10 research outputs found

    Blind Estimation of Carrier Frequency Offset for OFDM Systems using Maximum Likelihood Technique

    Get PDF
    A Multicarrier Communication system such as an Orthogonal Frequency Division Multiplexing OFDM has been shown to be an impressive approach to combat multipath fading in wireless communications. OFDM is a modulation scheme that allows digital data to be efficiently and reliably transmitted over a radio channel, even in multipath environments. OFDM transmits data by using a large number of narrow bandwidth carriers. These carriers are regularly spaced in frequency, forming a block of spectrum. The frequency spacing and time synchronization of the carriers is chosen in such a way that the carriers are orthogonal, meaning that they do not cause interference to each other. In spite of the success and effectiveness of the OFDM systems, it suffers from a well-known drawback of high sensitivity to Carrier Frequency Offset (CFO). The presence of the CFO in the received carrier will lose orthogonality among the carriers and causes a reduction of desired signal amplitude in the output decision variable and introduces Inter Carrier Interference (ICI). It then brings up an increase of Bit Error Rate (BER). This makes the problem of estimating the CFO an attractive and necessary research problem. In this thesis Blind Modified ML CFO estimation technique based on data symbol repetition is discussed to estimate the offset parameter

    Frequency Domain Independent Component Analysis Applied To Wireless Communications Over Frequency-selective Channels

    Get PDF
    In wireless communications, frequency-selective fading is a major source of impairment for wireless communications. In this research, a novel Frequency-Domain Independent Component Analysis (ICA-F) approach is proposed to blindly separate and deconvolve signals traveling through frequency-selective, slow fading channels. Compared with existing time-domain approaches, the ICA-F is computationally efficient and possesses fast convergence properties. Simulation results confirm the effectiveness of the proposed ICA-F. Orthogonal Frequency Division Multiplexing (OFDM) systems are widely used in wireless communications nowadays. However, OFDM systems are very sensitive to Carrier Frequency Offset (CFO). Thus, an accurate CFO compensation technique is required in order to achieve acceptable performance. In this dissertation, two novel blind approaches are proposed to estimate and compensate for CFO within the range of half subcarrier spacing: a Maximum Likelihood CFO Correction approach (ML-CFOC), and a high-performance, low-computation Blind CFO Estimator (BCFOE). The Bit Error Rate (BER) improvement of the ML-CFOC is achieved at the expense of a modest increase in the computational requirements without sacrificing the system bandwidth or increasing the hardware complexity. The BCFOE outperforms the existing blind CFO estimator [25, 128], referred to as the YG-CFO estimator, in terms of BER and Mean Square Error (MSE), without increasing the computational complexity, sacrificing the system bandwidth, or increasing the hardware complexity. While both proposed techniques outperform the YG-CFO estimator, the BCFOE is better than the ML-CFOC technique. Extensive simulation results illustrate the performance of the ML-CFOC and BCFOE approaches

    Novel Complex Adaptive Signal Processing Techniques Employing Optimally Derived Time-varying Convergence Factors With Applicatio

    Get PDF
    In digital signal processing in general, and wireless communications in particular, the increased usage of complex signal representations, and spectrally efficient complex modulation schemes such as QPSK and QAM has necessitated the need for efficient and fast-converging complex digital signal processing techniques. In this research, novel complex adaptive digital signal processing techniques are presented, which derive optimal convergence factors or step sizes for adjusting the adaptive system coefficients at each iteration. In addition, the real and imaginary components of the complex signal and complex adaptive filter coefficients are treated as separate entities, and are independently updated. As a result, the developed methods efficiently utilize the degrees of freedom of the adaptive system, thereby exhibiting improved convergence characteristics, even in dynamic environments. In wireless communications, acceptable co-channel, adjacent channel, and image interference rejection is often one of the most critical requirements for a receiver. In this regard, the fixed-point complex Independent Component Analysis (ICA) algorithm, called Complex FastICA, has been previously applied to realize digital blind interference suppression in stationary or slow fading environments. However, under dynamic flat fading channel conditions frequently encountered in practice, the performance of the Complex FastICA is significantly degraded. In this dissertation, novel complex block adaptive ICA algorithms employing optimal convergence factors are presented, which exhibit superior convergence speed and accuracy in time-varying flat fading channels, as compared to the Complex FastICA algorithm. The proposed algorithms are called Complex IA-ICA, Complex OBA-ICA, and Complex CBC-ICA. For adaptive filtering applications, the Complex Least Mean Square algorithm (Complex LMS) has been widely used in both block and sequential form, due to its computational simplicity. However, the main drawback of the Complex LMS algorithm is its slow convergence and dependence on the choice of the convergence factor. In this research, novel block and sequential based algorithms for complex adaptive digital filtering are presented, which overcome the inherent limitations of the existing Complex LMS. The block adaptive algorithms are called Complex OBA-LMS and Complex OBAI-LMS, and their sequential versions are named Complex HA-LMS and Complex IA-LMS, respectively. The performance of the developed techniques is tested in various adaptive filtering applications, such as channel estimation, and adaptive beamforming. The combination of Orthogonal Frequency Division Multiplexing (OFDM) and the Multiple-Input-Multiple-Output (MIMO) technique is being increasingly employed for broadband wireless systems operating in frequency selective channels. However, MIMO-OFDM systems are extremely sensitive to Intercarrier Interference (ICI), caused by Carrier Frequency Offset (CFO) between local oscillators in the transmitter and the receiver. This results in crosstalk between the various OFDM subcarriers resulting in severe deterioration in performance. In order to mitigate this problem, the previously proposed Complex OBA-ICA algorithm is employed to recover user signals in the presence of ICI and channel induced mixing. The effectiveness of the Complex OBA-ICA method in performing ICI mitigation and signal separation is tested for various values of CFO, rate of channel variation, and Signal to Noise Ratio (SNR)

    Carrier frequency offset estimation for orthogonal frequency division multiplexing systems

    Get PDF
    Orthogonal frequency division multiplexing (OFDM) is an attractive modulation scheme used in wideband communications because it essentially transforms the frequency selective channel into a flat fading channel. Furthermore, the combination of multiple-input multiple-output (MIMO) signal processing and OFDM seems to be an ideal solution for supporting reliable high data rate transmission for future wireless communication systems. However, despite the great advantages OFDM systems offer, such systems present challenges of their own. One of the most important challenges is carrier frequency offset (CFO) estimation, which is crucial in building reliable wireless communication systems. In this thesis, we consider CFO estimation for the downlink and uplink OFDM systems. For the downlink channel, we focus on blind schemes where the cost functions are designed such that they exploit implicit properties associated with the transmitted signal where no training signal is required. By taking the unconditional maximum likelihood approach, we propose a virtual subcarrier based blind scheme for MIMO-OFDM systems in the presence of spatial correlation. We conclude that the presence of spatial correlation does not impact the CFO estimation significantly. We also propose a CFO estimator for OFDM systems with constant modulus signaling and extend it to MIMO-OFDM systems employing orthogonal space-time block coding. The curve fitting method is used which gives a closed-form expression for CFO estimation. Therefore, the proposed scheme provides an excellent trade-off between complexity and performance as compared to prominent existing estimation schemes. Furthermore, we design a blind CFO estimation scheme for differentially modulated OFDM systems based on the finite alphabet constraint. It can achieve better performance at high signal-to-noise ratios (SNRs) at the expense of some additional computational complexity as compared to the schemes based on the constant modulus constraint. The constrained Cramer-Rao lower bound (CRLB) is also derived for the blind estimation scheme. As for the uplink channel, which is a more challenging problem, we propose two training aided schemes. One is based on a scalar extended Kalman filter (EKF) and the other one is on the variable projection (VP) algorithm. For both schemes, we assume that the system uses an arbitrary subcarrier assignment scheme, which is more involved than the other two schemes, namely block and interleaved subcarrier assignment scheme. In the first scheme, to apply the scalar EKF algorithm, we represent the measurement equation as a function of a scalar state, i.e., each user's CFO, in lieu of a state vector which consists of both CFO and channel coefficients by replacing the unknown channel coefficients with a nonlinear function of CFO. This proposed scheme can achieve the CRLB at high SNR for two users with a complexity lower than that of the alternating-projection method. In the second scheme, the VP algorithm is used for CFO estimation which is followed with a robust minimum mean square error (MMSE) estimator for channel estimation. In the VP algorithm, the nonlinear least square cost function is optimized numerically by updating the CFOs and channel coefficients separately at each iteration. We demonstrate that this proposed scheme is superior to the existing methods in terms of convergence speed, computational complexity and estimation performance

    Channel and frequency offset estimation schemes for multicarrier systems

    Get PDF
    Doutoramento em Engenharia ElectrotécnicaO presente trabalho aborda o problema da estimação de canal e da estimação de desvio de frequência em sistemas OFDM com múltiplas configurações de antenas no transmissor e no receptor. Nesta tese é apresentado o estudo teórico sobre o impacto da densidade de pilotos no desempenho da estimação de canal em sistemas OFDM e são propostos diversos algoritmos para estimação de canal e estimação de desvio de frequência em sistemas OFDM com antenas únicas no transmissor e receptor, com diversidade de transmissão e MIMO. O estudo teórico culmina com a formulação analítica do erro quadrático médio de um estimador de canal genérico num sistema OFDM que utilize pilotos dedicados, distribuidos no quadro transmitido em padrões bi-dimensionais. A formulação genérica é concretizada para o estimador bi-dimensional LS-DFT, permitindo aferir da exactidão da formulação analítica quando comparada com os valores obtidos por simulação do sistema abordado. Os algoritmos de estimação investigados tiram partido da presença de pilotos dedicados presentes nos quadros transmitidos para estimar com precisão os parâmetros pretendidos. Pela sua baixa complexidade, estes algoritmos revelam-se especialmente adequados para implementação em terminais móveis com capacidade computacional e consumo limitados. O desempenho dos algoritmos propostos foi avaliado por meio de simulação do sistema utilizado, recorrendo a modelos aceites de caracterização do canal móvel multipercurso. A comparação do seu desempenho com algoritmos de referência permitir aferir da sua validade. ABSTRACT: The present work focus on the problem of channel estimation and frequency offset estimation in OFDM systems, with different antenna configurations at both the transmitter and the receiver. This thesis presents the theoretical study of the impact of the pilot density in the performance of the channel estimation in OFDM systems and proposes several channel and frequency offset algorithms for OFDM systems with single antenna at both transmitter and receiver, with transmitter diversity and MIMO. The theoretical study results in the analytical formulation of the mean square error of a generic channel estimator for an OFDM system using dedicated pilots, distributed in the transmitted frame in two-dimensional patterns. The generic formulation is implemented for the two-dimensional LS-DFT estimator to verify the accuracy of the analytical formulation when compared with the values obtained by simulation of the discussed system. The investigated estimation algorithms take advantage of the presence of dedicated pilots present in the transmitted frames to accurately estimate the required parameters. Due to its low complexity, these algorithms are especially suited for implementation in mobile terminals with limited processing power and consumption. The performance of the proposed algorithms was evaluated by simulation of the used system, using accepted multipath mobile channel models. The comparison of its performance with the one of reference algorithms measures its validity

    Timing and Frequency Synchronization in Practical OFDM Systems

    No full text
    Orthogonal frequency-division multiplexing (OFDM) has been adopted by many broadband wireless communication systems for the simplicity of the receiver technique to support high data rates and user mobility. However, studies also show that the advantage of OFDM over the single-carrier modulation schemes could be substantially compromised by timing or frequency estimation errors at the receiver. In this thesis we investigate the synchronization problem for practical OFDM systems using a system model generalized from the IEEE 802.11 and IEEE 802.16 standards. For preamble based synchronization schemes, which are most common in the downlink of wireless communication systems, we propose a novel timing acquisition algorithm which minimizes false alarm probability and indirectly improves correct detection probability. We then introduce a universal fractional carrier frequency offset (CFO) estimator that outperforms conventional methods at low signal to noise ratio with lower complexity. More accurate timing and frequency estimates can be obtained by our proposed frequency-domain algorithms incorporating channel knowledge. We derive four joint frequency, timing, and channel estimators with different approximations, and then propose a hybrid integer CFO estimation scheme to provide flexible performance and complexity tradeoffs. When the exact channel delay profile is unknown at the receiver, we present a successive timing estimation algorithm to solve the timing ambiguity. Both analytical and simulation results are presented to confirm the performance of the proposed methods in various realistic channel conditions. ..

    Frequency Ambiguity Resolution in OFDM Systems

    No full text
    Abstract—In orthogonal frequency division multiplexing systems, the carrier-frequency offset can be divided into two parts: 1) an integer one—multiple of the subcarrier spacing 1/T and 2) a fractional one—less than 1/2T in amplitude. Some schemes proposed in the literature can only recover the fractional part. In this letter we derive two algorithms for estimating the integer part. They are based on the observation of two consecutive OFDM symbols. The first algorithm exploits pilot symbols multiplexed with the data, the other is blind
    corecore