5,000 research outputs found

    Acoustical structured illumination for super-resolution ultrasound imaging.

    Get PDF
    Structured illumination microscopy is an optical method to increase the spatial resolution of wide-field fluorescence imaging beyond the diffraction limit by applying a spatially structured illumination light. Here, we extend this concept to facilitate super-resolution ultrasound imaging by manipulating the transmitted sound field to encode the high spatial frequencies into the observed image through aliasing. Post processing is applied to precisely shift the spectral components to their proper positions in k-space and effectively double the spatial resolution of the reconstructed image compared to one-way focusing. The method has broad application, including the detection of small lesions for early cancer diagnosis, improving the detection of the borders of organs and tumors, and enhancing visualization of vascular features. The method can be implemented with conventional ultrasound systems, without the need for additional components. The resulting image enhancement is demonstrated with both test objects and ex vivo rat metacarpals and phalanges

    Ultrasonic Nondestructive Evaluation Techniques Applied to the Quantitative Characterization of Textile Composite Materials

    Get PDF
    An overall goal of this research has been to enhance our understanding of the scientific principles necessary to develop advanced ultrasonic nondestructive techniques for the quantitative characterization of advanced composite structures. To this end, we have investigated a thin woven composite (5-harness biaxial weave). We have studied the effects that variations of the physical parameters of the experimental setup can have on the ultrasonic determination of the material properties for this thin composite. In particular, we have considered the variation of the nominal center frequency and the f-number of the transmitting transducer which in turn address issues such as focusing and beam spread of ultrasonic fields. This study has employed a planar, two-dimensional, receiving pseudo-array that has permitted investigation of the diffraction patterns of ultrasonic fields. Distortion of the ultrasonic field due to the spatial anisotropy of the thin composite has prompted investigation of the phenomenon of phase cancellation at the face of a finite-aperture, piezoelectric receiver. We have performed phase-sensitive and phase-insensitive analyses to provide a measure of the amount of phase cancellation at the face of a finite-aperture, piezoelectric receiver. The pursuit of robust measurements of received energy (i.e., those not susceptible to phase cancellation at the face of a finite-aperture, piezoelectric receiver) supports the development of robust techniques to determine material properties from measure ultrasonic parameters

    Vision Sensors and Edge Detection

    Get PDF
    Vision Sensors and Edge Detection book reflects a selection of recent developments within the area of vision sensors and edge detection. There are two sections in this book. The first section presents vision sensors with applications to panoramic vision sensors, wireless vision sensors, and automated vision sensor inspection, and the second one shows image processing techniques, such as, image measurements, image transformations, filtering, and parallel computing

    Advanced signal processing methods for plane-wave color Doppler ultrasound imaging

    Get PDF
    Conventional medical ultrasound imaging uses focused beams to scan the imaging scene line-by-line, but recently however, plane-wave imaging, in which plane-waves are used to illuminate the entire imaging scene, has been gaining popularity due its ability to achieve high frame rates, thus allowing the capture of fast dynamic events and producing continuous Doppler data. In most implementations, multiple low-resolution images from different plane wave tilt angles are coherently averaged (compounded) to form a single high-resolution image, albeit with the undesirable side effect of reducing the frame rate, and attenuating signals with high Doppler shifts. This thesis introduces a spread-spectrum color Doppler imaging method that produces high-resolution images without the use of frame compounding, thereby eliminating the tradeoff between beam quality, frame rate and the unaliased Doppler frequency limit. The method uses a Doppler ensemble formed of a long random sequence of transmit tilt angles that randomize the phase of out-of-cell (clutter) echoes, thereby spreading the clutter power in the Doppler spectrum without compounding, while keeping the spectrum of in-cell echoes intact. The spread-spectrum method adequately suppresses out-of-cell blood echoes to achieve high spatial resolution, but spread-spectrum suppression is not adequate for wall clutter which may be 60 dB above blood echoes. We thus implemented a clutter filter that re-arranges the ensemble samples such that they follow a linear tilt angle order, thereby compacting the clutter spectrum and spreading that of the blood Doppler signal, and allowing clutter suppression with frequency domain filters. We later improved this filter with a redesign of the random sweep plan such that each tilt angle is repeated multiple times, allowing, after ensemble re-arrangement, the use of comb filters for improved clutter suppression. Experiments performed using a carotid artery phantom with constant flow demonstrate that the spread-spectrum method more accurately measures the parabolic flow profile of the vessel and outperforms conventional plane-wave Doppler in both contrast resolution and estimation of high flow velocities. To improve velocity estimation in pulsatile flow, we developed a method that uses the chirped Fourier transform to reduce stationarity broadening during the high acceleration phase of pulsatile flow waveforms. Experimental results showed lower standard deviations compared to conventional intensity-weighted-moving-average methods. The methods in this thesis are expected to be valuable for Doppler applications that require measurement of high velocities at high frame rates, with high spatial resolution

    Adaptive threshold optimisation for colour-based lip segmentation in automatic lip-reading systems

    Get PDF
    A thesis submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, in ful lment of the requirements for the degree of Doctor of Philosophy. Johannesburg, September 2016Having survived the ordeal of a laryngectomy, the patient must come to terms with the resulting loss of speech. With recent advances in portable computing power, automatic lip-reading (ALR) may become a viable approach to voice restoration. This thesis addresses the image processing aspect of ALR, and focuses three contributions to colour-based lip segmentation. The rst contribution concerns the colour transform to enhance the contrast between the lips and skin. This thesis presents the most comprehensive study to date by measuring the overlap between lip and skin histograms for 33 di erent colour transforms. The hue component of HSV obtains the lowest overlap of 6:15%, and results show that selecting the correct transform can increase the segmentation accuracy by up to three times. The second contribution is the development of a new lip segmentation algorithm that utilises the best colour transforms from the comparative study. The algorithm is tested on 895 images and achieves percentage overlap (OL) of 92:23% and segmentation error (SE) of 7:39 %. The third contribution focuses on the impact of the histogram threshold on the segmentation accuracy, and introduces a novel technique called Adaptive Threshold Optimisation (ATO) to select a better threshold value. The rst stage of ATO incorporates -SVR to train the lip shape model. ATO then uses feedback of shape information to validate and optimise the threshold. After applying ATO, the SE decreases from 7:65% to 6:50%, corresponding to an absolute improvement of 1:15 pp or relative improvement of 15:1%. While this thesis concerns lip segmentation in particular, ATO is a threshold selection technique that can be used in various segmentation applications.MT201
    corecore