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ABSTRACT 
 

In digital signal processing in general, and wireless communications in particular, 

the increased usage of complex signal representations, and spectrally efficient complex 

modulation schemes such as QPSK and QAM has necessitated the need for efficient and 

fast-converging complex digital signal processing techniques. In this research, novel 

complex adaptive digital signal processing techniques are presented, which derive 

optimal convergence factors or step sizes for adjusting the adaptive system coefficients at 

each iteration. In addition, the real and imaginary components of the complex signal and 

complex adaptive filter coefficients are treated as separate entities, and are independently 

updated. As a result, the developed methods efficiently utilize the degrees of freedom of 

the adaptive system, thereby exhibiting improved convergence characteristics, even in 

dynamic environments.  

 In wireless communications, acceptable co-channel, adjacent channel, and image 

interference rejection is often one of the most critical requirements for a receiver. In this 

regard, the fixed-point complex Independent Component Analysis (ICA) algorithm, 

called Complex FastICA, has been previously applied to realize digital blind interference 

suppression in stationary or slow fading environments. However, under dynamic flat 

fading channel conditions frequently encountered in practice, the performance of the 

Complex FastICA is significantly degraded. In this dissertation, novel complex block 

adaptive ICA algorithms employing optimal convergence factors are presented, which 

exhibit superior convergence speed and accuracy in time-varying flat fading channels, as 

compared to the Complex FastICA algorithm. The proposed algorithms are called 

Complex IA-ICA, Complex OBA-ICA, and Complex CBC-ICA.  



 iv

For adaptive filtering applications, the Complex Least Mean Square algorithm 

(Complex LMS) has been widely used in both block and sequential form, due to its 

computational simplicity. However, the main drawback of the Complex LMS algorithm 

is its slow convergence and dependence on the choice of the convergence factor. In this 

research, novel block and sequential based algorithms for complex adaptive digital 

filtering are presented, which overcome the inherent limitations of the existing Complex 

LMS. The block adaptive algorithms are called Complex OBA-LMS and Complex 

OBAI-LMS, and their sequential versions are named Complex HA-LMS and Complex 

IA-LMS, respectively. The performance of the developed techniques is tested in various 

adaptive filtering applications, such as channel estimation, and adaptive beamforming. 

The combination of Orthogonal Frequency Division Multiplexing (OFDM) and 

the Multiple-Input-Multiple-Output (MIMO) technique is being increasingly employed 

for broadband wireless systems operating in frequency selective channels. However, 

MIMO-OFDM systems are extremely sensitive to Intercarrier Interference (ICI), caused 

by Carrier Frequency Offset (CFO) between local oscillators in the transmitter and the 

receiver. This results in crosstalk between the various OFDM subcarriers resulting in 

severe deterioration in performance. In order to mitigate this problem, the previously 

proposed Complex OBA-ICA algorithm is employed to recover user signals in the 

presence of ICI and channel induced mixing. The effectiveness of the Complex OBA-

ICA method in performing ICI mitigation and signal separation is tested for various 

values of CFO, rate of channel variation, and Signal to Noise Ratio (SNR). 
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CHAPTER ONE: INTRODUCTION 
 

Complex signal processing has attracted enormous research efforts in recent 

decades. It finds increased applications in numerous areas such as wireless 

communications, statistical signal processing and biomedical signal processing. In 

general, a complex signal is the combination of two independent real signals (real and 

imaginary components) at any instance in time. As a result, it enables independent 

processing of the real and imaginary components in the digital domain. 

The main advantage of employing complex signal representations is that it often 

allows for image-reject architectures to be described more compactly [1,2]. In addition, 

many spectrally efficient and high bit rate modulation schemes like Quadrature Phase 

Shift Keying (QPSK), Quadrature Amplitude Modulation (QAM), Orthogonal Frequency 

Division Multiplexing (OFDM), etc. are based on complex signal concepts. 

Traditionally, complex signal processing in wireless transceivers was performed 

using complex analog filters [3-7]. However, complex analog filters suffer from inherent 

mismatches causing unwanted image signal energy to alias into the desired signal band 

[8]. Furthermore, they do not permit a high degree of integration which is an essential 

requirement for the development of the highly-integrated multi-standard receiver or 

Software Defined Radio [9]. In recent decades, the development of complex digital filters 

[10, 11] and efficient Digital Signal Processors has enabled demodulation and signal 

processing operations like image rejection, channel equalization and interference 

suppression to be performed entirely in the digital domain using adaptive techniques [12-

15].  
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1.1 MIMO Technology 

In mobile radio communications, there is a never-ending demand for increased 

capacity and improved quality. MIMO (multiple input, multiple output) is a smart 

antenna technology for wireless communications which supplies this demand. MIMO 

utilizes multiple antennas at both the source (transmitter) and the destination (receiver) 

and is sometimes referred to as spatial multiplexing [16-19]. MIMO is one of several 

forms of smart antenna technology, the others being MISO (multiple input, single output) 

and SIMO (single input, multiple output). The use of MIMO in wireless systems has 

several advantages such as 

• Significant increase in data throughput and spectral efficiency 

• Reduced fading because of antenna diversity 

• Increased user capacity 

• Greater immunity to interference 

MIMO combined with Orthogonal Frequency Division Multiplexing (OFDM) delivers 

significant performance improvements for wireless LANs, enabling them to serve 

existing applications more cost-effectively, as well as making new, more demanding 

applications possible [20,21]. In fact, MIMO-OFDM is the basis for the recently 

developed 802.11n standard [22]. 

1.2 Fading Channels 

In wireless communications, various elements in the environment reflect the 

transmitted signal creating multiple paths between the transmitter and the receiver. In 

each path, the transmitted signal encounters different levels of attenuation, delay and 

phase shift. These multiple copies of the transmitted signal combine at the receiver, 
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causing constructive or destructive interference. This causes a residual amplification or 

attenuation of the signal power at the receiver. In some situations, strong destructive 

interference results in a sudden and sharp decrease in signal power causing a deep fade 

and temporary loss of the communication signal. Mathematically, fading can be modeled 

as a time-varying random change in the amplitude and phase of the transmitted signal. 

1.2.1 Slow and Fast Fading 

The wireless channel induces magnitude and phase changes in the transmitted 

signal. The rate at which these changes imposed by the channel vary with time is referred 

to as slow and fast fading. The fading of the channel depends on the coherence time, 

which describes the time duration over which the response of the channel can be 

considered correlated [23, 24].  

§ Slow fading occurs when the coherence time of the channel is large relative to the 

symbol duration. In this scenario, the amplitude and phase change induced by the 

channel is approximately constant over the symbol period. Slow fading is caused 

by events such as shadowing, where the main signal path between the transmitter 

and receiver is obscured by a large obstacle such as a mountain or large building. 

§ Fast fading occurs when the coherence time of the channel is smaller than the 

symbol duration. In this case, the properties of the channel vary at a rapid rate 

causing severe fluctuations in the amplitude and phase of the signal. Fast fading 

typically varies about a mean value and often fast fading is superimposed on slow 

fading. 



 4

1.2.2 Flat and Frequency-Selective Fading 

The response of a wireless channel to a communication signal may be frequency 

specific. In this regard, the coherence bandwidth is a statistical measurement of the range 

of frequencies over which the response of the channel can be considered constant. It is 

also defined as the approximate maximum bandwidth or frequency interval over which 

two frequencies of a signal are likely to experience comparable or correlated amplitude 

fading. 

§ In flat fading, the coherence bandwidth of the channel is larger than the 

bandwidth of the signal. As a result, all the frequency components of the signal 

experience the same degree of fading. 

§ In contrast, frequency-selective fading causes different frequencies of an input 

signal to be attenuated and phase shifted differently in a channel. This occurs 

when the coherence bandwidth of the channel is smaller than the bandwidth of the 

signal. Frequency-selective fading gives rise to notches in the frequency response 

of the channel. 

Frequency-selective fading can be viewed in the frequency domain, although in the 

time domain, it is called multipath delay spread ( DT ), which is the total time interval 

during which reflections with significant energy arrive. In practice, a channel can be 

considered flat when DT /T is less than 0.1 where T is the symbol period. 

In a frequency-selective fading channel, since different frequency components of the 

signal are affected independently, it is highly unlikely that all parts of the signal will be 

simultaneously affected by a deep fade. Certain modulation schemes such as OFDM and 

CDMA are well-suited to employing frequency diversity to provide robustness to fading. 
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OFDM divides the wideband signal into many slowly modulated narrowband subcarriers, 

each exposed to flat fading rather than frequency selective fading.  

Frequency-selective fading channels are also dispersive, in that the signal energy 

associated with each symbol is spread out in time. This causes transmitted symbols that 

are adjacent in time to interfere with each other causing Inter Symbol Interference (ISI). 

Inter-symbol interference is avoided by introducing a guard interval between the symbols 

[25].   

1.3 Research Statement 

With the ever-increasing demand for higher capacity in wireless communication 

systems, novel interference rejection techniques are becoming critically important and 

attracting huge research efforts. Co-Channel Interference (CCI), adjacent channel 

interference, and interference due to image frequencies are the three types of interference 

that pose major challenges for wireless transceiver design. 

Co-channel interference is caused by another signal or user sharing the same 

frequency band as the desired signal. In cellular communications, this problem becomes 

more severe when the cell size is decreased in order to increase the frequency reuse, and 

hence capacity of the system. The highly selective analog filters are incapable of 

suppressing CCI. Adjacent channel interference is caused by unwanted signal energy 

from an adjacent channel leaking into the desired signal band. Adjacent channel 

interference is typically caused by inadequate filtering, such as incomplete filtering of 

unwanted modulation products. 

The image frequency is an unwanted signal located at twice the intermediate 

Frequency (IF) from the desired RF signal. After frequency translation from the down-
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conversion mixer, the unwanted image signal and desired RF signal both lie in the IF 

band and cannot be distinguished. The image signal may be much larger than the desired 

signal and therefore significantly degrades the system sensitivity. In theory, I/Q signal 

processing can completely attenuate the image signal band. The major difficulty in 

analog I/Q processing is that perfect image rejection can be realized only if the two 

branches (I and Q) of such a system are completely matched (equal amplitudes and a 

phase difference of 90). This is very difficult, if not impossible to obtain with practical 

analog circuits [26-28]. Especially, if the analog I/Q processing is applied to a wideband 

multichannel signal, the image attenuation requirements become extremely stringent. 

Substantial advances in Analog-to-Digital Converter (ADC) and Digital Signal 

Processor (DSP) technology make it increasingly feasible to incorporate most radio 

functionalities, including interference suppression in the digital domain. This would 

significantly reduce the complexity of the analog front-end making it easily 

programmable and upgradeable. In addition, it will be a considerable step toward the 

development of the software-defined radio. 

In the presented research, novel techniques for blind suppression of such interfering 

signals for complex baseband modulation schemes such as QAM, and QPSK, are 

described.  

Independent Component Analysis (ICA) combined with receiver diversity has been 

successfully applied to perform blind digital interference suppression [29, 30]. In this 

regard, the FastICA is a highly accurate and fast-converging algorithm in performing 

signal separation or interference mitigation for real signals. However, in any practically 
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encountered time-varying scenario, the performance of the FastICA starts deteriorating 

[31-34].  

In wireless communications, a significant increase in the application of complex 

baseband modulation schemes such as QPSK, QAM, etc. has propelled the need for 

efficient complex signal processing and interference suppression techniques. In this 

regard, the Complex FastICA extends the principle of the FastICA to the separation of 

complex valued signals.  However, similar to the FastICA, the convergence speed and 

accuracy are significantly affected in non stationary environments. In the first part of this 

research, various novel complex adaptive ICA techniques are presented which optimally 

and independently update the real and imaginary components of the complex separating 

weight vector. The proposed algorithms are applied to interference suppression for 

diversity wireless receivers in dynamic wireless channel conditions [35-39]. Extensive 

simulation results show that in comparison to the Complex FastICA, the presented 

methods exhibit superior convergence properties, particularly convergence speed and 

accuracy in time-varying flat fading channel conditions. 

In complex adaptive filtering applications, the Complex Least Mean Square (LMS) 

algorithm has been frequently applied in both block and sequential form, because of its 

relatively simple implementation [40-42]. However, the choice of the learning rate or 

convergence factor in the Complex LMS is made empirically. In addition, this constant 

convergence factor controls the rate of adaptation of both the real and imaginary 

components of the complex adaptive filter coefficients. Hence, it is highly ineffective in 

utilizing the degrees of freedom of the adaptive system. In this dissertation, novel 

complex adaptive LMS algorithms are presented which independently adjust the real and 
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imaginary components of the complex adaptive filter weights employing optimally 

derived convergence factors [43-46]. As a result, the performance of the proposed 

techniques is independent of the choice of the convergence factor, in contrast to the 

complex LMS. The presented methods are applied in various adaptive filtering 

applications such as channel estimation, and beamforming.  

The advantages of spatial and frequency diversity are effectively exploited by 

combining OFDM modulation and the Multiple-Input-Multiple-Output (MIMO) 

technique.  Hence, MIMO-OFDM systems are able to achieve high data rates required for 

broadband wireless applications. However, due to Carrier Frequency Offset (CFO) 

between local oscillators in the transmitter and the receiver, the subcarriers in each 

OFDM symbol cease to be orthogonal. This causes Intercarrier Interference (ICI) 

resulting in severe deterioration in receiver performance. To mitigate the ICI issue, a 

blind signal processing approach is presented in this dissertation by employing the 

previously proposed Complex Optimum Block Adaptive ICA (Complex OBA-ICA) 

algorithm.  

1.4 Organization of the dissertation 

The dissertation is organized as follows: 

Chapter Two outlines the concept of ICA for real and complex-valued signals. 

Chapter Three presents the formulation of the novel complex adaptive ICA algorithms 

and its application to interference suppression in dynamic channel conditions. 

Chapter Four describes a novel realization of one of the proposed complex adaptive ICA 

algorithms for separating complex-valued signals with known source distributions. 



 9

Chapter Five presents a novel Complex Block Conjugate ICA algorithm which 

incorporates the conjugate gradient principle in Complex Adaptive ICA. 

Chapter Six proposes sequential and block based complex adaptive LMS algorithms 

employing optimal and time-varying convergence factors. 

Chapter Seven applies the novel complex block adaptive LMS algorithms to the 

estimation of a wireless channel modeled as a complex Finite Impulse Response (FIR) 

filter. Through extensive simulations, its performance, in terms of convergence speed and 

accuracy, is shown to be superior to the traditional block complex LMS algorithm. 

Chapter Eight presents an adaptive beamforming application employing the proposed 

sequential and block based Complex LMS algorithms. 

Chapter Nine describes the application of the proposed Independent Component Analysis 

(ICA) technique called Complex Optimum Block Adaptive ICA (Complex OBA-ICA) to 

recover user signals in the presence of Carrier Frequency Offset and channel induced 

mixing for MIMO-OFDM receivers. 

Chapter Ten summarizes the presented research and suggests future research directions. 
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CHAPTER TWO: INDEPENDENT COMPONENT ANALYSIS 
 

Independent Component Analysis (ICA) is a statistical signal processing 

technique for recovering statistically independent source signals from their linear 

mixtures [47-50]. ICA is very closely related to the method called blind source 

separation (BSS) or blind signal separation [51-53]. The term “Blind” refers to the fact 

that we have little or no knowledge about the system which induces mixing of the source 

signals.  

 The basic ICA model describes how the observed data are generated by a process 

of mixing the source signals. ICA attempts to estimate both the mixing matrix and the 

Independent Components (ICs) using only the signal observations. In practice, the ICA 

model can be applied with the following assumptions and restrictions: 

• The source signals are assumed to be statistically independent.  

Fortunately, in most applications, this assumption is valid.  

• The source signals should have nongaussian probability distributions or at 

most one source signal should be gaussian.  

This is because higher order statistics that are essential for ICA is zero for 

gaussian distributions. Hence, recovery of the source signals from their 

mixtures becomes impossible.  

• The unknown mixing matrix is assumed to be square and invertible.  

This implies that the number of source signals is the same as the number 

of observations for simplicity of estimation. 
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 Fortunately, in most practical situations, the assumptions for the ICA model are 

valid. As a result, ICA is a powerful method that finds extensive applications in many 

areas, such as financial applications [54], brain imaging [55, 56], telecommunications 

[57, 58], and feature extraction [59, 60].  

2.1 ICA Signal Model 

In the simplest form of ICA, we observe m  scalar random variables 

mxxx ,.......,, 21 , which are assumed to be linear combinations of n  unknown statistically 

independent components (ICs), denoted by is , ni ...,2,1= . Arranging the observed 

variables jx , mj ...,2,1=  into a vector (=X T
mxxx ),.......,, 21 and the ICs into a 

vector S , respectively, then the linear relationship is given by  

                                                              ASX =                                                          (2.1) 

Here, A is an unknown m  x n  matrix of full column rank, called the mixing matrix. The 

basic problem of ICA is to estimate both the mixing matrix A and the realizations of the 

ICs using only observations of the mixtures X . ICA attempts to find a suitable linear 

transformation of the observed variables X or a separating matrix W , such that the 

statistical dependence of the components of WX  is minimized. When this happens, the 

original source signals are easily recovered, i.e.  

                                                              WXS =                                                         (2.2) 
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2.2 Principles of ICA 

2.2.1 Maximization of Nongaussianity 

ICA by maximization of nongaussianity is motivated by the Central Limit 

Theorem, which states that when statistically independent source signals are added, their 

combined probability distribution tends to become more gaussian than their individual 

distributions. Hence, the original source signals can be recovered from their linear 

combinations up to a multiplicative constant by maximizing their nongaussianity. This 

can be achieved by fixed-point or gradient search methods. 

Kurtosis as a nongaussianity measure: 

The classical measure of nongaussianity is the kurtosis or fourth-order cumulant 

which is zero for gaussian variables. The kurtosis of a zero-mean real variable z , 

denoted as )(zkurt , is defined as  

                                 
224 }){(3}{)( zEzEzkurt −=                                     (2.3) 

For a zero-mean complex-valued variable z , the kurtosis is given by 

                                  
22224

}{}){(2}{)( zEzEzEzkurt −−=                          (2.4) 

Kurtosis can be positive or negative. Variables that have a negative kurtosis are called 

subgaussian, whereas those with positive kurtosis are called supergaussian. In practice, 

the absolute value or the square of the kurtosis is used as a measure of nongaussianity. 

Kurtosis is widely used in ICA estimation, because of its theoretical and computational 

simplicity. 
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Negentropy as a nongaussianity measure: 

The inherent drawback of utilizing the kurtosis is its sensitivity to outliers. Negentropy is 

another measure of nongaussianity that is robust, yet computationally intensive [50]. It is 

a normalized version of differential entropy and is defined as 

                                               )()()( �HzHzJ gauss −=                                               (2.5) 

Where, the entropy H of a random vector z with density )(ηzp is given by 

                                              ∫−= ηηη dppH zz )(log)()(�                                         (2.6) 

gaussz is a gaussian random variable of the same variance as � . From information 

theory, we know that a gaussian random variable has the largest entropy or 

unpredictability among all variables with equal variance. As a result, Negentropy is zero 

for gaussian variables and nonnegative in other cases. 

2.2.2 Maximum Likelihood Estimation 

A widely used approach for ICA is maximum likelihood (ML) estimation [93]. In 

ML estimation, the likelihood is expressed as a function of the parameters of the ICA 

model, which are the elements of the mixing matrix. The parameter values which give the 

highest probability or likelihood for the observations are taken as estimates. 

 However, in the ICA model, the densities of the independent source signals have 

to be estimated as well. This complicates the problem of source recovery, as the 

estimation of densities is nonparametric with infinite number of parameters. In practice, 

the densities of the source signals are approximated by a family of nonlinear functions 

with limited number of parameters.  
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2.2.3 Minimization of Mutual Information 

Using the concept of differential entropy, the mutual information I between 

m scalar random variables, mizi ,....,2,1, ====  is defined as  

                                  )()() ,.......,( 2 ,1 �HzHzzzI im −=                                    (2.7) 

As the name suggests, mutual information is a measure of the statistical dependence 

between observed variables. It is always non-negative, and zero if and only if the 

variables are statistically independent.  

 ICA by minimization of mutual information of an observed vector X involves a 

linear transformation WXS = , where W  is determined such that the mutual 

information of the transformed components is is minimized. In this way, the statistically 

independent source signals is can be recovered from their linear mixtures. 

2.3 FastICA algorithm 

The FastICA algorithm is a block algorithm based on a fixed-point iteration 

scheme maximizing non-gaussianity as a measure of statistical independence [61, 62]. It 

can also be derived as an approximate Newton iteration. As a result, it eliminates the 

need for choosing a convergence factor or learning rate resulting in extremely fast 

convergence. The algorithm finds the direction for the weight vector W maximizing the 

non-gaussianity of the projection XW T for the observation vector X . It finds numerous 

applications in biomedical and wireless communications for separating real signals.  
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 The FastICA employs the kurtosis given in (2.3) as a measure of non-gaussianity. 

Typically, the algorithm operates in batch mode on a LN  X  observation matrix X , 

where, N is the number of observations, and L  is the processing block or frame length. 

The algorithm attempts to recover all the p independent source components, one at a 

time. The description of the algorithm as a series of steps is given below. 

Step 1: Set p =1. The observation matrix X  is whitened using Eigenvalue 

decomposition (EVD). 

Step 2: The 
thp row of the separating or demixing matrix W  , namely, pw is 

initialized to any unit random vector.  

Step 3: Update pw as  

∑
=

−=
fN

n
pp

f
p wnXnXw

N
w

1

3 3)}()]({[
1

 

Step 4: If 1>p , the previously extracted rows of W , i.e., 11 ,........, −pww are 

decorrelated using Gram-Schmidt like decorrelation as follows: 

∑
−

=

−=
1

1

)(
p

k
kk

T
ppp wwwww  

Step 5: pw is normalized to unit length 

Step 6: If pw has converged to a certain predetermined accuracy , Goto Step 7, else 

Goto Step 3. 

Step 7: Iterate 1+= pp and if Np ≤ , Goto Step 2 
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From Step 3 of the algorithm, it can be inferred that the FastICA algorithm has cubic 

convergence without having to choose an appropriate learning rate. As a result, it 

displays fast convergence in stationary environments, as compared to a gradient based 

approach. 

2.4 Complex FastICA algorithm 

With the increased application of complex baseband modulation schemes and 

complex signal processing techniques in wireless communications and receiver filter 

design, separation of complex-valued signals has received major attention in recent times. 

In this regard, the Complex FastICA is also a fixed-point algorithm which extends the 

capability of the FastICA in separating complex-valued signals [63, 64].  

The kurtosis given in (2.4) is used as the measure of non-gaussianity. In addition, 

the projection of the complex demixing weight matrix W onto the observation matrix 

X  is expressed as XW H , as compared to XW T for the FastICA. H denotes the 

conjugate transpose or the Hermitian operator, and * represents the complex conjugate. 

The complex FastICA algorithm is described below in step form as follows: 

Step 1: Set p =1. The observation matrix X  is whitened using Eigenvalue 

decomposition (EVD). 

Step 2: The 
thp row of the separating or demixing matrix W  , namely, pw is 

initialized to any unit random vector.  

Step 3: Update pw as  

∑
=

=
fN

n

H
pp

H
p

f
p nXwwnXwnX

N
w

1

2* )(}2-)]()[({
2
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Step 4: If 1>p , the previously extracted rows of W , i.e., 11 ,........, −pww are 

decorrelated using Gram-Schmidt like decorrelation as follows: 

∑
−

=

−=
1

1

)(
p

k
kk

H
ppp wwwww  

Step 5: pw is normalized to unit length 

Step 6: If pw has converged to a certain predetermined accuracy , Goto Step 7, else 

Goto Step 3. 

Step 7: Iterate 1++++==== pp and if Np ≤ , Goto Step 2 

Similar to the FastICA, the complex FastICA exhibits extremely fast convergence 

and excellent accuracy in stationary or slow time-varying environments. However, it 

assumes that the mixing matrix is stationary or quasi-stationary within one processing 

block. In practical wireless or cellular communications, such an assumption is not valid, 

as the fading coefficients of the channel or mixing matrix vary significantly in a data 

block.  

In such a scenario, a gradient based algorithm can be used for tracking the 

channel variations. However, the drawback of such gradient based algorithms is their 

slow convergence characteristics and the performance dependence on the choice of 

convergence factor or learning rate. In the following chapters 3, 4 and 5, novel complex 

adaptive ICA algorithms are developed which optimally derive the convergence factor at 

each iteration, thereby displaying fast convergence speed and accuracy in tracking the 

dynamics of the channel in time-varying flat fading scenarios. 
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2.5 Conclusions 

In this chapter, a statistical technique called Independent Component Analysis 

was introduced. The ICA signal model and the principles used in ICA were briefly 

reviewed. 

 Two existing fixed-point algorithms called FastICA and complex FastICA were 

described for the separation of real and complex-valued signals, respectively. 
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CHAPTER THREE: COMPLEX BLOCK ADAPTIVE ICA WITH 
INDIVIDUAL ADAPTATION (COMPLEX IA-ICA) 

 

The technique of Complex Independent Component Analysis (ICA) has been 

employed for various applications involving the separation of complex signals. In this 

regard, the Complex FastICA is a highly efficient and widely used algorithm in stationary 

or slow time-varying channel conditions. However, it does not perform as well in 

dynamic environments. In practice, such dynamic changes in the channel are frequently 

encountered in wireless communications. In this chapter, a novel complex adaptive ICA 

algorithm with individual adaptation (Complex IA-ICA) is developed. The algorithm 

independently updates the real and imaginary components of each complex adaptive filter 

weight of the adaptive system employed for interference suppression. This is achieved by 

optimally deriving a unique convergence factor for each part of each weight. 

Furthermore, the convergence factors are updated at every block iteration. As a result, it 

is most efficient in utilizing the degrees of freedom of the adaptive system. The proposed 

algorithm is applied to interference suppression in both linearly and abruptly time-

varying flat fading channel conditions, for wireless receivers employing Quadrature 

Phase Shift Keying (QPSK). The effectiveness of the proposed algorithm is compared 

with the Complex FastICA, under these dynamic environments. Simulation results 

confirm the improved performance of the proposed technique, in terms of convergence 

speed and accuracy. 
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3.1 Proposed Complex IA-ICA Algorithm: Formulation 

The basic principle of any adaptive algorithm is to either maximize or minimize a 

cost function in order to arrive at the optimal solution.  In the case of the Complex IA-

ICA, the cost function used is the absolute value of the kurtosis which has to be 

maximized. The primary reason for using the kurtosis as a measure of non-gaussianity is 

its theoretical and computational simplicity.  

The objective of the Complex IA-ICA is to find a complex separation matrix W , 

such that the source signals can be recovered when the observation matrix X is 

multiplied by W . This is achieved by making each component in the resulting matrix 

XW H
, H representing the Hermitian, as statistically independent as possible by 

maximizing the kurtosis. 

The formulation of the Complex IA-ICA is given as follows 

Firstly, the following parameters are defined. 

k  : Iteration index 

1−=j  

M: number of observations 

L : Block Size 

T
M kwkwkwkw )]()....()([)( 21= : The current row of the complex separation 

matrix for the k th iteration. The real and imaginary components of )(kw  at the k th 

iteration are represented as )(kwR  and )(kwI respectively  
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:)(, kx il  The i th complex signal in the l th observation data vector for the k th 

iteration. ( l =1, 2… L ) 

:)]()........()([)( ,2,1,
T

Mllll kxkxkxkX = l th signal observation for the k th 

iteration. 

T
Lk kXkXkXG )]().......()([][ 21= : Observation matrix for the k th iteration 

The l th kurtosis value for the k th iteration is expressed as  

                                                           2])()([)(
4
−= kXkwEkkurt l

H
l                                           (3.1) 

                                             
T

L kkurtkkurtkkurtkkurt )]()....()[)( 2(1=                         (3.2) 

is the kurtosis vector for the k th iteration.            

In practice, the expectations in (3.1) are replaced by estimates. 

As mentioned previously, the proposed Complex IA-ICA algorithm employs 

independent convergence factors for the real and imaginary components of the weight 

vector. 

Therefore, the independent weight update equations for the real and imaginary 

components of the weight vector are expressed as 

                                                      )(][)()1( kMUkwkw BRkRRR ∇+=+                                (3.3) 

                                          )(][)()1( kMUkwkw BIkIII ∇+=+                                (3.4) 

Where, 

                                           
)(

})()({
)(

kw

kkurtkkurt
k

R

T

BR ∂∂∂∂

∂∂∂∂
====∇∇∇∇                                       (3.5) 
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)(

})()({
)(

kw

kkurtkkurt
k

I

T

BI ∂∂∂∂

∂∂∂∂
====∇∇∇∇                                         (3.6) 

are the gradients of the square of the kurtosis with respect to the real and imaginary 

components of the weight vector, respectively. 

kRMU ][  and kIMU ][  are the matrices containing the convergence factors for each 

coefficient of )(kwR and )(kwI , respectively, at each block iteration. 
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Substituting from (3.2) in (3.5) and (3.6), and evaluating the resulting expression, we 

obtain 

                                           ])(}][][Re{[
8

)( kkurtCG
L

k k
T
kBR =∇                                 (3.9) 

                                 ])(}][][Im{[
8

)( kkurtCG
L

k k
T
kBI =∇                               (3.10) 
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is a diagonal matrix. Re {.} and Im {.} represents the real and imaginary components of 

{.}, respectively. 

Substituting (3.9) in (3.3) gives us 

                       ])(}][][Re{[
8

][)()1( kkurtCG
L

MUkwkw k
T
kkRRR +=+          (3.12) 

Similarly, by substituting (3.10) in (3.4) we obtain 

                          ])(}][][Im{[
8

][)()1( kkurtCG
L

MUkwkw k
T
kkIII +=+         (3.13) 

In order to obtain the optimal convergence factors kRMU ][  and kIMU ][ , the total 

squared kurtosis has to be maximized with respect to the real and imaginary components 

of the weight vector independently. 

To achieve this, the l th kurtosis values in the )1( +k th iteration are expressed in a 

Taylor Series expansion as follows: 

                                  ∑
=

∆
∂
∂

+=+
M

i
iR

iR

l
llR kw

kw
kkurt

kkurtkkurt
1

)(
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                                                                                                           l =1,2…. L        (3.14)                        
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)()1( +… 

                                                                           l =1,2…. L       (3.15) 

From (3.3) and (3.4) we have, 

                                               )(kwiR∆ = )(][ kMU BRkR∇                                      (3.16) 
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                                              )(kwiI∆ = )(][ kMU BIkI∇                                       (3.17) 

The second and higher terms in the Taylor Series can be ignored if )(kwiR∆ and 

)(kwiI∆ are small, which is indeed the case. Therefore, evaluating the expressions in 

(3.14) and (3.15) for all the L  kurtosis values, we obtain 

                                         )(}][]Re{[4)()1( kwGCkkurtkkurt RkkRR ∆+=+                 (3.18) 

                                          )(}][]Im{[4)()1( kwGCkkurtkkurt IkkII ∆+=+                   (3.19) 

Substituting (3.16) and (3.17) in (3.18) and (3.19) respectively, the following expressions 

are obtained 

                              )(]}[][]Re{[
32

)()1( kqMUGC
L

kkurtkkurt RkRkkRR +=+                 (3.20) 

                       )(]}[][]Im{[
32

)()1( kqMUGC
L

kkurtkkurt IkIkkII +=+         (3.21) 

Where, 

                                                ])(}][][Re{[)( kkurtCGkq k
T
kR =                               (3.22) 

                                                ])(}][][Im{[)( kkurtCGkq k
T
kI =                                (3.23) 

Defining  

                              }][]Re{[}]][][Re{[)(][ kk
T

kkR GCGCkR =                        (3.24) 

and 

                                }][]Im{[}]][][Im{[)(][ kk
T

kkI GCGCkR =                       (3.25) 

The total squared kurtosis for the )1( +k th iteration in (3.20) can be written as 
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                              4321)1()1( SSSSkkurtkkurt R
T
R +++=++               (3.26) 

Where, 

                                             )()(1 kkurtkkurtS R
T
R=                                             (3.27) 

                         )(])[(][])[(
1024

22 kqMUkRMUkq
L

S RkRRkR
T
R=                  (3.28) 

                         )(}]][][Re{[])[(
32

3 kkurtGCMUkq
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S T
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T
R=                  (3.29) 

                         )(]}][][][Re{[)(
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4 kqMUGCkkurt
L

S RkRkk
T=                 (3.30) 

In order to obtain the optimal convergence factors kRMU ][  for the real part of the 

weight vector, the following condition has to be satisfied, i.e. 

0
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k

kkurtkkurt

Ri

R
T
R

µ  

                                                                                                              i =1, 2 …M    (3.31) 

Substituting (3.26) in (3.31) and evaluating the resulting expression, the following weight 

update equation is obtained for the real part of the weight vector 

                                   )(][25.0)()1( 1 kqRkwkw RkRRR
−−=+                    (3.32) 

Following a similar procedure for the imaginary component of the weight vector, the 

following update equation is obtained 

                                     )(][25.0)()1( 1 kqRkwkw IkIII
−−=+                     (3.33) 

The complex weight vector is then obtained by combining the real and imaginary 

components as follows. 



 26

                                      )1()1()1( +++=+ kjwkwkw IR                            (3.34) 

From the derivation, it can be inferred that the real and imaginary parts of the weights are 

treated as separate entities and adjusted independently. Hence, the Complex IA-ICA 

algorithm is most effective in utilizing the degrees of freedom of the adaptive system, 

giving it much better adaptability in a time-varying environment. 

3.2 Computational Complexity  

The weight update equations for the Complex IA-ICA algorithm in (3.32) and 

(3.33) involve matrix inversion, which is computationally intensive and impractical. 

However, the matrix inversion operation is significantly simplified by replacing the 

matrix to be inverted with a matrix containing only its diagonal elements. As a result, the 

computational complexity of the Complex IA-ICA algorithm is considerably reduced to 

O (L) per iteration, similar to the complex FastICA.  Even with this approximation, 

simulation results show that the Complex IA-ICA achieves fast convergence and 

excellent accuracy [35-37, 65]. 

3.3 Interference Suppression for Diversity Wireless Receivers in Dynamic Flat 

Fading Channels 

In wireless communications, interference suppression and desired signal recovery 

pose a considerable challenge. As a signal propagates between the transmitter and 

receiver, the wireless channel induces mixing between the desired signal and unknown 

interfering signals. As a result, it becomes essential to retrieve the desired signal from the 

mixture, before decoding of the received symbols can be done. 
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  In modern receiver design, most radio functionalities are incorporated in software. 

As a result, interference suppression and signal separation is performed entirely in the 

digital domain. Hence, digital signal processing algorithms should be efficient and fast-

converging in diverse channel conditions.  

 In this research, the proposed Complex IA-ICA algorithm is applied to blind 

interference suppression for diversity QPSK receivers under static and dynamic flat 

fading channel scenarios. The resulting performance is compared to the complex FastICA 

algorithm. The Symbol Error Rate, Intersymbol Interference (ISI) and the convergence 

speed are used to compare the performance of the algorithms. 

3.4 Diversity Receiver Structure and Signal Model 

Fig.1 shows the proposed diversity receiver structure for interference suppression.  
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t-j ce ω
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Figure 1: Diversity QPSK Receiver Structure 
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In this receiver structure, it is assumed that there is no amplitude or phase 

mismatch between the oscillators in the two receiver paths. In such a scenario, the sole 

reason for the interfering signal to combine with the desired signal is the time-varying 

wireless channel.  

In Fig.1, )(1 tr and )(2 tr are the Radio Frequency (RF) signals received by the 

two antennas of the receiver. In the first step of complex downconversion, the signals are 

translated to an Intermediate Frequency (IF) at which they can be digitized by the A/D 

converters. In the digital domain, the signals undergo another step of complex 

downconversion to baseband. At this stage, the signals are processed by the Complex IA-

ICA and the Complex FastICA algorithms to perform retrieval of the desired signal. 

The mixing matrix is composed of the flat fading coefficients of the wireless 

channel, and is represented as: 
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Where, ∆  is the complex parameter reflecting the speed of channel variation in 

amplitude and phase and L  is the block size in symbols. For a static channel, ∆  

becomes 0. As long as the mixing matrix A is non singular, the ICA signal model can 

be applied, irrespective of the magnitude and phase of the fading coefficients and the 

relative timing phase of the desired and interfering signals. In addition, the relative 

strength of the desired and interfering signals does not affect the performance of ICA 

based algorithms. 
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The ICA signal model is developed as follows. Let )(ls  and )(li  denote the 

elements of the baseband source signal vector S  of the desired signal and the interfering 

signal, respectively. The elements )(1 lX  and )(2 lX  of the baseband observation matrix 

X  are given by: 
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or 

                                                             ASX =                                                     (3.37) 

3.5 Simulation Results 

As a signal propagates through a wireless channel, it experiences random 

fluctuations in time if the transmitter, receiver, or surrounding objects are moving 

because of changing reflections and attenuation. Hence the characteristics of the channel 

appear to change randomly with time. In addition, the properties of the wireless channel 

itself, varies with time.  

 In the simulations, the Complex IA-ICA and the Complex FastICA are 

applied to interference suppression in static, linearly varying and abruptly varying flat 

fading channel conditions. In achieving this objective, their performances in terms of 

Symbol Error Rate (SER), speed of convergence in terms of number of iterations and 

Inter Symbol Interference (ISI) are compared.  

From [37], the ISI is given by the following expression: 
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Where, N is the length of the complex weight vector w , AW H=P  is the permutation 

matrix with coefficients mnp , max mP and max nP are the absolute maximum values 

of the m th row and n th column of P, respectively. Since the number of signals to be 

separated is 2, P is a 2 X 2 matrix. Furthermore, in all the simulations, Additive White 

Gaussian Noise (AWGN) is added to the signal observations to realize a signal to noise 

ratio (SNR) of 20 dB.  

3.5.1 Static Channels 

For the first simulation, a static channel is considered, i.e. 0=∆ . The Inter 

Symbol Interference (ISI) in dB and the number of iterations required for convergence 

are illustrated in Figs. 2 and 3 respectively. The corresponding SER achieved is shown in 

Fig 4. As can be seen, the complex FastICA exhibits extremely fast convergence and 

accuracy in stationary channel conditions due to its Newton’s type iteration. In 

comparison, the Complex IA-ICA achieves similar interference suppression with slightly 

more iterations for convergence. 
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Figure 2: ISI (dB) achieved in Static Channels 

 

Figure 3: Number of Iterations for Convergence in Static Channels 
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Figure 4: SER achieved in Static Channels 

3.5.2 Linearly and Abruptly Flat Fading Channels 

In cellular communications, the properties of the wireless channel change much 

more frequently due to relative motion between the user and base station. This could 

manifest itself as a continuous linear change in the magnitude and phase of the mixing 

matrix coefficients. In such situations, the complex ICA algorithm tries to derive an 

average demixing matrix to separate the desired and interfering signals.  

A significant change in the wireless environment is caused either by handoff 

between two towers or the mobile user entering a building or tunnel. This results in an 

instantaneous abrupt change in the mixing matrix coefficients or channel parameters 

within the processing block. In this scenario, the complex ICA algorithm has to converge 

to a new demixing matrix after the change occurs. As a result, these algorithms need to 
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exhibit excellent adaptability and accuracy to efficiently track the dynamics of the 

wireless channel. 

In this research, the performance of the proposed Complex IA-ICA algorithm is 

studied in such linear and abruptly flat fading channels. The signal model given in (3.36) 

with 0022.0=∆  is used to simulate the linearly flat fading scenario. The ISI (dB) 

achieved by both algorithms and the number of iterations required for convergence are 

illustrated in Figs. 5 and 6 respectively. The corresponding SER realized is shown in Fig 

7. Simulation results show that as the block length increases, the Complex FastICA 

requires many more iterations to achieve comparable interference suppression and SER 

as the Complex IA-ICA.  

 

Figure 5: ISI (dB) achieved in Linearly Flat Fading Channels 
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Figure 6: Number of Iterations for Convergence in Linearly Flat Fading Channels 

 

Figure 7: SER achieved in Linearly Flat Fading Channels 
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An abruptly flat fading channel is modeled by simulating an instantaneous change 

in the mixing matrix coefficients in the middle of the processing block. When this 

happens, the complex ICA algorithm has to quickly recover from this variation and re-

converge to a new demixing matrix before the end of the data block. In this scenario, the 

convergence speed and accuracy of the Complex FastICA and Complex IA-ICA are 

compared for different block lengths L . For each L , the performance is averaged over 

100 Monte Carlo runs for a SNR of 20 dB. The ISI (dB) realized, and the number of 

iterations for convergence for different values of L  is illustrated in Figs. 8 and 9, 

respectively. The corresponding SER achieved is shown in Fig. 10.  

 

Figure 8: ISI (dB) achieved in Abruptly Flat Fading Channels 
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Figure 9: Number of Iterations for Convergence in Abruptly Flat Fading Channels 

 

Figure 10: SER achieved in Abruptly Flat Fading Channels 
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In order to study the effect of ∆  on the convergence properties for a constant 

block length, ∆  is varied between 0 and .0025 with a step size of .0005. The block 

length is set at 1000 symbols. The ISI (dB), and number of iterations for convergence are 

shown in Figs. 11, and 12, respectively. The corresponding SER achieved for each ∆  is 

shown in Fig. 13. It is worth mentioning that the Complex FastICA failed to converge for 

values of ∆  greater than .0025. In contrast, the Complex IA-ICA continued to converge 

in less than 20 iterations, while achieving satisfactory SER and ISI.  

 

Figure 11: ISI (dB) achieved for Different Values of ∆  and L =1000 symbols 
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Figure 12: Number of Iterations for Convergence for Different Values of ∆  and 

L =1000 symbols 

 

Figure 13: SER achieved for Different Values of ∆  and L =1000 symbols 
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From the extensive simulation results presented, it is evident that the proposed 

Complex IA-ICA algorithm converges in less than 20 iterations with excellent accuracy, 

in both static and dynamic flat fading conditions. This can be attributed to the individual 

convergence factors optimally derived for each component of each weight, which 

maximally utilize the degrees of freedom of the adaptive system. As a result, it is highly 

effective in tracking the linear and abrupt variations in the complex channel parameters. 

In contrast, for linearly fading channels, it can be inferred from Figs. 6 and 7, that the 

convergence properties and SER of the Complex FastICA deteriorates with increasing 

block length and ∆ , as it is unable to find a demixing matrix which approximates the 

linear variation. Furthermore, Figs. 8-10 show that in abruptly fading channels the 

Complex FastICA fails to achieve acceptable SER and interference suppression, 

especially for small block lengths. This is due to the fact that as the block length is 

reduced, the Complex FastICA finds the number of samples in the block insufficient to 

converge to a new demixing matrix. This limits the application of the Complex FastICA 

in wireless receivers with small processing block lengths. In comparison, the Complex 

IA-ICA quickly recovers from the sudden change, irrespective of the block length to 

yield excellent convergence properties. 

3.6 Conclusions  

 In this chapter, the Complex ICA with Individual Adaptation (Complex IA-ICA) 

was presented. The square of the kurtosis was used as the cost function to be maximized 

and as a measure of statistical independence. The proposed algorithm optimally adapts 

each real and imaginary component of the complex weight vector using independent 

convergence factors. This is achieved by employing the Taylor’s Series expansion in 



 40

combination with block gradient based optimization. In addition, the convergence factors 

are updated at the iteration of each block. As result, this novel formulation is most 

effective in utilizing all the degrees of freedom of the adaptive system in tracking the 

dynamics of the flat fading channel. Furthermore, the computational complexity involved 

in the matrix inversion operation was reduced to the order of L  by inverting only the 

diagonal elements of the matrix. Simulation results confirm the remarkable improvement 

achieved in interference suppression and convergence speed over the Complex FastICA 

in dynamic environments. 
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CHAPTER FOUR: COMPLEX OPTIMUM BLOCK ADAPTIVE ICA 
(COMPLEX OBA-ICA) FOR SEPARATING COMPLEX SIGNALS 

WITH KNOWN SOURCE DISTRIBUTIONS 
 

In the previous chapter, the formulation for the Complex IA-ICA was presented. 

The computational complexity of the Complex IA-ICA can be further reduced by 

employing only two convergence factors, one for all the real components of the complex 

weights, and another for all the imaginary components, instead of one for each 

component of each weight. This leads to a different formulation called Complex 

Optimum Block Adaptive ICA (Complex OBA-ICA).  

Typically, in wireless communications, the receiver has prior knowledge 

regarding the modulation scheme of the desired communication signal. As a result, the 

statistical properties, including the probability distribution and higher order statistics of 

the desired signal are available information. In this chapter, this prior information is 

exploited to derive a modification of the Complex OBA-ICA algorithm for separation of 

complex signals with known distributions. The new realization is applied to interference 

suppression in dynamic environments for diversity QPSK receivers. Simulation results 

indicate that the proposed algorithm exhibit much better convergence speed and 

accuracy, in comparison with the Complex FastICA. 

4.1 Proposed Complex OBA-ICA: Formulation 

Similar to the Complex IA-ICA, the objective of the Complex OBA-ICA is to 

find a complex separating matrix W , such that its projection on the observation vector 

X , i.e. XW H , yields the original source signals. In this process, it utilizes the square 
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of the kurtosis of XW H  as an estimate of statistical independence, and tries to 

maximize it though a block gradient ascent approach.  

The real and imaginary components of W at iteration index k , are defined as 

)(kwR and )(kwI , respectively. The previously defined diagonal matrices kRMU ][  

and kIMU ][  in (3.5) and (3.6), that represented the individual convergence factors for 

)(kwR and )(kwI , respectively, are replaced by single convergence factors, i.e., 

)(kRµ and )(kIµ . In other words,  

                  )()(...........)()( 21 kkkk RRMRR µµµµ ====                 (4.1) 

and 

                 )()(...........)()( 21 kkkk IIMII µµµµ ====                 (4.2) 

Hence, the update equations for )(kwR and )(kwI become as follows: 

                                                )()()()1( kkkwkw BRRRR ∇+=+ µ                                    (4.3) 

                                    )()()()1( kkkwkw BIIII ∇+=+ µ                                      (4.4) 

Where, 
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are the block gradient vectors for the square of the kurtosis with respect to )(kwR and 

)(kwI , respectively. 
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Evaluating (4.5) and (4.6), we obtain 
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is a diagonal matrix. Re {.} and Im {.} represents the real and imaginary components of 

{.}, respectively. 

Substituting (4.7) in (4.3), we get 
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Similarly, by substituting (4.8) in (4.4) we obtain 
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The l th kurtosis values for the real and imaginary parts of the weight update equation in 

the )1( +k th iteration are expressed in a Taylor Series expansion as follows: 

                                  ∑
=

∆
∂
∂

+=+
M

i
iR

iR

l
llR kw

kw
kkurt

kkurtkkurt
1

)(
)(
)(

)()1( +… 

                                                                                                           l =1,2…. L        (4.12) 



 44

                                    ∑
=

∆
∂
∂

+=+
M

i
iI

iI

l
llI kw

kw
kkurt

kkurtkkurt
1

)(
)(
)(

)()1( +… 

                                                                           l =1,2…. L       (4.13) 

Evaluating (4.12) and (4.13) for all L , we get 

                                  )(}][]Re{[4)()1( kwGCkkurtkkurt RkkRR ∆+=+                       (4.14) 

                            )(}][]Im{[4)()1( kwGCkkurtkkurt IkkII ∆+=+                      (4.15) 

From (4.3) and (4.4), we have, 

                                             )(kwR∆ = )()( kk BRR ∇µ                                           (4.16) 

                                             )(kwI∆ = )()( kk BII ∇µ                                             (4.17) 

Substituting (4.16) and (4.17) in (4.14) and (4.15), respectively, and evaluating the 

resulting expressions, we obtain the following: 
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Where, 
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To ensure simplicity, we define the following: 
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From (4.18), the total squared kurtosis for the )1( +k th iteration is given as: 
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Since we are optimizing the square of the kurtosis with respect to )(kRµ , the following 

equation is applied. 
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Evaluating (4.29), we get 
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Similarly, by evaluating the derivative of the square of (4.15) with respect to )(kIµ , we 

obtain  
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From (4.10) and (4.11), we have: 
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Substituting (4.30) and (4.31) in (4.32) and (4.33), respectively, we obtain the 

independent weight update equations for the Complex OBA-ICA algorithm as follows: 
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In contrast with the Complex IA-ICA algorithm presented in (3.32) and (3.33), 

the Complex OBA-ICA algorithm does not involve a matrix inversion operation. As a 

result, from the computational viewpoint, it is less intensive. 

4.2 Modification of the Complex OBA-ICA for complex signals with known source 

distributions 

In the previous section, the formulation for the Complex OBA-ICA algorithm was 

presented. However, in most wireless communication applications, the receiver has prior 

knowledge about the modulation format of the desired source signal. Hence, information 

regarding higher order statistics, such as kurtosis for the source signal is readily available 

to the receiver. In this section, this information is utilized to derive a novel realization of 

the Complex OBA-ICA for separating complex signals with known source distributions 

[38, 39, and 66].  

As the possible values for symbols in the QPSK constellation 

are 0.707j0.707 ±± , the corresponding kurtosis value is -1. The proposed modification 
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to the Complex OBA-ICA follows a Newton’s type iteration approach to update the 

weight vectors )(kwR and )(kwI , such that each of the L  elements of )1( +kkurtR  

and )1( +kkurtI  in (4.14) and (4.15), respectively, becomes  -1, i.e.,  

             )1( +kkurtR = )1( +kkurtI =
T1]- ....... 1-  1-[=−K                    (4.36) 

Defining  

                                               }]][][Re{[)(][ kkR GCkR =                                          (4.37) 

                                               }]][][Im{[)(][ kkI GCkR =                                       (4.38) 

(4.14) and (4.15) become as follows: 
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)(][ # kR R  and )(][ # kR I  are the pseudo-inverses of the matrices )(][ kR R  and 

)(][ kR I respectively.  

Since the proposed technique tries to achieve separation of signals in one step, a 

scaling factor µ  is introduced to ensure stability of convergence and enhancement of 

performance. However, the performance is not sensitive to the chosen µ . 
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Hence, the weight updates for the modified Complex OBA-ICA algorithm 

employing µ  becomes: 

                                        ))()((][ )( # KkkurtkRkw RRR ++++−−−−==== µ∆                       (4.43) 

                                          ))()((][ )( # KkkurtkRkw III ++++−−−−==== µ∆                          (4.44) 

4.3 Computational Complexity 

The weight update equations for the Complex OBA-ICA algorithm in (4.41) and 

(4.42) involve matrix inversion, which can be computationally intensive for high order 

systems.  However, the matrix inversion operation can be simplified by replacing the 

matrix to be inverted in (4.41) and (4.42) with a matrix containing only its diagonal 

elements. As a result, the computational complexity of the Complex OBA-ICA algorithm 

is reduced to be linear, which is equivalent to the complex FastICA algorithm. Even with 

this approximation, simulation results presented in Section 4.4 show that the modified 

Complex OBA-ICA converges in less than 15 iterations, while achieving efficient 

interference cancellation. 

4.4 Simulation Results 

In the simulations, the modified Complex OBA-ICA is applied to interference 

suppression for diversity QPSK receivers under diverse channel scenarios. In this regard, 

the performance of the Complex OBA-ICA in terms of ISI, SER and number of iterations 

for convergence is compared to the Complex FastICA. The expression for ISI is as given 

in (3.38).  

In matrix form, the signal observation model is given as follows: 
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∆  establishes the speed of flat fading of the wireless channel, which in turn determines 

the rate of amplitude and phase variation in the observed signals. )(1 lX  and )(2 lX  

represent the baseband samples of the signals received at the two antennas of the 

receiver. )(ls  and )(li  denote the source samples of the desired and interfering signals 

respectively. 1sf  and 2sf  are the channel fading parameters for the two independent 

paths between desired source transmitter and the two receiving antennas. Similarly, 1if  

and 2if  represent the channel fading parameters between the interfering source 

transmitter and the two receiving antennas. The diversity receiver structure adopted for 

the simulation is as shown in Fig. 1. In addition, in all the simulations, the SNR realized 

is 20 dB. The channel fading parameters are randomly set as follows: 

jfs 311 += , jf s 752 += , jf i 861 += , and jf i 422 +=  

In the first case, stationary channel conditions are simulated, i.e. ∆=0. The ISI, SER and 

the number of iterations for convergence are illustrated in Figs. 14-16, respectively.  
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Figure 14: ISI (dB) achieved in Stationary Channels 

 

Figure 15: SER achieved in Stationary Channels 
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Figure 16: Number of iterations for convergence in Stationary Channels 

To model a linearly flat fading scenario, the channel parameters or mixing matrix 

coefficients are gradually changed over the length of the processing block L . This is 

achieved by incorporating parameter ∆  in (4.45). The performance of the Complex 

OBA-ICA and Complex FastICA were compared for different values of L . The ISI (dB) 

achieved by both algorithms for ∆  = 0.002 and ∆  = 0.0022 is shown in Fig.17. The 

Complex FastICA failed to converge for higher values of ∆ . The SER and number of 

iterations for convergence for ∆  = 0.0022 are plotted in Fig.18 and Fig. 19 respectively.  

A highly dynamic environment is simulated by creating a sudden change in the 

mixing matrix coefficients in the middle of the data block. In this situation, the achieved 

ISI (dB), SER and number of iterations to converge are illustrated in Figs. 20-22, 

respectively. 
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Figure 17: ISI (dB) achieved in Linearly Flat Fading Channels 

 

Figure 18: SER achieved for ∆ =0.0022 
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Figure 19: Number of iterations for convergence for ∆ =0.0022 

 

Figure 20: ISI (dB) achieved in abruptly flat fading channels 
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Figure 21: SER achieved in abruptly flat fading channels 

 

Figure 22: Number of iterations for convergence in abruptly flat fading channels 
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The illustration in Fig.19 shows that in linearly varying channels, the Complex 

OBA-ICA consistently converges within 20 iterations for the wide range of block lengths 

simulated. In addition, from Figs. 17 and 18, it can be inferred that the convergence speed 

is attained without compromising the SER and ISI performance. In contrast, the Complex 

FastICA is unable to maintain its accuracy and convergence speed for larger block 

lengths. 

In highly dynamic fading, it can be inferred from Figs. 20-22 that the Complex 

FastICA is inefficient in adapting to rapid changes in the channel, particularly for small 

block lengths. 

4.5 Conclusions 

In this chapter, the formulation of the Complex Optimum Block Adaptive ICA 

(Complex OBA-ICA) was presented. At each iteration, the proposed technique derives 

two convergence factors for independent adjustments of the real and imaginary 

components of the complex demixing vector. This is achieved by optimizing the square 

of the kurtosis with respect to each convergence factor after a Taylor’s series 

approximation of the kurtosis. As a result, the Complex OBA-ICA has lower 

computational complexity than the Complex IA-ICA presented in Chapter 3, which 

employs a convergence factor for each component of each weight. Furthermore, a novel 

realization of the Complex OBA-ICA was formulated for separating complex signals 

with known source distributions. The modified technique exploits prior information 

regarding the statistical properties of the desired signal, namely the kurtosis. 

Consequently, it updates the weight vector through a Newton’s type iteration approach to 

achieve the kurtosis of the desired signal. In this manner, the desired source signal can be 
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easily retrieved from the observations. The presented simulation results show that the 

modified Complex OBA-ICA yields excellent convergence speed and accuracy in both 

linear and abrupt variations in the flat fading channel, in contrast to the Complex FastICA 

which demonstrates performance degradation for larger block lengths. 
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CHAPTER FIVE: CONJUGATE GRADIENT BASED COMPLEX 
BLOCK ADAPTIVE ICA (CBC-ICA) 

 

The conjugate gradient method is a prominent technique for solving systems of 

linear equations, and unconstrained optimization problems, including adaptive filtering 

[67-70]. Since it is an iterative method, it can be particularly applied to solve sparse 

systems which are too large to be handled by direct methods. The main advantage of the 

conjugate gradient method is that it employs orthogonal search directions with optimal 

steps along each direction to arrive at the solution. As a result, it has a much faster 

convergence speed than the Steepest Descent method which often takes steps in the same 

direction as earlier steps. Furthermore, it has lower computational complexity than the 

Newton’s iteration approach. This unique tradeoff between convergence speed and 

computational complexity gives the Conjugate Gradient method desirable properties for 

application in numerous mathematical optimization problems.  

In this chapter, the conjugate gradient principle is applied to Complex Adaptive 

ICA for maximization of the kurtosis function, to achieve separation of complex-valued 

signals. The proposed technique is called Complex Block Conjugate Independent 

Component Analysis (CBC-ICA) algorithm. The CBC-ICA derives independent 

conjugate-gradient search directions for the real and imaginary components of the 

complex coefficients of the adaptive system employed for signal separation. In addition, 

along each conjugate direction an optimal update is generated separately for the real and 

imaginary components using the Taylor’s series approximation [71, 72]. Simulation 

results confirm that in dynamic flat fading conditions, the CBC-ICA demonstrates 
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excellent convergence speed, even for large processing block sizes, while maintaining 

satisfactory SER.  

5.1 Conjugate Gradient Principle 

As mentioned previously, the Steepest Descent algorithm often derives the same 

search direction more than once, resulting in slow convergence. Intuitively, we can avoid 

this by utilizing orthogonal search directions )0(d , )1(d ,……, )1( −nd , with optimal steps 

)(kα ,along each direction. Hence, the solution can be obtained in just n steps.  

To derive unique search directions, the error in the thk )1( +  iteration )1( +ke , 

should be orthogonal to the search direction in the thk iteration, )(kd , i.e.  

                                                 0)1()( =+k
T
k ed                                                   (5.1) 

                                           0)( )()()()( =+ kkk
T
k ded α                                       (5.2) 

In this manner, the step size )(kα is computed as: 
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As (5.3) contains the )(ke term which is always unknown, it cannot be used for finding 

)(kα .  

A practical approach to this problem would be to replace the orthogonality 

condition for the search vectors with A-orthogonality. Two search vectors )(id and 

)( jd are said to be A-orthogonal if they satisfy the following condition: 
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                                                    0)( =j
T
i Add                                                   (5.4) 

Hence, )1( +ke  becomes A-orthogonal to )(kd , i.e. 

                                                            0)1()( =+k
T
k Aed                                                  (5.5) 

Similar to the derivation in (5.3), the expression for )(kα when the search vectors are A-

orthogonal is given as: 
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)(kr  is the residual vector or the negative of the gradient estimate at iteration k  given by: 
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It is worth mentioning that if the residual were the search vector, (5.7) would be identical 

to the Steepest Descent technique.  

 In the method of conjugate gradients, the search directions are constructed by 

conjugation of the residual vectors. In addition, since each residual is orthogonal to the 

previous search direction, it is also orthogonal to the previous residuals as shown in 

Fig.23, i.e. 

                                                              jirr j
T
i ≠=          0)()(                                     (5.9) 
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Figure 23: Method of Conjugate Gradients employing orthogonal residuals ir  and 

A-orthogonal search directions id  

Applying the inner product of )(ir and (5.8) for 1+= jk  results in the following: 
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Substituting (5.9) in (5.11), we obtain: 
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Employing Gram-Schmidt conjugation [105], the Gram-Schmidt constants are given by: 
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Substituting (5.13) in (5.12), gives the following result: 
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From (5.14), it is evident that the old search vectors need not be stored to ensure the A-

orthogonality of new search vectors. As a result, substituting (5.7), (5.14) becomes 
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In summary, the method of conjugate gradients is given by the following equations: 

                                                             )0(d = )0(r                                                         (5.16) 
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                                                    )()1()1()1( iiii drd +++ += β                                        (5.18) 

5.2 Formulation of the Proposed CBC-ICA algorithm 

The CBC-ICA applies the conjugate gradient principle independently to the real 

and imaginary components of the adaptive system coefficients or complex demixing 

matrix, to achieve maximization of kurtosis or non-gaussianity. In addition, along each 
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conjugate search direction, optimal step sizes are derived separately for the real and 

imaginary parts using the Taylor’s series approximation.  

The formulation of the algorithm as a series of steps is outlined below: 

STEP 1: ICA preprocessing operations including mean centering, whitening, and 

orthogonalization is performed on the observation matrix X  and the iteration index k  is 

initialized to 0. In accordance with the ICA model, X can be represented as 

NASX += , where A is the unknown mixing matrix or wireless channel, S  is the 

source signal vector, and N  is Additive White Gaussian Noise (AWGN).  Consequently, 

the signal separation model is given by XWY H= , where Y is the vector containing 

the recovered sources, W is the complex separating or demixing matrix, and H  denotes 

the Conjugate Transpose or Hermitian operator.  

STEP 2: Let 1w  be the first column of W  , and M be the number of rows of 1w . M is 

also the number of signal observations or number of signals to be separated. In the 

presented research, the separation of 2 QPSK signals is considered, hence M = 2. 

However, the algorithm can be easily extended for separating any number of complex-

valued signals.  

STEP 3: The gradient vectors )(kgR and )(kg I , are calculated as the derivative of the 

kurtosis squared with respect to )(kwR and )(kwI respectively: 
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where, T denotes the transpose , L is the block length in symbols, X is a matrix of order 

LM  x , )(kkurt is a row vector of length L  containing the kurtosis values of 

Xkw H)(1  given by:    

                                                      
4

1 ][)()( Xkwkkurt H=                                       (5.21) 

and                                     ]][)(]}[)([{][
2

1
*

1 XkwXkwdiagC HH
k =                (5.22) 

is a diagonal matrix, * represents the complex conjugate. Re {.} and Im {.} represents the 

real and imaginary components of {.}, respectively. 

a. The convergence of )()(1 kjwkww IR += is then checked. If the required accuracy 

has been achieved, proceed to STEP 5. 

b. If convergence has not been reached, and k = 0, the optimal update directions )(kdR  

and )(kd I , for )(kwR  and )(kwI respectively, are set equal to the gradient vectors, 

i.e. 

                                                        )(kdR = )(kgR                                                  (5.23) 

                                              )(kd I = )(kg I                                                   (5.24) 

Goto STEP 4. 

c. If convergence has not been reached, and k > 0, )(kdR and )(kd I are calculated as 

conjugate gradient vectors: 
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STEP 4: The independent updates for Rw and Iw are given as: 

                                        )()()()1( kdkkwkw RRRR α++++====++++                               (5.27) 

                                         )()()()1( kdkkwkw IIII α++++====++++                              (5.28) 

where, Rα  and Iα  at each iteration, are optimally derived as follows: 

We express the l th kurtosis value in the )1( +k th iteration in a Taylor Series expansion 

with respect to Rw and Iw as follows: 
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Evaluating expressions (5.29) and (5.30) for all L kurtosis values, we obtain, 

                            )()(}][]Re{[4)()1( kdkXCkkurtkkurt RR
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In each iteration, Rα  and Iα  are optimally computed such that the square of 

)1( +kkurtR and )1( +kkurt I are maximized in the )1( +k th iteration, i.e. 
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Evaluating (5.33) and (5.34) we obtain the following: 
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where, 

                                                  )()]][Re([)( kkurtCXkq kR =                                     (5.37) 
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STEP 5: The second column of w , namely 2w , is set orthogonal to 1w , i.e.: 

                                                    ][ 11212 www −=                                              (5.41) 

5.3 Application of the CBC-ICA to Interference Suppression in Time-Varying 

Environments 

In this research, the proposed CBC-ICA is applied to the separation of QPSK 

signals in time-varying flat fading channel situations. The ISI (dB), SER, and the number 

of iterations for convergence, are used in the performance comparison between the CBC-

ICA and complex FastICA algorithms. For each block length L , the performance of both 

algorithms is averaged over 100 Monte Carlo runs for a SNR of 20 dB. The mixing 

matrix modeling the time-varying channel is represented in matrix form as  
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                                                                                           l = 1, 2..... L            (5.42) 

11f , 12f , 21f , 22f  denote the channel flat fading parameters which vary within the 

processing block. ∆  is the parameter which reflects the rate of variation of the channel 

matrix coefficients. L  is varied between 1000 and 2000 symbols with a step size of 100. 

The ISI (dB), SER, and the speed of convergence, in terms of number of iterations, for 

∆ =0.0011 are shown in Figs. 24-26, respectively. Corresponding results for ∆ =0.0012 

are illustrated in Figs. 27-29, respectively. For higher values of ∆ , the Complex 

FastICA is unable to achieve the required convergence accuracy. 

 

Figure 24: ISI (dB) achieved for ∆ =0.0011 
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Figure 25: SER achieved for ∆ =0.0011 

 

Figure 26: Number of iterations for convergence for ∆ =0.0011 
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Figure 27: ISI (dB) achieved for ∆ =0.0012 

 

Figure 28: SER achieved for ∆ =0.0012 
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Figure 29: Number of iterations for convergence for ∆ =0.0012 

To simulate an abrupt channel variation, a sudden change in the mixing matrix 

coefficients is introduced in the middle of the processing block. In this scenario, the 

performance comparison between the two algorithms is plotted in Figs 30-32. The 

simulation results confirm the consistent and improved convergence properties 

demonstrated by the CBC-ICA algorithm, in terms of convergence speed and accuracy. 

In contrast, the ISI (dB) and SER of the complex FastICA is significantly affected with 

increasing values of ∆ as can be seen from Figs.27 and 28, respectively. In addition, it 

can be inferred from Fig. 29 that the convergence speed of the complex FastICA 

progressively degrades with increasing block length, requiring many more iterations for 

convergence. Furthermore, Fig. 32 shows that in the abruptly fading case, the complex 

FastICA needs a larger block size to adapt to the instantaneous variations in the mixing 

matrix, thereby requiring many more iterations to converge for small block sizes. In 
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contrast, the CBC-ICA achieves comparable SER and ISI with fewer than 20 iterations 

for convergence. 

 

Figure 30: ISI achieved in abruptly flat fading channels 

 

Figure 31: SER achieved in abruptly flat fading channels 
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Figure 32: Number of iterations for convergence in abruptly flat fading channels 

5.4 Conclusions 

In this chapter, a novel Complex Adaptive Independent Component Analysis 

algorithm employing the conjugate gradient optimization technique (CBC-ICA) is 

presented. The algorithm updates the real and imaginary components of the adaptive 

system coefficients or complex separating matrix along independently derived conjugated 

directions. As a result, the CBC-ICA avoids gradient ascent in the same direction more 

than once, resulting in fast convergence. In addition, the two step sizes for the real and 

imaginary components of the complex separating matrix are optimally and separately 

derived to maximize the kurtosis. This provides the CBC-ICA superior convergence 

properties in dynamic environments, as compared to the Complex FastICA algorithm. 

Simulation results confirm the performance improvement yielded by the CBC-ICA, in 



 72

terms of ISI, SER and convergence speed. Furthermore, as the formulation for the CBC-

IC does not require any matrix inversion, it has similar computational complexity as the 

Complex FastICA. 
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CHAPTER SIX: COMPLEX LEAST MEAN SQUARE 
ALGORITHMS EMPLOYING OPTIMAL TIME-VARYING 

CONVERGENCE FACTORS 
 

 The Complex Least Mean Square (Complex LMS) algorithm has been widely 

used in various adaptive filtering applications, because of its computational and 

theoretical simplicity [40]. However, the inherent limitation of the Complex LMS is its 

dependence on the convergence factor or step size, which is fixed and has to be manually 

selected depending on the type of application or nature of the input signal. Moreover, a 

small step size results in slow convergence, and a large step size could cause unstable 

gradient descent, leading to divergence. Hence, the optimal convergence factor has to be 

chosen by trial and error. In this chapter, the formulations for novel complex adaptive 

algorithms are presented that automatically derive optimal convergence factors for the 

real and imaginary components of the complex adaptive filter coefficients. In addition, 

the proposed methods independently update the real and imaginary parts of the adaptive 

filter coefficients at each iteration. The algorithms are called Complex Optimum Block 

Adaptive LMS (Complex OBA-LMS) and Complex Optimum Block Adaptive LMS with 

Individual Adaptation (Complex OBAI-LMS), and their sequential versions are called 

Complex LMS with Homogeneous Adaptation (Complex HA-LMS), and Complex LMS 

with Individual Adaptation (Complex IA-LMS), respectively. In the Complex OBA-LMS 

and Complex HA-LMS, two optimal convergence factors are separately derived at each 

iteration, one for the real components, and one for the imaginary components of the 

complex adaptive filter coefficients. On the other hand, the Complex OBAI-LMS and 

Complex IA-LMS derive a unique convergence factor for each component of each 
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complex adaptive filter weight. As a result, the Complex OBAI-LMS and Complex IA-

LMS are most efficient in utilizing all the degrees of freedom of the adaptive filter. The 

formulations of the proposed algorithms are presented in the following sections. 

6.1 Block implementation of the Complex LMS: Formulation 

The following parameters are defined: 

k : block iteration index 

N: Length of the adaptive filter 

L : Processing Block length 

j : complex operator i.e. 1-  

)(kel : l th complex error signal in the k th block 

)(kWi : the i th adaptive filter coefficient in the k th block 

In the block implementation of the Complex LMS, the real and imaginary components of 

the complex weight vectorW , namely RW and IW respectively, are updated by the 

following equations: 

                                                 )()()1( kkWkW BRBRR ∇−=+ µ                                     (6.1) 

                                                  )()()1( kkWkW BIBII ∇−=+ µ                                      (6.2) 

Where, 
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Bµ is the fixed convergence factor and H  denotes the conjugate transpose or Hermitian 

transpose. 

Evaluating (6.3) and (6.4) we obtain, 
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where, kX is the NXL   matrix of input signal samples given as: 
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T and * represent transpose and complex conjugate respectively. 

Since the complex weight vector is )1()1()1( +++=+ kjWkWkW IR , the Complex LMS 

weight update equation is given as: 

                                               )(2)()1( keX
L

kWkW H
k

Bµ+=+                                     (6.9) 

6.2 Proposed Complex OBA-LMS: Formulation 

As mentioned previously, the Complex OBA-LMS generates two time-varying 

convergence factors at each block iteration, for the real and imaginary components of the 

complex adaptive filter coefficients, in contrast to the constant Bµ  of the Complex LMS 

[44, 45]. Let these time-varying convergence factors for the real and imaginary 

components be denoted as )(kBRµ  and )(kBIµ , respectively. Incorporating these 

convergence factors in the weight update equations (6.1) and (6.2), we get 
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                                               )()()()1( kkkWkW BRBRRR ∇−=+ µ                               (6.10) 

                                               )()()()1( kkkWkW BIBIII ∇−=+ µ                                 (6.11) 

The l th complex error signal )1( +kel  in the )1( +k th block, can be expressed in terms 

of the l th complex error signal )(kel in the k th block, and the present adaptive filter 

coefficients )(kWR and )(kWI by applying the Taylor’s series as follows: 
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Where, 

                                                   )()1()( kWkWkW iRiRiR −+=∆                                   (6.14) 

                                                   )()1()( kWkWkW iIiIiI −+=∆                                    (6.15) 

Due to linearity of the error function, higher order derivatives in the Taylor series 

expansion are ignored. Expanding (6.12) and (6.13) for all the L  error signals, we obtain 

the expressions: 

                                                    )()()1( kWXkeke Rk∆−=+                                     (6.16) 

                                                   )()()1( kWjXkeke Ik∆−=+                                         (6.17) 

From (6.10) and (6.11) we have, 

                                                   )()()( kkkW BRBRR ∇−=∆ µ                                       (6.18) 

                                                   )()()( kkkW BIBII ∇−=∆ µ                                       (6.19) 
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Substituting (6.18) and (6.19) in (6.16) and (6.17), we obtain: 

                                            )()()()1( kXkkeke BRkBR ∇+=+ µ                                  (6.20) 

                                            )()()()1( kXkjkeke BIkBI ∇+=+ µ                                 (6.21) 

The optimal convergence factors )(kBRµ and )(kBIµ should minimize the energy in the 

complex error signal )1( +ke  , i.e. the following conditions should be satisfied. 
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Evaluating (6.22) and (6.23), we obtain  
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By substituting (6.24) and (6.25) in (6.10) and (6.11), and applying 

)1()1()1( +++=+ kjWkWkW IR , the Complex OBA-LMS algorithm is obtained. 

 A sequential version of the Complex OBA-LMS called the Complex LMS with 

Homogeneous Adaptation (Complex HA-LMS) is presented in the following section. 

6.3 Proposed Complex HA-LMS: Formulation 

Since the Complex HA-LMS processes the input in samples, the error signal at 

the k th iteration, )(ke , is given as: 

                                             )()()( kXWkdke H−=                                           (6.26) 
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)(kd and )(kX  are the desired signal sample and input signal vector, respectively. 

In the Complex HA-LMS, the convergence factors )(kRµ  and )(kIµ are 

optimally derived and updated at every sample iteration, as compared to every block 

iteration for the Complex OBA-LMS [73]. Hence, the expressions for )(kBR∇  and 

)(kBI∇  in (6.3) and (6.4) are modified as: 
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Similar to (6.12) and (6.13), the Taylor’s series expansion for the )1( +k th complex error 

sample )1( +ke , in terms of the k th complex error sample )(ke ,and the present adaptive 

filter coefficients )(kWR  and )(kWI  is expressed as: 
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Where, 

                                                 )()1()( kWkWkW iRiRiR −+=∆                                  (6.31) 

                                                 )()1()( kWkWkW iIiIiI −+=∆                                 (6.32) 

Evaluating (6.29) and (6.30), and substituting (6.31) and (6.32) in the resulting 

expression, we obtain the following: 

                                                )()()()1( kWkXkeke R
T ∆−=+                                       (6.33) 

                                               )()()()1( kWkjXkeke I
T ∆+=+                                      (6.34) 
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Substituting (6.18) and (6.19) in (6.33) and (6.34), we have: 

                                           )()()()()1( kkkXkeke BRR
T ∇+=+ µ                               (6.35) 

                                            )()()()()1( kkkjXkeke BII
T ∇−=+ µ                              (6.36) 

The novel adaptation approach proposed in this research involves optimizing the error 

function with respect to Rµ and Iµ  , independently, i.e. 
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keke
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                                        (6.38) 

Evaluating (6.37) and (6.38) , we obtain  
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=µ                      (6.40) 

In this manner, the Complex HA-LMS is formulated.  

6.4 Proposed Complex OBAI-LMS: Formulation 

 The Complex OBAI-LMS is a block adaptive algorithm that derives a unique 

convergence factor for each component of each complex adaptive filter coefficient [43, 

46]. In addition, the real and imaginary components of the complex filter weights are 

updated independently. Consequently, for a complex weight vector W  of length N , N2  

convergence factors are optimally derived for the real and imaginary components of W . 

Hence, the real and imaginary components of the complex weight vector W , namely RW  

and IW  respectively, are updated by the following equations: 
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                                                        )(][)()1( kMUkwkw BRRkRR ∇−=+                                 (6.41) 

                                          )(][)()1( kMUkwkw BIIkII ∇−=+                                 (6.42) 

RkMU ][ and IkMU ][  are diagonal matrices of order N , whose elements are the 

convergence factors for the real and imaginary components of W , i.e. 
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                                   (6.44) 

Expanding the L  complex error signals in a Taylor series expansion similar to (6.12) and 

(6.13), we obtain the error expression in a matrix-vector form as : 

                                                      )()()1( kWXkeke Rk∆−=+                                   (6.45) 

                                                     )()()1( kWjXkeke Ik∆−=+                                   (6.46) 

From (6.41) and (6.42), we have 

                                                )(][)( kMUkW BRRkR ∇−=∆                                           (6.47) 

                                                )(][)( kMUkW BIIkI ∇−=∆                                          (6.48) 

Substituting (6.47) and (6.48) in (6.45) and (6.46), we obtain: 

                                            )(][)()1( kMUXkeke BRRkk ∇+=+                              (6.49) 

                                            )(][)()1( kMUjXkeke BIIkk ∇+=+                            (6.50) 

The N2  convergence factors are chosen such that the sum of the squares of the 

magnitudes of the complex error signals is minimized in the next iteration, i.e. 
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For simplicity, we define the following parameters: 

                  
T

RNRR
H
kR kzkzkzkeXkz )](.........)()([})(Re{)( 21==                (6.53) 

                   
T

INII
H
kI kzkzkzkeXkz )](.........)()([})(Im{)( 21==                  (6.54) 

                                                   )]([][ kRXXR mnk
H
kk ==                  Nnm ≤≤ ,1   (6.55) 

)1()1( ++ kekeH  can be rewritten as: 

                                                 4321)1()1( SSSSkekeH +++=++                         (6.56) 

Where, 

                                                            )()(1 kekeS H=                                                (6.57) 

                                                 )(][)(2 kMUXkeS BRRkk
H ∇=                                  (6.58) 

                                                 )(])[(3 keXMUkS H
kRk

H
BR∇=                                (6.59) 

                                       )(][][])[(4 kMURMUkS BRRkkRk
H

BR ∇∇=                       (6.60) 

It is worth mentioning that since the gradient vectors are real, )()( kk T
BR

H
BR ∇=∇ . 

Expressing equations (6.57) to (6.60) in summation form we obtain: 
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Combining (6.62) and (6.63) yields the following: 
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               (6.65) 

Substituting (6.56) in (6.51) gives the following: 
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k
S

RiRiRi µµµ         Ni ,......,2.1=   (6.66) 

Substituting (6.61) in (6.65), and (6.64) in (6.66), and using the symmetry of kR][  given 

by (6.55), the following result is obtained: 

                                        )(][)(][ 1 kzRkMU RkBRRk
−−=∇                                      (6.67) 

In order to compute IkMU ][ ,a similar procedure is followed in evaluating (6.52). As a 

result, we obtain the following expression: 

                                        )(][)(][ 1 kzRkMU IkBIIk
−−=∇                                         (6.68) 

Substituting (6.67) and (6.68) in (6.41) and (6.42), we obtain the following update 

equations for the real and imaginary components of W as follows: 

                                                        )(][)()1( 1 kzRkwkw RkRR
−+=+                                    (6.69) 
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                                          ))(][)()1( 1 kzRkwkw IkII
−+=+                                 (6.70) 

In this manner, the Complex OBAI-LMS algorithm is obtained. 

6.5 Computational Complexity of the Complex OBAI-LMS algorithm 

From (6.69) and (6.70), it can be seen that the weight update equations for the 

Complex OBAI-LMS algorithm requires matrix inversion. This is a computationally 

intensive operation, especially for high-order adaptive systems. The matrix inversion 

operation can be eliminated by processing the signals in overlapping blocks as opposed to 

disjoint blocks. This means that in a data block of length L , the K  oldest signals are 

replaced with new ones with )( KL −  signals overlapping between the previous and 

present blocks. In this manner, only the most recent information is retained as the 

adaptive filter moves to a new block. Furthermore, incorporating the block shifting 

technique results in a recursive relation between the correlation matrices kR][  and 

1][ −kR  in the present and previous blocks, respectively. This in turn, allows the 

application of a matrix inversion lemma for recursively computing 
1][ −
kR which leads to a 

considerable saving in computations. The detailed description of the matrix inversion 

lemma is given in the Appendix. 

Using the matrix inversion lemma, the Complex OBAI-LMS requires only one 

matrix inversion at 1=k , with the subsequent inverses computed recursively. The first 

inversion can be further eliminated by replacing the correlation matrix in the first 

iteration, 1][R  with a matrix containing only its diagonal elements. In this manner, the 

computational complexity significantly reduces from )( 3NO  to )(NO . 
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Hence, the Complex OBAI-LMS can be implemented in two ways. In the first 

method called Complex OBAI(1), the inverse of kR][  is computed directly in the first 

iteration, and the lemma is applied for 1>k . In Complex OBAI (2), at the first iteration, 

kR][  is estimated with a matrix containing its diagonal elements, and the lemma is 

applied in subsequent iterations. Thus, only in the first iteration, the Complex OBAI(1) 

requires more computations than Complex OBAI(2). However, it converges much faster 

than the Complex OBAI(2), as will be shown subsequently in Chapter 7. 

6.6 Proposed Complex IA-LMS: Formulation 

The Complex IA-LMS is the sequential version of the Complex OBAI-LMS. Hence, 

(6.49) and (6.50) are reduced to sample form: 

                                            )(])[()()1( kMUkXkeke RRk
T ∇+=+                            (6.71) 

                                            )(])[()()1( kMUkjXkeke IIk
T ∇−=+                             (6.72) 

Similar to Complex OBAI, the N2 convergence factors are optimally derived such that 

the square of the magnitude of the error sample is minimized in the subsequent iteration, 

i.e. 
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From (6.71), the expression )1()1(* ++ keke  can be written in summation form as 

follows: 
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Applying (6.73) for all i , we obtain the following equation in matrix form: 
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Defining the following parameters: 
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(6.76) becomes: 
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In this manner, the individual convergence factors for the updating the real component of 

the weight vector are obtained as: 



 86

                                                      #
 

#
 

 

1 

.

.

.

.

kkRkR

NR

R

SYZ====

























µ

µ

                                                (6.78) 

Where, #
 kRZ and #

kS  denote the pseudo-inverses of kRZ  and kS , respectively. 

Following a similar approach with (6.72), the convergence factors for the imaginary 

component of the weight vector are derived as: 
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Where,  
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Incorporating these convergence factors in the weight update equations, the Complex IA-

LMS algorithm is obtained. 
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6.7 Conclusions 

 In this chapter, novel complex block adaptive algorithms employing optimally 

derived convergence factors, Complex OBA-LMS and Complex OBAI-LMS and their 

respective sequential versions, Complex HA-LMS and Complex IA-LMS, were 

presented. Similar to the Complex LMS, these algorithms are based on the LMS 

approach to find the minimum of the complex error function. However, the time-varying 

convergence factors are automatically derived at each iteration, in contrast to the constant 

manually chosen convergence factor of the Complex LMS. In this regard, the Complex 

OBA-LMS and Complex HA-LMS derive a separate convergence factor, updated at 

every block and sample iteration respectively, for the real and imaginary components of 

the complex adaptive filter coefficients. The Complex OBAI-LMS and Complex IA-

LMS derive a unique convergence factor for each component of each adaptive filter 

coefficient, at every block and sample iteration, respectively. As a result, they are most 

effective in utilizing the degrees of freedom of the adaptive system. In addition, the 

inverse of the matrices in the Complex OBAI-LMS weight update equations were 

recursively computed using a matrix inversion lemma. The details of the lemma are 

presented in the Appendix. In this manner, the computational complexity of the Complex 

OBAI-LMS is significantly reduced. The application of the lemma lends itself to two 

versions of the Complex OBAI-LMS, namely, Complex OBAI(1) and Complex 

OBAI(2). In Complex OBAI(1), the inverse of the autocorrelation matrix kR][  is 

computed directly in the first iteration, and the lemma is applied in subsequent iterations. 

The Complex OBAI(2) approximates kR][  in the first iteration with a matrix containing 

only its diagonal elements, and the lemma is applied in the following iterations. Hence, 
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the computational complexity of the Complex OBAI(2) reduces to )(NO  in the first 

iteration. In subsequent iterations, the Complex OBAI(2) has the same computational 

complexity as the Complex OBAI(1). In the following chapters, the performance of the 

presented algorithms will be compared to the Complex LMS algorithm through extensive 

simulations, in channel estimation and adaptive beamforming applications. 
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CHAPTER SEVEN: APPLICATION OF PROPOSED COMPLEX 
OBA-LMS AND COMPLEX OBAI-LMS ALGORITHMS TO 

CHANNEL ESTIMATION  
 

 The Complex LMS algorithm has been widely used both in block and sequential 

mode for various adaptive filtering applications, e.g. in the wireless communications, 

biomedical fields, due to its computational simplicity and relative ease of 

implementation. However, the main drawback of the Complex LMS algorithm is its slow 

convergence. In addition, the performance is highly dependent on the choice of the 

convergence factor or learning rate which is constant and has to be manually selected by 

trial and error depending on the type of application. Furthermore, an incorrect choice of 

convergence factor could even result in divergence. In the previous chapter, block and 

sequential algorithms employing time-varying and optimally derived convergence factors 

were presented. In this chapter, the proposed optimum block algorithms, namely 

Complex OBA-LMS and Complex OBAI-LMS are applied to system identification for 

wireless communication applications. Through extensive simulation results, their 

performance is compared to the block Complex LMS algorithm. The convergence speed 

and accuracy are used as a measure of performance. Simulation results confirm the 

significant improvement in convergence properties yielded by the proposed techniques 

over the block Complex LMS. In addition, it is shown that this improvement is achieved 

without having to manually select a convergence factor for different inputs. 

7.1 System identification of a complex Finite Impulse Response (FIR) filter 

System identification and modeling is a very essential application in the wireless 

communications, control systems, and signal processing fields. In this regard, an adaptive 
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filter can be used for modeling or duplicating the response or behavior of an unknown 

system. To perform system identification, the same input is applied to both the adaptive 

filter and the unknown system. The adaptive filter adjusts its coefficients till a suitable 

least squares fit to the response of the unknown system is achieved [15]. The accuracy of 

this fit depends on the flexibility or the “degrees of freedom” of the adaptive system and 

also on the statistical and spectral properties of the input signal. 

 In wireless communications, convolution of the transmitted signal with the 

channel induces undesirable effects in the received signal such as frequency selective 

fading and dispersion. As a result, channel estimation form an integral part of any 

wireless receiver design. Estimation of the wireless channel involves obtaining an 

approximation of the impulse response of the channel which is modeled as an FIR filter. 

Typically, this is done by transmitting a known training sequence through the channel 

and observing the corresponding channel output at the receiver. Employing the same 

training sequence, the adaptive filter adjusts itself to minimize the mean square error, the 

error being the difference between the channel output or desired response and the 

adaptive filter output. For proper estimation and convergence, it is imperative that there is 

no frequency offset between the transmitter and receiver clocks. 

7.2 Simulation Results 

In the simulations, the convergence properties of the Complex OBA-LMS and 

Complex OBAI-LMS are compared to the block Complex LMS in channel estimation. In 

this regard, the two algorithms are applied to the adaptive system shown in Fig. 33, to 

determine the parameters of the unknown channel modeled as a complex FIR filter F (z). 

Normalized Error Energy (NEE) is used as a measure of performance and is defined as: 
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Where, )F(e jω
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are the transfer functions of the unknown complex FIR 

filter and the adaptive filter, respectively. 
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Figure 33: Signal Model for estimating an unknown complex FIR filter 

The unknown complex FIR filters z)(F1 and z)(F2 used in the simulations are 9th 

order and 19th order, respectively and are given as follows: 

=(z)F1 (.0883+.234j)+(.3895+.1123j) -1z +(.4823+.6574) -2z +(-.3132-.1645j) -3z  

+(.6007+.3245j) -4z +(.2538+0.4356j) -5z + (-.5267+.2156j) -6z + 

(-.0552+.0123j) -7z + (.5530+.5612j) -8z +(-.4720-.1209j) -9z                                       (7.2) 

z)(F2 = (0.976+.145j)+(0.5873+.1123j) -1z + (0.3360+.6574j) -2z +(.6563+.8965j) -3z + 



 92

(.1231+.4352j) -4z +( .1883+.3895j) -5z +(.4823-.3132j) -6z +( .6007+.2538j) -7z + 

(-.5267-.0552j) -8z +( .5530-.4720j) -9z +(.5162-.4668j) -10z +(.5089+.3455j) -11z + 

(.3560+.3428j) -12z +(-.6737+.0781j) -13z +(.8235-.2836j) -14z +(-.5267+.2156j) -15z + 

(.3428+.376j) -16z +(-.2836-.187j) -17z +(-.3132-.1645j) -18z + (-.0552+.0123j) -19z     (7.3) 

All the simulations are averaged over 100 Monte Carlo simulation runs, with the 

initial weights of the adaptive filter set to zero. In the first set of simulations, the 

performance of the proposed Complex OBA-LMS is compared to the block Complex 

LMS. In the second set of simulations, the developed Complex OBAI-LMS technique is 

applied to channel estimation. 

7.2.1 Comparison of the proposed Complex OBA-LMS and Block Complex LMS 

In this scenario, the Complex OBA-LMS and Block Complex LMS are applied to 

estimate (z)F1  and (z)F2 for both the noise free case and noisy cases. In the noisy case, 

AWGN is added to simulate an SNR of 30 dB. Furthermore, the performance is tested for 

white gaussian noise input, colored noise or band-limited noise, and a Pseudo Random 

(PN) sequence input signals. The colored noise is generated by passing complex gaussian 

noise through a band pass filter (z)FBP given by the following specifications: 

                                    (z)FBP =1-0.4375 -2z +0.3281 -4z +0.0244 -6z                               (7.4) 

In the estimation of (z)F1 , the adaptive filter length N and the block length L are 

chosen to be 15 and 30, respectively. With white gaussian noise input processed in 

overlapping blocks, the NEE (dB) achieved by both the algorithms vs. the number of 

samples for the noise free case is illustrated in Fig. 34. The corresponding simulation 

results with 30 dB SNR is shown in Fig. 35. In the second case, the simulations are 
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performed with colored noise input. For the noise free and 30 dB SNR cases, the NEE 

(dB) vs. the number of samples are plotted in Figs. 36 and 37, respectively. In Figs.38 

and 39, simulation results are shown when the PN training sequence uniformly 

distributed in [0, 1] is employed as training input. 

 

Figure 34: NEE (dB) vs. the number of samples in the estimation of (z)F1  using 

Complex OBA-LMS with complex gaussian noise input and zero additive noise 



 94

 

Figure 35: NEE (dB) vs. number of samples in the estimation of (z)F1  using 

Complex OBA-LMS with complex gaussian noise input and 30 dB SNR 

 

Figure 36: NEE (dB) vs. number of samples in the estimation of (z)F1  using 

Complex OBA-LMS with colored noise input and zero additive noise 
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Figure 37: NEE (dB) vs. number of samples in the estimation of (z)F1  using 

Complex OBA-LMS with colored noise input and 30 dB SNR 

 

Figure 38: NEE (dB) vs. number of samples in the estimation of (z)F1  using 

Complex OBA-LMS with PN sequence input and zero additive noise 
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Figure 39: NEE (dB) vs. number of samples in the estimation of (z)F1  using 

Complex OBA-LMS with PN sequence input and 30 dB SNR 

The algorithms are then tested in the estimation of a 19th order complex FIR filter 

(z)F2 . In this regard, the values of N and L are chosen to be 25 and 50, respectively. The 

simulation results for complex gaussian noise, colored noise and PN sequence inputs in 

the presence of AWGN are presented in Figs. 40-42.  

 When data is processed in disjoint blocks, the performance yielded by the 

Complex OBA-LMS and block Complex LMS algorithms in the estimation of 

(z)F2 using a PN sequence input is illustrated in Fig 43. 
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Figure 40: NEE (dB) vs. number of samples in the estimation of (z)F2  using 

Complex OBA-LMS with complex gaussian noise input and 30 dB SNR 

 

Figure 41: NEE (dB) vs. number of samples in the estimation of (z)F2  using 

Complex OBA-LMS with colored noise input and 30 dB SNR 
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Figure 42: NEE (dB) vs. number of samples in the estimation of (z)F2  using 

Complex OBA-LMS with PN sequence input and 30 dB SNR 

 

Figure 43: NEE (dB) vs. number of samples in the estimation of (z)F2  using 

Complex OBA-LMS with PN sequence input processed in disjoint blocks and 30 dB 

SNR 
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7.2.2 Comparison of the proposed Complex OBAI-LMS and Block Complex LMS 

 In this section, the proposed Complex OBAI-LMS is compared to the block 

Complex LMS. As mentioned previously, the Complex OBAI-LMS can be operated in 

two modes, Complex OBAI(1) and Complex OBAI (2), depending on whether direct 

matrix inversion is applied in the first iteration or not. However, both the modes apply the 

matrix inversion lemma in subsequent iterations to reduce computational complexity. As 

the matrix inversion lemma is a recursive algorithm, the input signal is always processed 

in overlapping blocks.  

In the simulations, the performance of the Complex OBAI (1) and Complex 

OBAI (2) algorithms is tested in the estimation of (z)F2 . For the Complex OBAI (1), N 

and L are set as 25 and 50, respectively. Similar to the simulation setup in 7.2.1, the 

performance is compared for different training inputs in 30 dB SNR. The NEE (dB) 

achieved by the Complex OBAI (1) vs. the number of processed samples for complex 

gaussian noise, colored noise, and PN sequence inputs, is illustrated in Figs. 44, 45, and 

46, respectively.  

With regard to the Complex OBAI (2), L is set as 3*N, i.e. 75. The NEE (dB) 

achieved by Complex OBAI (2) for complex gaussian noise and colored noise inputs is 

illustrated in Figs. 47, and 48, respectively.  
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Figure 44: NEE (dB) vs. number of samples in the estimation of (z)F2  using 

Complex OBAI (1) with complex gaussian noise input and 30 dB SNR 

 

Figure 45: NEE (dB) vs. number of samples in the estimation of (z)F2  using 

Complex OBAI (1) with colored noise input and 30 dB SNR 
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Figure 46: NEE (dB) vs. number of samples in the estimation of (z)F2  using 

Complex OBAI (1) with PN sequence input and 30 dB SNR 

 

Figure 47: NEE (dB) vs. number of samples in the estimation of (z)F2  using 

Complex OBAI (2) with complex gaussian noise input and 30 dB SNR 
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Figure 48: NEE (dB) vs. number of samples in the estimation of (z)F2  using 

Complex OBAI (2) with colored noise input and 30 dB SNR 

7.3 Conclusions 

In this Chapter, the proposed Complex OBA-LMS and Complex OBAI-LMS 

algorithms were applied to the identification of a wireless channel modeled as a complex 

FIR filter. The simulation results clearly indicate that the novel techniques, especially 

Complex OBAI (1), exhibit a considerable improvement in convergence speed, in 

comparison to the traditional block Complex LMS. In addition, it was observed that the 

performance of the block Complex LMS depended on the choice of the convergence 

factor, which had to be manually selected each time a different input signal was used for 

training. In contrast, the proposed methods employing optimally derived convergence 

factors at each block iteration, exhibit consistent performance in all the simulated 
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scenarios. Furthermore, being block based, the computational complexity of the Complex 

OBA-LMS and Complex OBAI-LMS can be further reduced by employing transform 

domain implementations like the Fast Fourier Transform (FFT).  
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CHAPTER EIGHT: ADAPTIVE BEAMFORMING  
 

Adaptive beamforming is a spatial form of adaptive filtering in which an array of 

antennas are employed to achieve maximum reception in a particular direction. This is 

achieved by estimating the signal arrival from a desired direction (in the presence of 

noise) while co-channel signals from other directions are suppressed [74, 75]. The 

individual outputs of the array of sensors or antenna elements are modified so as to 

produce a desired radiation pattern that optimizes, in some statistical sense, the reception 

of a target signal along the desired direction [14]. Using the typical adaptive filtering 

approach, this optimization is achieved by adjusting the weights of each of the sensors 

used in the array. In this manner, the spatial separation of the signals originating from 

different transmitters is exploited to retrieve the desired signal from the interfering 

signals. The technique of adaptive beamforming is widely used for various applications, 

such as interference suppression in wireless communications [76-78], and in microphone 

arrays [79, 80]. 

In this chapter, the previously proposed complex least mean square algorithms 

employing time-varying convergence factors are applied to adaptive beamforming [73, 

81]. The Complex OBA-LMS and Complex OBAI-LMS are applied when the signal is 

processed in blocks, and the Complex HA-LMS and Complex IA-LMS are employed 

when sequential processing is adopted at the beamforming receiver. The performance of 

these techniques is compared to the block and sequential versions of the Complex LMS 

algorithm. In contrast to the Complex LMS, simulation results will show that the 

proposed methods exhibit improved convergence speed and accuracy, irrespective of the 
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flat fading channel parameters, number of antenna elements, and type of modulation 

employed by the users. 

8.1 Beamforming Receiver Structure 

An adaptive antenna or adaptive beamforming receiver consists of a set of 

spatially disposed sensors or antenna elements connected to a single channel or multi-

channel adaptive signal processor. The simplest form of adaptive antenna is the sidelobe 

canceller [15] shown in Fig. 49. 

Σ

 

Figure 49: Adaptive Sidelobe cancellation with two antenna array elements 

In Fig. 49, two omnidirectional antenna elements are employed, one called the 

“primary”, and the other the “reference”. Both the antenna elements receive the signal 

and interference transmissions at the same time. However, since the elements are 

spatially separated their outputs are different at any instant of time.  
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 When the interferer is stronger than the signal, the adaptive filter adjusts its 

weights to produce an output which is identical to the interference component of the 

primary antenna. As a result, in the system output the interferer is completely cancelled 

and the signal is successfully recovered.  

 The interference cancellation mechanism in Fig. 49 can be extended to a 

beamforming receiver employing a larger number of antenna elements in an environment 

where many users are transmitting on the same frequency, but originate from spatially 

separated sources. Hence, the user signals at the receiver arrive from different directions. 

The structure of the receiver is illustrated in Fig. 50. 
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Figure 50: Adaptive Beamformer 
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8.2 Signal Representation 

In Fig. 50, an adaptive beamformer with L  antenna elements is shown, with d  

being the spacing between the elements. Let θ be the direction of arrival or the 

incidence angle of the wavefronts of a particular user, and λ be the wavelength. 

Considering the sensor or antenna at the bottom end of the antenna array as the reference, 

the steering vector )s(φ  is defined by: 

                          
TLjj ee ] ,......., [1,)s( )1( φφφ −−−=                            (8.1) 

Where, φ is the phase of the incident wave relative to the reference antenna given by: 

                                                           θ
λ
πφ sin
2 d

=                                                    (8.2) 

Considering M users, the output of each array element is given by: 

                               ∑
=

+=
M

i
l

tj
iil kneksAkx il

1

)( )()()( θω
            

                             =       )()( knkr ll +                                        Ll ≤≤1     (8.3) 

Where, )(ksi is the user symbol for source i at time index k , )(krl is the received 

signal at element l , and )(knl is additive white complex gaussian noise. Furthermore, 

)( ilt θ is the time delay at element l  for user i , with direction of arrival iθ . Assuming 

a flat fading channel, iA  is the complex fading channel parameter.  

Expressing (8.3) in vector form for all the L elements, we obtain 

                                                       )()()( kNkRkX +=                                           (8.4) 
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Source 1 is considered to be the desired user and the remaining sources are the 

interferers. Hence, the Signal to Interference Ratio (SIR), for interferer i  is given by  

                                                           
22

1 /SIR ii AA=  

                                                                                                                   Mi ≤≤2   (8.5) 

The output of the beamformer is given by  

                                                            )()( kXWky H=                                            (8.6) 

Where )](........)()([ 21 kwkwkwW L=  is the complex weight vector of the 

adaptive beamformer and H denotes the conjugate transpose. The beamformer 

iteratively tries to compute the optimal W  that minimizes the MSE between the desired 

user symbol )(1 ks and )(ky , i.e.  

                                                      )()()( 1 kykske −=                                           (8.7) 

8.3 Simulation Results 

8.3.1 Application of the proposed Complex HA-LMS and Complex IA-LMS 

In Sections 6.3 and 6.6, the formulations of the Complex HA-LMS and Complex 

IA-LMS were presented. In this section, the performance of these algorithms is compared 

to the Complex LMS in an adaptive beamforming application. 

In the simulations, the performance of the beamforming techniques is compared 

for different number of array elements ( L ). The elements are separated half a 

wavelength apart and support 6 users. Furthermore, the performance is compared for both 

QAM and QPSK modulated user signaling. As mentioned previously, the performance of 
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the Complex LMS was highly sensitive to the choice of convergence factor. In the 

simulations, the convergence factor for the Complex LMS had to be chosen by trial and 

error, depending on the type of modulation of the user signals. Furthermore, the 

performance of the Complex LMS was inconsistent with variation in L , and signal 

strengths of the interfering users. The corresponding Angles of Arrival (AOA) of the user 

signals are shown in Table 1. 

User i 1 2 3 4 5 6 

AOA (degrees) 0 -45 30 -20 -10 18 

 

Table 1: AOA simulated for the different users in degrees 

Assuming flat fading, the complex channel parameters iA  in (8.3) were randomly 

generated for each simulation run to ensure a thorough performance evaluation under 

diverse channel conditions. The SNR realized was 25 dB, and the µ  for Complex LMS 

was set as 0.0005 for QAM signaling and 0.01 for QPSK modulations. For higher values 

of µ , the Complex LMS failed to converge. 

In the first case, the randomly generated iA  for each run, was set the same for all 

users, making iSIR = 0 dB, for all i . In addition, L  was varied between 10 and 15 

elements. For each L , the performance was averaged over 100 independent simulation 

runs. The SER (dB) vs. L  achieved by the Complex LMS and proposed Complex HA-

LMS and Complex IA-LMS algorithms for QPSK and QAM signaling is illustrated in 

Figs. 51 and 52, respectively. The corresponding SER (dB) vs. Number of processed 

samples for L =10 is shown in Figs. 53 and 54, respectively.  
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In the second scenario, the iSIR = 0 dB for i =1 to 5, and 6SIR = -6 dB. The 

corresponding SER (dB) vs. L  for QPSK and QAM user modulations is illustrated in 

Figs. 55 and 56, respectively. The corresponding SER (dB) vs. Number of processed 

samples for L =10 is shown in Figs. 57 and 58, respectively.  

In the third case, the performance is tested in the presence of strong interferers, 

i.e. iSIR = 0 dB for i =1 to 4, and 5SIR = 6SIR = -6 dB. The achieved SER (dB) vs. L  is 

illustrated in Figs.59 and 60. The corresponding SER (dB) vs. Number of processed 

samples for L =10 is shown in Figs.61 and 62. 

 

Figure 51: SER (dB) vs. L  for QPSK user signaling with iSIR = 0 dB for all i 
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Figure 52: SER (dB) vs. L  for QAM user signaling with iSIR = 0 dB for all i 

 

Figure 53: SER (dB) vs. Number of processed samples for QPSK user signaling with 

L=10, iSIR = 0 dB for all i 
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Figure 54: SER (dB) vs. Number of processed samples for QAM user signaling with 

L=10, iSIR = 0 dB for all i 

 

Figure 55: SER (dB) vs. L  for QPSK user signaling with iSIR = 0 dB for i =1 to 5, 

and 6SIR = -6 dB 
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Figure 56: SER (dB) vs. L  for QAM user signaling with iSIR = 0 dB for i =1 to 5, 

and 6SIR = -6 dB 

 

Figure 57: SER (dB) vs. Number of Samples for QPSK user signaling with L=10, 

iSIR = 0 dB for i =1 to 5, 6SIR = -6 dB 
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Figure 58: SER (dB) vs. Number of Samples for QAM user signaling with L=10, 

iSIR = 0 dB for i =1 to 5, 6SIR = -6 dB 

 

Figure 59: SER (dB) vs. L  for QPSK user signaling with iSIR = 0 dB for i =1 to 4, 

and 5SIR = 6SIR = -6 dB 
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Figure 60: SER (dB) vs. L  for QAM user signaling with iSIR = 0 dB for i =1 to 4, 

and 5SIR = 6SIR = -6 dB 

 

Figure 61: SER (dB) vs. Number of Samples for QPSK user signaling with iSIR = 0 

dB for i =1 to 4, 5SIR = 6SIR = -6 dB, and L =10 
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Figure 62: SER (dB) vs. Number of Samples for QAM user signaling with iSIR = 0 

dB for i =1 to 4, 5SIR = 6SIR = -6 dB, and L =10 

8.3.2 Application of the proposed Complex OBA-LMS and Complex OBAI-LMS 

In this section, the novel block algorithms, Complex OBA-LMS and Complex 

OBAI-LMS, proposed in Chapter 6, are applied to the adaptive beamforming problem for 

QPSK and QAM modulated users. Similar to the simulation setup in 8.3.1, the 

performance of the Complex OBA-LMS and Complex OBAI-LMS are compared to the 

block Complex LMS for different number of antenna elements and varied strengths of the 

interfering signals. In addition, the processing block length is set as L2  in all the 

simulations.  

In this regard, for a iSIR = 0 dB, for all i , the SER (dB) vs. L  achieved by the 

Block Complex LMS and proposed Complex OBA-LMS and Complex OBAI-LMS 

algorithms for QPSK and QAM signaling is shown in Figs. 63 and 64, respectively.  The 
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corresponding SER (dB) vs. Number of processed samples for L =10 is shown in Figs. 65 

and 66, respectively. In Fig.63, the performance curves for the Complex OBA-LMS and 

Complex OBAI-LMS algorithms almost overlap each other, since they achieve similar 

SER. 

 

Figure 63: SER (dB) vs. L for QPSK user signaling with iSIR = 0 dB for all i 
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Figure 64: SER (dB) vs. L for QAM user signaling with iSIR = 0 dB for all i 

 

Figure 65: SER (dB) vs. Number of processed samples for QPSK user signaling with 

iSIR = 0 dB for all i 
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Figure 66: SER (dB) vs. Number of processed samples for QAM user signaling with 

iSIR = 0 dB for all i 

  In the second case, the iSIR = 0 dB for i =1 to 5, and 6SIR = -6 dB. The 

corresponding SER (dB) vs. L  for QPSK and QAM user modulations is illustrated in 

Figs. 67 and 68, respectively. The corresponding SER (dB) vs. Number of processed 

samples for L =10 is shown in Figs. 69 and 70, respectively.  

In the third case, the performance is tested in the presence of strong interferers, 

i.e. iSIR = 0 dB for i =1 to 4, and 5SIR = 6SIR = -6 dB. The achieved SER (dB) vs. L  is 

illustrated in Figs.71 and 72. The corresponding SER (dB) vs. Number of processed 

samples for L =10 is shown in Figs.73 and 74. 
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Figure 67: SER (dB) vs. L  for QPSK user signaling with iSIR = 0 dB for i =1 to 5, 

and 6SIR = -6 dB 

 

Figure 68: SER (dB) vs. L  for QAM user signaling with iSIR = 0 dB for i =1 to 5, 

and 6SIR = -6 dB 
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Figure 69: SER (dB) vs. Number of Samples for QPSK user signaling with L=10, 

iSIR = 0 dB for i =1 to 5, 6SIR = -6 dB 

 

Figure 70: SER (dB) vs. Number of Samples for QAM user signaling with L=10, 

iSIR = 0 dB for i =1 to 5, 6SIR = -6 dB 
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Figure 71: SER (dB) vs. L  for QPSK user signaling with iSIR = 0 dB for i =1 to 4, 

and 5SIR = 6SIR = -6 dB 

 

Figure 72: SER (dB) vs. L  for QAM user signaling with iSIR = 0 dB for i =1 to 4, 

and 5SIR = 6SIR = -6 dB 
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Figure 73: SER (dB) vs. Number of Samples for QPSK user signaling with iSIR = 0 

dB for i =1 to 4, 5SIR = 6SIR = -6 dB, and L =10 

 

Figure 74: SER (dB) vs. Number of Samples for QAM user signaling with iSIR = 0 

dB for i =1 to 4, 5SIR = 6SIR = -6 dB, and L =10 
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8.4 Conclusions 

In this chapter, the proposed complex least mean square algorithms with 

optimally and automatically derived convergence factors were applied in an adaptive 

beamforming application. In this regard, the performance of the Complex HA-LMS and 

Complex IA-LMS were compared to the Complex LMS algorithm when the received 

signals were processed sequentially. For block processing, the Complex OBA-LMS and 

Complex OBAI-LMS were employed and their convergence properties compared to the 

Block Complex LMS. In addition, the performance of the novel techniques were tested 

for varied number of receiver antenna elements, SIR’ s and user signal modulations. The 

extensive simulation results and illustrations presented clearly show that in all conditions, 

the proposed techniques exhibit a considerable improvement in accuracy and 

convergence speed, as compared to the Complex LMS and Block Complex LMS.  
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CHAPTER NINE: BLIND INTERCARRIER INTERFERENCE 
MITIGATION AND MULTI-USER DETECTION FOR MIMO-OFDM 

SYSTEMS IN TIME VARIANT CHANNELS 
 

Orthogonal Frequency Division Multiplexing (OFDM) is a widely applied 

scheme in modern wireless communication systems that effectively operate in frequency 

selective fading channels. The combination of OFDM and the Multiple-Input-Multiple-

Output (MIMO) technique represents a promising candidate for future broadband 

wireless systems. This chapter addresses the Intercarrier Interference (ICI) issue in multi-

user MIMO-OFDM systems operating in time-varying frequency selective channel 

environments. ICI, which is caused by Carrier Frequency Offset (CFO) between local 

oscillators in the transmitter and the receiver, can lead to severe system performance 

degradation. In our proposed method, the previously proposed Independent Component 

Analysis (ICA) technique called Complex Optimum Block Adaptive ICA (Complex 

OBA-ICA) is employed to recover user signals in the presence of ICI and channel 

induced mixing. Simulation results indicate that the new technique significantly reduces 

Inter Symbol Interference (ISI) and Symbol Error Rate (SER) in multi-user MIMO-

OFDM systems in dynamic channel environments. 

9.1 ICI in OFDM systems 

OFDM has been adopted in several important wireless standards, including 

Digital Audio Broadcasting (DAB), Digital Video Broadcasting (DVB-T), the IEEE 

802.11a Local Area Network (LAN) and the IEEE 802.16a Metropolitan Area Network 

(MAN). As a promising technique for high data rate communications, OFDM is also a 

candidate for the fourth-generation (4G) mobile systems. If OFDM is combined with 
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antenna arrays at the receiver and/or the transmitter, the resulting MIMO-OFDM system 

capacity in frequency selective channels can be substantially enhanced [82-84].  

In OFDM, a wideband source signal is partitioned into a number of narrowband 

signals, which are transmitted simultaneously through orthogonal sub-carriers. A major 

issue in most applications is the crosstalk between the sub-carriers, namely ICI, due to 

frequency offsets between local oscillators in the transmitter and the receiver [85, 86].   

To combat the adverse effect of ICI, most OFDM systems employ a data-aided approach, 

i.e., a preamble consisting of one or more training sequences [87-89]. These approaches 

reduce bandwidth efficiency and introduce delay in the detection process. Several blind 

ICI cancellation techniques that do not require training sequences have also been 

proposed [90-92], but they pose additional constraints on air interface design or sampling 

frequency.   

In [93], a blind ICI cancellation technique for OFDM systems based on maximum 

likelihood estimation is proposed. In this paper, we present an ICI cancellation method 

for multi-user MIMO-OFDM systems adopting our recently proposed Complex Optimum 

Block Adaptive ICA (Complex OBA-ICA) algorithm for Quadrature Phase Shift Keying 

(QPSK) user signaling. The new technique is especially suitable for time-variant 

environments in which the well-known Complex FastICA often has difficulty in 

convergence [39]. The effectiveness of the new approach in performing ICI mitigation 

and signal separation is tested for various values of CFO, time variation parameter and 

Signal to Noise Ratio (SNR) [104]. 
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9.2 MIMO-OFDM Transmitter/Receiver Structure and Signal Model 

For illustrative purposes, we consider a MIMO-OFDM system that employs two 

transmit and two receive antennas. The transmitter section is given in Fig.75.  
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Figure 75: Multi-User MIMO-OFDM Transmitter 

In each transmit path, K parallel modulated symbols of user i at time index n , 

i.e. s' )(nd i
k  , 1,...,0 −= Kk , are mapped onto orthogonal subcarriers by a M-point 

IFFT operation. Without loss of generality, in the simulation results presented in Section 

9.4, K and i  are assumed to be 4 and 2, respectively, and KM = . 

In practice, there are frequency offsets between the local oscillators of the 

transmitter and the receiver, resulting in ICI. Furthermore, the wireless channel induces 

mixing of the OFDM modulated user symbols causing decoding errors at the receiver.  

 The block diagram of the diversity receiver structure employing two antennas and 

suffering from CFO’s 1∆f  and 2∆f  is shown in Fig.76. 
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Figure 76: Multi-User MIMO-OFDM Receiver 

The normalized frequency errors 1e and 2e due to frequency offsets 1∆f and 

2∆f , respectively, are defined by 

                                                           Tfe 11 ∆=                                                           (9.1) 

                                                           Tfe 22 ∆=                                                         (9.2) 

where T is the OFDM symbol duration. 

The baseband received signal at each antenna prior to sampling by the Analog to Digital 

Converter (ADC) is given by 

                                                                                                                                        (9.3) 

Where, )(thab  is the multipath fading channel between transmitter antenna a  and 

receiver antenna b ( 2 ,1, =ba ), modeled as    
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P is the total number of fading paths, and pab,σ are the Rayleigh distributed fading 

parameters. In the simulation results presented in Section 9.4, P is assumed to be 3. 

The corresponding channel transfer factors are defined as: 
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The received signals          in the frequency domain after ADC and applying FFT is 

expressed as 

                                                                                                                                        (9.6) 

From [94], the ICI coefficients kmia , ,  are defined as 

                                                                                                                                        (9.7) 

Hence, (9.6) becomes 

                                                                                                                                        (9.8) 

(9.7) can also be written as 
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In the absence of CFO, 0=ie , and ICI coefficients satisfy the following properties 

                                                                                                                                      (9.10) 

                                                  (9.11) 

Thus, no ICI occurs. On the other hand, if  0≠ie ,  
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                                              (9.13)  

The corresponding ICI matrices iA  for 2 ,1=i  are given as: 
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The transmitted signal vectors )(1 nD  and )(2 nD  of source signal matrix D  are 

expressed as: 
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01 )(,),........(,),........()( −=                  (9.15)  

                                      [ ]TKk ndndndnD  )(,),........(,),........()( 2
1

22
02 −=                 (9.16) 

The baseband signal vectors )(1 nX  and )(2 nX of observation matrix X , from the two 

receive antennas are given as: 

                                  [ ]TMm nxnxnxnX
 1

1
11

01 )(,),........(,),........()( −=                         (9.17)  

                                 [ ]TMm nxnxnxnX  )(,),........(,),........()( 2
1

22
02 −=                       (9.18)  

The received signal vectors )(1 nX  and )(2 nX can be expressed in terms of the transmitted 

source vectors )(1 nD  and )(2 nD  as follows: 

                                             )()()( 221111111 nDHAnDHAnX +=                            (9.19) 

                                             )()()( 222211222 nDHAnDHAnX +=                          (9.20) 

where abH is a KK  x diagonal matrix given by 

kma kmi ≠≠      ,0,,
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(9.21) represents a static channel whose fading characteristics are stationary over time. In 

the presented research, a time-variant scenario is modeled, in which the fading 

parameters of the channel change over the processing block. Hence, (9.21) becomes 
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where ∆ represents the speed of variation of the channel. 

Accordingly, (9.19) and (9.20) become as follows: 

                                         )()()()()( 221111111 nDnHAnDnHAnX ++++====                           (9.23) 

                                        )()()()()( 222211222 nDnHAnDnHAnX ++++====                           (9.24) 

Thus, the ICA signal model in matrix form is expressed as: 
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or 

                                                               YDX =                                                      (9.26) 

9.3 Outline of the Complex OBA-ICA algorithm 

The observation matrix X , as expressed in (9.26), is processed by the proposed 

Complex OBA-ICA algorithm, which will recover the source signals in D. The Complex 

OBA-ICA independently updates the real and imaginary components of the complex 
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separating weight matrix W [39, 66]. In order to retrieve independent source components 

from X , the non-gaussianity or the absolute value of the kurtosis of the projection 

XW H has to be maximized, where H denotes the Hermitian operator. In most wireless 

communication applications, the modulation scheme of the user source signals is known. 

As a result, their corresponding kurtosis values can be easily calculated. Hence, for 

QPSK source symbols having values 0.707j0.707 ±± , the kurtosis of the source signal 

distribution is -1. The Complex OBA-ICA algorithm follows a Newton’s type iteration to 

update the real and imaginary parts of the weights such that each element of the kurtosis 

vector becomes -1 after adaptation. The outline of the algorithm is given below: 

Step 1: Set p  =1. The observation matrix X  is whitened using Eigenvalue 

Decomposition (EVD). 

Step 2: The 
thp column of W , namely pw , is normalized to a random vector 

of unit length and iteration index k is set to 0. 

Step 3: The update equations for the real and imaginary parts of pw , namely 

)(kwpR and )(kwpI , respectively, are given as follows:  

                              ))()((][)()1( # KkkurtkRkwkw RpRpR +−=+                     (9.27) 

                              ))()((][)()1( # KkkurtkRkwkw IpIpI +−=+                    (9.28) 

Where T1]- ....... 1-  1-[=− K  is a vector of length L  ( L  is the processing block size).  
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)(][ # kR R and )(][ # kR I are the pseudo-inverses of the matrices )(][ kR R and )(][ kR I , 

respectively, where,  

                                         }]][][Re{[)(][ kkR GCkR =                                    (9.31) 

                                          }]][][Im{[)(][ kkI GCkR =                                       (9.32) 

T
Lk kXkXkXG )]().......()([][ 21=  is the observation matrix for the kth iteration. Re{.} 

and Im{.} represent the real and imaginary component of {.}, respectively. )(kkurt is a 

column vector containing the kurtosis values of Xkwp )( , given by: 

                                             
4

)()( Xkwkkurt H
p=                                         (9.33) 

and  

                                ])(})([{][
2* XkwXkwdiagC H

p
H

pk =                          (9.34)  

is a diagonal matrix, with * representing the complex conjugate. After )(kw pR  and 

)(kwpI  are updated, the new complex weight vector is obtained as:   

                                  )1()1()1( +++=+ kjwkwkw pIpRp                     (9.35) 

Step 4: If 1>p , the previously extracted columns of W , i.e., 

11 ,........, −pww are decorrelated using Gram-Schmidt like decorrelation as follows: 

                                                 ∑
−

=
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k
kk
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ppp wwwww                                (9.36) 

Step 5: )1( +kwp is normalized to unit length. 
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Step 6: Check the convergence of )1( +kwp . If the required convergence 

accuracy of 610−  has not been reached, go back to Step 3; otherwise proceed to Step 7. 

Step 7: Set 1+= pp . If Np ≤ ( N  is the dimension of the mixing matrix), 

go to Step 2.  

9.4 Simulation Results 

In our simulations, the proposed method is applied to perform CFO compensation 

and multi-user detection simultaneously.  

In the first set of experiments, the performance of the Complex OBA-ICA is 

tested for different SNR’s between 5 and 30 dB and ∆ =1.15×10-6. The Carrier 

Frequency Offsets 1e and 2e  are set as 0.3 and 0.35, respectively. The performance is 

measured by Inter Symbol Interference (ISI) [37], convergence speed (number of 

iterations required for convergence), and Symbol Error Rate (SER). The ISI is given by 

the following expression: 

         )1
)Pmax(

(
2N
1

)1
)Pmax(

(
2N
1

ISI 2
n

2

2
m

2

∑ ∑∑ ∑ −+−=
n m

mn

m n

mn pp
           (9.37) 

Where, N is the length of the weight vector w , VAwH=P  is the permutation matrix with 

coefficients mnp , max mP and max nP are the absolute maximum values of the mth 

row and nth columns of P respectively. In all the simulations, the performance is 

averaged over 100 montecarlo runs for a  processing block length L of 1000 symbols. 

The ISI measured in dB, number of iterations required for convergence, and SER 

achieved by the Complex OBA-ICA are illustrated in Figs. 77, 78, and 79, respectively. 
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Figure 77: ISI (dB) vs. SNR (∆ =1.15×10-6, 1e = 0.3, 2e = 0.35) 

 

Figure 78: Convergence speed vs. SNR (∆ =1.15×10-6, 1e = 0.3, 2e = 0.35) 
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Figure 79: SER vs. SNR (∆ =1.15×10-6, 1e = 0.3, 2e = 0.35) 

In the second set of experiments, the performance is obtained for different 

channel variation parameters. Here, ∆  is varied between 1.1×10-6 and 1.15×10-6, with a 

step size of 1×10-8. 1e and 2e  are set as 0.3 and 0.35, respectively, and the SNR 

simulated is 20 dB. The ISI (dB), the speed of convergence and SER achieved are shown 

in Figs. 80, 81 and 82, respectively.  
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Figure 80: ISI (dB) vs. ∆  (SNR=20 dB, 1e = 0.3, 2e = 0.35) 

 

Figure 81: Convergence speed vs. ∆  (SNR=20 dB, 1e = 0.3, 2e = 0.35) 



 138

 

Figure 82: SER vs. ∆  (SNR=20 dB, 1e = 0.3, 2e = 0.35) 

1e  2e  

-0.4 -0.45 

-0.3 -0.35 

-0.2 -0.25 

-0.1 -0.15 

-0.05 -0.1 

0 0 

0.05 0.1 

0.1 0.15 

0.2 0.25 

0.3 0.35 

0.4 0.45 

 

Table 2: CFO’s simulated between the transmitter and receiver 
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In the third set of experiments, different CFO’s are simulated with ∆ =1.14×10-6 

and SNR =20 dB. The values of 1e and 2e used in the simulations are shown above in 

Table 2. The resulting ISI (dB), convergence speed in iterations, and SER achieved, are 

shown in Figs. 83, 84 and 85, respectively. 

 

Figure 83: ISI (dB) vs. 1e and 2e  (Table. 1) with SNR=20 dB, ∆ =1.14×10-6 
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Figure 84: Convergence speed vs. 1e and 2e  (Table. 1) with SNR = 20 dB, 

∆ =1.14×10-6 

 

Figure 85: SER(dB) vs. 1e and 2e  (Table. 1) with SNR=20 dB, ∆ =1.14×10-6 
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The simulation results clearly show that the Complex OBA-ICA is able to 

successfully recover the user symbols in time-varying channels, with the presence of 

CFO.  

9.5 Conclusions 

In this chapter, a novel approach is proposed to perform CFO mitigation and 

multi-user detection simultaneously in MIMO-OFDM systems operating in a time-variant 

environment. The recently proposed Complex OBA-ICA is adopted as the leading 

technique. The performance of the proposed method is tested for different values of SNR, 

CFO, and channel time-varying parameter. Simulation results indicate that the new 

technique is highly effective in reducing ISI and achieving satisfying SER with 

reasonable computational requirement under various conditions.  
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CHAPTER TEN: CONTRIBUTIONS AND FUTURE RESEARCH 
DIRECTIONS 

 

The research presented in this dissertation describes novel adaptive digital signal 

processing techniques for processing complex-valued signals. The developed techniques 

treat the complex-valued adaptive system coefficients as a combination of two 

independent real quantities. As a result, the real and imaginary components of the 

adaptive system parameters are independently updated at each iteration by employing 

optimally derived step-sizes or convergence factors. In this chapter, the major 

contributions of the research are given, and future research directions are outlined.  

10.1 Major Contributions 

As a result of increased demands for bandwidth, complex modulation schemes 

like QPSK, QAM are frequently adopted in wireless communications. Furthermore, 

signal processing operations such as equalization, channel estimation, and interference 

suppression are efficiently performed in the digital domain at the receiver. Hence, it 

necessitates the need for accurate and fast-converging complex digital signal processing 

algorithms. In this research, novel complex adaptive digital signal processing algorithms 

for interference suppression, channel estimation and beamforming were proposed that 

satisfy this requirement. An outline of the contributions is given below. 

In Chapter Three, a novel Complex ICA algorithm with Individual Adaptation 

(Complex IA-ICA) was proposed. The Complex IA-ICA independently updated each real 

and imaginary component of the complex adaptive filter weight using separate 

convergence factors. The cost function used was the absolute value of the kurtosis, which 
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is maximized to achieve separation of the desired signal from an interfering signal. 

Simulation results showed that the Complex IA-ICA achieved excellent accuracy and  

fast convergence, even in dynamic flat fading channel conditions, in contrast to the 

existing Complex FastICA algorithm. 

In Chapter Four, the formulation of the Complex OBA-ICA algorithm was 

presented which had reduced computational complexity as compared to the Complex IA-

ICA. This was achieved by deriving only two optimal convergence factors, one for all the 

real components, and the other for all the imaginary components of the weights, as 

opposed to the Complex IA-ICA, which employed one convergence factor for each part 

of each weight.  

In reality, the wireless receiver has prior information about the modulation 

scheme of the desired signal. Hence, the corresponding kurtosis value which has to be 

achieved is readily known. Using this information, a modification of the Complex OBA-

ICA algorithm was proposed for separating complex-valued signals with known source 

distributions. In dynamic environments for diversity QPSK receivers, the proposed 

methods exhibited much better convergence properties, as compared to the Complex 

FastICA. 

Chapter Five described the principle of conjugate gradients and its application to 

Complex Adaptive ICA for maximization of the kurtosis function. The resulting novel 

technique was called Complex Block Conjugate Independent Component Analysis 

(CBC-ICA). The CBC-ICA derived independent conjugate-gradient search directions for 

the real and imaginary components of the weight vector. In addition, by using the 

Taylor’s series approximation, an optimal update or step size was generated separately 
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along each conjugate direction for the real and imaginary components. In dynamic flat 

fading conditions, the CBC-ICA demonstrated excellent convergence speed, even for 

large processing block sizes, while maintaining satisfactory SER. 

Chapter Six presented the formulations for novel complex adaptive LMS 

algorithms that independently update the real and imaginary parts of the adaptive filter 

coefficients at each block iteration. In addition, the optimal convergence factors were 

automatically derived at each iteration, for the real and imaginary components of the 

complex adaptive filter coefficients. For block processing of input signal samples, the 

algorithms were called Complex Optimum Block Adaptive LMS (Complex OBA-LMS) 

and Complex Optimum Block Adaptive LMS with Individual Adaptation (Complex 

OBAI-LMS). For sequential processing, the developed techniques were called Complex 

LMS with Homogeneous Adaptation (Complex HA-LMS), and Complex LMS with 

Individual Adaptation (Complex IA-LMS). In the Complex OBA-LMS and Complex 

HA-LMS, two optimal convergence factors were separately derived at each iteration, one 

for all the real components, and one for the imaginary components of the complex 

adaptive filter coefficients. On the other hand, the Complex OBAI-LMS and Complex 

IA-LMS derived a unique convergence factor for each component of each complex 

adaptive filter weight. As a result, they efficiently utilized all the degrees of freedom of 

the adaptive filter at the cost of a modest increase in computational complexity. 

Furthermore, a matrix inversion lemma was utilized that significantly reduced the 

computational complexity of the Complex OBAI-LMS, resulting in two modifications 

called the Complex OBAI (1), and Complex OBAI (2) algorithms. 
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In Chapter Seven, the proposed optimum block algorithms, namely Complex 

OBA-LMS and Complex OBAI-LMS, were applied to system identification for wireless 

communications. Simulation results confirmed that a significant improvement in 

convergence speed and accuracy was achieved by the proposed techniques over the block 

Complex LMS. In addition, this improvement was achieved without having to manually 

select the convergence factor for different inputs, in contrast to the block Complex LMS 

which easily diverged for an incorrect choice of the convergence factor. 

In Chapter Eight, the previously proposed complex least mean square algorithms 

employing time-varying convergence factors were applied to adaptive beamforming. The 

Complex OBA-LMS and Complex OBAI-LMS were applied when the signal is 

processed in blocks, and the Complex HA-LMS and Complex IA-LMS were employed 

when sequential processing is adopted at the beamforming receiver. The performance of 

these techniques was compared to the block and sequential versions of the Complex LMS 

algorithm. In contrast to the Complex LMS, simulation results showed that the proposed 

methods exhibit improved convergence speed and accuracy, irrespective of the flat fading 

channel parameters, number of antenna elements, and type of modulation employed by 

the users. 

Chapter Nine addressed the InterCarrier Interference (ICI) problem caused by 

Carrier Frequency Offset (CFO) between local oscillators in the transmitter and the 

receiver in multi-user MIMO-OFDM systems. In this regard, the previously proposed 

Independent Component Analysis (ICA) technique called Complex Optimum Block 

Adaptive ICA (Complex OBA-ICA) was employed to recover user signals in the 

presence of ICI, and channel induced mixing in time-varying frequency selective channel 
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environments. The presented simulation results indicated that the new technique 

significantly reduces Inter Symbol Interference (ISI) and Symbol Error Rate (SER) in 

multi-user MIMO-OFDM systems in dynamic channel environments. 

10.2 Future Research Directions 

The research work described in this dissertation can be extended in several 

directions. 

10.2.1 Hybrid ICA-LMS algorithm using Lagrange Multipliers  

The integration of voice and high-speed data services has led to increased 

demands for wireless systems that offer higher data rates, and basestations with higher 

capacity to support more users. Smart antennas technology in conjunction with adaptive 

beamforming offers a promising solution to reduce interference levels and improve the 

system capacity [75, 95]. Through adaptive beamforming, the basestation can form 

narrower beams towards the desired user and nulls towards interfering users, 

considerably improving the signal-to-interference-plus-noise ratio. 

In this dissertation, novel block and sequential LMS algorithms with improved 

convergence speed and accuracy were developed for adaptive beamforming. However, 

the performance of any beamforming algorithm starts deteriorating when the number of 

interfering users is much larger than the number of antenna elements at the receiver.  In 

order to remove this limitation, the concept of Lagrange Multipliers [96] may be applied 

to develop a hybrid ICA-LMS algorithm that employs both the kurtosis and mean square 

error cost functions. The hybrid ICA-LMS may have faster convergence and accuracy 
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than existing methods, even in a high interference scenario. This would significantly help 

improve system capacity and reduce network costs. 

10.2.2: Natural-Gradient ICA algorithm for Dynamic Frequency Selective Fading 

Channels 

The Natural-Gradient algorithm is a highly accurate algorithm to perform ICA of 

signals in convolutive mixing scenarios [97-99]. However, the main drawback of the 

Natural-Gradient technique is its slow convergence. Furthermore, ICA of signals in time-

varying frequency-selective channels continues to be a challenging area of research. A 

possible solution to this problem could be to develop an improved Natural-Gradient 

algorithm that utilizes the techniques of optimal and independent convergence factors 

developed in this dissertation. The new algorithm may exhibit improved convergence 

speed, even in dynamic frequency selective fading channels, while retaining the accuracy 

of the Natural-Gradient method.  

10.2.3: Conjugate Gradient LMS algorithm with optimal convergence factors 

The conjugate gradient method [67, 68] continues to be a versatile tool in various 

adaptive filtering and wireless communication applications [100,101], due its unique 

tradeoff between convergence speed and computational complexity. In Chapter Five, the 

CBC-ICA algorithm was developed which employs the conjugate gradient method for 

maximization of the kurtosis function. A similar approach can be used to develop a 

Conjugate Gradient LMS algorithm with optimally derived step-sizes along each 

conjugate direction, to achieve faster convergence.  
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APPENDIX: MATRIX INVERSION LEMMA 
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In [102, 103], it has been shown that the matrix inversion lemma can be applied to 

invert an NN x  matrix kR][  in the k th iteration, provided it contains the  

)1( x )1( −− NN  section of the matrix in the )1( −k th iteration, i.e. 1][ −kR . The 

description of the lemma proceeds as follows: 

The NN x  matrix kR][  is partitioned into sub-matrices as 
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where, )(11 kR is a scalar, )(12 kR is a )1( x 1 −N row vector, and R is a 

)1( x )1( −− NN square matrix. Since, 1][ −kR  is also known, it is partitioned in the 

following manner. 
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where, )1(12

^
−kR  is a 1 x )1( −N  column vector, )1(22

^
−kR  is a scalar, and R is a 

matrix defined in A.1.   

Since the lemma recursively computes the matrix inverse, it is applied to find 

1][ −
kR   , knowing 1

1][ −
−kR  which is expressed as 
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Where, 22α is a scalar, 12α is a 1 x )1( −N  vector, and 11α is a )1( x )1( −− NN  

matrix.  
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Since kR][ , 1][ −kR , and 1
1][ −
−kR  in (A.1), (A.2), and (A.3), respectively are already 

known, the matrix inversion lemma uses this information to compute 1][ −
kR , which can 

be expressed as 
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The inverse of the )1( x )1( −− NN  matrix F is computed using the following lemma 
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I  being the identity matrix. Applying another matrix inversion lemma the inverse in 

(A.10) can be obtained as follows 
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From (A.11), it can be easily seen that 
1−

R can be calculated using only matrix 

algebra. In this manner, (A.4)-(A.11) can be used to find the inverse of the matrix kR][ , 

with reduced computational complexity.  
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