625 research outputs found

    FPGA-based DOCSIS upstream demodulation

    Get PDF
    In recent years, the state-of-the-art in field programmable gate array (FPGA) technology has been advancing rapidly. Consequently, the use of FPGAs is being considered in many applications which have traditionally relied upon application-specific integrated circuits (ASICs). FPGA-based designs have a number of advantages over ASIC-based designs, including lower up-front engineering design costs, shorter time-to-market, and the ability to reconfigure devices in the field. However, ASICs have a major advantage in terms of computational resources. As a result, expensive high performance ASIC algorithms must be redesigned to fit the limited resources available in an FPGA. Concurrently, coaxial cable television and internet networks have been undergoing significant upgrades that have largely been driven by a sharp increase in the use of interactive applications. This has intensified demand for the so-called upstream channels, which allow customers to transmit data into the network. The format and protocol of the upstream channels are defined by a set of standards, known as DOCSIS 3.0, which govern the flow of data through the network. Critical to DOCSIS 3.0 compliance is the upstream demodulator, which is responsible for the physical layer reception from all customers. Although upstream demodulators have typically been implemented as ASICs, the design of an FPGA-based upstream demodulator is an intriguing possibility, as FPGA-based demodulators could potentially be upgraded in the field to support future DOCSIS standards. Furthermore, the lower non-recurring engineering costs associated with FPGA-based designs could provide an opportunity for smaller companies to compete in this market. The upstream demodulator must contain complicated synchronization circuitry to detect, measure, and correct for channel distortions. Unfortunately, many of the synchronization algorithms described in the open literature are not suitable for either upstream cable channels or FPGA implementation. In this thesis, computationally inexpensive and robust synchronization algorithms are explored. In particular, algorithms for frequency recovery and equalization are developed. The many data-aided feedforward frequency offset estimators analyzed in the literature have not considered intersymbol interference (ISI) caused by micro-reflections in the channel. It is shown in this thesis that many prominent frequency offset estimation algorithms become biased in the presence of ISI. A novel high-performance frequency offset estimator which is suitable for implementation in an FPGA is derived from first principles. Additionally, a rule is developed for predicting whether a frequency offset estimator will become biased in the presence of ISI. This rule is used to establish a channel excitation sequence which ensures the proposed frequency offset estimator is unbiased. Adaptive equalizers that compensate for the ISI take a relatively long time to converge, necessitating a lengthy training sequence. The convergence time is reduced using a two step technique to seed the equalizer. First, the ISI equivalent model of the channel is estimated in response to a specific short excitation sequence. Then, the estimated channel response is inverted with a novel algorithm to initialize the equalizer. It is shown that the proposed technique, while inexpensive to implement in an FPGA, can decrease the length of the required equalizer training sequence by up to 70 symbols. It is shown that a preamble segment consisting of repeated 11-symbol Barker sequences which is well-suited to timing recovery can also be used effectively for frequency recovery and channel estimation. By performing these three functions sequentially using a single set of preamble symbols, the overall length of the preamble may be further reduced

    Techniques to Improve the Efficiency of Data Transmission in Cable Networks

    Get PDF
    The cable television (CATV) networks, since their introduction in the late 1940s, have now become a crucial part of the broadcasting industry. To keep up with growing demands from the subscribers, cable networks nowadays not only provide television programs but also deliver two-way interactive services such as telephone, high-speed Internet and social TV features. A new standard for CATV networks is released every five to six years to satisfy the growing demands from the mass market. From this perspective, this thesis is concerned with three main aspects for the continuing development of cable networks: (i) efficient implementations of backward-compatibility functions from the old standard, (ii) addressing and providing solutions for technically-challenging issues in the current standard and, (iii) looking for prospective features that can be implemented in the future standard. Since 1997, five different versions of the digital CATV standard had been released in North America. A new standard often contains major improvements over the previous one. The latest version of the standard, namely DOCSIS 3.1 (released in late 2013), is packed with state-of-the-art technologies and allows approximately ten times the amount of traffic as compared to the previous standard, DOCSIS 3.0 (released in 2008). Backward-compatibility is a must-have function for cable networks. In particular, to facilitate the system migration from older standards to a newer one, the backward compatible functions in the old standards must remain in the newer-standard products. More importantly, to keep the implementation cost low, the inherited backward compatible functions must be redesigned by taking advantage of the latest technology and algorithms. To improve the backward-compatibility functions, the first contribution of the thesis focuses on redesigning the pulse shaping filter by exploiting infinite impulse response (IIR) filter structures as an alternative to the conventional finite impulse response (FIR) structures. Comprehensive comparisons show that more economical filters with better performance can be obtained by the proposed design algorithm, which considers a hybrid parameterization of the filter's transfer function in combination with a constraint on the pole radius to be less than 1. The second contribution of the thesis is a new fractional timing estimation algorithm based on peak detection by log-domain interpolation. When compared with the commonly-used timing detection method, which is based on parabolic interpolation, the proposed algorithm yields more accurate estimation with a comparable implementation cost. The third contribution of the thesis is a technique to estimate the multipath channel for DOCSIS 3.1 cable networks. DOCSIS 3.1 is markedly different from prior generations of CATV networks in that OFDM/OFDMA is employed to create a spectrally-efficient signal. In order to effectively demodulate such a signal, it is necessary to employ a demodulation circuit which involves estimation and tracking of the multipath channel. The estimation and tracking must be highly accurate because extremely dense constellations such as 4096-QAM and possibly 16384-QAM can be used in DOCSIS 3.1. The conventional OFDM channel estimators available in the literature either do not perform satisfactorily or are not suitable for the DOCSIS 3.1 channel. The novel channel estimation technique proposed in this thesis iteratively searches for parameters of the channel paths. The proposed technique not only substantially enhances the channel estimation accuracy, but also can, at no cost, accurately identify the delay of each echo in the system. The echo delay information is valuable for proactive maintenance of the network. The fourth contribution of this thesis is a novel scheme that allows OFDM transmission without the use of a cyclic prefix (CP). The structure of OFDM in the current DOCSIS 3.1 does not achieve the maximum throughput if the channel has multipath components. The multipath channel causes inter-symbol-interference (ISI), which is commonly mitigated by employing CP. The CP acts as a guard interval that, while successfully protecting the signal from ISI, reduces the transmission throughput. The problem becomes more severe for downstream direction, where the throughput of the entire system is determined by the user with the worst channel. To solve the problem, this thesis proposes major alterations to the current DOCSIS 3.1 OFDM/OFDMA structure. The alterations involve using a pair of Nyquist filters at the transceivers and an efficient time-domain equalizer (TEQ) at the receiver to reduce ISI down to a negligible level without the need of CP. Simulation results demonstrate that, by incorporating the proposed alterations to the DOCSIS 3.1 down-link channel, the system can achieve the maximum throughput over a wide range of multipath channel conditions

    Application of adaptive equalisation to microwave digital radio

    Get PDF

    Proceedings of the Second International Mobile Satellite Conference (IMSC 1990)

    Get PDF
    Presented here are the proceedings of the Second International Mobile Satellite Conference (IMSC), held June 17-20, 1990 in Ottawa, Canada. Topics covered include future mobile satellite communications concepts, aeronautical applications, modulation and coding, propagation and experimental systems, mobile terminal equipment, network architecture and control, regulatory and policy considerations, vehicle antennas, and speech compression

    Solutions for New Terrestrial Broadcasting Systems Offering Simultaneously Stationary and Mobile Services

    Get PDF
    221 p.[EN]Since the first broadcasted TV signal was transmitted in the early decades of the past century, the television broadcasting industry has experienced a series of dramatic changes. Most recently, following the evolution from analogue to digital systems, the digital dividend has become one of the main concerns of the broadcasting industry. In fact, there are many international spectrum authorities reclaiming part of the broadcasting spectrum to satisfy the growing demand of other services, such as broadband wireless services, arguing that the TV services are not very spectrum-efficient. Apart from that, it must be taken into account that, even if up to now the mobile broadcasting has not been considered a major requirement, this will probably change in the near future. In fact, it is expected that the global mobile data traffic will increase 11-fold between 2014 and 2018, and what is more, over two thirds of the data traffic will be video stream by the end of that period. Therefore, the capability to receive HD services anywhere with a mobile device is going to be a mandatory requirement for any new generation broadcasting system. The main objective of this work is to present several technical solutions that answer to these challenges. In particular, the main questions to be solved are the spectrum efficiency issue and the increasing user expectations of receiving high quality mobile services. In other words, the main objective is to provide technical solutions for an efficient and flexible usage of the terrestrial broadcasting spectrum for both stationary and mobile services. The first contributions of this scientific work are closely related to the study of the mobile broadcast reception. Firstly, a comprehensive mathematical analysis of the OFDM signal behaviour over time-varying channels is presented. In order to maximize the channel capacity in mobile environments, channel estimation and equalization are studied in depth. First, the most implemented equalization solutions in time-varying scenarios are analyzed, and then, based on these existing techniques, a new equalization algorithm is proposed for enhancing the receivers’ performance. An alternative solution for improving the efficiency under mobile channel conditions is treating the Inter Carrier Interference as another noise source. Specifically, after analyzing the ICI impact and the existing solutions for reducing the ICI penalty, a new approach based on the robustness of FEC codes is presented. This new approach employs one dimensional algorithms at the receiver and entrusts the ICI removing task to the robust forward error correction codes. Finally, another major contribution of this work is the presentation of the Layer Division Multiplexing (LDM) as a spectrum-efficient and flexible solution for offering stationary and mobile services simultaneously. The comprehensive theoretical study developed here verifies the improved spectrum efficiency, whereas the included practical validation confirms the feasibility of the system and presents it as a very promising multiplexing technique, which will surely be a strong candidate for the next generation broadcasting services.[ES]Desde el comienzo de la transmisión de las primeras señales de televisión a principios del siglo pasado, la radiodifusión digital ha evolucionado gracias a una serie de cambios relevantes. Recientemente, como consecuencia directa de la digitalización del servicio, el dividendo digital se ha convertido en uno de los caballos de batalla de la industria de la radiodifusión. De hecho, no son pocos los consorcios internacionales que abogan por asignar parte del espectro de radiodifusión a otros servicios como, por ejemplo, la telefonía móvil, argumentado la poca eficiencia espectral de la tecnología de radiodifusión actual. Asimismo, se debe tener en cuenta que a pesar de que los servicios móviles no se han considerado fundamentales en el pasado, esta tendencia probablemente variará en el futuro cercano. De hecho, se espera que el tráfico derivado de servicios móviles se multiplique por once entre los años 2014 y 2018; y lo que es más importante, se pronostica que dos tercios del tráfico móvil sea video streaming para finales de ese periodo. Por lo tanto, la posibilidad de ofrecer servicios de alta definición en dispositivos móviles es un requisito fundamental para los sistemas de radiodifusión de nueva generación. El principal objetivo de este trabajo es presentar soluciones técnicas que den respuesta a los retos planteados anteriormente. En particular, las principales cuestiones a resolver son la ineficiencia espectral y el incremento de usuarios que demandan mayor calidad en los contenidos para dispositivos móviles. En pocas palabras, el principal objetivo de este trabajo se basa en ofrecer una solución más eficiente y flexible para la transmisión simultánea de servicios fijos y móviles. La primera contribución relevante de este trabajo está relacionada con la recepción de la señal de televisión en movimiento. En primer lugar, se presenta un completo análisis matemático del comportamiento de la señal OFDM en canales variantes con el tiempo. A continuación, con la intención de maximizar la capacidad del canal, se estudian en profundidad los algoritmos de estimación y ecualización. Posteriormente, se analizan los algoritmos de ecualización más implementados, y por último, basándose en estas técnicas, se propone un nuevo algoritmo de ecualización para aumentar el rendimiento de los receptores en tales condiciones. Del mismo modo, se plantea un nuevo enfoque para mejorar la eficiencia de los servicios móviles basado en tratar la interferencia entre portadoras como una fuente de ruido. Concretamente, tras analizar el impacto del ICI en los receptores actuales, se sugiere delegar el trabajo de corrección de dichas distorsiones en códigos FEC muy robustos. Finalmente, la última contribución importante de este trabajo es la presentación de la tecnología LDM como una manera más eficiente y flexible para la transmisión simultánea de servicios fijos y móviles. El análisis teórico presentado confirma el incremento en la eficiencia espectral, mientras que el estudio práctico valida la posible implementación del sistema y presenta la tecnología LDM c

    An investigation into the performance of a power-of-two coefficient transversal equalizer in a 34Mbit/s QPSK digital radio during frequency-selective fading conditions

    Get PDF
    Bibliography: leaves 82-91.Under certain atmospheric conditions, multipath propagation can occur. The interaction of radio waves arriving at a receiver, having travelled via paths of differing length, results in the phenomenon of frequency-selective fading. This phenomenon manifests as a notch in the received spectrum and causes a severe degradation in the performance of a digital radio system. As the total power in the received bandwidth may be unaffected, the Automatic Gain Control is not able to correct for this distortion, and so other methods are required. The dissertation commences with a summary of the phenomenon of multipath as this provides the context for the investigations which follow. The adaptive equalizer was developed to combat the distortion introduced by frequency-selective fading. It achieves this by applying an estimate of the inverse of the distorting channel's transfer function. The theory on adaptive equalizers has been well established, and a summary of this theory is presented in the form of Wiener Filter theory and the Wiener-Hopf equations. An adaptive equalizer located in a 34MBit/s QPSK digital radio is required to operate at very high speed, and its digital hardware implementation is not a trivial task. In order to reduce the cost and complexity, a compromise was proposed. If the tap weights of the equalizer could be represented by power-of-two binary numbers, the equalizer circuitry can be dramatically simplified. The aim of the dissertation was to investigate the performance of this simplified equalizer structure and to determine whether a power-of-two equalizer was a viable consideration

    Coherent Change Detection Under a Forest Canopy

    Get PDF
    Coherent change detection (CCD) is an established technique for remotely monitoring landscapes with minimal vegetation or buildings. By evaluating the local complex correlation between a pair of synthetic aperture radar (SAR) images acquired on repeat passes of an airborne or spaceborne imaging radar system, a map of the scene coherence is obtained. Subtle disturbances of the ground are detected as areas of low coherence in the surface clutter. This thesis investigates extending CCD to monitor the ground in a forest. It is formulated as a multichannel dual-layer coherence estimation problem, where the coherence of scattering from the ground is estimated after suppressing interference from the canopy by vertically beamforming multiple image channels acquired at slightly different grazing angles on each pass. This 3D SAR beamforming must preserve the phase of the ground response. The choice of operating wavelength is considered in terms of the trade-off between foliage penetration and change sensitivity. A framework for comparing the performance of different radar designs and beamforming algorithms, as well as assessing the sensitivity to error, is built around the random-volume-over-ground (RVOG) model of forest scattering. If the ground and volume scattering contributions in the received echo are of similar strength, it is shown that an L-band array of just three channels can provide enough volume attenuation to permit reasonable estimation of the ground coherence. The proposed method is demonstrated using an RVOG clutter simulation and a modified version of the physics-based SAR image simulator PolSARproSim. Receiver operating characteristics show that whilst ordinary single-channel CCD is unusable when a canopy is present, 3D SAR CCD permits reasonable detection performance. A novel polarimetric filtering algorithm is also proposed to remove contributions from the ground-trunk double-bounce scattering mechanism, which may mask changes on the ground near trees. To enable this kind of polarimetric processing, fully polarimetric data must be acquired and calibrated. Motivated by an interim version of the Ingara airborne imaging radar, which used a pair of helical antennas to acquire circularly polarised data, techniques for the estimation of polarimetric distortion in the circular basis are investigated. It is shown that the standard approach to estimating cross-talk in the linear basis, whereby expressions for the distortion of reflection-symmetric clutter are linearised and solved, cannot be adapted to the circular basis, because the first-order effects of individual cross-talk parameters cannot be distinguished. An alternative approach is proposed that uses ordinary and gridded trihedral corner reflectors, and optionally dihedrals, to iteratively estimate the channel imbalance and cross-talk parameters. Monte Carlo simulations show that the method reliably converges to the true parameter values. Ingara data is calibrated using the method, with broadly consistent parameter estimates obtained across flights. Genuine scene changes may be masked by coherence loss that arises when the bands of spatial frequencies supported by the two passes do not match. Trimming the spatial-frequency bands to their common area of support would remove these uncorrelated contributions, but the bands, and therefore the required trim, depend on the effective collection geometry at each pixel position. The precise dependence on local slope and collection geometry is derived in this thesis. Standard methods of SAR image formation use a flat focal plane and allow only a single global trim, which leads to spatially varying coherence loss when the terrain is undulating. An image-formation algorithm is detailed that exploits the flexibility offered by back-projection not only to focus the image onto a surface matched to the scene topography but also to allow spatially adaptive trimming. Improved coherence is demonstrated in simulation and using data from two airborne radar systems.Thesis (Ph.D.) -- University of Adelaide, School of Electrical & Electronic Engineering, 202

    THE APPLICATION OF REAL-TIME SOFTWARE IN THE IMPLEMENTATION OF LOW-COST SATELLITE RETURN LINKS

    Get PDF
    Digital Signal Processors (DSPs) have evolved to a level where it is feasible for digital modems with relatively low data rates to be implemented entirely with software algorithms. With current technology it is still necessary for analogue processing between the RF input and a low frequency IF but, as DSP technology advances, it will become possible to shift the interface between analogue and digital domains ever closer towards the RF input. The software radio concept is a long-term goal which aims to realise software-based digital modems which are completely flexible in terms of operating frequency, bandwidth, modulation format and source coding. The ideal software radio cannot be realised until DSP, Analogue to Digital (A/D) and Digital to Analogue (D/A) technology has advanced sufficiently. Until these advances have been made, it is often necessary to sacrifice optimum performance in order to achieve real-time operation. This Thesis investigates practical real-time algorithms for carrier frequency synchronisation, symbol timing synchronisation, modulation, demodulation and FEC. Included in this work are novel software-based transceivers for continuous-mode transmission, burst-mode transmission, frequency modulation, phase modulation and orthogonal frequency division multiplexing (OFDM). Ideal applications for this work combine the requirement for flexible baseband signal processing and a relatively low data rate. Suitable applications for this work were identified in low-cost satellite return links, and specifically in asymmetric satellite Internet delivery systems. These systems employ a high-speed (>>2Mbps) DVB channel from service provider to customer and a low-cost, low-speed (32-128 kbps) return channel. This Thesis also discusses asymmetric satellite Internet delivery systems, practical considerations for their implementation and the techniques that are required to map TCP/IP traffic to low-cost satellite return links

    Hardware Development and Error Characterisation for the AFIT RAIL SAR System

    Get PDF
    This research is focussed on updating the Air Force Institute of Technology (AFIT) Radar Instrumentation Lab (RAIL) Synthetic Aperture Radar (SAR) experimental system. Firstly, this research assesses current hardware limitations and updates the system configuration and methodology to enable collections from a receiver in motion. Secondly, orthogonal frequency-division multiplexing (OFDM) signals are used to form (SAR) images in multiple experimental and simulation configurations. This research analyses, characterises and attempts compensation of relevant SAR image error sources, such as Doppler shift or motion measurement errors (MMEs). Error characterisation is conducted using theoretical, simulated and experimental methods. Final experimental results are presented to verify performance of the updated SAR collection system and show improvements to the final product through an updated methodology and various signal processing techniques
    • …
    corecore