112 research outputs found

    Gain and Loss Factor for Conical Horns, and Impact of Ground Plane Edge Diffractions on Radiation Patterns of Uncoated and Coated Circular Aperture Antennas

    Get PDF
    abstract: Horn antennas have been used for over a hundred years. They have a wide variety of uses where they are a basic and popular microwave antenna for many practical applications, such as feed elements for communication reflector dishes on satellite or point-to-point relay antennas. They are also widely utilized as gain standards for calibration and gain measurement of other antennas. The gain and loss factor of conical horns are revisited in this dissertation based on spherical and quadratic aperture phase distributions. The gain is compared with published classical data in an attempt to confirm their validity and accuracy and to determine whether they were derived based on spherical or quadratic aperture phase distributions. In this work, it is demonstrated that the gain of a conical horn antenna obtained by using a spherical phase distribution is in close agreement with published classical data. Moreover, more accurate expressions for the loss factor, to account for amplitude and phase tapers over the horn aperture, are derived. New formulas for the design of optimum gain conical horns, based on the more accurate spherical aperture phase distribution, are derived. To better understand the impact of edge diffractions on aperture antenna performance, an extensive investigation of the edge diffractions impact is undertaken in this dissertation for commercial aperture antennas. The impact of finite uncoated and coated PEC ground plane edge diffractions on the amplitude patterns in the principal planes of circular apertures is intensively examined. Similarly, aperture edge diffractions of aperture antennas without ground planes are examined. Computational results obtained by the analytical model are compared with experimental and HFSS-simulated results for all cases studied. In addition, the impact of the ground plane size, coating thickness, and relative permittivity of the dielectric layer on the radiation amplitude in the back region has been examined. This investigation indicates that the edge diffractions do impact the main forward lobe pattern, especially in the E plane. Their most significant contribution appears in far side and back lobes. This work demonstrates that the finite edge contributors must be considered to obtain more accurate amplitude patterns of aperture antennas.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Bistatic scattering from a cone frustum

    Get PDF
    The bistatic scattering from a perfectly conducting cone frustum is investigated using the Geometrical Theory of Diffraction (GTD). The first-order GTD edge-diffraction solution has been extended by correcting for its failure in the specular region off the curved surface and in the rim-caustic regions of the endcaps. The corrections are accomplished by the use of transition functions which are developed and introduced into the diffraction coefficients. Theoretical results are verified in the principal plane by comparison with the moment method solution and experimental measurements. The resulting solution for the scattered fields is accurate, easy to apply, and fast to compute

    Radar cross section studies

    Get PDF
    The ultimate goal is to generate experimental techniques and computer codes of rather general capability that would enable the aerospace industry to evaluate the scattering properties of aerodynamic shapes. Another goal involves developing an understanding of scattering mechanisms so that modification of the vehicular structure could be introduced within constraints set by aerodynamics. The development of indoor scattering measurement systems with special attention given to the compact range is another goal. There has been considerable progress in advancing state-of-the-art scattering measurements and control and analysis of the electromagnetic scattering from general targets

    On the theory of complex rays

    Get PDF
    The article surveys the application of complex-ray theory to the scalar Helmholtz equation in two dimensions. The first objective is to motivate a framework within which complex rays may be used to make predictions about wavefields in a wide variety of geometrical configurations. A crucial ingredient in this framework is the role played by Sp{} in determining the regions of existence of complex rays. The identification of the Stokes surfaces emerges as a key step in the approximation procedure, and this leads to the consideration of the many characterizations of Stokes surfaces, including the adaptation and application of recent developments in exponential asymptotics to the complex Wentzel--Kramers--Brilbuin expansion of these wavefields

    Diffraction and scattering of high frequency waves

    Get PDF
    This thesis examines certain aspects of diffraction and scattering of high frequency waves, utilising and extending upon the Geometrical Theory of Diffraction (GTD). The first problem considered is that of scattering of electromagnetic plane waves by a perfectly conducting thin body, of aspect ratio O(k^1/2), where k is the dimensionless wavenumber. The edges of such a body have a radius of curvature which is comparable to the wavelength of the incident field, which lies inbetween the sharp and blunt cases traditionally treated by the GTD. The local problem of scattering by such an edge is that of a parabolic cylinder with the appropriate radius of curvature at the edge. The far field of the integral solution to this problem is examined using the method of steepest descents, extending the recent work of Tew [44]; in particular the behaviour of the field in the vicinity of the shadow boundaries is determined. These are fatter than those in the sharp or blunt cases, with a novel transition function. The second problem considered is that of scattering by thin shells of dielectric material. Under the assumption that the refractive index of the dielectric is large, approximate transition conditions for a layer of half a wavelength in thickness are formulated which account for the effects of curvature of the layer. Using these transition conditions the directivity of the fields scattered by a tightly curved tip region is determined, provided certain conditions are met by the tip curvature. In addition, creeping ray and whispering gallery modes outside such a curved layer are examined in the context of the GTD, and their initiation at a point of tangential incidence upon the layer is studied. The final problem considered concerns the scattering matrix of a closed convex body. A straightforward and explicit discussion of scattering theory is presented. Then the approximations of the GTD are used to find the first two terms in the asymptotic behaviour of the scattering phase, and the connection between the external scattering problem and the internal eigenvalue problem is discussed

    Parameterizing Quasiperiodicity: Generalized Poisson Summation and Its Application to Modified-Fibonacci Antenna Arrays

    Full text link
    The fairly recent discovery of "quasicrystals", whose X-ray diffraction patterns reveal certain peculiar features which do not conform with spatial periodicity, has motivated studies of the wave-dynamical implications of "aperiodic order". Within the context of the radiation properties of antenna arrays, an instructive novel (canonical) example of wave interactions with quasiperiodic order is illustrated here for one-dimensional (1-D) array configurations based on the "modified-Fibonacci" sequence, with utilization of a two-scale generalization of the standard Poisson summation formula for periodic arrays. This allows for a "quasi-Floquet" analytic parameterization of the radiated field, which provides instructive insights into some of the basic wave mechanisms associated with quasiperiodic order, highlighting similarities and differences with the periodic case. Examples are shown for quasiperiodic infinite and spatially-truncated arrays, with brief discussion of computational issues and potential applications.Comment: 29 pages, 10 figures. To be published in IEEE Trans. Antennas Propagat., vol. 53, No. 6, June 200

    Reduction of transhorizon radio interference in satellite earth stations

    Get PDF

    Design of a validation campaign for electromagnetic modelling tools

    Get PDF
    La tesi si occupa di sviluppare delle procedure che individuino dei casi critici per la validazione di modelli elettromagnetici di antenne per applicazioni satellitar

    Diffraction modelling of mobile radio wave propagation in built-up areas

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.This thesis examines theoretical methods of modelling radio wave propagation in built-up areas, with particular application to mobile radio systems Theoretical approaches allow precise quantitative description of the environment in terms of parameters such as mean building heights and densities, in contrast to the ambiguous nature of more conventional empirical models. The models are constructed using both scalar and vector field analysis techniques. The vector analysis is accomplished using the Geometrical Theory of Diffraction to describe the detailed effects of building shape and positioning, particularly for short-range situations. Over longer ranges propagation can often be described in terms of multiple edge diffraction over building rooftops using a scalar field representation. This mechanism accounts well for measured field strength variations, but is time consuming to calculate accurately using standard methods. A rapid algorithm for calculating scalar diffraction over multiple building edges with arbitrary positioning is constructed. This model can be used for deterministic prediction of sector median field strengths including slow fading variations when appropriate building data exists. It is also applicable to terrain diffraction problems. For the case when only average building parameters are available a closed form solution to the problem of multiple diffraction over buildings of equal heights and spacings is derived. The solution is applicable to any antenna heights and so provides a rapid and efficient way to predict gross propagation characteristics. Both models are tested against measurements made in the UHF band and are found to yield good prediction accuracy.This work is funded by the Science and Engineering Research Council under award number 889088999 and by Philips Radio Communication Systems Ltd. of Cambridge under an industrial studentship
    • …
    corecore