosthetic heart valves, their 

advantages and disadvantages was also given. The chapter concluded by presenting a 

review of the most important investigations regarding the spectral composition of Si 

and S2 for the cases of native and prosthetic heart valves. 

19 



Chapter 3 

Data Acquisition and 

Conditioning of the 

Phonocardiographic Signal 

This chapter discusses the design and development of a data-acquisition system for di-

gitising and recording PCG signals. A description will be given of the factors taken into 

consideration in the design in particular the frequency bandwidth of the recording sys-

tem, cardiac transducers, and PCG preamplifier and anti-aliasing filters. A description 

of the procedure for recording PCG signals from patients is also given. This chapter 

also provides a breakdown of the population of subjects investigated in this research 

and the pre-processing analysis of the data. 

3.1 Design and development of the data acquisition sys-

tem 

The procedure for recording, processing and analysing the PCC used in this thesis is 

illustrated in Figure 3.1. This procedure can be divided into two main parts; data 

collection and data analysis. Data collection is primarily concerned with the design 

of a hardware systems for PCG capture and the recording procedure. Whereas data 

analysis includes all the stages of numerical analysis. This procedure can further be 

divided into two main steps; (a) the investigation of the performance of digital signal 

processing methods when applied to the analysis of the PCG signal and justifying results 

obtained, and (b) investigating the potential of classification techniques for automatic 

detection of different classes of heart valve malfunctions. 
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MICROPHONE 
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Figure 3.1: Block diagram of the data recording and processing system used to analyse Si 

and S2. 

During the design of the recording system a number of significant hardware and software 

design considerations were taken into account: 

(i) The need for the complete system to be portable to facilitate the transportation 
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of equipment between recording venues. 

The need for operation from both a standard mains electricity supply as well as 

a battery. 

The need for the system to provide a full graphical display of the signals being 

acquired before and during the recording of sounds. 

The need for interactive recording software in order to locate the optimum posi-

tion in which to place the transducer during the recording procedure. 

The need for a fully flexible recording system in order to record the PCG signal in 

a very wide variety of cases ranging from sounds produced by native heart valves 

to MPHV. 

To fulfil these design criteria an Elonex LT-320X laptop personal computer and a 

twelve-bit ADC 42 input/output expansion card marketed by Blue Chip Technology 

were selected. In total, the data acquisition system comprises three items of hardware: a 

portable computer fitted with an analogue-to-digital converter, the phonocardiographic 

transducer, and a small box containing some conditioning circuitry, i.e. analogue pre-

processing. 

3.1.1 Analogue preprocessing 

The aim of this stage is to emphasise those frequencies which are associated with 

opening and closure of the heart valves under consideration, and to de-emphasise those 

frequencies which do not arise from heart valve motion. 

As was described in the previous chapter, the frequency composition of the closing 

sounds produced by native and bioprosthetic heart valves is quite different from sounds 

produced by MPHV in terms of frequency component distribution and respective in-

tensity levels. The majority of studies have shown that for the case of native heart valves 

the frequency components of Si and S2 lie below 1 kHz [24,25,28,30,31]. However, 

there are indications that in some cardiac diseases the spectral composition can extend 

up to 1.5 kHz [23,81]. The same can also be said for the case of bioprosthetic heart 

valves [20,37]. Whereas in the case of MPHV higher frequency components are to be 

expected. In some cases [65] frequencies more than 10 kHz have been reported to be 

present in the spectral composition of Si and S2 produced by the closure of MPHV 
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in vivo. As the sensitivity of the available kinds of phonocardiographic transducers, 

which remains the most limiting component of the recording system, in these bands is 

different, it was decided to design a system with two separate recording channels. The 

first channel is to record heart sounds produced by the closure of native heart valves 

and bioprosthesis, and the second channel records MPHV. This allows a high-quality 

recording of these signals with the proper sensitivity for all the subject cases. 

The cut-off frequency of the first channel was selected to be 2 kHz. It must be said that 

the data from bioprosthetic heart valve cases investigated in this thesis were recorded 

with a system described by Bedi [82] because they were collected prior to use of the 

recording system presented here. The only difference between the system proposed 

here with that used in Bedi's system [82] is the cut-off frequency of the channel, i.e. 

in Bedi's system [82] the cut-off frequency of the anti-aliasing filter is 1 kHz instead 

of 2 kHz. The reason for the choice of a higher cut-off frequency was to obtain the 

full benefit of the transducer characteristics and to investigate if there are frequency 

components between 1 kHz and 2 kHz for the cases of bioprosthetic heart valves and 

native heart valves. 

The second channel in the recording system is used to record PCG signals from MPHV. 

In this case two factors decide the bandwidth of these recordings: (a) the spectrum of 

the sounds produced by mechanical prostheses, and (b) the low—pass filter characteristic 

of the lung-thorax system [30,38]. According to studies in vitro, the spectrum of sounds 

produced by MPHV exists up to and above 10 kHz [65] with sound intensity much 

higher than that of natural valves. However, it was decided that the cut-off frequency 

of the second channel should be 10 kHz. This decision was made because the frequency 

components above 10 kHz are relatively weak in intensity and the lung-thorax system 

further attenuates these frequencies. Furthermore the frequencies above 10 kHz do not 

yield information about valve malfunctioning [64,67]. 

With respect to the low frequency components of the PCC signals, it has been shown 

that the peak frequencies in the lower part of the spectrum (10-50 Hz) are related to 

ventricular vibrations [26]. Therefore, a high pass filter with cut-off frequency of 50 Hz 

was used in order to ensure that the low-frequency signals would not dominate the 

high-frequency signals. As a result of the above mentioned considerations, the analogue 

preprocessing block consists of a third-order high-pass Butterworth filter with a cutoff 

frequency of 50 Hz, two alternative sixth-order low-pass filters with respective cutoff 
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frequencies of 2 kHz and 10 kHz, and a variable PCG pre-amplifier. The PCG pre-

amplifier is used to amplify the output of the phonocardiographic transducer to occupy 

the input voltage range of the ADC converter, which is +5V. 

The layout of the recording system is shown in Figure 3.2. Lead II of ECG signal was 

also recorded to provide a time-reference for the automated detection of the beginning 

of each cardiac cycle. A pre-amplifier is also provided for the lead II of the ECG signal. 

2 

Low-Pass 

PCG 

FilterzJ lL 
PCG 	 Filter Mic2 

Jfi 
H' '  > 

Mic 1 	High-Pass H he-amplifier 	2ADC (50 Hz)  

Low-Pass 
Filter 

ECG lead II 	 ECG 
	

(10kHz) 

Pre-amplifier 

Figure 3.2: 	The layout of the PCG analogue preprocessing used in this thesis. 

The design of analogue filters was based on a high-performance, low-noise, low-power 

operational amplifier, the TL074 manufactured by Texas Instruments. An instrument-

ation amplifier, Burr-Brown (OPA 2111KP), was used for the pre-amplifiers. Figure 3.3 

and Figure 3.4 gives the measured amplitude and phase response of both channels. 
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Figure 3.3: 	The measured amplitude-phase response of the first channel. 

From these two figures, it can be seen that both channels have a fiat amplitude re- 

sponse and a linear phase characteristic inside the frequency bands of interest, which 
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are respectively 50-2000 Hz and 50-10000 Hz. The EGG and PCG signals were then 

digitised to 12-bits at a sampling rate of 5 kHz for the first channel and 20 kHz for the 

second one. 
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Figure 3.4: 	The measured amplitude-phase response of the second channel 

3.1.2 Phono cardiographic transducer 

In PGG-y a conversion of mechanical vibration into an electrical signal is required. 

This is accomplished by a vibration pick-up, the so-called microphone. A variety of 

microphones are now available for recording heart sounds in either a clinical or experi-

mental context. Two major types of phonocardiographic transducers are commercially 

available: air-coupled and direct coupled devices [83]. Air-coupled microphones are 

characterised by a cavity which is placed at the appropriate heart sound recording site 

on the chest surface. The air in the closed cavity acts as a transmission medium between 

the chest surface and a membrane coupled to a mechanical-electrical transducing device. 

Direct-coupled transducers, on the other hand, such as contact microphones, have an 

area which is directly applied to the chest surface making contact with a transducing 

element [21, 85, 86]. Both types of cardiac microphone use one of several transducing 

elements, e.g. piezoelectric, moving-coil, capacitor. 

The principal advantages of the air-coupled microphones are the ease with which they 

can be calibrated, and a fiat frequency characteristic over a very wide band, i.e. more 

than 100 kHz. However, they suffer from the effect of ambient noise on the recorded 

signal. In contrast to air-coupled microphones, contact microphones have a consider-

ably lower sensitivity to ambient noise and better low frequency (i.e. up to 2-3 kHz) 

response. Moreover, contact microphones eliminate the existence of a mismatch im-

pedance between the lung-thorax system which is present in the case of an air-coupled 
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microphone. Schwartz [87] has shown that only 1% of the total energy of the PCG sig-

nal is picked up by air-coupled microphones. But unfortunately, contact microphones 

are difficult to calibrate and as a results of the static force required to achieve a good 

coupling they do not faithfully record frequencies over 2-3 kHz. From the above men-

tioned consideration, it can be seen that contact microphones outperform air-coupled 

microphones below 2 kHz. Above 2 kHz, due to limitations in response of contact 

microphones, air-coupled microphones are necessary for accurate PCG signal capture. 

In order to overcome this problem, two different microphones were chosen to be used 

in this thesis. 

A Hewlett-Packard (21050A) contact microphone, which has a very flat frequency re-

sponse for frequencies up to 2 kHz [83,85], was used to obtain the PCG recording in 

channel one, which is mainly used for recording of PCG signals in the case of native 

and bioprosthetic valves. 

As the second channel is designed for recording of sounds produced by MPHV which 

contains frequency components up to 10 kHz, an air-coupled microphone is needed 

to perform the recording in this case. The techniques used for recording heart sounds 

using air microphones can be divided into two categories: either recording the sounds at 

a distance from the chest [72], or using some mechanical construction to ensure better 

transmission of heart sounds thereby reducing the ambient noise [88]. Since the latter 

case provides a more robust technique for reducing the effect of the ambient noise on the 

PCG signal, it was decided to implement that one. In this case, the performance of the 

recording system is not only determined by the electrical properties of the transducing 

element incorporated into the microphone but also by the mechanical construction 

which houses the transducing element as well as the manner in which microphone is 

applied to the chest. These factors will influence the frequency response of the total 

system. Suzumura and Ikegawa [88] have analysed the characteristics of several types of 

air cavities for a phonocardiographic microphone and the sensitivity of the microphone 

to room noise. They found that the vibrations of the chest wall as a result of room 

noise were the dominant factor in conducting the room noise to the microphone. The 

mechanical impedance of the microphone and cavity depth determine the dip frequency, 

which decreases as the cavity depth increases. Verburgh and Van Vollenhoven [21] 

summarised important characteristics for air microphones in cylindrical cavities. A 

description of these microphones is made by introducing the concepts of mechanical 

or acoustical impedance. The acoustical impedance of the thorax surface is defined as 
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the mechanical impedance which can be measured at a certain site with an external 

unidirectional vibration source, perpendicular to the surface with a defined contact 

area [89]. The acoustic impedance (Z) of a material is equal to the product of its 

density (p) and the velocity of sound within it (c). The impedance seen by the skin of 

the cavity is given by [21]: 

- pSZicos(kl)+ipc sin(kl) 
- S pc cos(kl) + iSZ1 sin(kl) 

where: 
ZS  =acoustic impedance at the skin side 

S =area of cavity perpendicular to axis 

c =velocity of sound in air 

1 =length of the cavity 

w =angular frequency 

Z1 =acoustic impedance of the transducer 

p = air density 

k =wave number= = A 	c 

) =wavelength 

In a cylindrical cavity, resonance may occur for plane waves in the axial direction 

of the cavity and for cylindrical waves perpendicular to the axis. It has been found 

that for a cavity with length 1 cm and a diameter 3 cm the resonance mode occurs 

at 10 kHz which is at the upper frequency extreme of our second recording channel. 

Thus, a Knowles BL 1994 air-coupled microphone is used to record the PCG signal with 

channel two. This microphone has a fiat frequency response from 20 Hz to 10 kHz [84]. 

Direct contact between the microphone and the chest of the patient is avoided by using 

a cylindrical plastic 'housing' device with diameter 3 cm and height 1 cm. The overall 

mass of the microphone and 'housing' is 32 grams. The mass of the phonocardiographic 

transducer is an important parameter regarding the loading effect which is particularly 

severe for high frequencies [85,89]. However, it has been shown that for a total mass of 

air-coupled microphone less than 50 grams the loading effect has little impact on the 

recording sensitivity of high frequencies [83]. 

Taking into account the better sensitivity characteristics of the contact microphone 

in the lower part of the spectrum than the air-microphones, the recordings were also 

carried out with the Hewlett-Packard transducer even for MPHV. This results in a 

better recording of the FCC signal in the case of MPHV for frequencies up to 2 kHz. 

Furthermore, it has been demonstrated that in the case of the opening sounds produced 

by the Bjork-Shiley convexo-concave valve, the frequency analysis of the lower region of 

the spectrum (i.e. up to 1 kHz) is a promising region in which to detect leg separation 

of the valve [79]. In this context, it would be of interest to investigate more fully the 
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lower region of the spectrum (i.e. up to 2 kHz) of the closing sounds produced by the 

MY I a so MA 

3.2 Recording protocol 
Recordings were performed with the subjects supine and with the patient's head elev-

ated. In addition to greatly facilitating the recording of sounds, a greater appreciation 

of heart sounds is obtained with the subject in this position [49]. The microphones 

were placed on the patient's chest using a retaining rubber belt to ensure that the 

transducer remained in the ideal position during the recording. 

As it was described earlier heart sounds Si and S2 are caused by vibration of the 

whole cardiovascular system triggered by pressure gradients. However, there are some 

locations on the chest where the contribution of valve movements is the 'primary 

source' of acoustic energy and these locations are called the auscultatory areas, namely: 

the second right interspace, often called the 'aortic' area; the second left interspace 

or'pulmonary' area; the lower left sternal edge or 'tricuspid' area; and the cardi-

oapex or the 'mitral' area. As the interest in this research is concentrated on Si and 

S2, the recordings were carried out with the microphone placed in the mitral and the 

aortic positions. Figure 3.5 illustrates the locations of these recording sites. 

Aortic Area 

Mitral area 

Figure 3.5: 	Recording area of PCG signals. 

The recording software package was written in the 'Turbo C' language for DOS systems. 

It allows the timebase and amplitude variables of both channels to be preset prior to 

recording. At the start of the recording, a tone is emitted by the computer. This is 

followed by a second tone later to indicate the end of sampling. A final-third tone is 

emitted after the acquired samples have been stored on disc. Figure 3.6 illustrates a 

typical example of the graphical display provided by the acquisition software during 

the recording stage using channel one with a sampling rate of 5 kHz. The top trace 

(channel i) shows an ECG signal, while the bottom trace (channel 2) shows a PCG 

signal. 
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A modified recording procedure was used in the case when channel two was used. As 

the sampling rate was 20 kHz, a real-time display of the PCG signal on the computer 

screen was not possible. The procedure adopted in this case was to find the best position 

for the phonocardiographic transducer by running the graphic display program with a 

sampling rate of 5 kHz. Then a fifteen-second recording at 20 kHz was stored on disc. 

In addition, an interactive manual program to aid the detection of Si and S2 was also 

written. The desired portion of the signal is selectable by the operator either by the 

mouse or the keyboard. The chosen portion is expanded automatically to full scale (the 

duration is also displayed), and is stored on the hard disk. 

The duration of the PCG recordings is another parameter which needs to be decided. It 

have been suggested [27] that a time of 5 seconds is sufficient to diagnose heart diseases 

from the PCG. However, based on the fact that spectral components of mechanical 

prostheses are much higher in frequency than those from normal native valves, and 

the SNR is low in the higher frequency part of the spectrum [90], the length of the 

recording time was increased to 15-20 cardiac cycles, which is approximately 12-16 

seconds, in order to reduce further the random effect of the ambient noise. Therefore 

all the recordings were carried out for this length of time. 

3.3 Patient population 

The population of subjects investigated for this thesis were chosen over a very wide 

range of subjects. These included subjects with normal and malfunctioning native 

heart valves as well as both types of prosthetic heart valves, i.e. bioprostheses and 

MPHV. 

All subjects with MPHV or bioprostheses were contacted who had undergone artificial 

heart valve implantation at The Royal Infirmary of Edinburgh between 1990 and 1992 

and these subjects were asked to attend a recording session at the Astley Ainslie Hos-

pital in Edinburgh. This involved first writing to the patients' physicians to confirm 

the subject's present state of health, and then directly to the subject. In total, more 

than 200 recordings were obtained from more than 150 different subjects. The condi-

tion of each prosthesis was diagnosed by a cardiologist with all patients undergoing a 

physical examination which included: assessing the symptomatic state of the subject at 
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the time of recording, auscultation, electrocardiography, chest X-rays and ultrasound 

echocardiography. 

The information regarding all the patients investigated in this thesis is given in appendix 

A. 

3.4 Phonocardiogram preprocessing 

Arising from the mechanical activity of the heart, the PCG signal can be seen as a 

composition of deterministic and non-deterministic components. As Si and S2 are as-

sumed to be generated under an identical set of hemodynamic conditions [25], they 

can be seen as a summation of deterministic transient signals with the random back-

ground noise such as thoracic muscular activity, respiratory sounds, ambient noise, 

and instrumentation noise. Therefore, to minimise the background noise interference 

on the acoustic signature of Si and S2, a time-averaging of multiple occurrences of 

the respective sounds is needed. As a result of this time—averaging the signal-to-noise 

ratio (SNR) is improved by (N-number of averages) [25, 38, 9i] and the begin-

ning point of each sound can be better determined [4]. Signal averaging may also be 

helpful in circumventing the difficulties caused by the beat-to-beat variation of heart 

sounds [20,25]. 

To extract an ensemble average of Si and S2 from the PCG, a technique based on 

coherent averaging was implemented.This technique is initiated by selecting a reference 

template of Si and S2 from each PCG record under investigation, locating the beginning 

of each cardiac cycle, and matching the reference template with similar successive 

occurrences, i.e. the other Si and S2 components within each of the remaining cardiac 

cycles. 

This process firstly requires the detection of the beginning of each cardiac cycle. There 

are several algorithms to accomplish this using either the spectral tracking of the PCG 

(27,29] or the time relationship between the ECG events (i.e. QRS complex) and the 

PCG [37,57]. The QRS complex is defined as three nodes of the ECG concurrent with 

ventricular depolarisation. As only one QRS complex occurs within each cardiac cycle, 

the starting point of this event can be used to locate the beginning of each cardiac 
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cycle. 

In this research detection of the QRS complex is achieved using an algorithm based on 

the amplitude and the first derivative of the ECG signal [93]. The threshold values are 

selected based on the morphological characteristics of ECG signals and the practical 

experience of several investigators [93-95]. 

Firstly, a threshold, MAX, is calculated as a function of the peak value of the ECG 

MAX = 0.4max(x[n]) 

where x[n] represents the EGG signal. The data is then rectified 

I x[n] 	if x[m]>O, 1 < n < N 
Xr[fl] = 

( —x[n] if x[n]<0 1<n.<N 

The rectified ECG is passed through a low-level clipper: 

I Xjfl] 
X rc[fl] = 

(MAX 

if x[n] > MAX 

if xr[n] < MAX 

1 < n < N 

1 < n < N 
(3.3) 

Then, the first derivative is calculated at each point of the clipped, rectified signal: 

Xd[fl] = Xrc[fl+ 1 ] 	Xrc[fl 	1] 	2< Ti <N1 	 (3.4) 

A QRS candidate occurs when xd[n] > 0.2. 

The second step in the computation of Si and S2 ensemble average consists in detecting 

every Si and S2 contained in the PCG signal. This process was achieved automatically 

using cross-correlation between the reference template of Si and S2 with the PCG 

signal. 

The cross-correlation function is a signal processing operation that provides a valuable 

tool for the comparison of two signals. As the template will always be of a shorter 

duration than the PCG, the cross-correlation of the PCG with Si or S2 for positive lag 

is defined to be [96]: 

(3.1) 

(3.2) 
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-{ 	i 11 x[n]y[n—l] 	for 0<l<N—M 	
(35) ~Xy

-  x[n]y[n—l] for N — M<1<N - 1 

where x[n] and y[n] represent the PCG and the template sound respectively. N and 

M represent the length of the PCG and the sound template respectively. 

As the amplitude of the PCG and the template do not affect the shape of the cross-

correlation estimate, the cross-correlation function is normalised to the range -1 to +1. 

This normalised cross-correlation estimate can be expressed as a percentage termed the 

Correlation Coefficient, where a normalised cross-correlation coefficient of +1 equals 

a perfect temporal match between two signal events. The normalised cross-correlation 

estimate of the PCG with the template j3[l] is defined to be: 

- ___________ 

- ________ 

(3.6) 

where 	[0] and 	are the autocorrelation estimates at zero lag of the PCG and 

the closing template sound respectively. 

Si or S2 contained in each cardiac cycle are selected from the greatest value of 'Cor-

relation Coefficient' between the reference template with each cardiac cycle. 

Following on from the detection of Si and S2 sounds, time-averaging is then performed 

on the collected Si and S2 sounds to produce respectively an ensemble average of 

first and an ensemble average of second heart sounds. Only sounds achieving a cross-

correlation coefficient of 80% or more were admitted into the ensemble average. The 

80% threshold value of cross-correlation coefficient was fixed in order to reject auto-

matically any artefact or large variations in sound morphology. 

Figure 3.7 and Figure 3.8 show the procedure of extracting an ensemble average Si and 

S2 respectively from a healthy subject. From Figure 3.7(d) and Figure 3.8(d) it can be 

shown that the cross-correlation coefficient between the reference template of Si and 

S2 with their successive occurrences is greater than 90% throughout the whole PCG 

recordings. This finding shows that Si and S2 have a very consistent temporal signature 

throughout the PCG and also suggests that Si and S2 represent a deterministic signal 

to a great extent. 
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3.5 Conclusion 

This chapter has investigated the design and development of a data-acquisition system 

to digitise and record the PCG signals in a wide variety of cases. 

After an investigation of the spectral characteristics of Si and S2 for the cases of native 

heart valves, MPHV, bioprosthetic heart valves, and the characteristics of phonocardio-

graphic transducers, it was decided to design a two-channel system. One of the channels 

of the system is used to record native heart valve sounds and the second channel is used 

to record higher frequencies generated by the operation of MPHV. This design results 

in a more sensitive data-recording system with the ability to cover a relatively extens-

ive band of the PCG signal. Moreover, it allows a more accurate investigation of the 

low-part of the spectrum for the case of MPHV, where the main part of the signal 

energy is believed to be found. Channel one has a frequency response from 50 Hz 

to 2 kHz and the second channel extends this upper frequency limit to iO kHz. The 

data acquisition system is based on a laptop computer and a small hardware box and 

provides a portable, high-quality, and easy-to-use system for the recording procedure. 

A semi-automatic technique is described for time-averaging Si and S2 sounds throughout 

the length of the recorded PCG signal. This procedure detects the beginning of each 

cardiac cycle based on a QRS detection algorithm and time alignment of sounds in-

cluded in the ensemble average is obtained using the cross-correlation method. This 

procedure provides a less noisy and better estimate of the temporal sound signature of 

Si and S2. 
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Chapter 4 

Spectral Analysis Techniques 

4.1 Introduction 

There are many mathematical transformations in common use in engineering and the 

physical sciences. The concept behind a transformation is that a function of one or more 

independent variables may be represented as a different but nevertheless equivalent 

function of a new set of variables. The main reason for performing a transformation is 

to improve the detectability of some aspects of the signal which are not easily detected 

in its original domain. 

In this context, the transformation of a signal from the temporal domain to its frequency-

domain representation is one of the most common examples of signal processing in ap-

plied science. The advent of fast, cheap computing power together with fast algorithms 

has made spectral analysis very popular. In biomedical engineering the use of spectral 

analysis often gives information about an underlying causal process from a knowledge 

of the frequency components contained in a particular signal. The spectrum may there-

fore give information which can be used for diagnostic purposes or for elucidation of 

physiological dynamics [97,98]. 

This chapter describes the spectral methods investigated in this research. The per-

formance of the following methods is analysed: the FFT, autoregressive modelling 

(AR) based on two different approaches: Burg algorithm (ARB) with four different 

types of weighting function and sinusoidal signal identification (SSI), several algorithms 

for autoregressive moving average modelling (ARMA), and Prony's spectral method. 

In addition a modified forward-backward overdetermined Prony's method is proposed 
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that, as it will be seen in the next chapter, is more precise in terms of the mean-least-

square-error than other versions of Prony's method for representing heart sounds. In 

this chapter the accuracy of the above mentioned methods is examined by applying 

them to simulated signals similar in nature to Si and S2. 

4.2 Power spectrum estimation 

The spectrum analysis of a random process is, in concept, not obtained directly from 

the process x(t) itself, but is based on knowledge of the autocorrelation function. The 

Wiener-Khintchin theorem [96] states that for a wide sense stationary random process, 

x(t), the power spectrum density (PSD), P(f),  is defined as the Fourier transform of 

the autocorrelation sequence, r[m] 

00 

P(f) = 	r[m]exp(— j2 fm) 	 (4.1) 
M=_00  

where 

r(r) = E [x (t + r)x*(t)] 	 (4.2) 

and E[.] is the statistical expectation operator. The PSD function has a Fourier series 

interpretation in which the autocorrelation lags plays the role of the Fourier coefficients. 

It therefore follows that these coefficients may be determined from the PSD function 

through the Fourier series coefficient integral expression. 

Two philosophically different families of PSD estimation methods may be identified 

in the literature namely: nonparametric and parametric methods [100]. Both these 

approaches are discussed below. 

4.3 Nonparametric methods of PSD estimation 

Nonparametric techniques, often called classical techniques, of spectral analysis utilise 

various combinations of the Fourier transform, windowing, and autocorrelation function 
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and make no assumption (other than stationarity) about the observed data sequence, 

hence the name nonparametric [99]. Classical spectral estimators fall into two cat-

egories: direct and indirect [104]. The PSD estimate based on the direct approach 

operates via a fast Fourier Transform (FFT) on the raw data to transform it to the 

frequency domain and produce the estimate. The direct approach is often known as the 

periodogram. Indirect methods first estimate the autocorrelation sequence and then 

transform it to the frequency domain-an application of the Wiener-Khintchin theorem. 

The indirect approach is often referred to as the correlogram. 

The periodogram is an estimate of a PSD made on the basis of the modulus squared 

of the Fourier transform and the simplest form is given by 

= T IX[k]12 
	

(4.3) 

where X[k] is the discrete Fourier transform (DFT) of the finite data sequence. The 

DFT is the name often given to the calculation of the Fourier series coefficients for a 

discrete signal which is either periodic or assumed to be periodic with a period equal to 

the length of the recording. Algebraically the forward and reverse DFT transformation 

for finite set of N signal samples, x[0], x[1],. . . , x[N - 1] are respectively expressed by: 

N-1 	 27r 
X[k] = 	x[n]exp(—jkn) 	 (4.4) 

1 N-1 2ir 
x[m] = 	X[k]exp(jkn-j -) 	 (4.5)

N 
 1: 

k=O 

The development of the FFT algorithms in 1960 by Cooley and Tukey [101], amongst 

others, gave a fast and efficient means by which the DFT could be evaluated. 

The correlogram estimates the PSD based on the estimated autocorrelatin coefficients 

of the signal which is assumed stationary, or more strictly ergodic. In this case the 

estimated PSD is given by 

2 Ni 	 2irI 
= 	[n]exp(—jkn j 	 (4.6)

N 
 1: 

where 	[n] is an estimated sequence of the autocorrelation lags. 
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These two approaches to spectral analysis are made computationally efficient by using 

the FFT, and both produces acceptable results for a large class of signals. In spite 

of these advantages, there are several performance limitations which are associated 

with the FFT approach [97-99]. The most significant limitation is that of frequency 

resolution, i.e., the ability to distinguish the spectral response of two or more closely—

spaced frequency components. The frequency resolution in Hertz is proportional to 

the reciprocal of the time duration in seconds of the signal event under analysis. A 

second limitation arises because of the implicit windowing of the data that occurs 

when processing with the FFT. Windowing manifests itself as 'leakage' in the spectral 

domain, i.e., energy in the main lobe of a spectral response 'leaks' into the sidelobes, 

obscuring and distorting other spectral responses that are present. Skilful selection of 

tapered data windows can reduce sidelobe leakage, but always at the expense of reduced 

resolution. 

These two performance limitations of the FFT approach are particularly troublesome 

when analysing short data records, as is often the case for heart sounds. It has been 

shown that Si and S2 are transient signals with sinusoidal components contaminated 

by noise and length 10-60 ms [20, 68]. Therefore the resolution of a FFT is of the order 

of 30-100 Hz. This poor resolution combined with the effect of noise often means that 

different peaks of Si and S2 cannot be correctly estimated. These drawbacks of the 

classical spectral analysis method has lead to the need for employing more accurate 

methods in the analysis of heart sounds. 

4.4 Parametric spectral estimation techniques 

In an attempt to alleviate the inherent limitations of the FFT approach to spectral 

analysis, many alternative spectral estimation procedures have been proposed. These 

alternatives, called parametric, model-based, data adaptive, modern, or high resolu-

tion methods, assume a generating model for the process, from which the spectrum is 

calculated [100]. The most recent methods are based on the linear algebraic concepts 

of sub-spaces associated with a data matrix or correlation matrix and have as a result 

been called 'sub-space' methods. All of these methods are fundamentally different from 

the classical methods in that they are not based on the Fourier transformation of the 

data sequence or its estimated correlation function. 
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The parametric methods considered in this thesis are based on modelling the data 

sequence (i.e. heart sounds) x(n) as the output of a linear system characterised by a 

rational system function of the form 

H(z) B(z) - 	
L0 b[k]z_' 

- A(z) 	1 + 	a[k]z _ c 
	 (4.7) 

where a[k] and b[k] are parameters describing the system and p and q are respectively 

the number of poles and zeros of the model. In (4.7) the A(z) and B(z) represent the 

z-transform of the AR branch and moving-average (MA) branch of an ARMA model. 

In PSD estimation, the input sequence is not observable. However, if the observed 

data are characterised as a stationary random process, then the input sequence is also 

assumed to be stationary random process. In such a case the PSD of the data is 

P(f) = IH(f)1 2  P(f) (4.8) 

where P (f) is the PSD of the input sequence and H (f) is the frequency response of 

the model. If the input signal is white, i.e. P(f)  has a constant variance, independent 

of frequency, which is equal to then the output PSD further simplifies to [99] 

P(f)= H(f)I 2 a (4.9) 

in which case the PSD is completely characterised by the amplitude response of the 

filter and the variance of the white noise. 

The parametric approach to spectral estimation can be divided into three steps. In step 

one, an appropriate parametric time-series model is selected to represent the measured 

data record. In step two, an estimate of the parameters of the model is made. In the 

final step, the estimated parameters are inserted into the theoretical power spectral 

density expression appropriate for that model. Figure 4.1 represents graphically the 

parametric spectral analysis [102]. The parametric methods are capable of obtaining 

stable spectra with very good resolution from a relatively small data length. The degree 

of improvement in resolution and spectral fidelity is determined by the appropriateness 

of the model selected and its ability to fit the measured data or auto-correlation se-

quence (either known or estimated from the data). 
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signal generation model 

spectral analysis 

Figure 4.1: 	Parametric spectral analysis; (a) signal generation model, (b) analysis filter. 

4.5 Autoregressive spectral analysis 

The most straightforward approach to parametric spectral estimation is to assume that 

the signal generating filter, H(z), is autoregressive in nature. This is the case when all 

the b[k] parameters in (4.7), except b[O] = 1, are zero. In this case the output signal is 

given by 

x[n] = w[m] + 
	

a[i]x[n - i] 
	

(4.10) 

and the transfer function 
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1 
(4.11) 

H(z) = 1 + > 	a[k]z_k 

where w[n] represents the white noise process and the summation is performed over 

the p previous outputs. Although other approximations are also possible, the AR 

model assumes that the signal comprises a set of resonances or sinusoids which is an 

appropriate model for the most practical signals [99,102]. Amongst different algorithms 

for estimating the PSD of an AR model, Burg algorithm (ARB) is one of the most 

popular ones [103]. 

4.5.1 The Burg algorithm 

This algorithm is the most popular approach for an AR model and utilises a con-

strained least squares estimation procedure to obtain p estimated autoregressive para-

meters from N data samples, with the constraint that the AR parameters satisfy the 

Levinson—Durbin recursion. The ARB algorithm computes the reflection coefficients in 

the equivalent lattice structure specified by [104] 

2 p1 wp_ 1 [n]ep1_ 1 [n]e i [n 1] 
(4.12) k= 

'=p+i WI[n] [e1[n2 + ei[m - 2] 

where w_ 1  [m] is an arbitrary weighting function, 4 [n] and 4[ n] are the forward and 

backward prediction errors respectively and '*' denotes the complex conjugate operator. 

The AR coefficients, a[n], which are subject to the Levinson recursion are estimated 

from: 

a[m] = a_i [n] + ka_1 [p - n] 
	

(4.13) 

where it is understood that the pth order reflection coefficient in the lattice realisation 

is k = ap [p]. 

The PSD may be obtained from the estimated AR parameters: 

P[f] = 
1 + >I 	a[k]exp(—j2irfk) 

	 (4.14) 
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where â,, = r[0] fl1 [i - la[k] 1 2 ] is the estimated minimum mean—square value for 

the p—th order predictor. 

In this study four different w[n] functions are used: 

The original uniform Burg function (ARB-B) 

w 1 [n] = 	
1 

(N - p) 

. A Hamming taper function (ARB-H) 

(4.15) 

I 	( 2n 1
w_ i [n] = 0.54 + 0.46 c05 (N -

-(N+p

)
ir] 	 (4.16) 

An "optimum" parabolic weighting function (ARB-O) 

w_ 1 [n]=
6(n—p)(N—n+1)  

—P)N—P+1NP+2)]
(4.17)I (N 

 

which is based on a minimum average frequency variance. 

• Rectangular window (ARB-R) 

w 1 [m] = 1 
	

(4.18) 

The main advantages of Burg's method for estimating the parameters of the AR model 

are as follows [96]: 

• It results in high frequency resolution 

• It yields a stable AR model 

• It is computationally efficient. 

However, it has been shown that the Burg algorithm suffers from two major problems: 

• line splitting, which is the occurrence of two or more closely—spaced peaks in an 

AR spectral estimate where only one should be present. This effect often occurs 

when either the signal-to-noise (SNR) is high, or the initial phase of sinusoidal 

components is some odd multiple of 45° or the time duration of the data sequence 

is such that sinusoidal components have an odd number of quarter cycles [105]. 
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bias in the positioning of spectral peaks with respect to their true frequency loc-

ation [105,106]. 

To overcome these problems, advanced signal processing techniques are implemented 

based on singular value decomposition (SVD) techniques. These approaches are de-

signed to enhance desired signal components within data records. 

4.6 SVD-based techniques 

Modern digital signal processing is drifting away from classical approaches in which 

signals are invariably taken to be stationary and time-invariant. Classical analysis 

techniques often neglect the fact that for all practical purposes, the available meas-

urements tend to be incomplete and are corrupted by noise. Modern digital signal 

processing is therefore faced with the problem of finding higher resolution and more ac-

curate algorithms to extract the underlying signal parameters from the measurements. 

In this context, many important signal modelling and spectrum estimation problems 

have been solved robustly and accurately using the eigenvalues and eigenvectors of a 

covariance matrix or the singular value decomposition of a data matrix. 

In this section the definition of SVD and a few comments relating to its properties are 

presented. There are three main reasons for using the SVD technique [107]: 

. SVD is an appropriate linear algebraic device for approximating a measurement 

matrix by a low-rank matrix. 

SVD provides a natural way of spliting a matrix into dominant and subdominant 

subspaces. 

. SVD is a useful tool for other kinds of decompositions, such as pseudo-inverse, 

Grammian, and matrix projections. 

The theory of singular value decomposition states that any m x n matrix R of rank r, 

where r < min(m,n) can be decomposed as 
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R = UEV* 	 (4.19) 

where U, V are m x n and 71 x n unitary matrices 1,  and E is an m x n diagonal 

matrix [108]. An asteric is used to denote the complex conjugate transpose. The 

diagonal elements of E are ordered in a non-increasing order: 

Ui ~! 0'2 	 crm in ,(m , n) :~' 0 

These diagonal elements are the singular values of the matrix R, i.e., the positive square 

roots of the eigenvalues of the matrices R*R  or RR*.  The columns of Uand V are 

the eigenvectors of RR*  and R*R , and they are called left and right singular vectors 

respectively. An important theorem related to SVD states that the unique m x n matrix 

of rank p < rank (R) which best approximates the m x n matrix, in the Frobenius norm 

sense', is given by 

	

= UEP 
	 (4.20) 

where U and V are given in (4.19), and E is obtained from E by setting to zero all 

but its p largest singular values. The R() matrix provides a 'cleaned up' estimate of 

lower rank signal components of the data. 

The relative size of the error in approximating a matrix by a reduced rank p matrix 

is a important factor in selecting the order p. The normalised Forbenius norm of this 

approximation is given by 

- 

R_R(P)MFIU2+l+a2+2+...+02  PC 	
l<PPe 	(4.21) 

in which '11.11' designates the standard matrix norm. 

SVD distinguishes itself from the other decomposition algorithms because it is particu- 

larly effective in the presence of round-off errors of noisy data [110]. This feature arises 

'The matrices (typed in upper case bold font) U and V are said to be unitary if U 1  = U and 

V —i  = V .  
2 The Frobenious norm of the m x n matrix difference A-B is defined to be 

I 

IA - BII = 	
-  bij 	

2 

i=, j=1 
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because SVD techniques make use of the principal eigenvectors of R*R  and RR*  in 

solving least square problems which are generally more robust to the noise perturb-

ations in the data. Therefore these methods obtain stable solutions to the normal 

equation [111]. 

The application of this method to different type of models is described in the following 

sections. 

4.7 Sinusoid subspace identification 

The algebric properties associated with sinusoidal modeling are best described by ex-

pressing forward and backward prediction relationships for the data x[n], 1 < n < N 

x[n]+aix[n-1]+". +ax[n — p] 	p+1mN 

x *[n]+aix* [n _1]+...+apx* [n _ p] 	1 <n<N — p 

where x*[n]  represents the conjugate of x[n]. However, in the case of PCG signal the 

data x[n] are real valued, hence x*[n] = x[n]. These two relationships can be expresed 

in their equivalent matrix format, that is 

Xa = 0 	 (4.22) 

= 1X 1 	 (4.23) L XH] 

where XT  is the (N-p)x (p+l) Toeplitz matrix associated with the forward prediction 

filter (i.e. xT[i][j] = x(p+ i + 1 +j)), XH is the (N-p)x (p+l) Hankel matrix associated 

with the backward prediction filter (i.e. xj-j[i][j] = x(p + i + 1 - j)), while a is the 

vector solution 3 . To solve (4.22) an augmented SVD algorithm is applied [111], 

a= - [x]t d 	 (4.24) 

3 A lower case bold format represents the vector notation. 
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where f designates the pseudo matrix inverse operator while x 1  and XP  are the first 

and remaining Pe  columns, respectively, of the rank p approximation matrix X. This 

augmented SVD algorithm achieves the full benefits of the rank p reduction data cleans-

ing SVD operation since it includes the first column of X in the rank p approximation. 

The power spectrum is then calculated from: 

P[f] 
= 	

1 

 11+ 	[112 	 (4.25) 

4.8 Autoregressive moving average modelling 

The autoregressive moving average model (ARMA) assumes that a time series x[n] can 

be modelled as the output of a filter containing p poles and q zeros: 

x[n] = 	 - k] + 	b[k]w[n - k] 	 (4.26) 

excited by a zero-mean, unit-variance, uncorrelated random data sequence (i.e. norm-

alised white noise) w[n] which is taken to be unobservable [99, 112]. 

The relationship of the ARMA parameters to the autocorrelation sequence is given by: 

R[l] = - 	a[k]R[l - k] + 	b[k]R[l - k] 	 (4.27) 

where R,, = E [w[n]x[n - k]*] is the cross—correlation between the signal and noise, 

and E[.] is the statistical expectation operator. Note that Rwx  must be zero for k > 0 

since a future input to a causal, stable filter cannot affect the present output and w[n] 

is white noise [99], therefore 

	

{ - 

	a[k]R[l -k] + >I 	b[k]R[l - k] 	1 = 0,•• , q 
R[l] 	- 	

_i a[k]RI - k] 	 1 = q + 1, q + 2, - . . , M 
(4.28) 

For M = p+q these equations have been called the extended, or modified Yule—Walker 

(MYW) equations. The MYW are chosen since they show better performance than the 

maximum-likelihood realisation of other ARMA methods when poles of the model are 

very close to the unit circle [113], which is the case for heart sounds [23]. 
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However, straightforward application of the MYW method can lead to poor perform-

ance, especially for short and noisy data records [113]. It has been observed by a 

number of researchers that significant improvements in the quality of the spectral es-

timates can be achieved by some variations of the basic method, such as increasing the 

number of MYW equations and the order of the estimated model [112-114]. Both these 

factors are of equal importance. The improvement in estimation accuracy results from 

the fact that there is valuable information in the high lag coefficients, which does not 

appear in the MYW equation. In this extended order approach it has been found that 

the resultant parameter estimates will be generally less sensitive to errors contained 

in the autocorrelation lag estimates than for the minimal ideal order choice of p [109]. 

Therefore, the set of linear equations for the extended order ARMA (ps, q) model may 

be expressed in matrix form as follows, 

Ra = —rxx 	 (4.29) 

where: 

Rx [qe ] 	R[q - 1] 	... R[q - p + 1]

Pe 
Rxx  = 	. 	 . 	 . 	 (4.30) 

Rxx [qe  + 1] 	Rxx [qe] 	... Rxx[qe - 	+ 2] 

Rs [qe  + m - 11 Rxx [qe  + m - 2] ... .R[q6 - Pe + m] 

is the extended order autocorrelation matrix, and 

R[q + 1] 

rxx 	
Rxr [qe  + 2] 	

(4.31) = 

a] 	 Rxx [qe  + m] 

are respectively the model parameters and data vector, where Pe,  and qe  are the exten-

ded order of the matrix. The choice of m is related directly to prior information about 

the spectral characteristics of the signal i.e. if it is known that the spectra contains 

sharp resonance or is broadband. It has been shown that statistical arguments exist 

for selecting m > p, especially when actual data points are available (and not autocor-

relation lags) such as in the case of Si and S2. Freidlander [113] has suggested that 

m = 4j3 is a good rule-of-thumb choice. 
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To solve (4.29) a technique based on SVD is used [112]. The SVD technique is ap-

plied in three different versions. In the first case the SVD technique is applied to the 

autocorrelation matrix, Rxx , to approximate it with a p rank optimum approximation 

matrix m X Pe, R. Once is computed, the parameters of the auto-regressive 

model can be found from [109]: 

a— [RP ] rxx  — -- — - -( vrxx)vk -- xx (4.32) 

where [R] 
t 
 denotes the 	 an  of the matrix 	and the pairs (0 k, vk) 

correspond to the p largest singular-value-characteristic-vector pairs associated with 

the SVD of the matrix 

To eliminate the noise effects from the data vector, a simple variation of the above 

mentioned technique is used by working with the extended autocorrelation coefficient 

matrix Rx' x [112, 115] where Rxx = [rxx , R] and then to compute the minimum 

norm solution 

(1')2I 	I=o XX 

[a] 
(4.33) 

In this case SVD is applied to the extended order matrix 	after which the p rank XX 

optimum approximation matrix (')'2 is decomposed into ()XX = 1 rp I R} where 

rp is the leftmost m x 1 column vector of () and R is a m x p matrix composed 

of the p6  rightmost m x 1 column vectors of (k) (P) . In both cases mentioned above the 

size of the rank p approximation matrix obtained from the SVD technique is m x Pe. 

The third ARMA algorithm has been implemented by reducing the dimension of the 

rank p approximation matrix to p x p. This matrix is given by 

PeP+l 

.L 	- > 	( f(,(P))* ft (P) 
XX - 

k=1 
(4.34) 

where 	are the submatrices of (ft')) composed of its columns from k to p+k. 

In the next section these three methods of computing the ARMA model are called 

respectively ARMA1, ARMA2 and ARMA3. 

In order to complete ARMA modelling, it is necessary to determine the associated 
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moving average (MA) parameters of the model. There are a variety of procedures for 

achieving this [104,112,113]. However, if only a spectral estimate is desired, then there 

is no need to solve for the MA parameters, but only to determine the autocorrelation 

function, since 

PMA(f) = n=_ q 7'xx P(j2Tfm) 
	

(4.35) 

Many contemporary MA-components estimators are based on utilising the forward and 

backward residual time—series associated with an ARMA time series. In our imple-

mentation the forward residual time series elements are computed from 

Tf[fl]a[k]X[fl_k] 	p + 1 < n < N 	 (4.36) 

where a[k] are the estimated AR parameters and x[n] are the data points. 

Similarly, the backward residual components are generated using 

r&[m]=ãx[m+k] 	1<n<N—p 	 (4.37) 

After that, the following estimates of the residual first q + 1 autocorrelation lags of the 

time series are generated from: 

1 	N—p—n 
= 	- 	[r[n + p + k]r[p  + k]  + rb[n + k]r[k]] 

N 	
k=1 

0nq 
	

(4.38) 

Taking the Fourier transform of these autocorrelation lags, the MA(q) spectral estimate 

components are obtained: 

2 
2 

Eq  (exp(—jw)) = 
	

w[n]zx[n]exp(_jwn) 
nq  

(4.39) 

in which w[n] is a window sequence. In our particular case w[n] is defined [112] as: 
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(N - p —  InI\ fq+ 1— I n  
N—p ) 	q+1 ) 

(4.40) 

which ensures positive-semidefiniteness of the i[n] estimate and reduces the sidelobes. 

Finally, the overall ARMA spectral estimation is then given by 

Eq(exp(_j27rf)) 
12 

(f) = 	 2 	 (4.41) 
A(exp(—j27rf)) 

where A(exp(—j27rf)) is 

A (exp(-1*2f)) 	a[k]exp(—j2fk) 	 (4.42) 

in which à[k] denotes the AR parameter estimates of the ARMA model. 

The SVD method described above enhances the accuracy of the estimates from MYW 

equations. It does, however, increase the computational complexity of the overall es-

timation procedure. However, for SPCG where processing is often off-line this compu-

tational complexity is not important. 

4.9 Prony's method 

This method seeks to fit a deterministic exponential model to the data, in contrast 

to AR or ARMA methods that seek to fit a random model to the second—order data 

statistics. The model assumed in the modern Prony's method is a set of p exponentials 

of arbitrary amplitude, phase, frequency, and damping factor [104]. The discrete-time 

function is described by: 

h[m]z[m]Th 	n=0,1,2,•,N-1 	 (4.43) 
M=1 

where 

h[m] = A[m]exp(jçb[m]) 

z[m] = exp[(d[m]+j2irf[m])At] 

(4.44) 
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A[m] is the amplitude, q[m] is the phase in radians, d[m] is the damping factor, f[m] 

is the frequency in Hz, and At represents the sample interval in seconds. 

The main advantages of this method are as follows [104,116]: 

It gives full parameterization of the signal spectrum: amplitude, phase and band-

width information of the significant spectral components 

It maintains linearity of each spectral peak height corresponding to its energy 

The method does not produce sidelobes, which often appear in usual AR meth-

ods. The method extracts spectral parameters directly from the roots of the 

polynomial, but does not express the spectral distribution with the finite—ordered 

polynomial like other AR(MA) methods, which leads to sidelobes. 

For the above reasons, Prony's method is useful for the quantitative analysis of heart 

sounds since it provides a complete parameterization of the resonant and damping 

characteristics of the heart-valve system. These parameters will reflect the mechanical 

and structural properties of this system. 

However, Prony's original method has been found to be highly sensitive to additive 

measurement errors in the observed signal samples [115, 117]. To improve its perform-

ance many techniques have been suggested, which give good performance for reason-

able signal-to-noise ratios (SNR) or specific characteristics of the signal [115, 116, 118]. 

However, these methods are not found to be very effective when the poles of the signal 

are close to the unit circle [119] or in the case of the direction finding problem [121]. 

To tackle these problems a new modified forward-backward overdetermined Prony's 

method (MFBPM) is introduced here. This approach uses (1) SVD of the augmented 

data matrix to reduce the effect of noise in both the observation vector and data matrix, 

(2) a modified procedure to estimate the position of signal poles and (3) an advanced 

method based on eigenvalue decomposition for computing the roots of the polynomials. 

4.9.1 MFBPM algorithm 

To decrease the sensitivity of the estimated parameters to the perturbation of data and 

reduce the numerical ill conditioning , the following overdetermined prediction equation 
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was set up using sampled data, x[n], 0 < n < N - 1, in both the backward and forward 

direction: 

Xbb=O Xff=O 
	

(4.45) 

where Xb  and Xf are the extended (N 
- Pe) X  (Pe + 1) data matrices and p6  is the 

extended order of the matrices 

Xb(i,j) x(i+j 2) 5 1 	< N Pe 

Xf(i,j)=X(Pe+i_j) 	1<3<Pe +1 
(4.46) 

and b, and f are the (Pe + 1) coefficient vectors in the backward and forward directions 

with elements b[k] and f[k] respectively. In practice the extended order, p, is chosen 

significantly larger than the true order of the system. The main reason for taking the 

data in both direction is to reduce the bias on the estimation of the damping factor 

[123]. The forward and backward matrices may be represented by their SVD [122]: 

Xb 
= r 
	

(Xf 
= r 	

) 

	

(4.47) 

In this representation, the at (°i) are positive singular values that are ordered in the 

monotonically decreasing fashion o ~ at+i, (a ~ the i4 (ui) and vt  (vi) are 

(N 
- Pe) x 1 and (p 6  + 1) x 1 orthogonal left and right singular vectors respectively, of 

the Xb  and Xf matrices and the integer r is the rank of Xb (both matrices Xb  and 

Xf have the same rank). 

In theory, if the signal is composed of only p sinusoids, the matrices (XT  Xb) and 

(XXf), where T is the transpose operator, are of rank 2p and calculation of their 

eigenvalues yields the value of p. In the case of externally recorded heart sounds, one 

can say that the part of the signal related to heart—valve movements contains a number 

of p exponentially damped sinusoids which lie in the amplitude range of 0 dB-M dB. 

To decide the level M (i.e. order p) one must use the characteristic of the eigenvalues 

(p) of the X'Xb (XXf) which approach the squared amplitudes of each sinusoid 

when N and Pe  approach infinity [118]. In this augmented SVD algorithm, the rank p 

approximation of the total data matrices Xb and Xf is first determined (Xc, Xi?) . It 

is well known that in the overdetermined case (Xb or Xf 
) 

the matrix of rank p (where 

p < r) which lies closest to Xb(Xf)  in the least squares sense is specified by [112,122]: 

54 



Chapter 4 : Spectral Analysis Techniques 

XP 
	 XP 

	

4u[vi*) 
	

(4.48) 

where only the p largest outer products atutvr (akuv*) are retained in forming the 

closest rank p approximation. Finally, the related coefficient vectors are then specified 

by 

b=_[Xj]x 1  i=_[x?] t 
 XP f  (4.49) 

where f designates the pseudo matrix inverse operator while x (4) and X (Xv)  are 

the first and remaining p columns, respectively, of the rank p approximation matrices. 

The key point in the performance of Prony's method is the process of deciding the 

position of the poles which are related to the signal. In the backward direction case, it 

has been shown [115] that the poles of the signal can be separated from those introduced 

by noise (i.e. the norm of the signal roots is [Ai] > 1). However, this method has a 

"hard failure" [119] when the number of roots outside the unit circle in the backward 

direction polynomial B(z): 

PC 

B(z) = i: b[i]z 	 (4.50) 

is not equal to p. This case occurs often when some of the roots of the B(z) are near 

the unit circle, or when the noise level is high. To combat this failure, the p largest 

norm roots [122] of the backward direction polynomial (B(z)) are searched for instead 

of the roots with norm [A s ] > 1. Since the effect of noise tends to bias the roots of the 

forward polynomial F(z): 

PC 

F(z) = i: f[i]z 	 (4.51) 

in the opposite direction to those of B(z), one can use the mean of the p largest norm 

roots in the backward direction with the p roots of the same frequency in the forward 

direction to estimate more accurately the real position of the signal poles [123]. Thus, 

these poles are estimated by 

Z[i] 
- Z[i] + Zf[i] 
- 	 1<i<p 

2 	- 
(4.52) 
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where 

1 

Zr[i] = 

{ 

(z[i]) 	I 

zL[i] 	ZbI 	< 1 

z[i] are the p largest norm roots of B(z), and zf[i] are the p roots of the F(z) which 

have the same frequency as the z[i]. This procedure has a great impact especially in 

those roots which are very close to the unit circle due to their volatile nature as a result 

of perturbation or machine round-off error. 

However, it should be mentioned that the method used for computation of these roots 

(B(z), F(z)) is also very important in the case of overdetermined systems because the 

order of the polynomials (pe)  is quite high which can cause divergence of the roots in 

practice [118, 124]. To combat this effect, a procedure is proposed based on eigenvalue 

decomposition of the system-matrix Ab(Af)  [125]: 

11 when j=i+1 
Ab(i,j) = Af(i,j) = 	

0 elsewhere 

Ab(p,j)=_b(j_1+pe ) Ii = Pe 

Af(P,j)=_f(j_l+pe ) 	lPe 

1< j Pe 
(4.54) 

1< i < Pe —1 

(4.55) 

using a Hessenberg reduction and a balancing procedure to estimate zb[i]  and zf[i] [124, 

126]. This procedure is more computationally complicated compared with other meth-

ods such as Muller's or Laguerre's method [124], but it gives better results in terms of 

accurate estimation of the poles. Although computationally intense, this procedure is 

necessary for reducing the sensitivity of eigenvalues to small changes in the matrix ele-

ments and to rounding errors during the execution of the algorithm. These factors have 

a great impact especially in the case of the nonsymmetric matrices which is the case 

for Ab(Af)  [124]. However, it should be mentioned that this computational load is not 

a problem in off-line applications. With p roots computed from (4.52), a Vandermonde 

matrix 4  is created [104]: 

Varzderrnonde matrix: An m x m matrix whose elements are expressed in terms of powers of the n 
based parameters z[1], 42],. , z[n]; v[i][j] = x[j]'' for 1 < j <m, 1 < j < n 
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1 	1 	•.. 	1 

Zli 	Z2' 	• .. 

z 	 (4.56) = 

N—i 	N—i •.. ZN_i Zi 	Z 2  

and h the time-independent parameters (eq. 4.43) are estimated from the equation 

Zh = x 
	

(4.57) 

where 

hi 	 x[0] 

h2 	 x[2] 
h = 	 x= 

lip 	 x[N-1] 

(4.58) 

are a p dimension complex vector and an N x 1 data vector respectively. 

The amplitude A[i], [i], damping factor d[i], and frequency f[i] are estimated from 

the Z[i] and h[i] [104]: 

	

A[i] = 	h[i]I 

[i] = tan-1 
[(h[i])1 

	

d[i] 
- 	In [IZ[i]I] 

	

tan_i 	z[iJ) S(
D  1  

= 	
(459) 

2ir  

Although Prony's method normally terminates with the computation of above men-

tioned parameters, it is possible to calculate the spectrum. In our case the Prony's 

spectrum is calculated using the formula [99]: 

prony[f] = 
	

(4.60) 

where 

P 

	 2d[i] 	
(4.61) 

	

= 	A[i]exp(jç6[i]) [d[i]
2  + (27r [f - f[m]J)2] 
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Two other advanced versions of Prony's method are also implemented in order to corn-

pare the performance of MFBPM when applied to Si and S2: the modified backward 

Prony's method (MBPM) [126] (i.e. data in backward direction only and with p large 

norm ( zr[i]) roots) and forward-backward Prony's method (FBPM) based on the 

method proposed by Marple [104, 115] (data in forward and backward direction but 

only roots with norm IA[i]I > 1 are used). 

4.10 Model order selection criteria 

One of the first problems associated with parametric methods is the selection of the 

proper model order p, i.e. the number of spectral components that are to be searched 

for. Although several criteria have been suggested, their performance seems to be very 

sensitive to the validity of the observation model and the characteristics of the real 

data. Since the best choice of the model order p is not known a priori, it is suggested 

[99, 104] that the final determination of a suitable model order is a subjective judgment 

in the analysis of actual data which originate from an unknown process. In this study, 

the performance of several criteria have been investigated for the analysis of Si and S2. 

In the case of the ARB algorithm the four following criteria are used [99, 1041: 

. Final prediction error (FPE), 

/ 	i\ 
FPE[p] = 	

tjr - - 
N+p+ 	

(4.62) 

where &,,p  is the estimated variance of the linear prediction error and N is the 

number of data samples. This criterion selects the order of the AR process so 

that the average error variance for one-step prediction is minimized. 

. Akaike information criterion (AIC), 

AIC[p] = N In 	+ 2p 
	

(4.63) 

In this case the model order is selected by minimising an information theoretic 

function. 

• Criterion autoregressive transfer (CAT) 

CAT[p]= 
( 1P) 

-'i' 	 (4.64) 
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where yj = [ j _r] &. The main idea behind this criterion is to select the model 

order p in which the estimate of the difference between mean-square-errors of the 

true prediction error filter and the estimated filter is minimised. 

. Minimum description length (MDL) 

MDL[p] = Nln(a) +pin(N) 
	

(4.65) 

In this criteria the model order is selected to be the one which yields the maximum 

posterior probability [127]. 

In the case of SVD-based methods, the validity of the relative distribution of eigenvalue 

magnitude and the consecutive relative eigenvalue magnitude (CRME) for deciding the 

order of the model is investigated [128]. In order to increase the stability of the matrix 

operation, tolerance to quantization, and to decrease the sensitivities to computational 

errors the SVD of the data matrix is used instead of the eigenvalue decomposition of 

the correlation matrix [129]. The relationship between the eigenvalue decomposition of 

the correlation matrix and SVD of the data matrix was described in section 4.6. 

4.11 A numerical example 

The performance of the above-mentioned algorithms is demonstrated by testing them 

on a synthetic signal, which has characteristics similar to those of heart sounds, namely: 

x[n] = (0.98)Thsin(O.123n) + (0.98)Thsin(O.423n)  + w[n] n = 1,2, .., 128 (4.66) 

where w[n] is white Gaussian noise. The criterion used for choosing the above time series 

was based on the fact that Si and S2 are composed of transient sinusoidal signals of 

short duration and fast decaying amplitude, superimposed on a background of random 

noise [37, 132]. The signal to noise ratio (SNR) is defined as 

>I 1  =i  (x ' [n])2  
SNR 10 log ( 
	(w[n])2) 

(4.67) 

where N = 128 and 

x'[n] = (0.98)Thsin(0.123n) + (0.98)sin(0.423n) n = 1,2,• . •, 128 	(4.68) 
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A percentage error, err, for the estimated frequency, f, from the actual frequency, f, 

is calculated for all methods with different levels of SNR as follows: 

ui-fi 
err(%) = I 	, I 	100 

Ii 

(4.69) 

Table 4.1 summarises the results regarding the error in frequency estimation for each 

of these methods and Figure 4.2 shows the results achieved with the different methods. 

Method SNR(dB) fi = 0.01957 f2 = 0.06732 err fi%  err f2% 
FFT 3.0 0.0155 0.07 20.82 3.9 
ARB-0 3.0 0.0173 0.0661 11.6 1.8 
ARB-H 3.0 0.0154 0.0665 21.0 1.14 
ARB-B 3.0 0.0143 0.06715 26.95 0.25 
ARB-R 3.0 0.0143 0.06718 26.95 0.2 
SSI 3.0 0.0202 0.06755 3.1 0.33 
ARMA1 3.0 0.0164 0.0689 16.22 0.23 
ARMA2 3.0 0.0165 0.0689 15.7 0.23 
ARMA3 3.0 -.- 0.0684 100.0 0.165 
MFBP 3.0 0.0195 0.0674 0.38 0.1 

Table 4.1: 	Frequency error estimation for several algorithms applied to the signal shown in 
eq.( 4.66) 

From Figure 4.2 and Table 4.1 it can be seen that the FFT and ARB methods, regardless 

of the choice of window, perform badly in terms of frequency error. Moreover, both 

these methods suffer from the presence of spurious peaks as a result of noise and the 

large model order (p=20)  in the case of ARB. For order less less than 20 the ARB 

method does not resolve the two peaks contained in the signal. Therefore, a much 

higher order was required to detect these two peaks. This consequently lead to spurious 

peaks in the estimated spectra. Regarding the impact of the window on the spectral 

performance of ARB, it is clear that ARB-O and ARB-H perform better than the two 

other windows. This improvement could be related to the efficiency computation of 

the first order coefficient in ARB-O and ARB-H [133]. From these results, it seems 

that the use of either the FFT or ARB methods would be an appropriate methods to 

investigate such classes of signals. However, in this chapter and the following one the 

FFT and ARB are used for comparison since they are the techniques commonly used to 

analyse spectral characteristics of Si and S2 [26,27,30-32,42,62,67,74,79,80,90,134]. 
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Figure 4.2: 	Spectrum produced from several estimation algorithms when analysing the 

synthetic signal given in eq. (4.66); (a) FFT method, (b) ARB-O (p = 20), (c) ARB-H (p = 20), 

(d) ARB-B (p = 20), (e) ARB-R (p = 20), (f) SSI algorithm (p = 4), (g) ARMA1 method 

(p = q = 4), (h) ARMA2 method (p = q = 4), (i) ARMA3 method (p = q = 4),(1) Prony's 

spectrum (p = 4). 

A great improvement in spectral representation is obtained by the techniques based 

on the SVD method. These methods not only improve the resolution capabilities but 

they also increase the accuracy in frequency estimation. Amongst them the MFBPM 
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method gives the best results and the SSI method is the second best. Their superiority 

over ARMA methods can be explained by the model chosen as well as fact that in the 

case of SSI and Prony's method the data matrix is used rather than the covariance 

matrix. This is particularly important when one deals with short time signals [122]. 

Amongst the ARMA methods, ARMA1 and ARMA2 perform very similarly with a 

slight improvement in the case of ARMA2. This is related to the noise reduction in the 

data vector by using the augmented SVD method in this case. The ARMA3 method 

gives a very smoothed spectrum and even fails to detect the first peak. 

Figure 4.3 shows the performance of model order criteria in the case of the synthesised 

signal simulated by eq. (4.66). Figures 4.3(a)-(d) represent the interesting portion of 

the normalised amplitude of FPE, AIC, CAT, and MDL respectively, plotted versus 

the model order. Theoretically the optimum model order of the model is determined 
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Figure 4.3: 	Performance of several model order criteria when analysing the synthetic signal 
simulated by eq. (4.66); (a) FPE, (b) AIC, (c) CAT, (d) MDL, (e) distribution of eigenvalue 
magnitude, (f) CRME. 

by the value of p at which the respective criterion (i.e. FPE, AIC, CAT, MDL) attains 

its minimum [99, 104]. However, this definition has been shown to underestimate the 

required model order in the case of purely harmonic components [99, 131]. Results 
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shown in Figure 4.3(a)-(d) support this fact. From Figures 4.3 (a), (b), and (d) it is 

clear that the minimum value for FPE, AIC and MDL underestimate the proper model 

order. All these three criteria return a model order equal to 2, whereas the actual 

model order should be four for the signal in hand (i.e. it has been shown that for a 

signal composed of m real sinusoids 2m coefficients are required to define the m poles 

in the generating system [130,131]). However, Figures 4.3 (a), (b), and (d) show that 

the second minimum on the plot of FPE, AIC and MDL properly estimates the number 

of spectral components. This conclusion is not true for the case of the CAT criterion. 

From Figure 4.3(c) it is clear that the CAT criterion is unable to return an proper 

estimate for the number of spectral components contained in the signal. 

On the contrary to the above mentioned criteria, criteria based on the distribution of 

eigenvalues represents an accurate means for estimating the proper model order. It is 

clear from Figure 4.3(e), and (f), which represent the distribution of the eigenvalues and 

the CRME factor, show that the required model order for analysing the signal in hand 

is four. In the case of Figure 4.3(e) a clear knee is present at p = 4 (note that in the case 

of real data matrices containing p signal components the rank of the matrix is 2p).  This 

knee is also associated with the biggest CRME ratio as well (Figure 4.3(f)). It must 

be said that the aboved- mentioned algorithms have been applied to other examples of 

simulated signals and very similar results were found. These results were presented in 

[135]. 

4.12 Summary and conclusion 

This chapter has introduced the various methods investigated in this research for spec-

tral analysis of first and second heart sounds. Four different parametric methods in 

several algorithms have been implemented. Amongst them the MFBPM obtains the 

best results and its superiority over other spectral analysis techniques has been demon-

strated for the case of a synthetic signal similar to Si and S2. This comparison is based 

on the assumption that Si and S2 are decaying sinusoidal signals. From the results 

obtained, it was concluded that for the case of a synthetic signal almost all the meth-

ods based on the SVD technique perform better than conventional methods such as the 

FFT and ARB, which have been used widely to represent the spectral composition of 

Si and S2. The only disadvantage of the SVD-based methods is their computational 
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complexity. However, bearing in mind that most processing is off-line and the required 

time for this processing is of the order of minutes, this disadvantage does not represent 

a major drawback for these methods. 

Regarding the model order selection criteria, it appears that criteria based on the 

distribution of the eigenvalues of data matrix perform well in the case of simulated 

signals. However, these conclusions must be demonstrated for real heart sounds. The 

next chapter addresses this point. 
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Chapter 5 

Application of Spectral Analysis 

Methods to PCG Signals 

5.1 Introduction 

Various authors have described the performance of spectral analysis methods in SPCG 

[10, 37, 57, 74,76]. However, in most of these studies little attention has been paid to 

the performance of these methods in terms of the accurate representation of the overall 

spectral composition of the first and second heart sounds. This analysis is of crucial 

importance when one bears in mind the fact that a proper investigation of the origin of 

heart sounds or the diagnostic potential of the PCG method is entirely dependent on 

the performance of the method of spectral analysis used. Moreover, in the analysis of 

heart sounds, a definite relationship has not yet been established between the different 

spectral components in the externally-recorded PCG and the underlying system which 

generates the sounds. Therefore, one must investigate all the parameters of the sound 

spectrum and associate these with the known condition of the heart valve. 

In this context, the better the method for representing the spectral characteristics of the 

SPCG signal, the more effective will be the classification procedure. The objective of 

this chapter is to investigate the performance of different spectral estimation techniques 

introduced in the last chapter when applied to the analysis of Si and S2 and their ability 

to detect different frequency components associated with Si and S2. Synthesised first 

and second heart sounds were generated to allow a rigorous comparison between all 

the methods of spectral analysis. The performance of spectral estimation techniques 

described in the previous chapter is investigated for Si and S2 in terms of the overall 

spectral resolution rather than as others [10,37, 75] have done which was to concentrate 

solely on certain spectral components. 
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5.2 Modelling of Si and S2 

To compare the performance of the spectral techniques, a synthesised signal is required 

which can be used as a reference signal. The synthesised signal is modelled as a linear 

combination of decaying sinusoids. This kind of model is selected because it is believed 

that it best represents the intrinsic properties of Si and S2. The parameters of this 

synthesised signal are obtained using MFBPM based on a mean-least-square analysis 

in the time-domain. Since the recorded data are real-valued, the complex exponentials 

obtained from the MFBPM method occur in complex conjugate pairs [104]. Thus, only 

the positive frequency components are used for generating the synthesised signal: 

[n] = 
	

2A[i] exp (—nd[i]) cos(2f[i]n + [i]) 0 < n < N - i 	 (5.1) 

Selection of the lower rank approximation p is the major problem in the performance 

of all the rank approximation algorithms when p is not known a priori (which is the 

case for real data such as PCG signals). In most of the signal processing applications 

of SVD, the model order p is defined based on theories of the distribution of singular 

values and a statistical significance test of the data matrix [128, 136]. However, all 

these tests are based on simulated data, therefore the model order is known a priori. 

Consequently, all effort is directed towards finding a relationship between the threshold 

bounds of the SVD distribution and their validity as a function of SNR, variance of 

the parameter estimation or other criteria. Although these criteria give good results in 

simulated cases, there is a big gap between the simulation experiments and real signals. 

In the proposed algorithm the best subset pout of the Pe  exponential functions provided 

by the overdetermined matrices Xb  and Xf  is the one for which a linear combination 

of the p exponentials (5.i) best approximates the observed data in a normalised root-

mean-square error (NMRSE) sense: 

I 

= 	
(s[n]_[n])212 

n=O
s[n]2

NMRSI 
 

(5.2) 

where s[n] and .[n] are the real and synthesised signals respectively. The NMRSE is 

used because it is independent of empirical data size [137] and allows a comparison 

of results with other methods for modelling heart sounds [37, 75]. Afterwards, the 

relationship between this model order and the distribution of the singular values for 

the case of the PCG signals is derived. 
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The matching between the real signal and the synthesised one is also estimated by the 

normalised cross-correlation coefficient NCC which is defined for the case of zero shift 

between .s[n] and .[n] as 

NCC= 	r.[0] 
v1rss[0]r.i[0} '  

(5.3) 

where r represents the operation of correlation. 

In all the cases, the objective is to maximise NCC and to minimise the NMRSE. In more 

than 200 sample cases obtained from the 150 subjects under examination the average 

value of NCC was 99.65% and the average value of NMRSE was 5.4%. As an example, 

Figure 5.1 and Figure 5.2 show the real and the synthetic signals for four different 

cases of Si and S2. Table 5.2 and Table 5.3 give the model parameters governing the 

synthesised signals shown in Figure 5.1 and Figure 5.2 respectively. From Figure 5.1 

and Figure 5.2 it can be seen that the real and synthesised signals are almost identical. 
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Figure 5.1: 	Real (green line) and synthetic signals (blue line) of Si for four different 

subjects: (a) a normal patient, (b) a patient with a dysfunctioning native mitral valve, (c) a 

patient with mechanical artificial heart valve, (d) a patient with bioprosthetic artificial heart 

valve. 
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Figure 5.2: 	Real (green line) and synthetic (blue line) signals of S2 for four different 

subjects: (a) a normal patient, (b) a patient with a dysfunctioning native aortic valve, (c) a 

patient with mechanical artificial heart valve, (d) a patient with bioprosthetic artificial heart 

valve. 

Table 5.1 gives the characteristics of these signals. 

NCC% NMRSE% Duration ms. No. of Comp. 

Figure 5.1(a) 99.91 4.02 90 8 

Figure 5.1(b) 99.95 2.95 60 7 

Figure 5.1(c) 99.81 6.1 50 11 

Figure 5.1(d) 99.90 4.43 110 11 

Figure 5.2(a) 99.93 1.8 54 11 

Figure 5.2(b) 99.98 1.17 40 8 

Figure 5.2(c) 99.98 1.96 78 8 

Figure 5.2(d) 99.87 4.49 80 7 

Table 5.1: Performance of the MFBPM for the signals shown in Figures 5.1 and 5.2. NCC is 

the normalised cross-correlation coefficient, NMRSE is the normalised-mean-square-error, and 

'No. of Comp.' describes the optimum number of components in eq.( 5.1) for the synthesised 

signal. 
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Comp f[i] Hz A[i] d[i] 0 [i] 

1 14.0 0.618 0.0065 5.198 

2 31.1 1.0 0.001 1.51 

3 56.6 0.212 0.00015 3.48 

4 77.1 0.185 0.0009 1.31 

5 96.02 0.481 0.006 3.347 

6 122.5 0.452 0.01114 5.04 

7 144.98 0.203 0.01 0.833 

8 175.9 0.039 0.0048 2.51 

(a) 

Comp f[i] Hz A[i] d[i] q[i] 

1 18.9 0.006 0.009 3.546 

2 56.46 0.115 0.001 3.99 

3 81.9 0.085 0.0048 5.72 

4 172.34 0.0026 0.0009 2.186 

5 243.77 0.49 0.0068 5.26 

6 323.99 0.073 0.011 5.74 

7 357.0 0.688 0.042 3.88 

8 469.6 0.135 0.044 0.64 

9 588.03 1.0 0.102 1.7 

10 755.25 0.329 0.072 4.05 

11 1105.98 0.0255 0.042 3.88 

(c) 

Comp f[i] Hz A[i] d[i] qf[i] 

1 10.7 0.847 0.0095 2.986 

2 44.1 1.0 0.0089 5.699 

3 70.47 0.608 0.0055 1.397 

4 103.8 0.39 0.0047 5.412 

5 129.9 0.603 0.014 2.354 

6 177.6 0.241 0.0152 4.822 

7 212.04 0.123 0.0124 0.37 

(b) 

Comp f[i] Hz A[i] d[i] q[i] 

1 20.38 0.183 0.007 2.19 

2 39.43 1.84 0.033 4.77 

3 49.94 2.15 0.031 1.17 

4 71.48 0.95 0.0316 2.8 

5 96.04 0.44 0.027 4.08 

6 111.03 0.18 0.015 5.71 

7 132.95 0.019 0.012 5.91 

8 148.14 0.021 0.014 2.72 

9 164.06 0.039 0.019 5.1 

10 197.13 0.016 0.015 5.71 

11 231.17 0.006 0.01 6.19 

(d) 

Table 5.2: 	Parameters for the components of the modelled signals shown in the four parts 

(a) to (d) of Figure 5.1; f[i] frequency, A[i] amplitude, d[i] damping factor, and [i] phase of 

the synthesized signal. 

Columns 1 and 2 give the NCC and the NMRSE between the real signals and the 

synthesised ones, whilst column three and four present the duration of the signal and 

the optimal number of the decayed sinusoids (p) to synthesise these signals respectively. 

Results obtained by MFBPM are compared with MBPM and FBPM for all the cases. 

The improvement in accuracy in terms of the NMRSE of MFBPM is up to 10% corn- 

pared with MBPM and up to 20% compared with FBPM. Table 5.4 summarises results 
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obtained from normal subjects with normally functioning native heart valves for re-

cordings made in the mitral position (i.e. Si). From this table it is clear that MFBPM 

is always superior to both MBPM and FBPM. The main part of error in the FBPM 

comes from cases where there is a big difference between the order of the model (p) 

and the number of poles outside the unit circle. 

Comp f[i] Hz A[i] d[i] qf[i] 

1 26.0 0.575 0.0045 0.627 

2 41.0 1.0 0.02 3.197 

3 103.0 0.031 0.002 6.05 

4 120.0 0.285 0.0065 3.738 

5 170.2 0.436 0.019 5.219 

6 201.6 0.146 0.0014 1.24 

7 245.0 0.2 0.024 5.68 

8 279.2 0.019 0.02 1.34 

9 337.0 0.363 0.0209 2.18 

10 376.0 0.228 0.015 3.184 

ii 426.1 0.012 0.012 3.34 

(b) 

Comp f[i] Hz A[i] I 	d[i] [i] 

1 19.44 0.795 0.0005 5.13 

2 31.69 1.0 0.001 1.72 

3 60.84 0.28 0.0026 3.88 

4 80.23 0.088 0.0034 4.46 

5 111.17 0.354 0.01 4.75 

6 144.25 0.317 0.019 0.86 

7 238.26 0.004 0.003 5.74 

8 265.07 0.041 0.017 5.26 

(c) 

Comp f[i] Hz A[] d[i] çb[i] 

1 38.31 0.51 0.015 4.27 

2 68.03 1.0 0.022 0.53 

3 108.28 0.494 0.012 2.88 

4 167.08 0.162 0.031 4.24 

5 224.49 0.0622 0.035 5.81 

6 288.89 0.001 0.0044 1.59 

7 363.95 0.001 0.009 5.01 

8 430.22 0.004 0.025 3.83 

(b) 

Comp f[i] Hz A[i] d[i] 0 [i] 

1 23.36 0.18 0.0029 5.76 

2 38.39 0.32 0.004 2.32 

3 57.64 0.11 0.007 4.17 

4 84.57 0.096 0.014 4.59 

5 122.69 0.107 0.0027 0.20 

6 149.37 0.101 0.033 2.69 

7 181.03 0.049 0.02 5.15 

(d) 

Table 5.3: 	Parameters for the components of the modelled signals shown in the four parts 

(a) to (d) of Figure 5.2; f[i] frequency, A[i] amplitude, d[i] damping factor, and 0[i] phase of 

the synthesized signal. 

The physiological explanation for this difference could be as follows; some of the fre- 

quency resonance modes of the externally recorded PCG signal are related to the oscil- 
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lation of the lung-thorax system. Amongst these, there are components related to the 

vibration of the lung-thorax structures very close to the area of recording. Therefore 

their damping factor is almost zero (i.e. poles of the signal lie on the unit circle). As 

a result of the extended order of the polynomial, and the perturbation of the matrices, 

it is always possible that their value fluctuates very close to the unit circle. FBPM 

therefore does not take into account cases when these poles move randomly inside the 

unit circle. In contrast to that, the MFBPM uses the p largest roots instead of the roots 

outside the unit circle. Hence, MFBPM is independent of motion in the polynomial 

roots. 

MFBPM MBPM FBPM 

NCC% NMRSE% NCC% NMRSE% NCC% NMRSE% 

1 99.9 4.3 99.6 8.9 99.26 12.09 

2 99.98 1.6 99.9 1.76 99.98 1.6 

3 99.93 1.8 99.75 7.01 98.51 17.14 

4 99.85 5.3 99.5 9.95 90.29 42.96 

5 99.49 9.6 99.43 10.8 99.48 10.12 

6 99.5 9.2 99.41 10.82 99.12 13.19 

7 99.51 8.9 96.17 27.33 97.18 23.55 

8 99.57 8.5 98.86 15.2 98.26 18.56 

9 99.79 6.3 99.5 9.9 99.79 6.3 

10 99.45 9.7 94.59 32.24 98.45 17.51 

ii 99.77 6.6 99.51 9.8 99.04 13.76 

12 99.77 6.6 99.51 9.8 99.04 13.76 

AVR 99.69 6.5 99.08 14.63 96.6 17.99 

Table 5.4: Performance of MFBPM, MBPM and FBPM in the cases of normal subjects for 

the Si. NCC is the normalised cross-correlation coefficient, NMRSE is the normalised-mean-

square-error. The last row gives the average values for the corresponding parameters. 

The improvement in accuracy of MFBPM compared with MBPM is related to the 

reduction of the bias in the estimation of the position of the signal poles, which results 

in a better estimation of the amplitude, phase and damping factor. Another factor 

which affects the performance of the algorithm is the extended order p. Table 5.5 

describes the impact of the Pe  parameter on the performance of the algorithm in the 
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case of a normal subject. Results obtained from all the other cases are very similar. It 

is found that the best results could be achieved when 0.4N < Pe < 0.45N where N is 

the data length. This finding is in accordance with what would be expected from these 

methods [138, 139]. For these values the matrices Xb  and Xf are nearly square which 

makes them less sensitive to the statistical anomalies in the data being analysed than 

would be the case for lower orders [109, 138]. 

NMRSE as a function of p and 

PC 
N_____ 

0.22 0.42 0.48 

2 66.39 59.70 62.3 

4 56.96 57.21 63.4 

6 53.50 31.43 26.89 

8 47.51 18.65 25.55 

10 58.28 12.65 17.51 

12 66.37 16.77 18.16 

14 66.14 13.03 20.00 

16 66.87 13.32 21.50 

18 68.00 4.26 3.98 

20 65.92 4.23 4.94 

22 63.30 3.21 4.22 

24 65.98 3.27 19.11 

26 67.43 3.5 19.16 

28 66.39 3.54 19.18 

30 66.43 3.62 19.19 

Table 5.5: 	Performance of MFBPM in a case of S2 as a function of the extended order Pe 

in absolute range 
(.) 

for different model orders. 

The deterioration in performance for p ~! 0.45N could be explained by the higher 

order of the polynomials (B(z) (F(z)). An overestimated degree of these polynomials 

(Pe) improves the accuracy of the position of the signal poles p [120, 121], however, for 

very high values of Pe  their position may diverge in practice [118]. Thus, in all cases 

the extended order of Xb  and Xf is selected to be in the interval 0.4N < Pe :~ 0.45N. 
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Bearing in mind that Si and S2 last for about 30-100 ms and that the lowest sampling 

rate used to record the PCG signal was 5 kHz, the above mentioned range of Pe  para-

meter leads to an order, at least, greater than seventy for B(z) and F(z) polynomials. 

Consequently the method used to estimate the roots of B(z) and F(z) polynomials is of 

paramount importance in the general performance of MFBPM algorithm. To present 

the improvement that the eigen-value decomposition method (EVDM) gives over other 

classical methods, such as Laguerre's method (LM) applied elsewhere [118], to estim-

ate the roots of B(z) and F(z) polynomials, three different examples are presented in 

Figures 5.3 to 5.6. In the case of LM, a algorithm presented in [124] was implemented. 

Figure 5.3 and Figure 5.4 show the position of the polynomial roots estimated respect-

ively by LM and EVDM method in the case of a synthetic signal composed of two 

damped sinusoids generated by (4.68). 
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Figure 5.3: 	Location of the polynomial roots in the case of the synthesesid signal generated 

by (4.68) for extended order p = 10 using LM method; (a) estimated location of the polynomial 

roots in backward () and forward direction (+), (b) final location of signal poles. 
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Figure 5.4: 	Location of the polynomial roots in the case of the synthesesid signal generated 

by (4.68) for extended order p = 10 using EVDM method; (a) estimated location of the 

polynomial roots in backward (0) and in forward direction(+) (b) final location of signal 

poles. 
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In both these cases the extended model order, Pe,  has a moderate value (i.e. Pe = 

10, note Pc > 2p). It is clear from Figure 5.3 and Figure 5.4 that both methods 

perform equally well in estimating the position of polynomial roots resulting in an 

excellent match between the synthetic signal and the modelled signal (i.e. in both 

cases NCC=100% and NMRSE=0). However, as the extended model order of the 

polynomial increases, the performance of LM methods deteriorate. Figure 5.5(a) and 

(b) give the performance of LM and EVDM methods respectivelly for the case of an 

extended order of Pe = 18. From Figure 5.5(a) it can be seen that the estimated roots 

diverge from their real position in the case of LM method, whereas EVDM still gives 

an accurate estimation of their location. In the case of the LM method the matching 

between synthetic signal and the modelled one drops to NCC=50%. The performance 

of the LM method further deteriorates as the order Pc  is extended. 

The performance of the LM method worsens in the case of heart sounds. Figure 5.6 

gives the estimated root locations obtained using the LM method(Figure 5.6(a)) and 

EVDM ((Figure 5.6(b)) for the case of a signal modelled as a sum of eight damped 

sinusoids. The paramters of this synthesised signal were given in Table 5.3(b). 
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Figure 5.5: 	Location of the estimated signal poles in the case of the synthesised signal 

generated by (4.68) for extended order Pc = 18; (a) using LM method, and (b) using EVDM 

method. 

In this case the extended model order, Pe,  is selected as 34. The algorithm based 

on EVDM obtains a very accurate matching between the synthesised signal and the 

modelled one (i.e. NCC=100%, NMRSE=0.0), whereas in the case when LM method 

is used the accuracy in the mathching is only 26%. 
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Figure 5.6: 	Location of the estimated signal poles in the case of a synthesised heart sound 

generated by (5.1) for extended order pe=34;  (a) using LM method, and (b) using EVDM 

method. 

The reason for the poor performance of the LM method compared to EVDM is be-

cause of the nature of the PCG signal and the inability of LM method to estimate 

the location of polynomial roots in the case of high order ill-conditioned polynomials. 

Si and S2 contain very close frequency components, which means that the polynomial 

roots are located very close to each other. Therefore conventional techniques such as 

the LM method are unable to converge to an accurate estimation. Instead, the roots 

are sprawled all over the complex plane. In this respect, the EVDM is a more robust 

technique, largely because of the fairly sophisticated convergence method embodied by 

the balancing technique used. However, it must be mentioned that the EVDM requires 

more computation than the LM method which results in an execution time which is a 

factor of 2 times slower in operation. 

To examine the stability of the MFBPM algorithm the synthesised sounds have been 

remodelled. Results of this complimentary analysis shown that in all cases MFBPM 

produces a very stable estimation (i.e. NCC=100% and NMRSE=0.0) between the 

synthesised and remodelled signals. 

Comparison of these results with those quoted in Cloutier's work [37,75] show that 

this method is 50% more accurate in modelling heart sounds in terms of NMRSE than 

method presented in [37,75]. In addition, MFBPM has the following advantages over 

those methods: 

. It does not require a priori knowledge of the duration of Si or S2. 

. It does not need an initialisation for the phase parameter. 
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e It does not require an interactive procedure for adjusting the model parameters. 

For all these reasons, it is proposed that MFBPM represents a very good method for 

modelling the Si and S2. Furthermore, MFBPM provides a very accurate and stable 

estimator for a large variety of cases ranged from native heart valves to MPHV. 

5.3 Performance of different spectral methods when ap-

plied to analysis of Si and S2 

To explain some of the important findings of this study, some examples of the perform-

ance of these spectral analysis methods are given for the signals in Figures 5.1 and 

5.2. It must be said that other examples obtained from the remaining subjects give 

very similar results. 

5.3.1 Performance of the FFT 

Figure 5.7 represents the spectrum produced by the FFT in cases of signals shown 

respectively in Figure 5.2(a) for S2 in a healthy subject with native valve, and in 

Figure 5.1(b) for a subject with malfunctioning native valve. Figure 5.1(c) shows the 

spectrum for Si in a normal subject with mechanical prosthetic heart valve in the 

mitral position. 
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Figure 5.7: 
	Performance of the FFT when applied to the analysis of the sounds shown in 

Figures 5.2(a), 5.1(b), and 5.1(c) respectively. 

Comparing the spectrum produced by the FFT (i.e. Figure 5.7) with the spectral 

components contained in the respective signals (see Table 5.2 and Table 5.3), it is clear 
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that the FFT method does not have sufficient resolution to detect all the peaks in the 

respective signals. In almost all the cases spectral peaks have merged together in the 

power spectrum plot as a result of the poor resolution of the FFT. 

5.3.2 Performance of AR estimator 

In general, the ARB algorithm produces a representation of the envelope of the spec-

trum rather than a clear picture of the spectral components regardless of the choice 

of window. Figure 5.8 shows the spectrum produced when a ARB-H is applied for 

different model orders in the case of the S2 signal shown in Figure 5.2(a). For model 

order equal to the actual order (i.e. p=22, it has been shown that for a signal composed 

of m real sinusoids 2m coefficients are required to define the m poles in the generating 

system [130, 131]) this method can detect only one or two of the largest amplitude 

spectral peaks of the signal spectrum (Figure 5.8(a)). This result is in agreement with 

previous work presented by Cloutier et al [37,75]. There is an improvement when the 

order is increased but this is also accompanied by spurious peaks, especially outside 

the signal frequency band (Figure 5.8(b)(c)). This result would be expected from this 

estimator especially when 'peaky' power spectra are being analysed [106]. 

The effect of the window choice was also investigated. Figure 5.9 shows the performance 

of four different windows for p=50. As was expected, the window function has an impact 

only on the variance of the spectral estimator. Amongst the three types of windows, 

the Hamming window was found to be the best regarding the variance for the detected 

peaks produced by this method. However, the performance of this method is so poor 

that it is not worthwhile improving its performance by optimising the window function. 
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Figure 5.8: Performance of ARB algorithm as a function of model order p using a Hamming 

window in the case of S2 signal shown in Figure 5.2(a), (a)p = 22, (b) p = 50, (c) p = 80. 
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Figure 5.9: 	Performance of ARB algorithm method for four different types of windows for 

order p = 50; (a) optimum, (b) Hamming, (c) Burg, and (d) rectangular window. 

From the results obtained with the FFT and ARB based algorithm, it can be said that 

neither of these methods represent sufficiently accurately the spectral composition of 

Si and S2. 

These two conventional techniques, which are extensively used for analysing Si and 

S2 [26, 27, 30-32,42, 62, 67, 74, 79, 80, 90, 134] , do not extract the information specific 

to the resonance frequencies of the heart-valve system. Instead, they provide a global 

spectrum resulting from the summation of the various resonance modes of the sound in 

which the individual resonant frequencies are merged into a few dominant peaks (i.e. 

3 to 4 peaks). 

5.3.3 Performance of SVD-based techniques 

A major improvement in spectral resolution has been found by employing SVD tech-

niques compared with either the FFT or ARB algorithm. Power spectra produced by 

these methods for various signals are shown in Figures 5.10- 5.12. Table 5.6 gives the 

spectral peaks detected by certain of the methods outlined in the previous chapter when 

applied to the signal shown in the Figure 5.2(a). Performance of the ARMA3 is not 
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included in this table because it produces a very smooth spectra and cannot resolve 

most of the spectral peaks (Figure 5.11 (c)). In terms of spectral resolution, results 

obtained from all the other subjects are very similar. 

Frequency 

Component(Hz) 

 Spectral Method 

SSI ARMA1 ARMA2 PSE 

26.0 28.0 20.0 20.0 26.0 

41.0 -.- 34.0 35.0 41.0 

103.0 92.0 106.0 104.0 103.0 

120.7 115.0 122.0 120.0 124.0 

170.2 174.0 164.0 175.0 167.0 

201.6 203.0 191.0 194.0 201.0 

245.0 -.- 243.0 245.0 244.0 

279.2 260.0 270.0 272.0 

337.5 345.0 -.- -.- 326.0 

376.8 385.0 -.- -.- 360.0 

426.17 -.- -.- -.- 430.0 

Table 5.6: 	Spectral peaks of the PSD produced by several parametric methods for the 

signal shown in Figure 5.2 (a). '-.-' represents a failure to detect the particular spectral peak. 

Performance of SSI method 

A significant improvement compared with ARB was found for the case of the SSI 

algorithm. Figure 5.10 presents the performance of this method in the case of signals 

shown respectively in Figure 5.2(a) , 5.1(b), and 5.1(c). 

However, this method suffers from three main problems: (a) sometimes it is not able 

to detect peaks which are very close together (e.g. spectral components at 26 Hz and 

41 Hz in Figure 5.10(a), 103 Hz and 129 Hz in Figure 5.10(b)), (b) it is not capable 

of detecting frequency components with relatively small amplitude (e.g. the peak at 

426.17 Hz in Figure 5.10(a), the peaks at 755 Hz and 1105 Hz in Figure 5.10(c)), and 

(c) a relatively small degree of variance on the estimated spectral components (see the 

second column of Table 5.6). Moreover, the sharpness of peaks produced is not as good 

as is desired. Generally, however, this method performs much better than either the 

FFT, ARB or ARMA3 (Figure 5.11(c)). 
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Figure 5.10: 	Performance of SSI algorithm in three different cases; (a) S2 shown in 

Figure 5.2(a), (b) Si shown in Figure 5.1(b), and (c) Si shown in Figure 5.1(c) 

Performance of ARMA algorithms 

Figure 5.11 illustrates the spectra produced by ARMA1, ARMA2, and ARMA3 for the 

signal shown in Figure 5.2 (a). It is clear from this figure, that the ARMA3 method 

gives the smoothest spectral estimation amongst all other methods. The performance 

of ARMA3 is in some extent very similar to spectra produced by ARB algorithms for 

model order equal to the real one in terms of spectral resolution (Figure 5.11(c)). 

However, ARMA1 and ARMA2 methods perform much better than ARMA3 and other 

conventional techniques. ARMA1 and ARMA2 give very similar results for the variance 

of the spectral components detected. Generally ARMA2 tends to give a smaller error 

although in most of the cases the difference is negligible. Both these methods suffer to 

some extent from the same problems as the SSI algorithm. However, their performance 

is on the whole better than SSI. 
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Figure 5.11: 	Power spectrum produced by ARMA algorithms:(a) ARMA1, (b) ARMA2, 

(c)ARMA3 for the signal shown in Figure 5.2 (a). 
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Prony's spectral estimator (PSE) 

Figure 5.12 shows the power spectrum produced by PSE for some of the signals shown in 

Figure 5.1 and Figure 5.2. The model parameters are estimated by using MFBPM and 

then the PSE is estimated using (4.61). The power spectrum produced by PSE gives 

the best spectral estimator in terms of resolution, variance, and clarity of the spectrum. 

In more than 90% of the cases it was able to produce clear and distinguishable peaks 

with very small variance. In contrast to other methods, which were not capable of 

detecting frequency components with relatively small amplitude, the power spectrum 

produced by PSE give an accurate estimation of them. For instance, the spectral peak 

at 1105 Hz (Figure 5.12(c)) and at 426 Hz (Figure 5.12(a)), which were not detected 

by the other methods, are now clearly apparent. 

However, in some cases, the spectrum produced by this estimator still fails to detect all 

the components (e.g. the peak at 279 Hz in Figure 5.12(a) ). This effect arises because 

the fast-decaying sinusoids have wide spectral peaks, and those close to each other are 

often identified as a merged power spectrum estimate. 
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Figure 5.12: 	Performance of PSE spectral estimator in three different cases; (a)S2 shown 

in Figure 5.2(a), (b) Si shown in Figure 5.1(b), and (c) Si shown in Figure 5.1(c) 

Regarding the fact that the PSD, even in the case of Prony's method, does not produce 

a proper representation of the resonance frequencies of heart sounds and, as the final 

goal is to use the extracted parameters for automatic classification, it seems that it 

would be better to use the parametric description obtained directly from time-domain 

modelling of heart sounds. This conclusion is also supported by the fact that the power 

spectrum calculated by parametric methods is a linear operation based on the discrete 

Fourier transform of the respective coefficients. Thus, the amount of information is 
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the same, only the manner of representing it differs. Parameters obtained by time-

domain modelling not only represent Si and S2 with very high accuracy, but, also are 

obtainable without extra calculation necessary to obtain the spectrum or to extract 

heuristic characteristics from it. 

5.4 Model order selection 

Figures 5.13 and Figure 5.14 give the performance of the model order selection meth-

ods for the case of S2 (Figure 5.2(a)) and Si (Figure 5.1(c)). In figures (a)-(d) the 

normalised amplitude of FPE, AIC, CAT, and MDL versus the model order is plotted, 

whereas figures (e) and (f) show the distribution of eigenvalues in dB scale and their 

CRME ratio for the respective signals. For all model order criteria the aim is to derive 

a relationship between their respective amplitude distribution and the actual model 

order of the signal. Table 5.7 gives the model order estimated by different criteria for 

the signals shown in Figures 5.1 and 5.2. The actual order is derived from time-domain 

modelling based on a mean-least-square criterion as described in section 5.2. 

In most of the cases the FPE and AIC do not yield consistent estimates of the model 

order. Their performance is very similar because they are in fact asymptotically equi-

valent [140]. Amongst the four criteria, the CAT criterion performs the worst. In 

general it gives a very overestimated order. Regarding the MDL it appears to give the 

best estimate of the the actual order compared with the other three. These results con-

firm the theoretical findings given by Wax [127] for the case of real signals. Although 

this consistency in closeness between the real and estimated model order is high, MDL 

does not return the actual order in a considerable number of cases. This can be seen 

from the Table 5.7 where the performance of FPE, AIC, CAT, and MDL is given for 

the signal shown in Figures 5.1 and 5.2. Comparing column five with six, it is clear that 

the MDL identifies the proper order only in 50% of the cases. However, the estimated 

model order obtained using MDL is always closer to the actual model than those given 

by FPE, AIC, and CAT. From this table, it can also be clearly seen that CAT produces 

a vastly overestimated model order. It must be emphisesed that the conclusions drawn 

from Table 5.7 for FPE, AIC, CAT, and MDL criteria are also found in all the remainig 

patients studied in this thesis. 
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FPE AIC CAT MDL Actual Order 

Figure 5.1(a) 22 24 70 6 8 

Figure 5.1(b) 6 6 40 7 7 

Figure 5.1(c) 18 18 32 11 11 

Figure 5.1(d) 8 6 45 6 11 

Figure 5.2(a) 15 15 68 9 11 

Figure 5.2(b) 3 8 12 8 8 

Figure 5.2(c) 12 12 46 8 8 

Figure 5.2(d) 9 9 10 8 7 

Table 5.7: 	Performance of the the model order selection criteria in the case of the signals 

shown in Figure ( 5.1 and 5.2); FPE, AIC, CAT, and MDL 
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Figure 5.14: 	The magnitude of several model order selection criteria for the case of the 

signal shown in Figure 5.1 (c) (i.e. Si), (a) FPE, (b) AIC, (c) CAT, (d) MDL, (e) eigenvalue 

magnitude, and (f) CRME. 

In contrast to the performance of FPE, AIC, CAT and MDL criteria, it can be said that 

criteria based on the distribution of eigenvalues produce a more consistent estimate 

of the correct model order. It should be observed that the knee on the plot of the 

eigenvalue magnitude (Figure 5.13 (e), 5.14 (e)) associated with the biggest CRME 

ratio, ( 11 )(Figures 5.13 (f), 5.14(f)) which lies in the region -40 dB to -60 dB can be 

used as a criterion for estimating the proper order of the model in the case of Si and 

S2. From Figure 5.13 and 5.14 it can be seen that the rank of the matrix (in these 

cases it is 22) is exactly estimated from the CRME ratio (note that in the case of a 

real signal containing p components, the rank of the data matrix is 2p [104,115]). The 

wide range of the parameter M (40 dB < M < -60 dB) is related to the individual 

characteristics of the lung-thorax system which differ from one subject to another. 

It seems that the combination of the criteria based on the eigenvalue distribution with 
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the MDL criterion is the best method for estimating the proper order. This is because 

the MDL criterion asymptotically (as N, the length of data gets very large) provides 

the same information as the eigenvalues of the covariance matrix [140]. This finding 

simplifies the procedure of deciding the best subset p without searching over all possible 

subsets in the case of Si and S2 sounds. 

It must be said that the order of the model in analysing Si and S2 is always greater 

than five and it varies from subject to subject. This can be explained by the fact that 

Si and S2 are governed mainly by the interaction of heart-valve movement with the 

lung-thorax system. In this context the number of spectral components of these sounds 

will be decided by the geometric configuration of the heart valve, its material, and 

heart-valve interaction with blood masses and surrounding tissues [73]. Consequently, 

different subjects would have their own characteristics regarding the above mentioned 

factors, hence the model order, p, would be different. The differences between recording 

systems could be another factor in explaining the discrepancies observed between results 

presented in this work and those presented elsewhere [10,38,77]. For instance, the 

frequency response of the system used by Foale et al. [77] was linear with a rise of 6 dB 

per octave between 30 and 1000 Hz. Therefore, it is clear that our system emphasises 

much higher frequencies and covers a broader signal band. 

These findings also suggest that Si and S2 are more complicated than it was previously 

assumed [10, 26, 77] and further investigations are required in order to improve the 

understanding of physiological significance of these components. 

5.5 Conclusion 

The performance of several spectral estimation techniques applied to the analysis of Si 

and S2 has been investigated for a wide variety of subjects including normal and mal-

functioning native heart valves, bioprosthetic heart valves, and mechanical prosthetic 

heart valves. For all the cases, synthesised first or second heart sounds were generated 

using the MFBPM to allow a rigourous comparison between all the methods. 

It was shown that the MFBPM is a highly stable technique for modelling Si and S2 

and performs more precisely than the modified backward Prony's method with an ac- 

curacy improvement of up to 10% and up to 20% when compared with the conventional 
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forward-backward Prony's method. This degree of improvement in modelling Si and S2 

is due to the procedure for estimating the position of the the signal poles, which effect-

ively reduces the sensitivity of these parameters to perturbation and round-off errors, 

and bias reduction on the estimation of the damping factor as a result of taking the 

data in both forward and backward directions. Moreover, in contrast to previous tech-

niques in modelling Si and S2, the proposed procedure does not require a interactive 

procedure for initialisation and adjusting the model parameters. 

In general, it was also found that all parametric methods based on the SVD technique 

produce a more accurate spectral representation than the conventional methods (i.e. 

FFT and ARB) in terms of spectral resolution. Among these, the PSE is the best. 

In this context, it must be said that the conclusions of previous work regarding the 

spectral composition of Si and S2 obtained using the FFT and ARB algorithm are in-

complete. This concern especially arises when these methods (i.e. FFT and ARB) are 

used to investigate the origin of the heart sounds. On the other hand, it must be said 

that although advanced spectral techniques based on SVD give a large improvement 

in spectral representation of Si and S2 compared to FFT and ARB, none of spectra 

produced by them are able to resolve all components in all the cases with the proper 

accuracy. Based on this finding, it is proposed that time-domain modelling of heart 

sounds allows a more straightforward and direct parameterisation of their information 

than extracting heuristic features from a spectral representation. The parameters ob-

tained from time-modelling provide a complete parameterisation of the resonance and 

damping factors of the heart-valve system. Moreover, the use of the parameters of 

a time-domain model can lead to an easier procedure for automatic classification of 

the PCG signal since it does not require the extra computation to obtain the power 

spectrum nor extraction of features from this spectrum. 

It has also been observed that the proper model order can be properly estimated from 

the distribution of the magnitude of the eigenvalues and their CRME. It is proposed 

that, for the case of Si and S2, the model order criterion can be defined as the biggest 

CRME ratio in the region -40 dB to -60 dB on the eigenvalue magnitude plot. This 

procedure was found empirically to be very effective in estimating the proper model 

order in a mean-least-square sense. 



Chapter 6 

Spectral Characteristics of PCG 

Signals 

6.1 Introduction 

It has been suggested that resonances in heart sound spectra, resulting from vibration 

of mitral or aortic valve leaflets may yield useful information regarding heart valve con-

dition in vivo [132] . As was described in section 2.5, SPCG has been used extensively 

to diagnose different valvular heart malfunctions. However, the previously reported 

uses of the SPCG method [5,10,26-31,33,37,41,42,48,57,58,60,65,66,68,71,72,74,80] 

have not realised the full potential of the phonocardiography method in one of the 

most fundamental aspects of heart sound study namely, the overall impact of the lung-

thorax and heart-valve system on the spectral composition of Si and S2. Such an 

understanding would not only allow a better interpretation of the spectral components 

of the sounds, but would also facilitate their use in classification procedures aimed at 

monitoring the condition of the native or implanted prosthetic valve. In this context, 

the main objectives of this chapter are: 

• To investigate the impact of heart-valve movements and the lung-thorax system 

on the spectral composition of the externally recorded phonocardiogram 

• To investigate the impact of the prosthetic heart valve type on the overall spectral 

composition of PCG signal 

• To investigate whether or not there is a difference in the spectral composition of 

the PCG signal between normal and malfunctioning cases for the same prosthetic 

heart valve. 



Chapter 6 Spectral Characteristics of PCG Signals 

All the results presented here are obtained using MFBPM. This method is applied 

not only because its performance in representing heart sounds is superior to other 

methods, but it also gives a full parameterisation of the signal in terms of the amplitude, 

frequency, phase and damping factor, which are not available from other techniques such 

as FFT, AR or ARMA. 

6.2 Signal parameters 

In this work, results are presented in the form of average values rather than single 

instances. This allows for more consistency in the interpretation of the results and 

reduces the individual variances of the lung-thorax system from subject to subject. 

Five parameters are used in this respect for each class of subjects: 

. The spectral distribution coefficient, FK, which is defined as the number of spec-

tral components in four subbands K E {A,B,C,D} of the overall spectrum where: 

10-120 Hz (low frequency band), 

120-250 Hz (medium frequency band), 

250-400 Hz (high frequency band), 

> 400 Hz (very high frequency band). 

This partition of the frequency spectrum is based on the results presented in 

previous work in this area [30, 31, 38] and matches as closely as possible the 

individual bandwidth of significance of the different physiological events in the 

cardiac system [26]. Although there are indications that frequency components 

beyond 400 Hz are very rare in the case of native valves, a specific subband is 

dedicated to these components to investigate properly that part of the spectrum 

where the content due to mechanical prosthetic heart valves is believed to be sub-

stantial [67,90]. However, a straightforward comparison of the results presented 

here with other works will prove difficult because of the differences in the PCG 

recording systems and the spectral analysis techniques used to analyse the signal. 

Normalised amplitude distribution coefficient WK defined as: 

icK 4JJ] 
WK= 	'2 >Ii A[i] 

(6.1) 

where K E { A,B,C,D} and j denotes the spectral components in each band. 
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. A normalised energy distribution coefficient, EK defined as: 

EK - >-IjCKE[J] 

- 	 LE[i] 

where E[j] is the energy of each spectral component contained in the signal. 

• The average frequency of the largest amplitude component for each group of 

patients fAAJ defined as: 

AV 	
>12=1f Am 	

fAmax [i] 
ax = 	N 

where N represents the number of cases in the respective group under examina-

tion. 

• The average frequency of the largest energy component for each group of patients 

fE 	defined as: 

AV 	I 	fEmax[] 
fEmax = 	N 

(6.4) 

The fluctuation of the above mentioned coefficients is measured by calculating the 

standard deviation, a, for each case. The five parameters used to describe the com-

position of PCG signals represents the main characteristics, such as the distribution of 

energy, amplitudes and the number of frequency components contained in the signal. 

They will also help to identify where in the frequency band the main contribution of 

heart-valve movement occurs for the case of externally recorded PCG. 

6.3 Difference in spectra before and after mechanical 

heart valve implantation 

Although it is generally accepted that the lung-thorax system represents an important 

factor in determining the intensity and frequency distribution of externally recorded 

heart sounds, its precise relationship with the number of frequency components and 

their respective energy has yet to be established. 

To investigate the impact of the lung-thorax and heart-valve system on the spectral 

composition of the externally recorded PCC, thirty patients were recorded one day 

(6.2) 

(6.3) 
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before and four to six days after mechanical heart valve implantation. Half of these 

patients were to have a replacement mitral valve and the other half were to have a 

replacement aortic valve. In all the cases, patients with a malfunctioning native valve 

were to receive a mechanical prosthetic heart valve. The information regarding these 

two groups of patients is described in appendix A. 

6.3.1 Model of the system 

In this study the PCG signal is modelled as the interaction between the heart-valve 

system as a whole (i.e. myocardium tissues, adjacent vessels and the contained blood) 

with the lung-thorax system. The exciting source of the overall system is presumed to 

be the heart-valve system as a whole rather than any separate part of it, because of 

the uncertainties regarding the origin of the heart sound and the fact that a damaged 

heart valve affects the functioning of the heart as a whole. Figure 6.1 shows the model 

chosen. 

System 
Lung-Thorax  

System 	

> 	sout 

10, 	 wout 

Figure 6.1: 	Model of the externally recorded PCG signals. 

In this model 	represents the exciting source signal generated by the vibration of 

the heart-valve system. Wj is the internal noise which is a composite of respiratory 

sounds and thoracic muscular activity. W is the output noise which contains the 

effect of the ambient noise and instrumentation noise. Thus, the externally recorded 

PCG, S0 , can be seen to be a combination of the desired signal (Si"), superimposed 

noise (W = Wi,, + W0) and the effect of the lung-thorax system. However, it is 

assumed that a part of the superimposed noise which consists of thoracic muscular 

activity, ambient noise and instrumentation noise is non-coherent with the heart sound 

signal [141]. Thus its effect can be diminished by taking the coherent time-average 

of several cardiac cycles, which may also be helpful in circumventing the difficulties 

caused by the beat-to-beat variation of heart sounds as was described in chapter 3. 

The effect of respiratory sounds is reduced by recording the PCG signal on the so- 
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called auscultatory areas, namely: the second right interspace, often called the aortic 

area and the cardioapex or the mitral area during apnea. In .these areas the heart 

valve movements are assumed to be the "primary" source of the externally recorded 

PCG [132]. These assumptions lead to the conclusion that the interaction between 

heart-valve system and the lung-thorax system is the primary origin of the externally 

recorded PCG. 

In our study the same patients have been recorded one day before and five to six days 

after implantation of a MPHV. Studying the model of Figure 6.1, S i, will therefore 

be the only input which has substantially changed as a result of surgery. It must be 

said that inevitable minor changes would be expected even in the lung-thorax system. 

However, Durand et. al. [142] have shown that a period of two weeks would be sufficient 

for the lung-thorax system to recover in the case of dogs, with even more severe surgery. 

Thus, all the major changes in the spectrum can be related to the S, parameter. 

A group of twelve normal healthy subjects were also recorded to compare the effect of 

a degenerated native heart valve. This group was of approximately the same age as the 

other patients. Comparison of the spectral composition in this latter case with cases 

before surgery (i.e. patients who were to have a MPHV implanted as a result of native 

valve disease) allows a better understanding of the impact of the native valve on the 

overall spectrum of the externally recorded PCG. However, it must be said that the 

individual differences in the properties of the lung-thorax system between the normal 

subject and those with malfunctioning native valves make it difficult to perform a 

straightforward comparison between these two groups in terms of the absolute position 

of spectral components. 

6.3.2 Spectral characteristics of the first heart sound 

It is widely accepted that the first heart sound (Si) is associated with atrioventricular 

valve closure [26, 132] although it is unlikely that mitral valve closure is the sole cause 

of this sound. It is now believed that Si is caused by the abrupt decceleration of 

blood due to valve closure [30, 132]. Thus, it would be useful to identify the impact 

of the condition of the mitral valve on the spectral composition of Si. Table 6.1 gives 

the average values of FK, WK, and ER-  coefficients for the cases of: normal subjects, 

patients before surgery, and patients after surgery. Table 6.2 presents the standard 
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deviation, for all these parameters. 

FK coefficients 

10-120 Hz 120-250 Hz 250-400 Hz > 400 Hz 

Normal Subject 3.6 2.15 0.84 0.1 

Before Surgery 3.53 2.15 0.69 0.0 

After Surgery 3.61 1.92 1.38 4.23 

 

WK coefficients 

10-120 Hz 120-250 Hz 250-400 Hz > 400 Hz 

Normal Subject 69.47% 26.15% 4.36% 0.017% 

Before Surgery 90.55% 7.54% 1.908% 0.0% 

After Surgery 61.32% 17.36% 5.12% 16.62% 

 

EK coefficients 

10-120 Hz 120-250 Hz 250-400 Hz > 400 Hz 

Normal Subject 96.08% 3.89% 0.0074% 0.0001018% 

Before Surgery 99.78% 0.17% 0.0043% 0.0% 

After Surgery 95.96% 2.05% 1.49% 0.48% 

 

Table 6.1: The average values of (a) FK,  the spectral distribution coefficient, (b) WK, norm-

alised amplitude distribution coefficient, and (c) EK, normalised energy distribution coefficient 

for each subband of the spectrum for Si. 

Comparison of the normal cases with cases before surgery shows that the number of 

frequency components and the relative distribution of the energy (Table 6.1 (a),(c)) are 

almost independent of the condition of the native mitral valve. However, there is a big 

difference in the distribution of the normalised amplitude coefficient. The difference in 

the distribution of the WK and EK parameters suggests that while the amplitude of 

frequency components is related straightforwardly to the condition of exciting source 

(i.e. the EK parameters are mostly governed by the damping factor, which is 
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or Normal subjects Before surgery After surgery 

aFA  0.78 0.552 0.7 
aF 0.78 0.86 0.64 

°Fc 0.79 1.19 0.8 

aFD 0.65 -.- 3.58 

aWA  26.0 26.63 24.0 

aWB 20.9 20.95 12.2 
Orwc  7.08 7.14 8.4 

0WD 0.0001 -.- 16.48 

aEA  8.19 0.47 6.53 
aE 8.25 0.47 3.89 
aEc  0.0024 0.016 4.3 

aED 0.0003 -.- 1.2 

Table 6.2: 	Estimated standard deviation of FK, WK, and EK coefficients in the four 
subbands A, B, C, D for the first heart sound.'-.-' represents a nonmeasurable parameter. 

determined by characteristics of the lung-thorax system. This explains the fact that 

big changes of the WK parameters are reflected in small changes in the signal energy 

domain (i.e. differences of more than 20% of WK parameters are scaled to only 3% for 

ER-  parameters (Table 6.1(b) (c)). 

The primary role that the lung-thorax system plays in determining the spectral corn-

position of Si is also supported by the value found for the frequency of the biggest 

amplitude component for the normal and malfunctioning cases of native mitral heart 

valves. Table 6.3 gives the average frequency of the largest amplitude component for 

all three groups. 

eAV 
JAmax 

Normal subjects 59.93 Hz 

Before surgery 33.02 Hz 

After surgery 115.88 Hz 

AV 
JEmax 

Normal subjects 35.450 Hz 

Before surgery 31.04 Hz 

After surgery 31.45 Hz 

(a) 	 (b) 
Table 6.3: The average values of fr" (a), and f' (b) for the first heart sound, Si. 

or Normal subjects Before surgery After surgery 

ajAv 65.0 17.0 53.12 
Amax 

a AV 20.77 14.0 11.0 

Table 6.4: The estimated standard deviation of f' and  f' for the first heart soundA ma 	max 

Si 
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It is clear that in both the normal patients and the abnormal patients before surgery 

the values of ff" and f are well below 120 Hz, which is the upper limit of the 

subband A. Additionally, the standard deviations of JV  and fV are quite high,Emax 

which suggests a strong dependance on the individual lung-thorax sizes. 

In terms of the average number of components per subband, FK, it can be said that they 

are largely independent of the condition of the native mitral valve. This finding suggests 

that the number of frequency components contained in Si and their relative energy 

for the case of native heart valves, are mostly dependent on the vibrating resonance 

characteristics of the lung-thorax system excited by the heart-valve vibration, rather 

than the exciting source itself. The amplitude of frequency components, however, is a 

better estimator of the condition of the native mitral valve. 

This conclusion is also supported by the examination of heart sounds in the case of pa-

tients before and after a MPHV was implanted. In respect of the frequency of the largest 

amplitude component, it can be said that, even in the case of patients with a mechan-

ical prosthesis, this component lies in subband A. The fact that ff 7 =i15.88 Hz (i.e. 

almost twice as large as the normal case and three times larger than the malfunction-

ing case) shows the importance of regarding the system as a whole heart-valve system 

rather than the valve itself. It also underlines the interaction between heart-valve vi-

bration and the lung-thorax system has on the spectral composition of the externally 

recorded Si. Table 6.3 shows that for the same patient after surgery is 3.5 times 

greater than before surgery. This finding clearly shows the impact that heart-valve 

movement has on the amplitude distribution of the spectral components in the first 

heart sound Si. 

The direct relationship between heart valve type and the amplitudes of the spectral 

components of the externally recorded PCG can clearly be seen from Table 6.1. This 

table shows that there are only minor differences between the FK and EK parameters 

below 400 Hz. However, the distribution of WK is entirely different. The effect of the 

lung-thorax system becomes more evident from the values of FK, WK, and EK in the 

subband D. It is well known that the closure of the MPHV generates high frequency 

components as a result of their structure [144], and this is reflected in the composition 

of the FD and WD parameters. However, as a result of high attenuations of the lung-

thorax system in this part of the spectrum [38], and the very short duration of these 

components (i.e. high damping factor), only 0.48% of the total energy is concentrated 
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in the D subband (Table 6.1 (c)). To illustrate this effect a closure sound of a mitral 

prosthesis is shown in Figure 6.2. 
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Figure 6.2: 	Closure sound of a mitral mechanical prosthesis; (a) full Si, (b) that part of 

Si related to the closure of the mitral mechanical prosthesis, and (c) the parameters of the 

synthesised signal for part (b). In both cases the actual signal is represented by a green line 

and the synthetic signal by a blue line (the difference is negligible). The patient has a 19 mm 

Carbomedics prosthetic valve. 

Figure 6.2 (a) shows the complete Si (50 ms synthesised as the sum of twelve damped 

sinusoids) and its synthesised signal(blue line). Figure 6.2(b) gives that part of the 

signal which is related to the closure of the mechanical prosthesis (6 ms) and its syn-

thesised signal (blue line). The parameters of the signal in Figure 6.2 (b) are shown in 

Figure 6.2 (c). It is obvious from this case that the frequencies above 400 Hz appear at 

the moment of closure of the MPHV. From Figure 6.2 (c) it can be seen that the major 

component is at 951 Hz. This component could be related to the sound of the valve 

closure since its time duration is the smallest of all components (its damping factor 

(0.123) is the greatest of all the other damping factors). However, there are three other 

components above 400 Hz which occur during this very short time interval. Two of 

them (659 Hz and 1488 Hz) are widely spread from the highest energy component (951 

Hz) and their damping factors are more than one order less than the damping factor 

of the 951 Hz component. Since these components are longer in duration than the 
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principal component at 915 Hz, these components could be related to the interaction 

between the closure of the prosthetic heart valve with the higher vibrating modes of 

the lung-thorax system. This argument is also supported by the distribution of the op 

parameter. From Table 6.2 it can be seen that °D  has the largest value of the other 

op parameters, which suggests that the number of these components depends upon 

the lung-thorax size of the patients and the type of MPHV. The existence of a low 

frequency component (100-150 Hz) with one of the lowest amplitudes at the moment of 

MPHV closure is another important finding. Since similar findings are present from all 

the patients with an implanted mitral prosthesis regardless of the type of valve, sex and 

age of the patients, it can be said that this component is related either to the vortex 

shedding of the blood around the prosthetic valve [47] or to the vibration of muscular 

chords previously associated with the orifice of the native valve which are still present 

after prosthetic valve implantation. 

6.3.3 Spectral characteristics of second heart sound 

The relationship of aortic and pulmonary valve closure with the second heart sound 

(S2) is now widely accepted [132]. In general S2 is shorter in duration than Si and has 

higher frequency components. Table 6.5 gives the average values for the FK, WK, and 

EK coefficients for S2 for the cases of: normal subjects, patients before surgery, and 

patients after surgery. Table 6.6 gives the standard deviation of these coefficients. 

From Table 6.5 it can be seen that the conclusions drawn for the impact of the lung-

thorax system in the case of Si remains valid for S2. It can be seen that the distribution 

of Fk and Ek parameter below 400 Hz is almost the same for all three groups of the 

patients. However, the difference in the distribution of the Wk parameter is more 

obvious. The attenuating effect of the lung-thorax system above 400 Hz is clear from 

Table 6.5(b) and Table 6.5(c). 

Regarding the fr" and  f V 	parameters it is clear that they lie in subband A for all 

three cases, which supports the assertion that the main contributor to the externally 

recorded PCG is the lung-thorax system as a whole rather than the heart valve itself. 

Table 6.7 gives the values of ff' and fáV  for S2 in the three different patientmax  

groups. 
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FK coefficients 
10-120 Hz 120-250 Hz 250-400 Hz > 400 Hz 

Normal subject 3.0 2.77 1.72 0.27 
Before surgery 3.2 2.4 1.26 0.26 
After surgery 3.53 2.46 1.53 1.4 

 

WK coefficients 
10-120 Hz 120-250 Hz 250-400 Hz > 400 Hz 

Normal subject 69.45% 23.96% 6.128% 0.1% 
Before surgery 74.14% 23.68% 2.04% 0.03% 
After surgery 78.44% 15.93% 4.91% 0.69% 

 

ER-  coefficients 
10-120 Hz 120-250 Hz 250-400 Hz > 400 Hz 

Normal subject 98.55% 1.39% 0.0345% 0.000068% 
Before surgery 98.46% 1.48% 0.042% 0.000317% 
After surgery 98.01% 1.95% 0.031% 0.00299% 

 

Table 6.5: The average values of (a) FK,  the spectral distribution coefficient, (b) WK,  norm-
alised amplitude distribution coefficient, and (c) EK,  normalised energy distribution coefficient 
for each of the four subbands of the spectrum for S2. 

a Normal subjects Before surgery After surgery 

aFA  0.1 0.63 0.76 

aFB  0.95 0.78 0.54 

°Fc 0.87 1.05 1.19 

UFD 0.78 0.85 0.85 

UW A  12.0 19.0 16.25 

awB  11.4 17.52 15.77 
O'wc  5.56 2.39 4.35 
O'W'  0.23 0.38 1.17 

aEA  2.46 2.99 4.63 

UEB 2.46 2.95 4.38 

aEc 0.068 0.107 0.047 

OED 0.0002 0.003 0.0016 

Table 6.6: 	The estimated standart deviation of FK, WK, EK coefficients in the case of S2. 
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çAV 
JAmax 

Normal subjects 82.36 Hz 

Before surgery 62.96 Hz 

After surgery 75.43 Hz 

(a) 

fA V 
'Emax 

Normal subjects 35.00 Hz 

Before surgery 40.36 Hz 

After surgery 35.13 Hz 

(b) 

Table 6.7: The average value of ff' (a), and fI' (b) in the case of S2.ma 

a Normal subjects Before surgery After surgery 
a,AV 

Am ax  

at AV 
Emar 

40.0 

14.4 

44.8 

30.86 

30.36 

20.0 

Table 6.8: 	The estimated standard deviation of fA 
A V  and fEA 	in the case of S2. 

6.3.4 Difference in spectral components between Si and S2 

Comparison of Table 6.1 and Table 6.5 for cases of native valves shows that Si and 

S2 contain approximately the same number of spectral components throughout the 

spectrum. However, S2 has a greater Fk in the frequencies over 250 Hz than Si. In 

terms of the overall differences between normal and malfunctioning native mitral valves, 

it can be said the amplitudes of spectral peaks in the subband B are most affected by the 

condition of the mitral valve. There is a clear difference in the WB coefficient between 

both cases (26.15% in the case of normal subjects, and only 7.54% in the cases before 

surgery). This conclusion is also supported by the value of the WB and coefficient in the 

region 120-250 Hz for recordings after MPHV implantation. The normalised amplitude 

distribution coefficient is 17.36% in this case, which is approximately 10% less than 

the normal native mitral valve case and 10% more than the case before surgery. This 

important finding suggests that the amplitudes of spectral components between 120-

250 Hz are more related to the closure of the native mitral valve and, as the valve 

deteriorates, these amplitudes decrease. In the case of S2 it is the amplitude of the 

subband C components which are affected by the condition of the aortic valve (i.e. a 

difference of 4.2% in WC was found). 

Another difference between Si and S2 can be seen in terms of the ff" parameter. 

From Table 6.3 and Table 6.7 it is clear that this parameter is greater in the case of S2 

for native valves regardless of their condition. This finding still supports the suggestion 
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that the amplitudes of spectral components are a better estimator for the condition of 

heart valves than the distribution of energy or the number of frequency components. 

This argument can also be supported by the values of fV  for all the three groups of 

patients. From Table 6.3 and Table 6.7 it can be said that this parameter is independent 

not only of the condition of the heart valve, but it also does not appear to be affected 

by the type of heart valve. 

A clear difference in the distribution of FD, WD, and ED between Si and S2 can also be 

seen from Table 6.1 and Table 6.5 in the case of MPHV for frequencies beyond 400 Hz. 

From these tables it can be said that the number of components and their relative 

energy above 400 Hz in the case of S2 is not as high as Si. This can be explained 

by the longer transmission path of the aortic closure sounds from the aortic valve to 

the 'aortic' area than the distance from the mitral valve to the 'mitral' area. Thus the 

sound related to the mechanical closure of the aortic prosthesis has to travel a longer 

path and hence suffers higher attenuation as a result of the low-pass characteristic of 

the lung-thorax tissues. 

The difference in spectral composition of Si and S2 above 400 Hz between native heart 

valves and MPHV proves that the mechanical prosthesis is responsible for these com-

ponents in both Si and S2. The change in these components has been investigated for 

four malfunctioning (leaky) cases of the mechanical prosthesis which were subsequently 

replaced or repaired. Figure 6.3 depicts the spectrum for one of them. It is clear that 

there are no predominant peaks above 400 Hz and a large part of the energy is concen-

trated between 250 and 400 Hz. 
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Figure 6.3: 	Spectrum of S2 in a patient with a leaky valve in the aortic position. 
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6.4 The impact of prosthetic heart valve type on the 

spectral composition of Si and S2 

Several studies in vitro have been conducted to investigate the spectral characteristics, 

loudness, and the impact of mechanical construction on the characteristics of several 

MPHV [65, 134]. Although studies in vitro can give a clear picture of the relative 

loudness and the frequency content of MPHV sounds, they neglect an important factor 

in the spectral composition of these valves - the impact of the lung-thorax system on 

the overall observed spectrum at the chest surface generated by the closing click of 

MPHV. It has been shown by Durand [38] and Yoganathan [30] that the lung-thorax 

system behaves like a low-pass filter for frequencies above 100 Hz for the second heart 

sound (S2). Moreover, they have found that the graph of sound attenuation. through 

the lung-thorax system varies as a function of frequency. Therefore, it can be said that 

the lung-thorax system has a non-linear transfer characteristic in different regions of 

the frequency spectrum which may cause distortion, or even changes in the intensity 

of sounds produced by the opening or closing of a MPHV. It was also shown in the 

previous section that the lung-thorax system plays a very important role even in the 

total number of frequency components of the externally recorded PCG. 

In this context, studies in vivo are of crucial importance as they relate directly to 

the daily functioning of MPHV. Furthermore, the in vivo technique can be used to 

improve the design and mechanical construction of these valves by investigating the 

differences in spectral composition between the different types of valves and the impact 

of particular elements in their design and construction on the overall spectrum of the 

valve closing sounds. 

The aim of the following two subsections is to investigate the impact of the mechanical 

prosthetic heart valve construction on the spectral characteristics of the closing sounds 

produced by these valves in both mitral and aortic position. The spectral composition 

of in vivo closing sounds produced by different mechanical prosthetic heart valves such 

as monostrut Bjork-Shiley (MBSH), Carbomedics (CRB), and Starr-Edwards (SE) are 

investigated. More than one hundred recordings were carried out for fifty-three different 

patients with a MPHV implanted in the mitral or the aortic position. The information 

concerning the type of MPHV, sex, and age of all these patients is given in appendix 

A. 
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From the results obtained with the air-coupled microphone it was observed that the 

number of frequency components above 2 kHz was negligible. In eight of the 53 patients, 

only one component was found beyond 2 kHz. These components always had the 

smallest amplitudes among all the frequency components. Figure 6.4 shows the real 

and modelled signal for four different recordings. Two of these recordings were obtained 

using the contact microphone (Figure 6.4(a)(c)) and the remaining two with the air-

coupled microphone (Figure 6.4(b)(d)). The model parameters for the signal shown in 

Figure 6.4(a) and (b) are presented in Table 6.9. 
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Figure 6.4: 	Actual (green line) and synthetic (blue line) signals of S2 for four different 

recordings: (a) a patient with MBSII valve recorded with contact microphone (actual and syn-

thesised signal indistinguishable), (b) a patient with a MBSH valve recorded with an air-coupled 

microphone, (c) a patient with a Carbomedics valve recorded with a contact microphone, (d) 

the same patient shown in (c) recorded with an air-coupled microphone. 

It can be seen from Table 6.9(b) that there are no frequency components above 2 kHz 

in the case of the S2 recorded using the air-coupled microphone. Similar findings were 

also shown in [68,92]. This finding suggests that even though the spectral components 
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of the recording in vitro could extend up to or beyond 10 kHz, the energy of these 

components in vivo is very small as a result of the low-pass filtering characteristic of 

the lung-thorax system. As the main part of the energy of closing sounds produced by 

the MBSH, CRB and SE valves was found to be below 2 kHz, the following results are 

presented from the recordings carried out with the Hewlett-Packard microphone. 

Comp f[i] Hz A[i] d[i] çb[i] 
1 31.3 0.735 0.0153 3.167 
2 53.7 1.0 0.0117 5.75 
3 81.9 0.077 0.008 6.06 
4 118.0 0.859 0.337 0.07 
5 160.4 0.74 0.038 1.664 
6 192.4 0.037 0.018 6.047 
7 222.9 0.226 0.03 3.129 
8 327.5 0.065 0.04 2.84 
9 405.0 0.0064 0.049 6.068 
10 569.0 0.07 0.053 4.19 
11 676.4 0.07 0.053 4.19 
12 820.1 0.027 0.045 0.401 
13 1009.9 0.01 0.0028 1.575 
14 1199.6 0.0045 0.0203 1.775 

(a) 

Comp f[i] Hz A[i] d[i] 0 [i] 
1 55.8 0.12 0.012 1.086 
2 99.9 0.05 0.002 2.66 
3 210.5 0.22 0.011 1.025 
4 260.7 0.025 0.003 0.76 
5 286.8 1.0 0.032 3.57 
6 361.6 0.492 0.021 6.25 
7 537.8 0.128 0.031 0.809 
8 739.8 0.0084 0.004 1.11 
9 769.0 0.0175 0.019 1.96 
10 1107.7 0.043 0.012 1.38 
11 1262.2 0.0025 0.01 2.85 

(b) 

Table 6.9: Parameters of the modelled signals shown in Figure 6.4(a) and (b); f[i] frequency, 
A[i] amplitude, d[i] damping factor, and [i] phase of the synthesised signal. 

6.4.1 Differences in spectral composition between monostruct Bjork-

Shiley and Carbomedics valves implanted in the aortic position 

Table 6.10 presents the average values of FK, WK, and EK obtained from two groups 

of patients with normally functioning valves. Table 6.11 gives the standard deviation 

parameter for each of these coefficients. 

From Table 6.10, it can be said that similar conclusions can easily be demonstrated for 

the MBSH and CRB valves about the impact of the lung-thorax system on the spectral 

composition of S2 with those mentioned in the previous section. From Table 6.10 

it can be seen that large differences in amplitude distribution are reflected in smaller 

changes in the energy domain. This once again suggests that the amplitudes of spectral 

components are more related to the condition and type of heart valve than the other 

parameters of spectral composition in the case of externally recorded PCG. 
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FK coefficients 

10-120 Hz 120-250 Hz 250-400 Hz > 400 Hz 

MBSH Valves 

CRB Valves 

3.33 

3.78 

2.83 

2.71 

2.05 

2.07 

4.5 

1.78 

 

WK coefficients 

10-120 Hz 120-250 Hz 250-400 Hz > 400 Hz 

MBSH Valves 

CRB Valves 

50.14% 

70.47% 

29.14% 

16.69% 

11.16% 

10.708% 

9.28% 

2.09% 

 

EK coefficients 

10-120 Hz 120-250 Hz 250-400 Hz > 400 Hz 

MBSH Valves 

CRB Valves 

83.67% 

96.97% 

10.41% 

2.64% 

1.274% 

0.354% 

4.646% 

0.035% 

 

Table 6.10: The average values of (a) FK,  spectral distribution coefficients, (b) WK, normal-

ised amplitude distribution coefficients, and (c) EK normalised energy distribution coefficients 

for the patients with MBSH and CRB valve in the aortic position. 

From these results it can be seen that the difference in the number of frequency com-

ponents between patients with Bjork-Shiley and Carbomedics implants below 400 Hz 

is quite small. However, there is a big difference in the number of frequency compon-

ents above 400 Hz (there are in fact three times as many in the case of the MBSH 

valve). In terms of the relative energy distribution, it can be said that differences are 

more obvious below 120 Hz, where a 15% increase in relative energy is present for the 

case of the Carbomedics valve. However, in relative terms, the MBSH valve has much 

more energy above 400 Hz than the CRB valve (i.e. in subband D). This conclusion is 

very important when one bears in mind the characteristics of the human auditory sys-

tem [143]. Since the discriminatory power of the auditory system is up to three orders 
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a MBSH valve CAR valve 

aFA 0.57 1.01 

aFB 0.685 1.028 

'Fc 0.787 1.03 

cJFD 2.79 2.075 

UWA 22.38 22.0 

cTW B  15.53 11.19 
awc  13.51 12.65 

awD 3.7 3.6 

aEA 23.5 4.37 

aEB 14.49 4.29 

OrEc 2.93 0.63 

aED 20.67 0.119 

Table 6.11: 	The estimated standard deviation of FK, Wk, and EK coefficients in the case 
of MBSH and CRB valves implanted in the aortic position. 

of magnitude higher between 400 Hz and 2 kHz than for sounds in the range between 

20-120 Hz [25], it is this part of the total energy which disturbs the patient most. This 

finding suggest that one of the reasons why the Carbomedics valve is quieter than the 

MBSH valve [51, 144] is due to the fact that the main part of energy emitted by the 

closing sound in vivo is below 120 Hz where the dynamic sensitivity of the human ear 

is poor. 

The frequency of the largest amplitude and energy spectral components was also in-

vestigated. Table 6.12 presents this information for those values and Table 6.13 gives 

their respective standard deviation. 

AV 
fAmax 

MBSH valve 129.49 Hz 

CRB valve 92.35 Hz 

(a) 

,cAV 
JEmax 

MBSH valve 79.53 Hz 

CRB valve 42.99 Hz 

(b) 

Table 6.12: 	The average values of f' (a), and f 	(b) in the case of patients withma. 

MBSH and CRB valves implanted in the aortic position. 

Studying Table 6.12 it can be said that the value of f 	for these two groups is 

slightly greater than for the cases of native valves, especially in the case of the MBSH 

valve. On the other hand, it is clear that these frequencies are well below the frequency 

ranges that could be related to closure of the MPHV. This finding further suggests 

that the main component of S2 is related to the interaction of the lung-thorax system 
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a MBSH valve CRB valve 
UIAV 

' 
96.75 25.0 

Amax 

cJ 1 AV 
' Em,r 

91.49 47.85 

Table 6.13: 	The estimated standard deviation of f' and  f' in the case of patients 
with MBSH and CRB valves implanted in the aortic position. 

with the heart-MPHV rather than the closure of the MPHV itself. The large values of 

Uf Av and afAv also emphasise the differences in lung-thorax sizes between subjects 
Amax 	 Eynax 

on the spectral composition of the externally recorded heart sounds. These results 

also suggest that although the type of the MPHV has most impact beyond 400 Hz it 

also affects the remainder of the spectrum. Since there are no reasons to believe that 

frequencies beyond 400 Hz are generated by other factors [132] than the MPHV or its 

interaction with the lung-thorax system, it can be proposed that these components are 

related to the condition of the MPHV. From the preliminary results obtained from the 

four malfunctioning cases, it has been found that components above 400 Hz disappear 

or shift down in frequency to the lower regions of the spectrum when the valve is 

dysfunctioning. Figure 6.5 shows the spectrum of two different patients recorded 24 

hours before the leaky valve was replaced. 

It is clear from Figure 6.5 that there are no predominant peaks above 300 Hz and a 

large part of the energy is concentrated in subband C between 250 and 400 Hz. These 

results support the findings of Durand [79]. Durand found that the low frequency region 

of the opening sound of MPHV contains useful information regarding the integrity of 
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Figure 6.5: 	Spectra of S2 for two different subjects with a leaky valve in the aortic position: 

(a) patient with 23mm CRB valve, (b) patient with 23mm MBSH valve. 
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is given in Table 6.20. 
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6.4.2 Differences in spectral composition between monostruct Bjork-

Shiley and Starr-Edwards valves implanted in the mitral posi-

tion 

In contrast to the previous case, there are clear differences in spectral composition 

of the closing click between SE and BSHM mechanical prosthetic heart valves in the 

mitral position. Figure 6.6 shows the real and modelled signal for a case of a SE valve 

and MBSH valve implanted in the mitral position. The respective parameters of these 

two modelled signals are given in Table 6.14. Table 6.15 presents the average values 

obtained from these two groups of patients. The standard deviation of these parameters 

0 	50 
	

100 	150 	200 	250 	 0 	50 	100 	150 	200 	250 
Number of Samples 	 Number of Samples 

(a) 	 (b) 
Figure 6.6: 	Actual (green line) and synthetic (blue line) signals of Si for two different 

recordings: (a) patient with SE valve , (b) patient with a MBSH valve 

Comp f[i] Hz A[i] d[i] çb[i] 
1 10.88 0.4 0.0077 1.68 
2 52.52 0.569 0.0045 4.27 
3 85.64 0.358 0.0047 2.94 
4 127.5 1.0 0.029 2.15 
5 159.8 0.654 0.028 3.17 
6 189.25 0.159 0.022 4.56 
7 232.7 0.51 0.029 5.93 
8 318.7 0.69 0.047 4.27 
9 345.86 0.59 0.046 6.03 
10 711.7 0.296 0.09 1.33 
ii 1131.1 0.036 0.038 3.46 
12 1393.7 0.019 0.061 0.39 
13 1687.3 0.01 0.35 4.88 

Comp f[i] Hz A[i] d[i] qS[i] 
1 37.04 0.373 0.01 0.86 
2 69.74 1.0 0.029 2.9 
3 80.36 0.599 0.034 5.6 
4 157.85 0.127 0.054 3.34 
5 205.41 0.13 0.038 1.21 
6 298.78 0.2 0.074 4.24 
7 521.31 0.024 0.037 5.41 
8 669.56 0.005 0.032 0.55 
9 976.61 0.014 0.037 4.55 
10 1336.6 0.0019 0.024 3.24 

(b) 

(a) 

Table 6.14: 	Parameters of the modelled signals shown in Figure 6.6. f[i] frequency, A[i] 
amplitude, d[i] damping factor, and q[i] phase of the synthesised signal. 
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FK coefficients 

10-120 Hz 120-250 Hz 250-400 Hz > 400 Hz 

MBSH valves 

SE valves 

3.75 

2.44 

2.75 

2.55 

1.5 

2.0 

4.25 

6.88 

 

WK coefficients 

10-120 Hz 120-250 Hz 250-400 Hz > 400 Hz 

MBSH valves 

SE valves 

74.06% 

22.79% 

15.15% 

39.51% 

6.68% 

23.23% 

4.06% 

18.67% 

 

ER-  coefficients 

10-120 Hz 120-250 Hz 250-400 Hz > 400 Hz 

MBSH valve 

SE valve 

97.315% 

65.14% 

2.55% 

31.28% 

0.123% 

1.85% 

0.00127% 

1.668% 

 

Table 6.15: 	The average values of (a) FK,  the spectral distribution coefficient , (b) WK, 

normalised amplitude distribution coefficient, and (c) EK, normalised energy distribution coef-

ficients for the patients with Bjork-Shiley(MBSH) and Starr-Edwards(SE) valves in the mitral 

position. 

There is a clear difference of the energy and amplitude distributions within the respect-

ive subbands between these two cases. A different pattern is also found for the spectral 

distribution coefficient, especially beyond 400 Hz. These findings suggest that the there 

is a strong relationship between the spectral composition of externally recorded PCG 

and the type of mechanical prosthetic heart valve. As was described in chapter 2, SE 

and MBSH valves have completely different mechanical structure and geometrical con-

figurations, hence the differences in the spectral composition of their respective closing 

sounds. However, the importance of the lung-thorax system on the externally recorded 

PCG can still be distinguished even in this case. From Table 6.15(b) and Table 6.15(c) 

it can be seen that very large differences in amplitude distribution are reflected in a 
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smaller scale in the energy distribution. It can be seen that differences of 52%, 17% 

and 14% in the WK coefficient are scaled down to 30%, 1.7% and 1.6% in the case of 

the EK parameter, respectively. 

or MBSH valve SE valve 

aFA 0.48 0.68 

aFB 0.66 0.83 

°Fc 0.5 0.47 

aWA 6.33 12.46 

aWB 7.9 20.75 

awc  2.86 16.4 

UwD 5.3 17.53 

UEA 3.5 31.8 

UEB 3.59 29.95 

UEc 0.146 2.53 

UED 0.0013 2.57 

Table 6.16: The estimated standard deviation of FK, WK, and EK coefficients in the case 

of MBSII and SE valves implanted in the mitral position. 

The difference in the number of components, amplitude, and energy distributions 

between these two types of valve above 400 Hz is an important discovery of this in-

vestigation. From Table 6.15(b), it is clear that the SE valve has 18.76% of the total 

amplitude distribution above 400 Hz which, in relative terms, is four times larger than 

the value of WD for MBSH in this subband. This difference is also reflected in a higher 

respective energy in the case of SE than MBSH valves. As was described in subsec-

tion 6.4.1 this part of the spectrum disturbs the patient most because of the dynamic 

sensitivity of the human auditory system. However, various authors have found that in 

absolute terms the MBSH valve is much louder than the SE valve [51,72]. Our results 

suggest that the loudness of functioning of the mechanical prosthetic heart valves in 

vivo is strongly related to the material of construction of the mechanical prosthetic 

valve and their mode of vibration. These results agree with other work on mechanical 

prosthesis [67, 72]. 

Table 6.17 and Table 6.18 gives the values of ff, f' and their standard deviation, 

respectively. 
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;AV 
JAmax 

MBSH valve 83.57 Hz 

SE valve 247.88 Hz 

(a) 

AV 
fE max 

MBSH valve 43.64 Hz 

SE valve 81.04 Hz 

(b) 

Table 6.17: The average value of (a) fV  and (b) fi" coefficients in the case of patients 

with MBSH and SE valve implanted in the mitral position. 

or MBSH valve SE valve 
O 

'
AV 15.53 175.74 
Amax 

aAV 
Em,,, 

20.3 50.99 

Table 6.18: 	Standard deviation for parameters in the case of Si. 

The value of ff' = 247.88 Hz, which is greater than 120 Hz (i.e. subband A), provides 

a distinction between SE prosthetic heart valves and all the other cases. However, 

bearing in mind the greater value of afAv in this case, compared to other groups of 
Amax 

patients, it may be suggested than this inconsistency might be caused by poor statistical 

properties of the data in this group patient. 

6.5 Differences in spectral composition between normal 

and malfunctioning Carpent ier- Edwards bioprost bet ic 

heart valves in the aortic position 

In a practical sense, the ultimate goal of spectral PCG is to properly diagnose different 

cardiac diseases especially those related to malfunctioning of either native heart valves 

or prosthetic heart valves. In this context, a large amount of interest has been shown 

in using the spectral characteristics of the PCG signal for detecting the malfunctioning 

of bioprosthetic heart valves. This procedure includes two main steps: 

to investigate whether or not there is a difference in spectral composition between 

normal and malfunctioning cases of prosthetic valves 

. to extract feature parameters which can be used in a classification procedure. 
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This section is concerned with the first step of the above mentioned procedure for 

the case of normal and malfunctioning Carpentier-Edward (C-E) bioprosthetic heart 

valves implanted in the aortic position. Twenty-six patients with C-E valves were 

recorded for this purpose. Fourteen of them had a normally functioning (NF) C-

E valves and the remaining twelve had malfunctioning (MF) ones, which included a 

leaky or stiffening bioprosthesis. The information regarding these patients is given 

in appendix A. Table 6.19 and Table 6.20 give the distribution of FK, WK and EK 

coefficients and their standard deviations, respectively. 

Fk coefficients 

10-120 Hz 120-250 Hz 250-400 Hz > 400 Hz 

NF 

MF 

3.85 

4.09 

2.85 

2.63 

1.21 

0.0 

1.14 

0.0 

 

WK coefficients 

10-120 Hz 120-250 Hz 250-400 Hz > 400 Hz 

NF 

IVIF 

76.04% 

83.57% 

20.78% 

16.377% 

2.75% 

0.0% 

0.356% 

0.0% 

 

EK coefficients 

10-120 Hz 120-250 Hz 250-400 Hz > 400 Hz 

NF 

MF 

97.88% 

98.875% 

2.088% 

1.125% 

0.02% 

0.0% 

0.00036% 

0.0% 

 

Table 6.19: Average values of (a) FK, spectral distribution coefficient, (b) WK,  normalised 

amplitude distribution coefficient, and (c) EK normalised energy distribution coefficient for 

patients with normal (NF) and malfunctioning (MF) Carpenter-Edwards valves in the aortic 

position. 

From Table 6.19 it can be said that the main difference between normal and mal-

functioning cases occurs in the frequencies above 250 Hz. Comparing Table 6.19 with 

Table 6.5 it can be said that the pattern of energy and amplitude distribution in the 

case of native heart valves and C-E bioprosthetic heart valves implanted in the aortic 
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position is very similar. In both cases the major part of the total energy, (98%), is 

concentrated in subband A. It also appears that as the heart valve degenerates the 

amplitudes of spectral components in the subband A rise. 

a NF valve MF valve 

aFA 1.11 0.66 

aFB 0.94 0.72 

C7Fc 0.92 

aFD 1.02 

aWA 10.34 18.0 

aw5  9.1 17.89 

awc  2.36 

OrWD  0.42 

aEA  4.062 2.99 

a 4.06 2.99 

aj 0.18 

O'ED 0.00079 

Table 6.20: 	The estimated standard deviation of FK, WK and EK coefficients in the case 

of C-E valves implanted in the aortic position.'-.-' represents a nonmeasurable parameter. 

The only difference is the amount by which the difference between normal and malfunc-

tioning cases occur respectively. It seems that in the case of GE bioprosthesis there is a 

greater amount of difference in the WK coefficient between normal and malfunctioning 

cases in the frequency subband A than the native valve. However, the major difference 

in relative terms between normal and malfunctioning groups in both cases occurs in 

frequencies above 250 Hz. The similarity between these cases can be explained by their 

similarity in material construction: a native valve consists of human tissue, whereas the 

GE valve in made of biological tissue with structural characteristics approaching those 

of natural valves. Therefore, the dynamic behaviour of these valves, which is believed to 

be the exiting source of the vibrating lung-thorax system, have similar characteristics. 

The similarity between GE and native heart valves in the aortic position is also suppor-

ted by the values of the ff' and fax parameters. Table 6.21(a) and Table 6.21(b) 

give the values of fZax and  fr parameters for the normal and malfunctioning cases 
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of C-E valves. The standard deviations of these parameters are presented in Table 6.22. 

Comparing Table 6.21 with Table 6.7 it is clear that in both native heart valves and 

C-E valves the value of f is greater for normally functioning valves and moves 

downwards in frequency in the case of a malfunctioning valve. In both cases the value 

of these parameters are located in the subbband A, which still supports the argument 

that the main part of the energy in the case of S2 is related to the interaction of the 

heart valve with the lung-thorax system rather than the valve itself. 

fAV 
Amax 

NF valve 76.0 Hz 

MF valve 53.0 Hz 

(a) 

f AV 
Ern ax 

NF valve 45.94 Hz 

MF valve 28.09 Hz 

(b) 

Table 6.21: 	The average values of (a) ff", and (b) fEAV ..  in the case of a C-E valve 

implanted in the aortic position. 

a NF valve MF valve 

I a1AV 
I 	Amax 

I 7:AV 
Ema,, 

40.97 

26.52 

37.72 

13.06 

Table 6.22: The estimated standard deviation of f' and  f" in the case of a Carpentier-
Edwards valve implanted in the aortic position. 

From Table 6.19(b) it can be said that high frequency resonance components above 

250 Hz disappear in the malfunctioning case of the C-E valve. This result disagrees with 

previous investigations presented elsewhere [20,32]. It is believed that this disagreement 

is due to the fact that in those studies the signal is processed using either the FFT or 

AR modelling with a fixed model order. As it was shown in the previous chapter, these 

two standard methods are not only inappropriate for representing Si or S2 in terms of 

spectral resolution but, moreover, they produce spurious peaks especially outside the 

frequency band contained in the signal. 

Results obtained using MFBPM show that the model order varies not only from subject 

to subject but even between two classes as well (i.e. normally and malfunctioning cases). 

As was described in section 5.4, there are a variety of factors that effect the differences 

in the model order. In this sense, the results presented here indicate the importance 

that the spectral analysis method has in the analysis of Si and S2, and the criteria for 
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deciding the proper model order. Analysing Si or S2 recorded from different subjects 

with the same model order means that either spurious peaks will be present in their 

spectral representation or some information will be missed when an underestimated 

model order is selected. 

6.6 Summary and conclusion 

The spectral composition of first and second heart sounds has been investigated for a 

large variety of subjects with native heart valves, prosthetic heart valves and biopros-

thetic heart valves. 

From the overall results, it can be concluded that the spectral composition of Si and 

S2 depends on the interaction between the heart-valve movement and the response of 

the lung-thorax system. Although the number of frequency components and their rel-

ative energy is less dependent on the condition of the native heart valves, the relative 

distribution of the amplitude levels is strongly related to functioning of the valve. It 

seems that the number of spectral components and their frequency is more dependent 

on the resonance modes of the lung-thorax system excited by the movement of the 

overall heart-valve system. 

With regard to mechanical prosthetic valves, it was found that the main part of the 

energy of the closing sounds in vivo is located below 2 kHz, although the in vitro 

analysis of these sounds show higher frequency components. This finding supports the 

theory that the lung-thorax system behaves as a low-pass filter. It was also found 

that the closure of the mechanical prosthetic heart valves either in the mitral or aortic 

position has more effects on the number of components and the energy of the signal 

above 400 Hz. The impact of the mechanical construction on the spectral composition 

was also investigated and clear differences were found especially between SE and BSHM 

valves. This finding emphasises the strong relationship between the construction of a 

mechanical valve and its spectral composition. 

Clear differences in terms of the amplitudes of spectral composition of Si and S2 were 

found between normal and malfunctioning cases for respective patient groups. In the 

case of Si for native heart valves, the frequency band 120-250 Hz is most affected by 

diseases of the native mitral valve, whilst in the case of the dysfunctioning native aortic 
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valve it is the 250-400 Hz band which is more affected. 

Although the lower part of the spectrum (i.e. up to 2 kHz) was investigated for the 

case of mechanical prosthetic heart valves, a clear difference was found between normal 

and malfunctioning cases. From preliminary results in some malfunctioning cases of 

mechanical prosthesis it was found that there is a large drop in the amplitudes of 

spectral components above 400 Hz. These results show that even with a sampling rate 

of 5 kHz the condition of these valve types can be monitored. The advantage of this 

relatively low sampling rate is that it substantially reduces the computational time and 

the requirements for data storage compared with the very high sampling-rate used in 

other studies [72]. 

In the case of Carpentier- Edwardsbioprosthetic heart valves, the spectrum above 

250 Hz was effected by the condition of the valves in the aortic condition. A sim-

ilar pattern was found for GE bioprosthetic heart valves and native heart valves in the 

aortic position. This is believed to be a result of their similarities in material of heart 

valve construction. 

In general, all these results suggest that although the spectral composition of Si and 

S2 is more complicated than previously found, there is a relationship between the 

condition of the heart valve and the spectral composition of the externally recorded 

PCG, especially in terms of the amplitudes of spectral components. In this sense the 

spectral analysis of Si and S2 can potentially be used as a diagnostic method for 

detecting the malfunction of either prosthetic heart valves or native heart valves. This 

task is addressed in the next chapter. 
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Chapter 7 

Classification of Normal and 

Malfunt ioning 

Carpentier- Edwards 

Bioprosthetic Valves Implanted 

in the Aortic Position 

7.1 Introduction 

In a practical sense, the ultimate goal of PCG techniques is to properly diagnose differ-

ent cardiac valvular diseases. In this context, a large amount of interest has been shown 

in using SPCG and pattern recognition techniques as a combined tool for automatic de-

tection of malfunctioning bioprosthetic heart valves [10, 76, 78,145]. The principal task 

is to find a reliable, noninvasive, and repeatable technique to evaluate bioprosthetic 

valve integrity. 

This procedure can be considered as a two stage process: (a) a feature input vector 

is extracted from the analysis of the PCG signal, and (b) a classification technique is 

applied to that input feature vector in order to provide a meaningful categorisation of 

the information of the data. The success of this procedure depends on the geometric 

properties of the pattern classes under consideration and on the characteristics of the 

algorithm employed for the respective task. 
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Bioprosthetic Valves Implanted in the Aortic Position 

The purpose of this chapter is to describe the design, training, and testing of an adaptive 

single layer perceptron for the classification of C-E bioprosthetic heart valves implanted 

in the aortic position. 

7.2 Adaptive single layer perception 

The single layer perceptron (SLP) is a simple form of neural network used for the 

classification of a special type of patterns which can be considered linear [146]. This 

model allows classification of an input into one of two classes. Figure 7.1 shows the 

basic model of a SLP. 

multiplicative 
weight 

output 
multiplicative  

weight 

Figure 7.1: 	Outline of a basic SLP model. 

The SLP performs a weighted sum of its inputs, compares this to some internal threshold 

level, and produces an output only if the threshold is exceeded. It has been shown that 

if the inputs presented from two classes are separable (i.e. they fall on the opposite 

sides of a hyperplane), then the SLP training procedure converges and positions the 

decision boundaries between the two classes. 

The decision regions formed by a SLP are similar to those formed by maximum likeli-

hood Gaussian classifiers which make the assumption that the inputs are uncorrelated 

and distributions for different classes differ only in mean values [146]. However, there 

are some differences [147], namely: 

. The SLP model is more robust than a Gaussian classifier because it makes no 

assumptions concerning the shape of the underlying distributions. 

. The SLP convergence algorithm is both adaptive and simple to implement and 
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does not require storage of any more information than the weights and the 

threshold, whereas, the maximum-likelihood Gaussian classifier is fixed. The 

Gaussian classifier can be made adaptive, but at the expense of increase storage 

required and more complex computations. 

For the above mentioned reasons an adaptive SLP model is applied to classification of 

normal and malfunctioning classes of C-E bioprosthetic valves. 

As was mentioned earlier, the first step of any classification technique is the selec-

tion of features for the respective patterns. The objective of this stage is to identify 

discriminant pattern vectors such that the normal and malfunctioning prosthetic heart 

valves occupy different regions in the feature space. It is clear from Table 6.19 that high 

frequency components above 250 Hz disappear in the malfunctioning case of Carpentier-

Edwards valve. However, from Table 6.20 it is clear that UFc  and aFD  have approxim-

atly the same value as FC  and FD,  respectively. Therefore, this single feature is very 

volotile to be used as a discriminant characteristic between normal and malfunctioning 

valves. As the amplitudes of frequency components correlate better with the condi-

tion of the heart valve, the amplitudes of the three highest frequency components (i.e. 

Af ma , Af max _1 )  Af mar_2) contained in S2 were selected as the feature input vector of 

the SLP. The selection of this range of amplitudes is based on the fact that cardiolo-

gists use the auscultation as a diagnostic method to evaluate the condition of the valve. 

Bearing in mind that the human auditory system is more sensitive to the intensity of 

frequencies above 200 Hz [143], it seems that the amplitude of these components are 

the most likely components to be evaluated by cardiologists. It must be said that the 

number of frequency components contained in S2 for all the cases of C-E bioprosthetic 

valves was greater than five. Therefore it is always possible to obtain the required 

number of input parameters from the modelling procedure of S2. 

It should be mentioned that prior to analysis, S2 sounds were normalised with re-

spect to their maximum amplitude. This normalization removes any bias generated by 

the differences in sound intensity observed between recordings from different patients. 

Table 7.1 gives the amplitude of the three highest frequency components for the cases 

of normal and malfunctioning C-E bioprosthetic valves. 
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Patient's 

Code 

Normally functioning valves 

A[fmav] A[fma_ ii AEfmar_ 2] 

P10ENA 0.089 0.042 0.019 

P2CENA 0.0133 0.0078 0.096 

P3CENA 0.036 0.0168 0.079 

P4CENA 0.00079 0.00871 0.071 

P5CENA 0.0026 0.0067 0.056 

P6CENA 0.0052 0.0195 0.098 

P7CENA 0.0082 0.007 0.067 

P8CENA 0.000691 0.0158 0.00127 

P9CENA 0.00658 0.0039 0.0185 

P1OCENA 0.0044 0.0029 0.013 

P110ENA 0.00605 0.01877 0.0104 

P12CENA 0.00093 0.0102 0.026 

P13CENA 0.0065 0.0088 0.0351 

P14CENA 0.01053 0.0119 0.1121 

 

Patient's 

Code 

Abnormally functioning valves 

A[fmax] A[fma_i] A[fma_21 

P10EMA 0.0088 0.022 0.127 

P2CEMA 0.01045 0.098 0.1415 

P3CEMA 0.042 0.0155 0.116 

P4CEMA 0.086 0.11 0.072 

P5CEMA 0.0098 0.043 0.133 

P6CEMA 0.062 0.133 0.396 

P7CEMA 0.1176 0.181 0.82 

P8CEMA 0.1691 0.047 0.0243 

P9CEMA 0.042 0.165 0.031 

P1OCEMA 0.0026 0.0173 0.336 

P110EMA 0.0041 0.144 0.2911 

P12CEMA 0.0224 0.061 0.137 

 

Table 7.1: 	Amplitude of the three highest frequency components for (a) patients with 

normally functioning C-E valve and (b) malfunctioning C-E valve (records of appendix A). 
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The structure of the adaptive SLP model used to classify the two classes of GE biopros-

thetic valves implanted in the aortic position is given in Figure 7.2. This structure con-

sists of three inputs, a bias input element (Xo), the threshold device, and the desired 

response. Denoting the output as y,  one can write 

y = Fh 	 (7.1) 

where Fh is the Heaviside function defined as 

+1 	if s>O 
Fh[s]={ (7.2) 

0 	ifs<0 

I  

I 

X01 	Bias input 
I I 

I  Threshold weight 	I 

Input pattern vector 	i 
W0 I 

A[fm ]= X1  
I 

A[fm1]X2 

0 

 

_ I  

Output 

I' 

I 

A[-2] = Threshold device 	I 

_______ 
I I Linear 
I LMS error I  

Algorithm 

I ------------------ 

- d 	Desired response input  
(Training) 

Figure 7.2: 	Schematic representation of SLP used for classifying normally functioning (NF) 

and malfunctions (MF) classes of GE valves in the aortic position. 

It must be noted that the biased input is included as an extra input of the model and 

its effect is merely to shift the decision boundary away from the origin [148]. 

There are several learning rules for the SLP. All the training methods specify an initial 

set of weights and modify the weights of the network in order that the output response 

to the input patterns is as close as possible to their desired response. An adaptive 
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learning process based on the least mean square (LMS) algorithm is applied to adjust 

the weights in the problem at hand. This learning rule is commonly known as the 

Widrow-Hoff delta rule [147]. The LMS learning algorithm minimises the mean square 

error between the desired output of the SLP and the actual output over the training 

set so that the actual response of the SLP approaches the target response. The linear 

error (5k[m]),  defined as the difference between the desired response dk[n]  and the actual 

response of the model, yk[n],  during the presentation k, is calculated by: 

5k[n] = dk[n] - Yk[fl] 
	

(7.3) 

Thus, according to the delta rule the adjustment Awk[n] made to the weight Wk at 

time n is given by; 

/Wk[fl] = 
	

(7.4) 

In this equation i[n] is a positive gain term that lies in the range 0 < ii[n] < 1. This 

parameter is adjusted in order to control the convergence rate. In the model described 

in this chapter a fixed increment adaptive rule was applied (i.e. i[n] = 

The weight vector of the SLP is then updated in accordance with the following rule: 

Wk[fl + 1] = Wk[fl] + 115kXk[fl] 	 (7.5) 

1 +1 if input comes from class MF 
d[t] = 	 (7.6) 

( 0 	if input comes from class NF 

The basic idea behind this procedure is to make large changes in the weights when the 

actual response of the SLP is a long way from the desired value, whilst altering them 

only slightly when the weighed sum is close to that required to give the correct solution. 

This learning procedure can then be summarised as follows: 

Set the weight vector to zero. Then perform the following steps for time m = 

1,2,3,•.• 

Calculate the actual output by taking the threshold value of the weighted sum of 

the inputs ( 7.1). 

Alter the weight vector of the SLP based on the LMS algorithm. 
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(iv). Increment the time n and repeat step (ii) and (iii) until the desired response is 

obtained. 

7.3 Functional classification of bioprosthetic valves 

During the learning process approximately half of the patients were used, seven with 

normally functioning C-E bioprosthetic valves and six with a malfunctioning one. Con-

nection weights were estimated using the procedure described in the previous section. 

The weight coefficients returned from the training procedure were: w 0  = 1, wi  = 6.5, 

= 6.2, w3  = 7.6. 

The network was then tested on the remaining thirteen patients. The performance of 

the classifier was then evaluated by computing the percentage of correct classifications 

CC, false positives FP, and false negatives FN by using- 

CC= 
	+ TN) 

CC=100x 	
N 	

(7.7) 

Fl? =100x 
FPR  

TN+Fp% 	 (7.8) 

FN = 100 x 
FNR 

TN + FP 	
(7.9) 

where TP is the number of true positives, FPR is the number of false positive results, 

TN is the number of true negative results, FNR is the number of false negative results, 

and N is the total number of trials. 

Results show that in all the cases the SLP performed correctly (CC = 100%) classifying 

the patients into their respective classes. 

Since the model consists of four weights, the separating boundary between the two 

classes will be a plane in three dimensional space. The equation of this plane depends 

on the connection weights and the threshold and is given by: 

Zw3+Yw2+ XWi + X0W0 = 0 
	

(7.10) 

The four weights determine the slopes, intercepts and the sides of the separating plane 

dividing the two classes. Figure 7.3 shows the position of this plane in a three dimen-

sional space. 
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X 

Y 

Figure 7.3: 	Separating plane in pattern space. 

In their latest study, Durand et al [76] evaluated the diagnostic performance of two 

spectral techniques (i.e. the FFT and AR modelling) combined with two classifiers 

(Bayes and nearest neighbour) in order to classify normal and malfunctioning biopros-

thetic valves implanted in the aortic position for the case of forty-seven patients using 

the leave-one-out method. Here the network is trained on 46 records and then the 

47th is tested to see in which class it lies. This is then repeated by leaving out each 

record in turn. Their results shown an 87% correct classification when an Hanning or 

Hamming window was applied to the data. In the case when an input feature vector 

was extracted form AR modelling the performance of the classifier dropped to 81%. By 

comparing Durand's results with those presented here, it can easily be seen that the 

adaptive SPL and improved spectral analyser used in this research clearly out performs 

those techniques in terms of the correct classification. Moreover, the SLP is simpler to 

implement. The improvement in terms of correct classification achieved by the method 

described in this chapter is believed to be mostly related to the accurate representation 

of the S2 characteristics by MFBPM. The classification technique adopted is also more 

than the earlier leave-one-out method. As was shown in section 5.3 the FFT and AR 

modelling do not provide accurate representation of Si and S2. Therefore, it is most 

likely that spurious information will have been included in the input feature vectors 

when these methods were used to extract parameters from the spectral analysis of S2. 
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This is thought to be the cause of the deterioration in the performance of the classi-

fication technique. This conclusion is also supported by comparing our results with 

those presented by Guo et al [145]. In this latter case, a three-layer feed-forward back-

propagation neural network was used to classify bioprosthetic valve sounds in the aortic 

position. Their results provided an 85% correct classification using spectral features 

obtained by the FFT, and 89% when AR modelling coefficients were used. Although 

a three-layer perceptron is a more complex and powerful model than the linear clas-

sifier described here, the results presented by Guo et al do not provide a significant 

improvement when compared with the results presented by Durand et al [76]. This 

fact emphasises the importance of the spectral analysis method applied to the analysis 

of Si and S2 which has a direct impact upon feature extraction, the first stage of the 

classification procedure. 

Although results obtained by the adaptive SLP in the evaluation of normal and mal-

functioning GE bioprosthetic valves are very good, it must be said that further invest-

igation is required in order to validate the clinical use of the method. In this respect, 

a greater population is needed. 

7.4 Conclusion 

The performance of an adaptive SLP neural network for classifying the normal and 

malfunctioning Carpentier-Edwards bioprosthetic valves implanted in the aortic pos-

ition was investigated for the case of twenty-six patients. The input features for the 

respective patterns were obtained from the modelling of second heart sounds by MF-

BPM. 

Results show that for the patient population this method classifies 100% correctly the 

normal and malfunctioning cases of GE bioprosthetic valves implanted in the aortic 

position. It is believed that this high accuracy in correct classification can mostly be 

attributed to the accurate representation of the information contained in S2 by MF-

BPM. However, a larger population is needed in order to validate the clinical use of the 

method. 
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Chapter 8 

Conclusions 

8.1 Introduction 

The objective of the research described in this thesis was to investigate the feasibil-

ity of spectral phonocardiography as a method for automatic classification of normal 

and malfunctioning prosthetic heart valves. To achieve this objective, a three step ap-

proach was employed. Firstly, the performance of several spectral analysis techniques 

was investigated in order to establish the best method for representing the heart sounds 

produced during the closure of heart valves in vivo. Secondly, the relationship between 

the spectral composition of the externally recorded heart sounds and the condition of 

the heart valve was examined in order to assess the diagnostic potential of these meth-

ods. Finally, a methodology based on a combination a spectral analysis and a neural 

network classifier was applied in an effort to distinguish the normal and malfunctioning 

cases of Carpentier-Edwards bioprosthetic heart valves. 

The following sections summarise the methods used in this research for the acquis-

ition, conditioning, processing, and analysis of the phonocardiographic signal. The 

conclusions and achievements of the research are also given. The final section proposes 

possible extensions to the research detailed in the thesis. 

8.2 Achievements 

Chapter 2 introduced the area of spectral phonocardiography by first discussing the 

origin of the heart sounds. This chapter also provided the background material for 

the thesis by reviewing previous work done in this area with regard to the spectral 
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composition of first and second heart sounds and the monitoring of the condition of 

prosthetic heart valves in vivo. 

The development of a data-acquisition system for recording phonocardiographic signals 

in a large variety of subjects, including native and prosthetic heart valves, was described 

in chapter 3. The design of the data-acquisition system was based on a number of signi-

ficant hardware, software and ergonomic requirements to ensure high-quality reproduc-

tion of phonocardiographic signals. A two-channel system was designed to capture the 

PCG signal after a review of the spectral characteristics of sounds associated with the 

closure of native heart valves, bioprosthetic heart valves, mechanical prosthetic heart 

valves, and the characteristics of phonocardiographic transducers. The first recording 

channel, which has a frequency response from 500 Hz to 2 kHz, was used to record 

sounds produced by native and bioprosthetic heart valves. The second recording chan-

nel, which has a frequency bandwidth from 50 Hz to 10 kHz, was used to record the 

higher frequencies generated by the operation of mechanical prosthetic heart valves. 

The acquisition system comprised an Elonex LT-320X laptop personal computer, an 

analogue-to-digital convertor-42 input/output expansion card, two different types of 

microphone and analogue conditioning circuitry. The breakdown of the population of 

subjects used in this thesis was also presented in this chapter. Details of each subject 

are given in appendix A. It must be emphasised that a database of more than 150 dif-

ferent subjects now exists in the Department of Electrical Engineering at the University 

of Edinburgh, which provides an excellent opportunity for further research in this area. 

Chapter 3 also considered the preprocessing of phonocardiographic signals in order to 

extract a ensemble first and second heart sound from the overall length of the recorded 

PCG signal. A semi-automatic heart sound extraction technique based on coherent 

averaging was implemented for this purpose. This technique makes use of the time 

relationship between the events in the ECG and PCG signals in order to detect the 

beginning of each cardiac circle. The time alignment of sounds included in the ensemble 

first and second heart sounds was then achieved using a cross-correlation method. 

Chapter 4 introduced the spectral analysis methods investigated in this research for 

analysis of first and second heart sounds. Algorithms considered for frequency ana-

lysis of valvular closing sounds were: the FFT, the autoregressive Burg algorithm with 

four different types of weighting function, the original uniform Burg function, a Ham-

ming taper function, an "optimum" parabolic weighting function, and a rectangular 
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window; sinusoidal signal identification, which is a data-block autoregressive modelling 

technique; several algorithms for autoregressive moving average modelling; and Prony's 

method. In addition, chapter 4 presented a modified forward-backward overdetermined 

Prony's method that represents more precisely in terms of the mean-least-square error 

the first and second heart sounds than other versions of Prony's method. Chapter 4 

also introduced methods for determining the appropriate number of modelling coeffi-

cients, i.e. the model order, used by the parametric spectral estimation techniques. 

This is a very important issue, as the performance of parametric spectral methods is 

dependent on the criteria used to decide the proper model order. Model order criteria 

considered in this research were: final prediction error, Akaike information criterion, 

criterion autoregressive transfer, minimum description length, and methods based on 

the distribution and the consecutive relative ratio of the eigenvalue magnitudes of data 

matrix. 

Chapter 5 investigated the performance of different spectral techniques when applied 

to the analysis of first and second heart sounds. This comparison is made possible by 

generating a synthesised first and second heart sound for each subject. The synthesised 

first and second heart sounds were generated based on the modified Prony's method. 

This method is used because it is believed that it best matches the characteristics of the 

underlying generating system. The matching between the real and synthesised sounds 

was estimated by the root-mean-square error and the normalised cross-correlation coef-

ficient. Results obtained from more than 150 patients prove that the proposed modified 

forward-backward overdetermined Prony's algorithm outperforms the previous versions 

of the Prony's method in modelling the first and second heart sounds. The degree of 

improvement achieved with the proposed algorithm is due to the independence of the 

algorithm to the motion in the polynomial roots and the robustness of the mathemat-

ical procedure for estimating the position of signal poles. Furthermore, in contrast to 

previous techniques for modelling first and second heart sounds, the proposed proced-

ure does not require an interactive procedure for initialisation and adjusting the model 

parameters. 

From a signal processing perspective, it was found that all parametric methods based 

on singular value decomposition produced more accurate spectral representation than 

the conventional methods (i.e. the FFT and AR Burg algorithm). For the latter 

methods, it was found that both the FFT and AR Burg algorithm did not have sufficient 

resolution to detect all the spectral components contained in the first and second heart 
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sounds. Therefore, the extraction of the resonant frequencies of heart sounds from the 

spectrum produced by these two methods is very difficult, if not impossible. With 

regard to advanced parametric methods based on the SVD method, it can be said 

that, even though they outperform the conventional techniques in terms of spectral 

resolution, none of them was able to detect all the spectral components in all the cases 

with the required accuracy. This effect is due to the fact that fast-decaying sinusoids 

have wide spectral peaks, and those close to each other are often merged in the power 

spectrum analyser display. In this context, it is proposed that the parameters obtained 

from the time-modelling of heart sounds allow a more direct and accurate approach for 

presenting the information contained in the sounds from the closure of heart valves. In 

addition, the use of these parameters for automatic classification of PCG signals can 

lead to a reduced computational overhead. 

A dynamic criterion based on the range of eigenvalue magnitudes and their consecutive 

relative ratio has also been proposed to choose the model order for the case of first and 

second heart sounds. This criterion can be defined as the biggest consecutive ratio of 

the eigenvalues in the region -40 dB to -60 dB on the ordered eigenvalue magnitude plot 

of the data matrix. It was observed that the model order varies from subject to subject 

which underlines the impact that the lung-thorax system has in the case of externally 

recorded PCG signals. This is an important point which has not been addressed in any 

of the previous published works in this field. 

Summarising the conclusions reached in chapter 5, it can be stated that previous in-

vestigations of the spectral composition of first and second heart sounds can now be 

considered incomplete. This is not only because in most of the cases the analysis was 

performed by using the FFT or AR Burg algorithm, but when a more advanced para-

metric method was applied, a constant model order was used throughout the population 

under investigation. The research presented in this thesis suggests that the model order 

needs to be adjusted to suit particular data records in order to optimise the spectral 

analysis procedure. Thus, further research in this area is now necessary to investigate 

the origin of the heart sounds and for better understanding of the underlying signal 

generation process. 

Chapter 6 investigated the relationship between the spectral composition of the ex-

ternally recorded PCG signal and the condition of the heart valves. Firstly, the impact 

that heart-valve movement and the lung-thorax systems has on the heart sound spec- 

127 



Chapter 8 : Conclusions 

tral composition was derived by investigating the same patients one day and four to six 

days after mechanical heart valve implantation. Secondly, the spectral characteristics 

of closing sounds produced by several types of prosthetic heart valves was also invest-

igated. 

It was found that the spectral composition of first and second heart sounds depends 

on the interaction between the heart-valve movement and the characteristics of the 

lung-thorax system. It was shown that the relative distribution of the amplitudes of 

spectral components is strongly related to the functioning of the heart valves, whereas 

the number of frequency components and their relative energy in more governed by the 

lung-thorax system. 

In the case of mechanical prosthetic heart valves, it was found that the main part of 

the energy of the closing sounds was located below 2 kHz which supports the theory 

that the lung-thorax system behaves like a low-pass filter. A strong relationship was 

also found between the type of mechanical prosthetic heart valve and the distribution 

of the amplitudes of the spectral components contained in the first and second heart 

sounds. These results suggest that there is a clear correlation between the mechanical 

construction and the material of the mechanical prosthetic heart valve and the relative 

level of loudness generated during the closure of the prosthesis. This conclusion is 

also supported by the similarities found in the spectral composition of native and 

bioprosthetic heart valves. 

Clear differences in terms of the amplitudes of the spectral composition were also found 

between normal and malfunctioning cases for respective patient groups. From prelim-

inary results obtained in some cases of mechanical prosthetic malfunction, it was found 

that most of the differences between normal and malfunctioning cases occur in fre-

quency components above 400 Hz. In the case of Carpentier-Edwards bioprosthesis, 

the spectrum above 250 Hz is mostly affected by the condition of the bioprosthetic 

valve. 

Chapter 7 described the design, training and testing of an adaptive single layer per-

ceptron for the classification of Carpentier- Edwardsbioprosthetic heart valves im-

planted in the aortic position. It was found that for the patient population examined in 

this case a 100% correct classification was achieved. However, for practical assessment 

of the method it is suggested that a larger population is needed. 
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The objective of the research in this thesis has been to examine whether the spectral 

analysis of the closing sounds produced by prosthetic heart valves can be used as a 

diagnostic method. The proposition of this thesis is that when the appropriate meth-

ods are used to analyse these sounds, this objective can be meet with a high degree of 

success. Results in the case of Carpentier-Edwards bioprosthetic valves demonstrate 

the diagnostic potential of frequency analysis as an alternative physiological measure-

ment technique, capable of assisting physicians in their post-operative assessment of 

prosthetic heart valves. Furthermore, the use of appropriate methods could lead to im-

proved understanding of the underlying system that generates heart sounds. However, 

it must be emphasised that each type of valve has it own characteristics, hence the 

success of this method required specific consideration of the combination of frequency 

analysis with the subsequent pattern recognition methods. 

8.3 Future work 

A prototype system based on the combination of advanced signal processing meth-

ods with neural networks, for the processing and analysis of sounds produced by the 

operation of Carpentier- Edwardsbioprosthetic heart valves is now operational. For 

this system to be more comprehensively tested, and its routine clinical value assessed, 

there is a requirement for a larger database of patients to be examined. It would also 

be of interest to investigate the feasibility of this method for all the other prosthetic 

heart valves. This would require recordings from many valve types and sizes, possibly 

obtained in consecutive time intervals since implantation of the valve. This procedure 

would lead to the investigation of how operational characteristics of the prosthetic heart 

valve change as a function of time. This could help therefore to detect prosthetic heart 

valve malfunction at an early stage. 

The next stage then would be the real-time implementation of the algorithms. With the 

availability of high-speed digital signal processing chips, it would be possible to under-

take a recording followed by a real-time analysis of the acquired phonocardiographic 

signal. This would lead to a more general system which could be used along side 

other traditional post-operative techniques such as echocardigraphy, with one method 

providing supplementary information to the other. 
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From a medical point of view, a more substantial extension to the research presented 

in this thesis, would be: 

• The combination of esophageal heart sounds recording with the externally recor-

ded phonocardiographic signal. From 1985 to 1988, a series of papers by Chin 

et al. [157] and Vermarien et al. [158] emphasised the diagnostic potential of 

esophageal phonocardiography for studying the origin of the first heart sound 

components. It would be of interest to investigate the frequency response of the 

transmission paths by comparing the signal morphology and its spectra in the 

case of esophageal and externally recorded phonocardiographic signal from the 

chest. 

• Multi-site thoracic recordings. 

By significantly increasing the number of simultaneous recording sites, it could be 

of diagnostic use to investigate the radiation pattern of valve sounds across the 

thorax. This would provide useful information about the chronology of propaga-

tion of heart valve sound waves and source localisation, direction of sound radi-

ation, and distribution of modal frequencies on the thorax. 

The research reported in this thesis has shown that advanced parametric spectral ana-

lysis techniques can give better understanding of the generating system which produces 

heart sounds and proposes some answers regarding the controversies remaining on the 

genesis of heart sounds. However, there are many questions which remain unanswered 

regarding the stationarity, time-varying characteristics and nonlinear properties of heart 

sounds, as far as signal processing theory is concerned. In this context, it would cer-

tainly be worthwhile applying other signal processing techniques such as higher-order 

spectral analysis (HOSA) [149] or time-frequency methods (TFM) [150, 151]. 

There are three main motivations in using HOSA for analysing sounds produced by 

mechanical prostheses: (a) to suppress additive Gaussian noise, (b) to reconstruct the 

phase response of signals and/or the system, which is not available in second-order 

statistical spectral estimation methods such as ARMA and AR methods, (c) to detect 

and characterise nonlinearities in these sounds [152]. These characteristics of HOSA 

become very attractive when one bears in mind the nonlinear characteristics of the 

lung-thorax system, the dynamic vibration modes of mechanical prostheses [153] and 

the complexity of the cardiac system. 
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Other approaches such as TFM methods [150, 151] are also useful in the analysis of 

the non—stationary PCG signal. Barry [154] and Wood [151] have shown that muscle 

and heart sounds have a varying modal frequency which is due to changes in muscle 

stiffness during cardiac contraction. The usefulness of such methods when applied to 

the analysis of heart sounds has also been shown by Bentley [155] and Durand [156]. 

Based on these findings, it would be of diagnostic use to analyse the time variation of 

the dynamic properties of heart sounds when a prosthetic heart valve was implanted 

over the full time extent of the heart-beat rather than on a per sound basis as is done 

presently. However, bearing in mind the limitations of TFM methods, the presence of 

spurious information and poor frequency resolution, it would be useful to combine TFM 

methods with advanced parametric methods in order to obtain an optimal solution with 

respect to frequency resolution and the temporal extent of the dynamic events. 

131 



References 

P. J. Walter (Ed), "Quality of Life After Open Heart Surgery", Kluwer Academic 

Publishers, 1992. 

E. Braunwald, "Heart Disease: A Textbook of Cardiovascular Medicine, ISBN 

0721630979,W. B. Saunders Company, 1992. 

R. E. Challis and R. I. Kitney, "Biomedical Signal Processing (in four parts), "Part 

3: The Power Spectrum and Coherence Function", Med.& Biol. Eng. & Comput., 

Vol. 29, pp.  225-241, May 1991. 

A. Baykal, Y. Z. Ider and H. Koymen,"Energy Distribution of the Resonance 

Components of PCG Signals on the Surface of the Chest". IEEE Ann. Conference 

of the Eng. in Med. & Biol. Society(EMBS), Vol. 2, No 2, pp.  576-557, 1990. 

A. H. Sabbagh, "Clotted Bjork—Shiley Mitral Valve Prostheses: Early Detection 

and Surgical Management", In Cardiovascular Research Center Bulletin, Vol. 21, 

No 4, pp.  100-107, 1983. 

L. Czinege, R. Urbanics and Z. Farkas, "Multi-Channel EEG Activity Correlation 

Analysis to Detect the Onset of Cerebral Ischemia", Proc. of the 16th IEEE Ann. 

Conf. on EMBS, Vol. 2, pp.  1230-1232, Baltimore Nov. 1994. 

A. Cohen and D. Landsberg, "Analysis and Automatic Classification of Breath 

Sounds", IEEE Trans. on BME, Vol 31, No. 9, pp.  585-590, Sept. 1984. 

V. Goncharoff, J. E. Jacobs and D. W. Cugell, "Wideband Acoustic Transmission 

of Human Lungs", Med.& Biol. Eng. & Comput., Vol. 27, pp.  513-519, Sept. 1989. 

R. J. Triolo and M. Lawrence, "An Automated Method for Describing Muscle 

Fatige", Proc. of the 16th IEEE Ann. Conf. on EMBS, Vol. 1, pp.  337-339, Bal-

timore Nov. 1994. 

132 



References 

T. H. Joo, J. H. McClellan, R. A. Foale, G. S. Myers and R. S. Lees, "Pole-Zero 

Modelling and Classification of Phonocardiograms" IEEE Trans. on BME, Vol. 

30, No. 2, pp. 110-118, Feb. 1983. 

R. J. Dobrow, J. B. Calatayud, S. Abraham and C. A. Caceres, "A Study of 

Physician Variation in Heart-Sounds Interpretation", Annals of Medicine, Vol. 33, 

pp. 305-311, 1964. 

J. S. Butterworth and E. H. Reppert, "Auscultatory Acumen in the General med-

ical Population", Journal of the Am. Medical Association, Vol. 174, pp. 114-118, 

1960. 

H. Feigenbaum, "Electrorardiography", Heart Disease: A Textbook of Cardiovas-

cular Medicine", Vol. 1, Third Edition, E. Braunwald (Ed.), W. B. Saunders Com-

pany, pp.  83-88, 1988. 

J. N. Schapira, R. P. Martin, R. E. R. E. Fowles, H. Rakowski, E. B. Stinson, 

J. W. French, N. E. Shumway, and R. L. Popp, "Two Dimentional Echocardio-

graphy Assessment of PAtients with Biprosthetic Valves", American Journal of 

Cardiology, Vol. 43, pp. 510-519, March 1979. 

H. S. Rosman, M. Alam, J. B. Lakier, S. R. Kemp, H. N. Sabbah, D. J. Magilligan 

and P. D. Stein, "Utility of Physical Examination and Nonivasive Tests in the 

Diagnosis of Degeneration of Porcine Bioprosthetic Valves in the Mitral Position" 

America Journal Noninvasive Cardiology, Vol. 2, pp.  48-51, 1988. 

A. F. White, R. E. Dinsmore and M. J. Buckley, "Cineradiographic Evaluation of 

Prosthetic Cardiac Valves", Circulation, Vol. 48, pp.  882-889, 1973. 

D.W. Soubank, A. P. Yoganathan, E. C. Harrison and W. H. Corcoran, "A Quant-

itative Method for the In Vitro Study of Sounds Produced by Prosthetic Aortic 

Heart Valves (In three parts)", Med.& Biol. Eng. & Comput., Vol. 22, pp.  32-55, 

Jan. 1984. 

A. Leatharn, "Auscultation of the Heart and Phonocardiography", J. & 

A.Churchill, pp. 1-86, 1970. 

G. J. Leech and A. Leatham, "Correlation of Heart Sounds and Valve Motions", 

In "Evaluation of Cardiac Function by Echocardiography", W. Bleifeld, S. Effert, 

133 



References 

P. Hanrath, D. Mathey (Eds.), Springer-Verlag Berlin Heidelberg New York, pp. 

EIJIIJ 

L-G. Durand, J. Genest and R Guardo, "Modelling of the Transfer Function of 

the Heart-Thorax Acoustic System in Dogs", IEEE Trans. on BME, Vol 32, No. 

8, PP.  592-601, Aug. 1985. 

J. Verburgh and E. Van Vollenhoven, "Phonocardiograhpy: Physical and Technical 

Aspects and Clinical Uses", In Non-Invasive Physiological Measurements, P. Rolfe 

(Ed.), Academic Press, pp.  214-259, 1979. 

M. Akay, J. L. Semmlow,W. Levkowitz, M. D. Bauer and J. B. Kostis, "Detection 

of Coronary Occlusions Using Autoregressive Modelling of Diastolic Heart Sounds" 

IEEE Trans. on BME-37, No 4, pp.  366-373, April 1990. 

Y. M. Akay, M. Akay, W. Levkowitz, J. L. Semmlow and J. B. Kostis, "Noninvasive 

Acoustical Detection of Coronary Artery Disease: A Comparative Study of Signal 

Processing Methods", IEEE Trans. on BME, Vol. 40, No. 6, pp.  571-578, June 

1993. 

P. J. Arnott, G. W. Pfeiffer and M. E. Tavel, "Spectral Analysis of Heart Sounds: 

Relationship Between Some Physical Characteristics and Frequency Spectra of 

First and Second Heart Sounds in Normals and Hypertensives", Journal of Bio-

medical Eng., Vol. 6, pp.  121-128, April 1984. 

R. Beyar, Sh. Welkowitz, Sh. Braun and Y. Palti , "Heart-Sound Processing by 

Average and Variance Calculation- Physiologic Basic and Clinical Implications". 

IEEE Trans. on BME, Vol. 31, No 9, pp.  591-596, Sept. 1984. 

T. C. Hearn and J. Mazumdar, "Use of the Phonocardiogram for the Noninvasive 

Study of the Mitral Valve", Australasian Physical Sciences in Medicine. Vol 2-2, 

No. 79, pp.  96-101, Feb. 1979. 

A. Iwata, N. Siizumura and K. Ikegaya, "Pattern Classification of the Phonocar-

diogram Using Linear Prediction Analysis" , Med. & Biol. Eng.& Comput., Vol. 

15, pp.  407-412, July 1977. 

A. Iwata, N. Ishii and N. Suzumura, "Algorithm for Detecting the First and Second 

Heart Sound by Spectral Tracking", Med, & Biol. Eng. & Comput., Vol. 18, pp. 

19-26, Jan. 1980. 

134 



References 

A. Iwata, N. Ishii, N. Suzumura and K. Ikegaya, "Automatic Classification of 

the Phonocardiogram: I. Investigation for Several Factors of the Algorithm", 

Automedica, Vol. 3, pp.  165-173, 1980. 

A. P. Yoganathan, R. Gupta, F. E .Udwaidia, J. W. Miller, W. H. Corcoran, R. 

Sarma, J. L. Johnson and R. J. Bing, "Use of the Fast Fourier Transform in the 

Frequency Analysis of the First Heart Sound in Normal Man", Med & Bio. Eng, 

Vol. 14, pp.  69-73, Jan. 1976. 

A. P. Yoganathan, R. Gupta, F. E. Udwaidia and W. H. Corcoran, "Use of the 

Fast Fourier Transform in the Frequency Analysis of the Second Heart Sound in 

Normal Man", Med & Bio. Eng, Vol. 14, pp.  455-459, July 1976. 

P. D. Stein, H. N. Sabbah, J. B. Lakier and D. J. Magilligan, "Frequency of the 

First Heart Sound in the Assessment of Stiffening of the Mitral Bioprosthetic 

Valves", Circulation, Vol. 63, No, 1, pp.  200-203, 1981. 

M. K. A. Dayem and E. B. Raftery, "Mechanisms of Production of Heart Sounds 

Based on Records of Sounds After Valve Replacement", The Amer. Journal of 

Cardiology, Vol. 18, pp.  837-843, Dec. 1966. 

A. A. Luisada, "The Sounds of the Normal Heart", Warren H. Green, Inc., St. 

Louise, Missouri, U.S.A. 1972. 

A. Leatham and G. Leech, "Auscultation of the Heart", In The Heart, J. W. 

Hurst(Ed.), pp.  203-249, 1982. 

0. Orias, "The Genesis of Heart Sounds", The New England Journal of Medicine, 

Vol. 241, No. 20, pp.  763-769, Nov. 1949. 

G. Cloutier, M. C. Gernier, R. Guardo and L. G. Durand ," Spectral Analysis 

of Closing Sounds Produced by lonescu-Shiley Bioprosthetic Aortic Heart Valves, 

Part 1: Optimal Number of Poles and Zeros for Parametric Spectral Analysis", 

Med. & Biol. Eng. & Comput., Vol. 25, pp.  487-491, Sept. 1987. 

L-G Durand, Y. E. Langlois, T. Lanthier, R. Chiarella, P. Coppens, F. Lemire, M. 

Jarry, A. Solignac and Y. Latour, "Acoustic Transmission of the Aortic Component 

of the Second Heart Sound in Humans, Dogs and Pigs". Innov. Tech. Biol. Med., 

Vol. 10, No. 4, pp.  383-393, April 1989. 

J. Rouanet, "Analyse des Bruits du Coeur", Paris thesis 1832, cited in [19]. 

135 



References 

E. Craige, "On the Genesis of Heart Sounds", Circulation, Vol. 53, No. 1, pp. 

207-209, Feb 1976. 

H. N. Sabbah and P. D. Stein, "Relation of the Second Sound to Diastolic Vibration 

of the Cosed Aortic Valve", Am. J. Physiol., Vol. 3, pp. 696-700, 1978. 

P. D. Stein, H. N. Sabbah, J. B. Lakier, S. R. Kemp and D. J. Maglligan, "Fre-

quency Spectra of the First Heart Sound and of the Aortic Component of the 

Second Heart Sound in Patients with Degenerated Porcine Bioprosthetic Valves", 

The Am. J. Cardiol. , Vol. 53, pp.  557-561, Feb. 1984. 

D. E. Harken, H. S. Soroff,W. J. Taylor, A. A. Lefemin, S. K. Gupta and S. Lunzer, 

"Partial and Complete Prostheses in Aortic Insufficiency". J. Thorac. Cardiovas. 

Surg., Vol. 40, pp.  744-762, 1960. 

D. N. Ross, "Results After Biological Heart Valve Replacement", In "Quality of 

Life After Open Heart Surgery", P. J. Walter (Ed), Kluwer Academic Publishers, 

pp. 9-12, 1992. 

V. 0. Bjork "The Bjork—Shiley Tilting Disc Valve: Past, Present and Future". In 

Cardiac Surgery: State of the Art Reviews, Vol 1. No. 2, pp.  183-211, Feb. 1987. 

A. Aris, C. Crexells, J. M. Auge. A. Oriol and J. M. Caralps, "Haemodynamic 

Evaluation of the Integral Monostrut Bjork—Shiley Prosthesis in the Aortic Posi-

tion". The Ann. of Thoracic Surgery, Vol 40, No 2, pp.  234-240, 1985. 

T. H. Reif, T. J. Schulte and N. H. C. Hwang "Estimation of the Rational Un-

damped Natural Frequency of Bilafiet Cardiac Valve Prostheses",J. of Biomech-

anical Eng., Vol. 112, pp.  327-332, Aug. 1990. 

J. C. Hylen, "Mechanical Malfunction and Thrombosis of Prosthetic Heart Valves". 

The American Journal of Cardiology, Vol. 30, pp.  396-404, Sept. 1972. 

E. Braunwald "Artificial Cardiac Valves", In "Heart Disease-A Textbook of Car-

diovascular Medicine", Third Edition, WB Saunders Company, pp. 1078-1081, 

1988. 

D. Horstkotte and R. Korfer, "The Influence of Prosthetic Valve Replacement on 

the Natural History of Severe Acquired Heart Valve Lesions". In "Advances in 

Cardiac Valves—Clinical Perspective" , DeBakey M.E.(Ed.), Yorke—Medical Books, 

pp. 47-87, 1982. 

136 



References 

[51] L. I. Thulin, H. Reul, M. Giersiepen and C. L. Olin, "An in Vitro Study of Pros-

thetic Heart Valve Sounds", Scand. J. Thor. Cardiovasc. Surg., No. 23, PP.  33-37, 

E. G. Butchart "Surgery for Heart Valve Disease", Hospital Update, Vol. 16, No. 

12, pp.  963-973, Dec. 1990. 

N.E. R. Goodfield and P. Bloomfield, "Surgery for Valvular Heart Disease". Hos-

pital Update, No. 1, pp.  1026-1034, 1992. 

D. P. Stein, N. H. Sabbah, E. A. Albert and J. E. Suyder "Spectral Signature 

of the Opening Sound of the Bjork—Shiley Convexo-Concave Valve as a Potential 

Indicator of Strut Fracture", Am. Journal Noninvas. Cardiol., Vol. 1, pp.  369-372, 

1987. 

A. Starr, "Ball Valve Prostheses: A Perspective After 22 Years". In "Advances in 

Cardiac Valves, Clinical Perspective", DeBakey (Ed.), Yorke Medical Books, pp. 

1-14, 1982. 

B. Kingsley, "Acoustic Evaluation of Prosthetic Cardiac Valve in the Audio Spec-

trum", Journal of the Audio Engineering Society, Vol. 20, No 9, pp.  750-755, Nov. 

1972. 

L-G. Durand, J. De Guise, G. Cloutier, R. Guardo and M. Brais, "Evaluation of 

FFT—Based and Modern Parametric Methods for the Spectral Analysis of Biopros-

thetic Valve Sounds". IEEE Trans. on BME, Vol. 33, No 6, pp.  572-578, June 1986. 

R. Gordon, M. Najmi, B. Kingsley, B. L. Segal and J. W. Linhart, "S pect roan alytic 

Evaluation of Aortic Prosthetic Valves". Chest, Vol. 66, pp.  44-49, July 1974. 

J. C. Hylen, F. E. Kloster, R. H. Herr, A. Starr and H. Griswold, "Sound Spectro-

graphic Diagnosis of Aortic Ball Variance", Circulation, Vol. 39, pp.  849-857, June 

1969. 

Y. Kagawa, Sb. Nitta, N. Satoh, K. Saji, Y Shibota, T. Horiuchi and M. Tanaka, 

Sound Spectroanalytic Diagnosis of Malfunctioning Prosthetic Heart Valve", 

Tohoku J. Exp Medical, Vol. 123, pp.  77-89, 1977. 

A. Iwata, N. Ishii, N. Suzumura and K. Ikegaya, "Automatic Classification of the 

Phonocardiogram: II. Discriminant Method", Automedica, Vol. 3, pp.  175-181, 

1980. 

137 



References 

D. Nandagopal, J. Mazudar and R. E. Bogner, "Spectral Analysis of Second Heart 

Sounds in Normal Children by Selective Linear Prediction Coding" Med. & Biol. 

Eng. & Comput, Vol. 22, pp. 229-239, July 1984. 

A. Iwata, R. H. Boedeker, J. Dudeck, W. Pabst and N. Suzumura, "Computer 

Aided Analysis of Phonocardiogram", In MEDINFO-83, Bemmel Ball, Wiwertz, 

(Eds), North-Holland, pp.  569-572, 1983. 

D. Picard, J. Charara, R. Guidoin, Y. Haggag, D. Poussart, D. Walker and T. 

How, "Phonocardiogram Spectral Analysis Simulator of Mitral Valve Prostheses", 

Journal of Medical Engineering & Technology, Vol. 15, No 6, pp.  222-231, Nov. 

1991. 

F. Schondube, H. Keusen and B. J. Messmer, "Physical Analysis of the Bjork-

Shiley Prosthetic Valve Sounds", J. Thorac Cardiovasc Surg., Vol. 86, pp.  136-141, 

July 1983. 

D. K. Walker and L. N. Scotten, "Discrimination In Vitro Between the Acoustic 

Emissions from Bjork—Shiley Convexo-Concave Valves with and Without a Broken 

Minor Strut". Med & Bio. Eng. & Comput., Vol 29, pp.  457-464, Sept. 1991. 

Y. Kagawa, Sb. Nitta, M. Tanaka and T. Horiuchi, "Real-Time Sound Spectroana-

lysis for Diagnosis of Malfunctioning Prosthetic Valves", J. Thorac Cardiovasc 

Surg., Vol. 79, pp.  671-679, May 1980. 

H. Koymen, B. K. Altay and Y. Z. Ider, "A Study of Prosthetic Heart Valve 

Sounds", IEEE Trans. on BME, Vol. 34, No. 11, pp.  853-863, Nov. 1987. 

H. Koymen, Y. Z. Ider and B. K. Altay, "A New Approach for the Analysis of Heart 

Valve Sounds", IEEE Ann. Conference of the Eng. in Med. & Biol. Society. pp. 

136-139, 1986. 

H. Koymen, A. Baykal and Z. Ider, "Comparative Time Domain Modelling of 

Natural Heart Valve and Mechanical Heart Valve Sounds", IEEE Ann. Conference 

of the Eng. in Med. & Biol. Society, pp. 117-118, 1988. 

H. Koymen, A. Baykal, A. Z. Ider, Y. Zortuluna, 0. Tasdemir, T. Tezcaner and K. 

Vural, "Study on the Generation of Closing Sounds From Metallic Prosthetic Heart 

Valve Implants", IEEE Ann. Conference of the Eng. in Med. & Biol. Society, pp. 

55-56, 1989. 

138 



References 

A. Moritz, U. Steinseifer, G. Kobinia, K. Neuwirth-Riedl, H. Wolters, H. Reul and 

E. Wolner, "Closing Sounds and Related Complaints After Heart Valve Replace-

ment with St. Jude Medical, Duromedics Edwards, Bjork-Shiley Monostrut, and 

Carbomedics Prostheses". Br. Heart J., Vol. 67, pp.  460-465, 1992. 

M. Brais, L-G Durand, M. Blanchard, J. De Guise, R. Guardo and W. J. Keon, 

"Frequency Analysis of Jonesku-Shiley Prosthetic Closing Sounds in Patient with 

Normally Functioning Prostheses", Med. & Biol. Eng. & Comput., Vol. 24, pp. 

637-642, Nov. 1986. 

G. Cloutier, R. Guardo and L. G. Durand ," Spectral Analysis of Closing Sounds 

Produced by Tonescu-Shiley Bioprosthetic Aortic Heart Valves, Part 3: Perform-

ance of FFT-Based and Parametric Methods for Extracting Diagnostic Spectral 

Parameters", Med. & Biol. Eng. & Comp., Vol. 25, pp.  497-503, Sept. 1987. 

G. Cloutier, L. G. Durand, R. Guardo, H. Sabbah and P. D. Stein," Bias and 

Variability of Diagnostic Spectral Parameters Extracted From Closing Sounds Pro-

duced by Bioprosthetic Valves Implanted in the Mitral Position", IEEE Trans. on 

BME, Vol. 26, No. 8, pp.  815-825, Nov. 1989. 

L-G. Durand, Z. Guo, H. N. Sabbah and P. D. Stein, " Comparison of Spectral 

Techniques for Computer-Assisted Classification of Spectra of Heart Sounds in 

Patients with Porcine Bioprosthetic Valve", Med. & Biol. Eng. & Cornput., Vol. 

31, pp.  229-236, May 1993. 

R. A. Foale, T. H. Joo, J. H. McClellan, R. W. Metzinger, G. L. Grant and G. 

S. Myers, "Detection of Aortic Porcine Valve Dysfunction by Maximum Entropy 

Spectral Analysis", Circulation, Vol. 68, pp.  42-49, July 1983. 

L-G Durand, M. Blanchard, G. Cloutier, H. Sabbah and P. D. Stein, "Comparison 

of Pattern Recognition Methods for Computer-Assisted Classification of Spectra 

of Heart Sounds in Patients With a Porcine Bioprosthetic Valve Implanted in the 

Mitral Position", IEEE Trans. on BME, Vol. 37, No. 12, pp.  1121-1129, Dec. 1990. 

L-G. Durand, P. D. Stein, M. C. Grenier, J. W. Henry, R. Inderbitzen and D. 

W. Wieting, "In Vitro and in Vivo Low Frequency Acoustic Analysis of Bjork-

Shiley Convexo-Concave Heart Valve Opening Sounds". Proc. 1994 IEEE Seventh 

Symposium on Computer-Based Medical Sys., pp.  61-66, June 1994. 

139 



References 

G. A. Kein, B. Jeffries, H. V. Katz, B. A. Herman, R. F. Carey, D. J. Chwirut and 

H. F. Bushar, "Digital Acoustical Analysis of Normal and Bimodal Bjork-Shiley 

600  Convexo-Concave Heart Valves", The Am. Journal of Cardiology, Vol. 66, pp. 

849-854, Oct. 1990. 

R. Fischer, V. Padmanabhan, J. Semmlow, W. Welkowitz and J. Kostis, "Com-

parative Evaluation of Cardiac Microphones" , Proc. of 10th IEEE Annual Conf. 

in EMBS, pp.  167-169, 1988. 

R. Bedi "Signal Processing and Frequency Analysis of Carpentier-Edwards Bipros-

thetic Heart Valve Sounds", PhD Thesis, University of Edinburgh 1994. 

L-G. Durand and R. Guardo "Comparison of Air and Contact Microphones for 

Estimating the Acoustic Transmission of Heart Sounds in Dogs", Innov. Tech. 

Biol. Med., Vol 7, No 4, pp.  458-473, July 1986. 

Knowles Electronics, Inc, Data Acquisition Manual, 1992. 

V. Padmanabham, J. L. Semmlow and W. Welkowitz, "Accelerometer Type Car-

diac Transducer for Detection of Low-Level Heart Sounds", IEEE Trans. on BME, 

Vol. 40, No 1, pp.  21-28, Jan. 1993. 

E. Van Vollenhoven, "Calibration of Contact Microphones Applied to the Human 

Chest Wall", Med. & Biol. Eng., Vol. 9, pp.  365-373, 1971. 

R. S. Schwartz, J. T. Reeves, I. E. Sodal and F. S. Barnes, "Improved Phonocar-

diogram System Based on Acoustic Impedance Matching", Amer. J. Physiol, Vol. 

238, pp.  604-609, 1980. 

N. Suzumura and K. Ikegaya, "Characteristics of the Air Cavities of Phonocardio-

graphic Microphones and the Effects of Vibration and Room Noise", Med. & Bio. 

Eng. & Comput., Vol. 15, pp.  240-247, May 1977. 

H. Vermarien and E. Van Vollenhoven, "The Recording of Heart Vibrations: A 

Problem of Vibration Measurement on Soft Tissue". Med & Biol. Eng. & Comput., 

Vol. 22, pp.  168-178, March 1984. 

R. L. Donnerstein, W.A. Scott, A. Vasu and J. G. Copeland, "Acoustic Analysis 

of the Closing Sounds of Bileaflet Prosthetic Valves in a Sheep Model". J. Thorax 

Cardiovasc. Surg., Vol. 101, pp.  1060-1068, 1991. 

140 



References 

R. E. Challis and R. I. Kitney, " Biomedical Signal Processing (in four parts), 

"Part 1: Time-Domain Methods", Med. & Biol. Eng. & Comput., Vol. 28, pp. 

509-524, Nov. 1990. 

A. Baykal, Y. Z. Ider and H. Koymen, "Use of Signal Averaging in Analysis of the 

Digital Phonocardiograms" IEEE Ann. Conference of the Eng. in Med. & Biol. 

Society, Vol. 13 , No 5, pp.  2103-2104, 1991. 

G. M. Freisen, Th. C. Jannett, M. A. Jadallah, S. L. Yates, S.R. Quint and H.T. 

Nagle, "A Comparison of the Noise Sensitivity of Nine QRS Detection Algorithms", 

IEEE Trans. on BME, Vol. 37, No. 1, pp.  85-98, Jan. 1990. 

P. 0. Borjesson, 0. Pahlm, L. Sornmoand and M-E Nygards, "Adaptive QRS 

Detection Based on Maximum a Posteriori Estimation", IEEE Trans. on BME, 

Vol. 29, pp  341-351, May 1982. 

J. Fraden and M. R. Neuman, "QRS wave detection", Med. & Biol. Eng. & Corn-

put., Vol. 18, pp.  125-132, 1980. 

J. G. Proakis and D. G. Manolakis, "Digital Signal Processing-Principles, Al-

gorithms and Application" Maxwell Macmillan Inter. Editions, 1992. 

R. E. Challis and R. I. Kitney, "Biomedical Signal Processing (in four parts), Part 

2: The Frequency Transforms and Their Iter-Relationships" Med. & Biol. Eng. 

& Comput., Vol. 29, pp.  1-17, Jan. 1991. 

D. A. Linkens, "Short-Time-Series Spectral Analysis of Biomedical Data", lEE 

Proceedings, Vol. 129, Pt A, No. 9, pp.  663-672, Dec. 1982. 

S. M. Kay and S. L. Marple, "Spectrum Analysis—A Modern Perspective", Pro-

ceedings of the IEEE, Vol. 69, No. 11, pp.  1380- 1419, Nov. 1981. 

S. Hykin, "Adaptive Filter Theory", Prentice-Hall International, 1991. 

J. W. Cooley and J.W. Tukey, "An Algorithm for Machine Calculation of Com-

plex Fuorier Series", Math. Comput., Vol. 19, pp.  297-301, Apr. 1965. 

P. M. Grant, C. F. N. Cowan, B. Mulgrew and J. H. Drips, "Analogue and 

Digital Signal Processing and Coding", Chartwell-Bart (Publishing and Training) 

Ltd., 1989. 

141 



References 

B. I. Helme, Ch. L. Nikias, "Improves Spectrum Performance Via a Data-

Adaptive Weighted Burgh Technique", IEEE Trans. on ASSP, ASSP-33, No. 4, 

pp. 903-910, August 1985. 

S.L. Marple, "Digital Spectral Analysis (with Application)", Prentice-Hall, 1987. 

L. Marple, "A New Autoregressive Spectrum Analysis Algorithm", IEEE Trans. 

on ASSP, Vol. ASSP-28, No. 4, pp.  441-454, Aug. 1980. 

S. M. Kay " The Effects of Noise on the Autoregressive Spectral Estimator", 

IEEE on ASSP, Vol. ASSP-27, No. 5, pp.  478-485, Oct. 1979. 

L. L. Scharf "The SVD and Reduced Rank Signal Processing", Signal Processing, 

Vol. 25, pp.  113-133, Oct. 1991. 

V. C. Klema and A. J. Lamb, "The Singular Value Decomposition: Its Compu-

tation and Applications", IEEE Trans. on Automatic Control, AC-25, No. 2, pp 

164-176, April 1980. 

J. A. Cadzow, B Baseghi and T. Hsu, "Singular-Value Decomposition Approach 

to Time Series Modelling", lEE Proceedings, Vol. 130, Pt. F, No. 3, pp.  202-210, 

April 1983. 

D. W. Tufts and R Kumaresan, " Singular Value Decomposition and Improved 

Frequency Estimation Using Linear Prediction", IEEE Trans. on ASSP, ASSP-30, 

No. 4, pp.  671-675, Aug. 1982. 

J. A. Cadzow and D. Mitchell Wilkes, "Enhanced Rational Signal Modelling", 

Signal Processing, Vol. 25, pp.  171-188, Oct. 1991. 

J.A. Cadzow, "Spectral Estimation: An Overdetermined Rational Model Equa-

tion Approach", Proceedings of the IEEE, Vol. 70, No 9, pp.  907-939, Sept. 1982. 

B. Friedlander and B. Porat, "The Modified Yule-Walker Method of ARMA 

Spectral Estimation", IEEE Trans. on ASE, ASE-20, No. 2, pp.  158-172, March 

1984. 

J. A. Cadzow, "ARMA Time Series Modelling: An Effective Method", IEEE 

Trans. on Aerospace and Electronic Systems, AES-19, No. 1, pp.  49-58, Jan. 1983. 

142 



References 

R. Kumaresan and D. W. Tufts, "Estimating the Parameters of Exponentially 

Damped Sinusoids and Pole—Zero Modelling in Noise", IEEE Trans. on ASSP, 

ASSP-30, No.6, pp.  833-840, Dec. 1982. 

K. Minami, N. Schiumberger and S. Kawata, " Prony's Method Based on Ei-

genanalysis and Overdetermined System Aproach", IEEE Ann. Inter. Conf. on 

ASSP(ICASSP), pp.  1393-1396, Tokyo 1986. 

M. Van-Blaricum and R. Mittra " Problems and Solutions Associated with 

Prony's Method for Processing Transient Data", IEEE Trans. on Antennas and 

Propagation, AP-26, No. 1, pp.  174-183, Jan. 1978. 

J. Laroche, "A New Analysis-Synthesis of Musical Signals Using Prony's Method: 

Application to Heavily Damped Percussive Sounds", IEEE Ann. Conf. on 

ASSP(ICASSP), Glasgow, pp.  2053-2056, May 1989. 

B. Porat and B. Friedlander, "On the Accuracy of the Kumaresan-Tufts Method 

for Estimating Complex Damped Exponentials", IEEE Trans. on ASSP, ASSP-

35, No. 2, pp.  231-235, Feb. 1987. 

R. Kumaresan, D. W. Tufts and L. L. Scharf "A Prony Method for Noisy Data: 

Choosing the Signal Components and Selecting the Order in Exponential Signal 

Models", Proc. of the IEEE, Vol. 72, No. 2, pp.  230-233, Feb. 1984. 

D. V. B. Rao "An Explanation to the Limitation Observed in the Kumaresan-

Prony Algorithm", IEEE Trans. on ASSP, ASSP-34, No. 5, pp.  1338-1340, Oct. 

1986. 

E. F. Deprettere (Ed) "SVD and Signal Processing Algorithms, Applications and 

Architectures", Elsevier Publ., North Holland, 1988. 

T. Yu, "Improving the Accuracy of Parameter Estimation for Real Exponentially 

Damped Sinusoids in Noise", lEE Proc. Vol. 137, Pt. F, pp.  192-196, June 1990. 

W.H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling "Numerical 

Recipies in C", Cambridge Univ. Press, 1988. 

B. C. Kuo, "Digital Control Systems", Holt-Saunders International Editors, 

Tokyo 1983. 

H. P. Sava and J.T.E. McDonnell, "Comparison of Spectral Analysis Algorithms 

for Use in Spectral PCG", In Proceedings of EUSIPCO-94, pp. 62-66, Sept. 1994. 

143 



References 

M. Wax and Th Kailath, "Detection of Signal by Information Theoretic Criteria", 

IEEE Trans. on ASSP, ASSP-33, No. 2, PP.  387-392, April 1985. 

K. Kostantinides and K. Yau, "Statistical Analysis of Effective Singular Values 

in Matrix Rank Determination", IEEE Trans. on ASSP, ASSP-36, No. 5, pp. 

757-763, May 1988. 

M. Bouvet and H. Clergeot, "Eigen and Singular Value Decomposition Techniques 

for the Solution of Harmonic Retrieval Problems", In SVD and Signal Processing 

(Algorithms, Applications and Architectures), E. F. Deprettere (Ed), pp.  93-115, 

Elsevier Pubi., North Holland, 1998. 

D. N. Swingler, "A Modified Burgh Algorithm for Maximum Entropy Spectral 

Analysis", Proceedings of the IEEE, Vol. 67, No. 9, pp.  1368-1369, Sept. 1979. 

T. J. Ulrych, Th. N. Bishop, "Maximum Entropy Spectral Analysis and Autore-

gressive Decomposition", Rev. Geophysics and Space Physics, Vol. 13, No. 1, Pp. 

183-200, Feb. 1975. 

R. Rangayyan and R. J. Lehner, "Phonocardiogram Signal Analysis: A Review", 

Critical Reviews in Bio. Eng., Vol 15, Issue 3, pp. 211-236, 1988. 

W. Campbell and D. N. Swingler, "Frequency Estimation Performance of Several 

Weighted Burg Algorithms", IEEE Trans. on Sig. Proc. Vol. 41, NO, Pp.  1237-

1247, March 1993. 

R. Erickson, L. Thulin and G. Richard, "In-Vitro Study of Mechanical Heart 

Valve Sound Loudness as Measured by ISO-532/13" Proc. of 1994 IEEE Seventh 

Symposium on Comp.-Based Medical Systems, pp. 53-54, June 1994. 

H.P. Sava, E. McDonnell and P. Bentley, "Analysis of Phonocardiographic Sig-

nals Using Advanced Signal Processing Methods", IPSM—Signal Proc. in Medicine 

Meeting, London, PP.  17, Nov. 1994 

J-J Fuchs, "Estimating the Number of Sinusoids in Additive White Noise", IEEE 

Trans. on ASSP, Vol. 36, No 12, pp. 1846-1853, Dec. 1988. 

J. A. Cadzow, "Signal Processing Via Least Squares Error Modelling", IEEE 

ASSP Magazine, Vo. 7, No. 4, pp.  12-31, Oct. 1990. 

144 



References 

V. U. Reddy and L. S. Biradar, "SVD-Based Information Theoretic Criteria for 

Detection of the Number of Damped/Undamped Sinusoids and Their Performance 

Analysis", IEEE Trans. on Sig. Proc., Vol. 41, No. 9, pp. 2872-2881, Sept. 1993. 

D. W. Tufts and R Kumaresan, "Estimation of Frequencies of Multiple Sinusoids: 

Making Linear. Prediction Perform Like Maximum Likelihood", Proceedings of the 

IEEE, Vol. 70, No. 9, pp.  975-989, Sept. 1982. 

G. Liang, M. Wilkes and J. A. Cadzow, "ARMA Model Order Estimation Based 

on the Eigenvalues of the Covariance Matrix" IEEE Trans. on Sig. Proc. Vol. 41, 

No 10, pp.  3003-3009, Oct. 1993. 

W. Craelius, M. Restivo, M. A. Assadi and N. El-Sherif,"Criteria for Optimal 

Averaging of Cardiac Signals", IEEE Trans. on BME, Vol. 33, No. 10, pp.  957-

966, Oct. 1986. 

L-G Durand, Y-E Langlois, T. Lanthier, R. Chiarella, P. Coppens, S. Carioto, 

S. Bertrand-Bradly. "Spectral Analysis and Acoustic transmission of Mitral and 

Aortic valve Closure Sounds in Dogs( Part 2)", Med.& Biol. Eng. & Cornput., Vol. 

28, pp.  278-286, July 1990. 

L.E .Kinsler, A. R. Frey, A.B. Coppens and J. V. Sanders, "Fundamentals of 

Acoustics (Third Edition)", John Wiley and Sons, Inc, pp.  262, 1982. 

N. D. Smith, V. Raizada and J. Abrams, "Auscultation of the Normally Func-

tioning Valve", Ann. Intern. Med., Vol 95, pp.  595, 1981. 

Zh. Guo, L-G Durand, H. C. Lee, L. Allard, M-C. Grenier, and P. Stein, "Artificial 

Neural Networks in Computer Assisted Classification of Heart Sounds in Patients 

with Porcine Bioprosthetic Valves",Med. & Biol. Eng. & Comput., Vol. 32, pp. 

311-316, May 1994. 

S. Haykin, "Neural Networks; A Comprehensive Foundation", Macmillan College 

Publishing Comp., 1994. 

R. P. Lippmann, "An Introduction to Computing with Neural Nets", IEEE ASSP 

Magazine, Vol. 4, No. 2, pp.  4-22, April 1987. 

R. Beale and T. Jackson, "Neural Computing: An Introduction", lOP Publishing 

Ltd, 1990. 

145 



References 

J. M. Mendel, "Tutorial on Higher—Order Statistics (Spectra) in Signal Processing 

and System Theory: Theoretical Results and Some Applications", Proceedings of 

the IEEE, Vol. 79, No. 3, pp. 277-305, March 1991. 

L. Cohen, "Time—Frequency Distributions-A Review", Proceedings of the IEEE, 

Vol. 77, No. 7, pp.  941-981, July 1989. 

J.C. Wood, A. J. Buda, D. T. Barry, "Time—Frequency Transforms: A new Ap-

proach to First Heart Sound Frequency Dynamics", Trans. of IEEE on BME, Vol 

39, No. 7, pp.  730-740, July 1992. 

Ch. Nikias, "Higher-Order Spectral Analysis", Proceedings of the 15th Annual 

International Conference IEEE in Engineering in Medicine and Biology Society, 

Vol. 1, pp.  319, 1993. 

G-J. Cheon and K. B. Chandran, "Dynamic Behaviour Analysis of Mechanical 

Monoleaflet Heart Valve Prostheses in the Opening Phase". J. of Bioinech. En-

gineering, Vol. 115, pp.  389-395, Nov. 1993. 

D. T. Barry and T. Cole, "Muscle Sounds are Emitted at the Resonant Fre-

quencies of Skeletal Muscle" IEEE Trans. on BME., Vol. 37, No. 5, pp.  525-531, 

1990. 

P. Bently, J.T.E. McDonnell, "Time-Frequency Analysis and Diagnisis of Native 

Heart Valves", lEE Colloquim in DSP methods in Cardiology, London, Colloquim 

Digest, pp.  91-96, March 1995. 

D. Chen, L-G Durand, H. Lee, "Selection of a Time-Frequency representation for 

Analysis of the First Heart Sound Signal". Proceedings 16th Annual International 

Conference IEEE Engineering in Medicine and Biology Society, Baltimore (USA), 

pp. 1276-1278, 1994. 

J.G.J. Chin, H. Vermarien, E. Van Vollenhoven, J. Koops, P.J. Voogd, "Clin-

ical Application of the Biaxial Esophagus Microphone, Especially in the Mitral 

regurgitation". Acta Cardiologica, Vol. 43, No. 3, pp.  297-300, 1988. 

H. Vermarien, J.G.J. Chin, E. Van Vollenhoven, J. Jacqueloot, D. Vandewoude, 

J. Koops, "Technical Improvements on Biaxial Esophageal Heart Vibration Re-

cording". Acta Cardiologica, Vol. 43, No. 3, pp.  403-407, 1988. 

146 



Appendix A: Data Records 

Patient's 

Code 

Patient Information 

Valve Type Sex Age Diagnosis 

P1BM 24M SE F 65 AVD 

P213M 2M SE F 56 SMVD 

P313M 31mm C M 70 SMS 

P413M 4M SE M 72 GMR+CAD 

P5BM 19mm C F 54 MS+MR 

P613M 27mm C F 55 SMVD 

P7BM 29mm AT F 66 MR+CAD 

P8BM 29mm SB M 44 GMR 

P9BM 27mm C F 55 SMS 

P1OBM 27mm AT F 69 SMS 

P11BM 31mm C M 62 AVD 

P12BM 31mm C F 62 MS+MR 

P13BM 33mm C M 77 SMS 

P14BM 27mm SB F 66 SMR 

P15BM 29mm AT F 51 AVD 

Table 8.1: 	Clinical data for normal patients who underwent mechanical heart valve 

implantation in the mitral position (S-E= Star- Edwards, C=Carbomedics, SB=Sorin-Bicarbon, 

AT=Aortech, AVD=Aortic Valve Disease, SMS=Severe Mitral reflux, MR=Mitral Regurgita-

tion, SMVD=Severe Mitral Valve Disease, GMR=Gross Mitral Reflux, CAD=Coronary Artery 

Disease, MS=Mitral Stenosis). 
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Appendix A: Data Records 

Patient's 

Code 

Patient Information 

Valve Type Sex Age Diagnosis 

P1BA 19mm SB F 72 SAS 

P2BA 21mm SB M 58 CAS 

P3BA 25mm AT M 51 CAS 

P4BA 23mm AT M 51 CAS 

P5BA 27mm AT M 65 SAS 

P613A 21mm C M 58 SAS 

P7BA 21mm C M 62 SAS 

P8BA 23mm C M 74 SAS 

P9BA 21mm C F 74 SAS 

P1OBA 23mm C M 6 ADV 

P11BA 27mm C M 52 SAS 

P12BA 25mm SB M 62 SAS 

P13BA 19mm C F 62 SAS 

P14BA 27mm AT F 54 AVD 

P15BA 23mm C F 67 AVD 

Table 8.2: 	Clinical data for normal patients who underwent mechanical heart valve 

implantation in the aortic position (SE=Star-Edwards, C=Carbomedics, SB=Sorin-Bicarbon, 

AT=Aortech, SAS=Severe Aortic Stenosis, CAS=Calcified Aortic Stenosis, AVD=Aortic Valve 

Disease). 
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Appendix A: Data Records 

Patient's 

Code 

Patient Information 

Valve Size Sex Age 

P1BShA 25mm M 63 

P2BShA 23mm F 54 

P3BShA 23mm F 67 

P4BShA 21mm F 51 

P5BShA 19mm F 65 

P6BShA 23mm M 53 

P7BShA 17mm F 56 

P8BShA 25mm M 49 

P9BShA 25mm M 46 

P1OBShA 31mm F 56 

P11BShA 23mm M 29 

P12BShA 25mm F 36 

P13BShA 25mm M 56 

P14BShA 23mm M 66 

P15BShA 21mm M 51 

P16BShA 25mm M 65 

P17BShA 23mm M 53 

P18BShA 21mm F 48 

P19BShA 19mm F 60 

P20BShA 19mm F 56 

P21BShA 21mm F 35 

Table 8.3: 	Clinical data for normal patients with Bjork-Shiley valves in the aortic position 

who were investigated in this study. 
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Appendix A: Data Records 

Patient's 

Code 

Patient Information 

Valve Size Sex Age 

PICA 19mm M 29 

P2CA 21mm M 45 

P3CA 18mm F 50 

P4CA 21mm M 54 

P5CA 18mm F 37 

P6CA 21mm M 56 

P7CA 21mm M 58 

P8CA 23mm M 62 

P9CA 21mm F 74 

P1OCA 23mm M 66 

P11CA 27mm M 62 

P12CA 19mm F 62 

P13CA 19mm F 46 

Table 8.4: 	Clinical data for normal patients with Carbomedics valves in the aortic position 

who were investigated in this study. 

Patient's 

Code 

Patient Information 

Valve Size Sex Age 

P1SEM 28mm F 56 

P2SEM 27mm M 65 

P3SEM 28mm F 52 

P4SEM 24mm F 53 

P5SEM 26mm M 72 

P6SEM 23mm M 62 

P7SEM 30mm F 54 

P8SEM 30mm M 68 

P9SEM 24mm M 38 

P1OSEM 28mm M 58 

P11SEM 32mm M 72 

Table 8.5: 	Clinical data for normal patients with Starr-Edward valves in the mitral position 

who were investigated in this study. 
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Appendix A: Data Records 

Patient's 

Code 

Patient Information 

Valve Size Sex Age 

P1BShM 27mm F 60 

P2BShM 25mm F 42 

P3BShM 21mm F 57 

P4BShM 29mm F 50 

P5BShM 31mm F 57 

P6BShM 21mm F 66 

P7BShM 27mm M 54 

P8BShM 31mm M 51 

Table 8.6: 	Clinical data for normal patients with Bjork-Shiley valves in the mitral position 

who were investigated in this study. 

Patient's 

Code 

Patient Information 

Valve Size Sex Age 

P10ENA 21mm M 76 

P2CENA 19mm M 79 

P3CENA 19mm F 82 

P4CENA 21mm F 77 

P5CENA 25mm M 78 

P6CENA 21mm M 78 

P7CENA 21mm F 80 

P8CENA 23mm M 63 

P9CENA 19mm F 83 

P1OCENA 21mm F 84 

P110ENA 25mm M 73 

P12CENA 21mm F 76 

P13CENA 25mm M 69 

P14CENA 21mm M 71 

Table 8.7: 	Clinical data for patients with normal functioning Carpentier- Edwardsbiopros- 

thesis valves in the aortic position who were investigated in this study. 
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Patient's 

Code 

Patient Information 

Valve Size Sex Age 

P10EMA 21mm F 55 

P2CEMA 23mm M 81 

P3CEMA 19mm M 80 

P4CEMA 21mm F 74 

P5CEMA 23mm M 67 

P6CEMA 25mm M 81 

P7CEMA 19mm F 76 

P8CEMA 23mm M 78 

P9CEMA 23mm M 66 

P10CEMA 25mm F 69 

P110EMA 21mm M 42 

P12CEMA 23mm F 68 

Table 8.8: 	Clinical data for patients with malfunctioning Carpentier- Edwardsbioprosthesis 

valves in the aortic position who were investigated in this study. 
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Comparison of Spectral Analysis Algorithms for Use in Spectral 
Phonocardiography 

Herkole P. SAVA and Edward McDONNELL 
Dept. of Electrical Eng., The University of Edinburgh, Edinburgh E119 3JL, 

Scotland U. K., Tel/Fax +44 [31] 650 5655 / 650 6554. E-mail: hsava©ee.ed.ac.uk  

Abstract. The use of spectral analysis of heart sounds has been found to be an effective method for detecting different 
valvular diseases, monitoring the condition of prosthetic heart valves and of studying the mechanism of heart action. 
In this context, the method used for this analysis is of crucial importance because diagnostic criteria depend on the 
accuracy of estimation of the spectrum. This paper compares the performance of the Fast Fourier Transform (FFT), 
Maximum Entropy or Burg algorithm, autoregressive moving-average (ARMA) and modified backward Prony's method 
(MBPM) when applied to analysis of the first (Si) and the second (S2) heart sounds. From the results achieved, it 
is concluded that MBPM based on principal eigenvalues achieves the best results for both simulated and real signals. 
In all cases parametric methods are more appropriate than the FFT provided the proper model order is selected. 

1 Introduction 

Spectral phonocardiography (SPCG) is an effective 
noinvasive method of diagnosing human heart diseases 
and of studying the mechanism of heart action [2, 8]. 
This is based on the premise that any significant alter-
nation in the mechanical properties of the heart should 
cause changes in the sound spectrum emitted from the 
heart. However, the method used is very important for 
qualitative analysis of heart sounds due to the fact that 
Si and S2 are short-time transient signals with frequen-
cy components close to each others. 
The objective of this paper is to compare results 
achieved from the FFT and different parametric meth-
ods in the analysis of first (Si) and second (S2) heart 
sounds and their ability to detect different frequency 
components associated with Si and S2. 
Results are compared from the following algorithms: 
FFT, Maximum Entropy, ARMA, and MBPM when 
applied to simulated and actual heart sounds record-
ed from normal and abnormal subjects. 

2 Spectral Estimation 

In an attempt to alleviate the inherent limitations of 
the FFT approach, many alternative spectral estima-
tion procedures have been proposed during the last t-
wo decades. These alternatives, called 'parametric' 
methods, assume a generating model for the signal pro-
cess and the spectrum is calculated from this model. 
However, straightforward application of the standard 
parametric methods can lead to poor performance, e-
specially for short and noisy data records [i, 3]. This 
case arises often in recorded heart sounds. 
In this paper a singular value decomposition (SVD) 

technique is used in the ARMA and Prony's method-
s as a tool to enhance the signal components in data 
records. The linear equation for the extended order AR-
MA (pe, q6) model may be expressed in matrix form as 
follows 

Rxxa = —rxx 	 (i) 

where 

	

R,,,, qJ 	 Rr ic - I 	R Iqc - pc + I) 

	

kc + ii 	R qj 	 R Iec - l'c + 2] 

R XX  = 	 - 

	

R [ec + m - 11 Rr ]qc + m - 2] 	R 	. - , + = 
(2) 

is the extended order autocorrelation matrix, and 

	

a[i] 	 R.. [q 6  + i] 

	

a[2] 	 H2 {q 6 +2] 
r= 	: 	 (3) 

	

a{p e j 	R[q6  + rn] 

are respectively the model parameters and data vector, 
whereas p6  and q 6  are the extended order of the matrix. 
In the ARMA method SVD is applied in three different 
versions. In the first case the SVD technique is applied 
to the autocorrelation matrix, R. To eliminate the 
noise effects from the data vector, a simple variation of 
the above mentioned technique is used by working with 
the extended coefficient matrix 11 [1, 5] where 

Rxx  = [rxx, R] 	 (4) 

and then to compute the minimum norm solution 

	

n(P)[ h 
I 
 _a 	(5) 

'xxt.
—a 

In this case SVD was applied to the extended order 

matrix R' after which 	is decomposed into (R')(P) = 
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Irf, I R'). In both cases mentioned above the size of the 
matrix is in x Pe,  the third ARMA algorithm has 

been implemented by reducing the dimension of the left-
hand matrix in eq. 1 to p x p. This matrix is given by 

iu-p+l 
R = 	( ft(P))*f(P) 	(6) 

where A(P ) are the submatrices of 	(P) 	composed of its 
columns: k to p+k. The SVD methods described above 
enhances the accuracy of the estimates from the Mod-
ified Yule-Walker equations. In order to complete the 
ARMA modelling, it is necessary to determine the asso-
ciated moving average parameters of the model. MA-
components are estimated by using the forward and 
backward residual time—series associated with an AR-
MA time series [1]. In the next section these three meth-
ods of computing the ARMA model are called respec-
tively ARMA1, ARMA2 and ARMA3. 
The SVD technique is also applied successfully to MBP- 
M. The main advantage of this method is that it gives 
full parametrisation of the spectrum of the signal: am-
plitude, frequency, phase and bandwidth information of 
its significant spectral components [6]. There are four 
basic steps in this method [3, 6]: 

The linear prediction parameters are computed 
from the available data. The principal eigenval-
ues are used to find these parameters. In our algo-
rithm, SVD is applied to the overdetermined back-
ward noisy data matrix in order to replace it with 
the least squares approximation matrix of lower 
rank [5]. For the backward direction case, it has 
been shown [5] that the poles of the signal can easi-
ly be separated from those introduced by noise (i.e. 
the norm of the signal roots is )t[i] > 1). 
The roots of a polynomial formed from the linear 
prediction coefficients will yield the estimates of 
damping and sinusoidal frequencies of each of the 
exponential terms. This polynomial has the form 

B(z) = 	a [m]z ' 	(7) 

The roots of this polynomial are found from the 
eigenvalues of the matrix A: 

o 1 0... 0 
o o 1 ... 0 

(8) 

o o ... 0 1 
—a[p] a[p - 1] ... —a[2] —a[i] 

which gives better results than other standard pro-
cedures. This procedure is based on (1) reduction 
of the A matrix to the Hessenberg form and (2) a 
balancing procedure is applied afterwards to reduce 
the sensitivity of the estimated eigenvalues to the 
rounding errors [7]. 

A set of linear equations is solved, which will yield 
the estimates of the amplitude exponential and ini-
tial phase of the sinusoid. With p roots computed 
from eq. 7 the Vandermonde matrix is created [3, 6] 

Computation of the spectral estimator. To com-
pute the spectrum from the exponential model we 
use the two—sided function since it is found more to 
give sharper spectral peaks [6]. 

The paper is also focused on the criteria used for or-
der selection of parametric models. As it is very diffi-
cult to estimate the order of the model in the case of 
real data, several model order determining criteria are 
considered [6]. The four following criteria are used in 
the case of Maximum Entropy algorithm [3, 6] 

. final prediction error (FPE), 

(N + p + 1 
(9) 

where â 1, is the estimated variance of the linear 
prediction error and N is the number of data sam-
ples. 

. Akaike information criterion (AIC), 

AIC[p] = Nln& + 2p 	(10) 

• Criterion autoregressive transfer (CAT) 

CAT]= 	(11) 
1   

• Minimum description length (MDL) 

MDL[p] = Nln(c p ) +pin(N) 	(12) 

where ji j  = [ 4] &j. 

In the case of ARMA and Prony's method, the order 
is decided by the relative magnitude of the principal 
eigenvalues (RME) of the covariance matrix [1, 5]. 

3 Method 

- 

Twenty patients were tested. For each patient, the 
electrocardiogram (ECG) and phonocardiogram (PCG) 
were recorded. A Helwett-Packard (21050A) contact mi-
crophone was used to pick up the PCG. The microphone 
was placed on the second right interspace ('aortic' area) 
and the cardioapex or the 'mitral' area. In these loca-
tions the contribution of the heart valve movements is 
the 'primary source' of the acoustic energy for S2 and 
Si. The PCG was preprocessed by a third-order high-
pass Butterworth filter with a cutoff frequency of 50 Hz 
and a sixth-order low—pass filter with cutoff frequency 
of 2kHz was used as an anti-aliasing filter. The ECG 
and PCG were then digitised to 12-bits at a sampling 
rate of 5kHz. 
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4 Results 

4.1 Simulation Results 

The performances of the algorithms are demonstrated 
by testing them on a synthetic signal, which has char-
acteristics similar to those of heart sounds, namely: 

x[n] = (0.98)°sin(O. 123n) + (0.98)' 1 sin(O.423n) 

+w[n] n= 1,2,128 	 (13) 

where w[n]is a Gaussian white noise. The criterion used 
for choosing the above time series was based on the fac-
t that Si and S2 are composed of transient sinusoidal 
signals of short duration and fast decaying amplitude, 
superimposed on a background of random noise [2, 4]. 
A percentage error for the estimated frequency is cal-
culated for all methods with different levels of SNB. as 
follows: 

err(%) =x 100 	(14) 
fi 

Table 1 summarises the results and figures 1-5 show the 
results achieved with the different methods. 

Figure 1: FFT Spectrum 

Figure 2: Burg Spectrum (order 30) 

ii 
-- 	-. 	- 

Figure 3: ARMA1 Spectrum (order 4) 

I 

Figure 4: ARMA2 Spectrum (order 4) 

I _ 

Figure 5: ARMA3 Spectrum (order 4) 
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H 

Figure 6: Prony's Method Spectrum (order 4) 

Method SNR(dB) _j_ f, err fi% err f2% 
FF1' 3 oiuii 
Max. E. 3 0.0147 0.0672 23.5 0.18 
ARMAI 3 0015' 0.0679 j_ 0.93 
ARMA2 3 0015 0.0679 189 0.98 
ARMA3 3 fail 0.0675 100 0.26 
Prony 1 	3 10.019910.0671 1.6 10.01 

Table 1: Frequency error estimation 

4.2 Real Data 

By using the QRS part of the EGG signal as a time ref-
erence [2] Si and S2 are extracted from the PCG signal. 
An ensemble average was taken of Si and S2 respec-
tively. This process was achieved automatically using 
cross-correlation with a known Si and S2 template. On-
ly sounds achieving a cross-correlation of 80% or more 
were admitted into the ensemble average. Figures 7-10 
show the results of the different methods when applied 
to Si of a normal subject. 

5 Discussion and Conclusion 

By comparing these results it is clear that in the most 
cases the FFT is not an appropriate method for study-
ing the spectrum of heart sounds. Regarding the fact 
that Si and S2 vary in duration from 10-60ms and the 
PCG spectral components of interest are, in most cases, 
spread in a narrow band(30-30011z) [8] the FFT resolu-
tion (30-100Hz) is insufficient to detect all the significan-
t components present in Si and S2. From figure 7 it is 
very difficult to estimate accurately the different compo-
nents of the spectrum, especially in the band 100-300Hz 
where is well known that 51 has many components [8]. 

45 

o o  

Figure 7: FFT Spectrum of first heart sound 
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Figure 8: Burg Spectrum of first heart sound (p=50) 
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1. % 
F,0z..ncy,  Hz 

Figure 10: Prony's Spectrum of first heart sound (p=IO) 

Amongst the parametric methods MBPM is the best 
one to characterise the frequency components of a clos-
ing heart valve. It is also found that the maximum 
entropy method gives very smooth spectra especially 
when the order model is given by the minimum val-
ue of FPE, AIC, CAT or MDL. To combat this effect 
a higher model order is required which automatically 
will yield in extra components of the spectrum(fig. 2). 
This finding is in accordance with Cloutier's results [2] 
when analysing closing sounds produced by bioprosthe-
ses. The same conclusion can be drawn for the ARMA3 
algorithm. However, ARMA1 and ARMA2 give better 
results compared with ARMA3 and the maximum en-
tropy algorithms(see fig 9). 
Regarding the order of the model we have found that 
FPE, AIC, CAT and MDL do not return a consistent 
value and their estimated model orders vary between 8-
32 (fig 12). In the case of ARMA modelling and MPBM 
the relative magnitude of eigenvalues (K) was used for 
deciding the order of the model. It was found that the 
optimum model order p lies for RME in range between 
-32 to -40dB. In this context the SVD technique returns 
a model order which closely relates to what would be 
expected from the anatomical construction of the heart 
valves and is very consistent (fig. 11). Furthermore, 
the SVD technique applied here is in accordance with 
the theory of the 'primary sources' of the PCG signals 
because it extracts from the overall signal (i.e. the ex-
ternal recorded PCG) the p strongest components which 
are assumed to be related to heart-valve action. There-
fore, these components can be used as a feature vector 
for parameterization of the valvular condition. 

Figure 12: AIC Order Selection 

In addition, these methods not only give a good rep-
resentation of the frequency components of Si and S2 
but also provide a method for the further investigation 
of the origin of Si and S2 since they give good spectral 
resolution even for short data records. 
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