
Gain and Loss Factor for Conical Horns, and Impact of Ground Plane Edge

Diffractions on Radiation Patterns of Uncoated and

Coated Circular Aperture Antennas

by

Nafati Abdasallam Aboserwal

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved October 2014 by the
Graduate Supervisory Committee:

Constantine A. Balanis, Chair
James T. Aberle

George Pan
Cihan Tepedelenlioglu

ARIZONA STATE UNIVERSITY

December 2014



ABSTRACT

Horn antennas have been used for over a hundred years. They have a wide variety of

uses where they are a basic and popular microwave antenna for many practical applications,

such as feed elements for communication reflector dishes on satellite or point-to-point relay

antennas. They are also widely utilized as gain standards for calibration and gain measure-

ment of other antennas.

The gain and loss factor of conical horns are revisited in this dissertation based on

spherical and quadratic aperture phase distributions. The gain is compared with published

classical data in an attempt to confirm their validity and accuracy and to determine whether

they were derived based on spherical or quadratic aperture phase distributions. In this work,

it is demonstrated that the gain of a conical horn antenna obtained by using a spherical

phase distribution is in close agreement with published classical data. Moreover, more

accurate expressions for the loss factor, to account for amplitude and phase tapers over the

horn aperture, are derived. New formulas for the design of optimum gain conical horns,

based on the more accurate spherical aperture phase distribution, are derived.

To better understand the impact of edge diffractions on aperture antenna performance,

an extensive investigation of the edge diffractions impact is undertaken in this dissertation

for commercial aperture antennas. The impact of finite uncoated and coated PEC ground

plane edge diffractions on the amplitude patterns in the principal planes of circular aper-

tures is intensively examined. Similarly, aperture edge diffractions of aperture antennas

without ground planes are examined. Computational results obtained by the analytical

model are compared with experimental and HFSS-simulated results for all cases studied.
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In addition, the impact of the ground plane size, coating thickness, and relative permittivity

of the dielectric layer on the radiation amplitude in the back region has been examined.

This investigation indicates that the edge diffractions do impact the main forward lobe

pattern, especially in the E plane. Their most significant contribution appears in far side and

back lobes. This work demonstrates that the finite edge contributors must be considered to

obtain more accurate amplitude patterns of aperture antennas.

ii



To My Great Grandparents Fatma and Maatog

for being my first teacher

To My Loving Parents Noria and Abdasallam

all I have and will accomplish are only possible due to their love and sacrifices

To My Lovely Wife Marwa

for her love, endless support and encouragement

To My Soul and My Life Taha and Salam

And to all those who supported me throughout these years

iii



ACKNOWLEDGEMENTS

I am thankful to Allah Almighty, the Most Beneficent the Most Merciful, Who’s Bless-

ings have always given me strength and wisdom.

First and firstmost, I would like to express my sincere appreciation to my adviser Prof.

Constantine Balanis for his excellent guidance and encouragement, support, valuable sug-

gestions, and continuous inspiration. It has been my pleasure to be his student and work

with him throughout my graduate study and research at the Arizona State University. His

great assistance in manuscript preparation is deeply acknowledged. This work would not

been possible without him. You are an admirable example for my academic career!

I also would like to thank to my committee members Prof. James Aberle, Prof. George

Pan, and Prof. Cihan Tepedelenlioglu for their helpful comments and suggestions and

constructive criticism. Special thanks to Mr. Craig Birtcher for his careful and timely

reading of drafts and assistance in obtaining the experimental results.

I would like to express my appreciation to all of my labmates, Ahmet Durgun, Victor

Kononov, Alix Rivera-Albino, Saud Alsaeed, Mikal Amiri, Wengang Chen, Sivaseethara-

man Pandi, and Kaiyue Zhang, present and past, who I have worked with over the past four

years.

I would like to thank my grandparents and parents for all the guidance and support they

have provided throughout my life. It was their continues encouragement and motivation

which kept me moving towards my goal. Thank you to my siblings for all your endless

support. Especial thanks to my uncle Omran and his family for their supporting.

iv



To my beloved wife Marwa, I express my heartfelt thanks and deepest gratitude for her

patience, love, and understanding. My son Taha and my daughter Salam, who born during

my study, were a source of happiness and enjoyment. You are the wind beneath my wings.

v



TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

CHAPTER

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2. Summary of the Chapters that Follow . . . . . . . . . . . . . . . . . . . 4

2 CONICAL HORN ANTENNA: GAIN, LOSS FACTOR, AND OPTIMUM DE-

SIGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2. Conical Horn Antenna . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1. Phase Distribution and Path Length Term . . . . . . . . . . . . . . 11

2.2.2. Conical Horn Aperture Fields . . . . . . . . . . . . . . . . . . . . 14

2.2.3. Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.4. Optimum Horn . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.5. Aperture Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 UNCOATED APERTURE ANTENNAS . . . . . . . . . . . . . . . . . . . . . . 30

3.1. Geometrical Optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.1. Free Space Solution of Conical Horn Antennas . . . . . . . . . . . 33

3.1.2. Infinite Ground Plane Solution of Conical Horn Antennas . . . . . 34

3.1.3. Infinite Ground Plane Solution of Circular Waveguide Antennas . . 35

vi



CHAPTER Page

3.2. Geometrical Theory of Diffraction for an Edge on a Perfectly Conducting

Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.1. Diffracted Field Solution . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.2. Edge Diffraction of Conical Horns in Free Space . . . . . . . . . . 45

3.2.3. Edge Diffraction of Aperture Antennas Mounted on Finite Ground

Planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3. Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.1. Conical Horn Antennas in Free Space . . . . . . . . . . . . . . . . 54

3.3.2. Conical Horn Antennas Mounted on Square and Circular Ground

Planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.3. Circular Waveguides Mounted on Square and Circular Ground Planes 66

4 COATED APERTURE ANTENNAS . . . . . . . . . . . . . . . . . . . . . . . . 70

4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.1.1. Dielectric-Covered Aperture Antennas . . . . . . . . . . . . . . . 71

4.1.2. Impedance Surface Boundary Conditions (ISBCs) . . . . . . . . . 76

4.2. Geometrical Theory of Diffraction for an Edge on an Impedance Surface 79

4.2.1. Diffracted Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2.2. Surface Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.3. Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.3.1. Circular Waveguide Mounted on Square and Circular Coated

Ground Planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

vii



CHAPTER Page

5 MALIUZHINETS FUNCTION AND ITS PROPERTIES . . . . . . . . . . . . . 99

5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.2. Maliuzhinets Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.3. Tanh-Sinh Quadrature Rule . . . . . . . . . . . . . . . . . . . . . . . . 107

6 CONCLUSIONS AND RECOMMENDATIONS . . . . . . . . . . . . . . . . . 112

6.1. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.2. Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

viii



LIST OF TABLES

Table Page

2.1 Simulated and Calculated Gain of Conical Horns . . . . . . . . . . . . . . 22

ix



LIST OF FIGURES

Figure Page

2.1 Geometry for Determining Path Length Term [1], [5]. . . . . . . . . . . . . 11

2.2 Aperture Phase Error Due to Binomial Series Approximation (dm = 5λ ). . . 13

2.3 Relationship of Approximate and Exact Peak Phase Deviation Parameters. . 14

2.4 Geometry of Conical Horn [4]. . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Simulated Far-Zone E-Plane Amplitude Patterns of a Conical Horn An-

tenna by Using Spherical and Quadratic Aperture Phase Distributions, and

Modal Solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6 Simulated Far-Zone H-Plane Amplitude Patterns of a Conical Horn An-

tenna by Using Spherical and Quadratic Aperture Phase Distributions, and

Modal Solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.7 Simulated Gain of a Conical Horn Antenna as a Function of Aperture Di-

ameter and for Different Axial Horn lengths. . . . . . . . . . . . . . . . . . 22

2.8 Optimum Design of the Conical Horn Antenna Based on Spherical and

Quadratic Aperture Phase Distributions. . . . . . . . . . . . . . . . . . . . 24

2.9 Conical Horn Loss Factor as a Function of Maximum Aperture Phase De-

viation (L = 1.5λ ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.10 Conical Horn Loss Factor as a Function of Maximum Aperture Phase De-

viation (L = 50λ ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.11 Conical Horn Gain as a Function of Maximum Aperture Phase Deviation

(L = 1.5λ ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

x



Figure Page

2.12 Conical Horn Gain as a Function of Maximum Aperture Phase Deviation

(L = 50λ ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1 Geometry of a Circular Waveguide Mounted on an Infinite Ground Plane. . 35

3.2 Two-Dimensional Ray Analysis for Radiation Pattern Calculations. . . . . . 46

3.3 Diffraction Mechanism by Edges of Ground Planes. . . . . . . . . . . . . . 50

3.4 Far-Zone E-Plane Amplitude Patterns of an X-Band Conical Horn Antenna

at 10.3 GHz (L = 7.148λ , 2α0 = 35◦). . . . . . . . . . . . . . . . . . . . . 56

3.5 Far-Zone H-Plane Amplitude Patterns of an X-Band Conical Horn Antenna

at 10.3 GHz (L = 7.148λ , 2α0 = 35◦). . . . . . . . . . . . . . . . . . . . . 56

3.6 Far-Zone E-Plane Amplitude Patterns of a C-Band Conical Horn Antenna

at 4.9 GHz (L = 3.724λ , 2α0 = 23◦). . . . . . . . . . . . . . . . . . . . . . 57

3.7 Far-Zone H-Plane Amplitude Patterns of a C-Band Conical Horn Antenna

at 4.9 GHz (L = 3.724λ , 2α0 = 23◦). . . . . . . . . . . . . . . . . . . . . . 58

3.8 Photographs of (a) C-Band, and (b) X-Band Conical Horns. . . . . . . . . . 59

3.9 Far-Zone E-Plane Amplitude Patterns of Conical Horn Antennas Mounted

on Square Ground Planes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.10 Far-Zone E-Plane Amplitude Patterns of Conical Horn Antennas Mounted

on Circular Ground Planes. . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.11 Far-Zone H-Plane Amplitude Patterns of Conical Horn Antennas Mounted

on Square Ground Planes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

xi



Figure Page

3.12 Far-Zone H-Plane Amplitude Patterns of Conical Horn Antennas Mounted

on Circular Ground Planes. . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.13 Far-Zone H-Plane Amplitude Patterns of a Conical Horn Antenna Mounted

a Square Ground Plane: UTD, Slope Diffraction, and MEC. . . . . . . . . . 65

3.14 Far-Zone E-Plane Amplitude Patterns of a Circular Waveguide Mounted on

a Circular Ground Plane at 10 GHz (a = 0.397λ , 2d = 10.16λ ). . . . . . . 68

3.15 Far-Zone E-Plane Amplitude Patterns of a Circular Waveguide Mounted on

a Square Ground Plane at 10 GHz (a = 0.397λ , 2d = 10.16λ ). . . . . . . . 68

3.16 Far-Zone H-Plane Amplitude Patterns of a Circular Waveguide Mounted

on a Circular Ground Plane at 10 GHz (a = 0.397λ , 2d = 10.16λ ). . . . . . 69

3.17 Far-Zone H-Plane Amplitude Patterns of a Circular Waveguide Mounted

on a Square Ground Plane at 10 GHz (a = 0.397λ , 2d = 10.16λ ). . . . . . 69

4.1 Circular Aperture Antenna Mounted on a Coated Perfectly Conducting Plane. 72

4.2 Two-Dimensional Geometry of a Circular Aperture Antenna Mounted on a

Coated Perfectly Conducting Plane. . . . . . . . . . . . . . . . . . . . . . 74

4.3 Geometry for the Diffraction by a Wedge with Impendence Faces. . . . . . 83

4.4 Sommerfeld Contour in the Complex α Plane [11], [56]. . . . . . . . . . . 86

4.5 Far-Zone E-Plane Amplitude Patterns of a Circular Waveguide Antenna

Mounted on a Coated Circular Ground Plane at 10 GHz (a = 0.397λ , 2d =

10.16λ ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

xii



Figure Page

4.6 Far-Zone H-Plane Amplitude Patterns of a Circular Waveguide Antenna

Mounted on a Coated Circular Ground Plane at 10 GHz (a = 0.397λ , 2d =

10.16λ ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.7 Far-Zone E-Plane Amplitude Patterns of a Circular Waveguide Antenna

Mounted on a Coated Square Ground Plane at 10 GHz (a = 0.397λ , 2d =

10.16λ ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.8 Far-Zone H-plane Amplitude Patterns of a Circular Waveguide Antenna

Mounted on a Coated Square Ground Plane at 10 GHz (a = 0.397λ , 2d =

10.16λ ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.9 Impact of the Ground Plane Size on the Amplitude Pattern Level at θ = 180◦. 97

4.10 Amplitude Pattern Level at θ = 180◦ Due to the Coating Thickness. . . . . 98

4.11 Amplitude Pattern Level at θ = 180◦ Due to the Relative Permittivity of

the Dielectric Layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.1 Three-Dimensional Plot of the Magnitude of Ψ1.65(z) with Varied Values

of x and y (−6 ≤ x,y ≤ 6). . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.2 Three-Dimensional Plot of the Phase of Ψ1.65(z) with Varied Values of x

and y (−6 ≤ x,y ≤ 6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.3 g(x) and its Derivative. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.4 Comparison of the Magnitude and Phase of Ψ0.5(z) with the Exact Values

for Fixed Values of x While the Imaginary Part of z is Varied. . . . . . . . . 110

xiii



Figure Page

5.5 Comparison of the Magnitude and Phase of Ψ1(z) with the Numerical In-

tegration for Fixed Values of x While the Imaginary Part of z is Varied. . . . 110

5.6 Comparison of the Magnitude and Phase of Ψ1.5(z) with the Exact Values

for Fixed Values of x While the Imaginary Part of z is Varied. . . . . . . . . 111

xiv



CHAPTER 1

INTRODUCTION

For conical horn antennas, the radiation characteristics (amplitude patterns, gain, loss

factor) strongly depend on the amplitude and phase distributions of the field over the horn

aperture. The reduction in gain due to the amplitude and phase tapers across the horn aper-

ture is represented by the aperture efficiency, which is the product of the taper efficiency

and phase efficiency. The taper efficiency represents the uniformity of the amplitude dis-

tribution of the field over the horn aperture, while the phase efficiency represents the phase

uniformity of the field over the horn aperture. The main work in this dissertation con-

centrates on the impact of the amplitude and phase distributions of the field over the horn

aperture on the gain of the antenna and its amplitude patterns.

Gain is one of the most important figure-of-merit of a conical horn antenna. It is well

established that the gain of a conical horn is strongly affected by the phase distributions of

the field over the horn aperture. The phase distribution can be modeled by tracing the path

trajectories the waves follow from a virtual apex, near the junction of the waveguide-to-

the-horn transition, to the horn aperture. The difference between this length and that from

the virtual apex to the aperture center is the path length term [1].

Unfortunately, the gain of conical horn antennas, despite their popularity and wide

range of applications, has not received the same attention compared to other antennas,

especially the pyramidal horn. Gray and Schelkunoff [2] developed a set of classic curves

on the gain of conical horns, which are included in the literature [1], [3]. While these

results have been used as a reference in many books and papers, it has not been clearly

documented how they were obtained. Also, it is not obvious whether the reported graphs
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were derived based on spherical or quadratic aperture phase distributions. This issue is

addressed in this dissertation and a direct calculation of gain and loss factor is conducted

with exact and approximate expressions for the path length terms.

In general, amplitude patterns of aperture antennas are influenced by aperture edge

diffractions, or diffractions from the edges of (uncoated and coated) ground planes where

they are mounted. In addition to investigating the effect of the aperture edge diffractions

on the amplitude patterns of a conical horn without a ground plane, the impact of uncoated

and coated ground plane edge diffractions on the amplitude patterns in the principal planes

of commercial aperture antennas is also examined in this dissertation.

1.1. Objectives

In this dissertation, there are three main objectives. In the first objective, an improved

analytical formulation for the radiation characteristics of conical horn antennas is intro-

duced. A conical horn gain, employing TE11-mode circular waveguide excitation, is calcu-

lated by using exact and approximate path length terms, then the gain is compared to that

obtained by the modal solution which models the horn as a finite conical waveguide. In

addition, expressions for more accurate loss factors, to account for amplitude and phase ta-

pers over the conical horn aperture, are derived which improve the prediction of the conical

horn gain. New formulas for the design of optimum gain conical horns, based on the more

accurate spherical aperture phase distribution, are derived and reported, and guidelines are

provided for their use.
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For the second objective, the impact of finite PEC ground plane edge diffractions on

the amplitude patterns of circular aperture antennas (conical horn and circular waveguide

antennas) is investigated. To accomplish this task, a method is introduced to calculate

accurately the far-zone amplitude patterns in the E and H planes, including those in the

far side and back lobe regions, of an aperture antenna by applying Geometrical Optics

(GO) and the Uniform Theory of Diffraction (UTD). The electric field distribution over the

antenna aperture is obtained by a modal method (considering the aperture phase distribution

of the conical horn antennas), and then it is employed to calculate the geometrical optics

field using the aperture integration method assuming an infinite ground plane. The UTD is

then applied to evaluate the diffraction from the ground plane edges. Far-zone amplitude

patterns in the E and H planes are numerically obtained by the vectorial summation of

the GO and UTD fields. Validity of the analysis is established by satisfactory agreement

between the calculated and measured data and those simulated by HFSS. In addition, for

a conical horn without a ground plane, the impact of the aperture’s edge diffractions is

investigated following the same procedure.

The third objective is to study the impact of finite coated ground plane edge diffractions

on the amplitude patterns of circular aperture antennas. A model based upon the uniform

theory of diffraction for an impedance wedge and the geometrical optics method is pre-

sented to calculate the amplitude patterns of a circular aperture antenna mounted on square

and circular finite PEC ground planes that are coated with a lossy dielectric. The diffrac-

tion of electromagnetic waves for impedance wedges (half plane with two face impedances
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in our work) is investigated. The GO fields obtained by the spectral domain method and

the diffracted fields for a dielectric-covered PEC ground plane are vectorially combined to

determine far-zone amplitude patterns in the E and H planes. The model is validated by

comparisons with experimental results and those simulated by HFSS.

1.2. Summary of the Chapters that Follow

The remainder of this document is organized as follows:

• Chapter 2: Conical Horn Antenna: Gain, Loss Factor, and Optimum Design. The

first part of this chapter is devoted to a literature review of the conical horn antenna.

Then, the phase distribution and the path length terms are investigated. After model-

ing the aperture fields of the conical horn, calculations of the gain and loss factor are

conducted using the spherical and quadratic phase distributions over the horn aper-

ture. Finally, expressions for more accurate loss factors, to account for amplitude and

phase tapering over the conical horn aperture, are derived, and new formulas for the

design of optimum gain conical horns, based on the more accurate spherical aperture

phase distribution, are derived and reported.

• Chapter 3: Uncoated Aperture Antennas. This chapter deals with the impact of the

PEC ground plane edge diffractions and the aperture edge diffractions on the ampli-

tude patterns in the principal planes of the aperture antennas. A brief review of the

geometrical optics method is presented. Then, the uniform theory of diffraction, to

calculate the fields diffracted by the edges of the ground planes and aperture, is intro-
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duced. Lastly, the analytical results are validated by comparisons with measurements

and HFSS simulations.

• Chapter 4: Coated Aperture Antennas. This chapter focuses on the diffraction by

a wedge with different surface impedances. Because the aperture is covered with

a dielectric layer, the impact of this layer is considered. The impact of the finite

coated ground plane edge diffractions on the E- and H-plane amplitude patterns of the

circular aperture antennas is investigated. Also, comparisons with measurements and

HFSS simulations are provided. Moreover, the amplitude pattern level at θ = 180◦

for different coating thickness, relative permittivity, and ground plane size has been

examined in this chapter.

• Chapter 5: Maliuzhinets Function and its Properties. In this chapter, a literature

review of the Maliuzhinets Function (MF) is presented. Then, an exact closed-

form solution is obtained to evaluate a known integral representation of the MF. The

tanh− sinh quadrature rule is employed to successfully calculate the integral in the

Maliuzhinets function, and the highly accurate numerical computation for MF is ob-

tained over the entire complex z plane and for any wedge factor n, which defines the

interior angle [(2−n)π] of the wedge. Finally, for special wedge angles, the new for-

mulation is numerically verified by comparing it with results obtained by numerical

integration of the Maliuzhinets function.
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• Chapter 6: Conclusions and Recommendations. All of the work presented in this

study is summarized in this chapter. It also provides recommendations for future

work.

6



CHAPTER 2

CONICAL HORN ANTENNA: GAIN, LOSS FACTOR, AND OPTIMUM DESIGN

2.1. Introduction

Aperture antennas, including horns, waveguides, slots, reflectors, and lenses, are most

commonly used at microwave frequencies where they are used for radiating microwave

signals into space and receiving microwave signals from space. These antennas work as

a transition region between the free space and the guiding structure (waveguide). They

are practical for space applications, where they can conveniently be flush mounted on the

surface of the spacecraft or aircraft without affecting its aerodynamic profile, which is

very critical in high-speed applications. They are also used as feed elements for large

radio astronomy, communication dishes, and satellite tracking. Their openings are typically

covered with a dielectric material to protect them from environmental conditions [1], [4].

Because of versatility, ease of excitation, high gain, and mechanical simplicity, aperture

antennas have become one of the important microwave antennas.

As is well known, the end of a circular waveguide is essentially flared out to form

a typical conical horn. This provides better matching in a broad frequency band where

reflections are reduced. However, the flaring is more expensive and difficult to engineer.

Aperture phase error, due to flaring, makes the uniform-phase aperture results invalid for

the horn aperture. Therefore, the aperture phase error over the horn aperture needs to be

involved in calculating the radiation characteristics of conical horn antennas.

To better understand the impact of aperture amplitude and phase tapers on the conical

horn antenna performance, improved analytical formulations for the radiation characteris-
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tics of a conical horn are introduced. This analysis includes gain, aperture phase errors,

loss factors for aperture amplitude and phase tapering, and amplitude patterns.

New expressions for the loss factor and the gain of conical horn antennas have been

developed based on spherical aperture phase distributions. The gain of a conical horn

antenna, using the spherical instead of the quadratic aperture phase distribution, is:

• Mainly the same for large axial length horns (L > 60λ ) or small peak aperture phase

errors (S < 0.4λ ).

• Higher, by as much as 0.84 dB, for intermediate axial length horns (10λ < L < 20λ )

and intermediate peak aperture phase errors (0.4λ < S < 0.9λ ).

• Higher for large values of the peak aperture phase errors (S > 0.9λ ).

In addition, improved formulas for the design of optimum gain horn antennas are proposed.

These formulas do not approximate the path length term. They provide more accurate horn

designs for a given optimum gain, and they are highly useful for the design of conical

horns.

2.2. Conical Horn Antenna

A conical horn is a truncated section of a right circular conical waveguide, and it is

usually connected to a circular waveguide or a rectangular waveguide which is gradually

transitioned into the circular waveguide [2]. Horns can be excited in any polarization or

combination of polarization depending on dimensions of the feeding waveguide and the

desired performance. It is a basic and popular microwave antenna for many practical ap-
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plications because it provides high gain, low return loss, and wide bandwidth. Also, it is

widely utilized as a gain standard for calibration and gain measurement [5].

The conical horn can be fed by a waveguide in mono- or multi-mode operation. Re-

ferring to the mode propagating within the wave guide feeding the horn, the conical horn

is classified as a mono- or multi-mode horn. For the mono-mode horn, the dimensions of

the feeding waveguide are sufficiently small so that only one mode (the dominant mode)

propagates within the waveguide and then transits to the horn through the throat. The multi-

mode horn is fed by a large dimension waveguide where more than one mode is allowed to

propagate within the waveguide.

In the literature, a number of papers have addressed the E- and H-plane radiation charac-

teristics, gain, and loss factors of sectoral and pyramidal horns [6-9]. It is well established

that the radiation characteristics of a horn strongly depend on the amplitude and phase

distributions over the horn aperture [1], [9]. The phase distribution can be modeled by

tracing the path trajectories the waves follow from a virtual apex, near the junction of the

waveguide-to-the-horn transition, to the horn aperture. The difference between this length

and that from the virtual apex to the aperture center is the path length term. The exact

and approximate path length terms were used to find the radiation characteristics for three

horns (E- and H-plane sectoral, and pyramidal) [1], [9].

For the sectoral and pyramidal horns, closed form expressions, in terms of sine and

cosine Fresnel integrals, for the radiation characteristics (amplitude patterns and gain) were

obtained by using the quadratic phase term [1]. By introducing a spherical phase term (a
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more accurate term), instead of the quadratic phase term, the calculation of the gain of a

pyramidal horn antenna was numerically obtained in [9]. It was concluded in [9] that the

gain of the the pyramidal horn, using the spherical phase term instead of the quadratic, was:

• Basically the same for large apertures (A or B > 50λ ) or small peak aperture phase

errors (S or T < 0.2λ ).

• Always higher for the intermediate aperture sizes (5λ < A or B< 8λ ) or intermediate

peak aperture phase errors (0.2λ < S or T < 0.6λ ).

• Lower for large peak aperture phase errors (S or T > 0.6λ ).

For the definitions of A, B, S, and T, refer to [9].

Unfortunately, the gain and amplitude patterns of the conical horn antenna, despite its

popularity and wide range of applications, has not received the same attention compared to

the others, especially the pyramidal horn. Gray and Schelkunoff developed a set of classic

curves on the gain of a conical horn which were included in a figure in [2]. While these

results have been used as a reference in many books and papers, it has not been clearly

documented how they were obtained. Also, it is not obvious whether the reported graphs

were derived based on spherical or quadratic phase distribution [1], [2]. This chapter ad-

dresses this issue. In addition, a direct calculation of the far-zone electric and magnetic

field components, gain, and loss factors are calculated with exact and approximate expres-

sions for the path length terms. In our calculation, the antennas are assumed to be lossless

(no conduction or dielectric losses), and thus the directivity and gain are identical.
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2.2.1. Phase Distribution and Path Length Term

Geometrically, it is illustrated that the phase distribution over the aperture of a horn is

not uniform. Referring to Fig. 2.1, assume that at the imaginary apex of the horn there

exists a source radiating spherical waves. The constant phase fronts are spherical as the

waves travel toward the horn aperture. The phase over the aperture is different since the

spherical waves travel different paths from the apex to the aperture. Referring to Fig. 2.1,

the difference in the path of travel δ (ρ́ ) can be written as

Fig. 2.1. Geometry for Determining Path Length Term [1], [5].

δ (ρ́ ) =−L+L

√
1+
(

ρ́
L

)2

(2.1)

which is referred to as the spherical phase term, which can be reduced to the quadratic

phase term by using the binomial expansion and retaining only the first two terms; that is

δa(ρ́ )≈−L+L

[
1+0.5

(
ρ́
L

)2
]
=

(ρ́ )2

2L
(2.2)
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The peak aperture phase error, denoted by S, is related to the path length term δ (ρ́ ), at

the edge of the aperture, by

S = δ
(

ρ́ =
dm

2

)
=−L+L

√
1+0.25

(
dm

L

)2

(2.3)

an approximate value of it at the edge, based on (2.2), is

Sa = δa

(
ρ́ =

dm

2

)
=

(dm)
2

8L
(2.4)

The exact ϕ and the approximate ϕa phase lags (in degrees) are related, respectively, to

the spherical and quadratic path length terms by

ϕ =
360
λ

δ (ρ́ ) (2.5)

ϕa =
360
λ

δa(ρ́ ) (2.6)

The exact peak phase lag at the edge of the aperture is

ϕp =
360
λ

δ (ρ́ )
∣∣∣
ρ́= dm

2

(2.7)

and its approximate value is

ϕap =
360
λ

δa(ρ́ )
∣∣∣
ρ́= dm

2

(2.8)

The aperture phase difference due to the exact and approximate path lengths can be

expressed as

∆ϕ = ϕa −ϕ =
360
λ

[
δa(ρ́ )−δ (ρ́ )

]
(2.9)

Fig. 2.2 presents the aperture phase difference ∆ϕ of (2.9) due to the binomial series

approximation. The aperture phase difference ∆ϕ is plotted versus the normalized aperture
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coordinate ρ ′/dm for different peak aperture phase errors S of (2.3) at the edge of the

aperture. As shown, the aperture phase difference is decreasing when moving toward the

aperture center and when the peak aperture phase error decreases. From Fig. 2.2, it can be

seen that the maximum error due to the binomial series approximation is 32.90◦ for a peak

aperture phase error of S = 0.8λ and an aperture diameter of dm = 5λ .

Fig. 2.2. Aperture Phase Error Due to Binomial Series Approximation (dm = 5λ ).

The approximate peak aperture phase error Sa is always greater than or equal to the

exact one, as illustrated in Fig. 2.3, and the difference increases as Sa increases for fixed

aperture dm. For example, when Sa increases from 0.8λ to 1.2λ for dm = 4λ , Fig. 2.3

shows that the corresponding difference between Sa and S will increase from 0.1λ to 0.26λ .

The relation between the exact (S) and approximate (Sa) expressions of the peak aperture
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Fig. 2.3. Relationship of Approximate and Exact Peak Phase Deviation Parameters.

phase error of the same horn can be given by

S = (dm)
2 1

8Sa


√√√√[1+

(
1

dm

)2

16(Sa)2

]
−1

 (2.10)

The approximate peak aperture phase error is equal to the exact one for large apertures

dm, and nearly equal for small peak aperture phase errors S < 0.4λ . The data in Fig. 2.3

indicate that as the aperture size in wavelengths decreases, Sa increases for a given S.

2.2.2. Conical Horn Aperture Fields

The expressions of the fields over the aperture of the horn are similar to those of a

TE11 mode for a circular waveguide with an aperture radius a. The only difference is the
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complex exponential term which represents the phase distributions (spherical or quadratic)

over the horn aperture.

An analytical study on the radiation characteristics of a conical horn requires accurate

amplitude and phase expressions for the fields over the horn aperture. For this purpose, one

can use either the dominant TE11 mode of a circular waveguide or a modal solution based

on a truncated conical waveguide.

The first approach, based on the TE11 mode, assumes that this mode continues to propa-

gate within the horn in the form of a cylindrical Bessel function with a spherical or quadratic

phase distribution, rather than a uniform plane wavefront along the symmetry axis. In this

approximation, the fields behave as if they were generated by a point source at the virtual

apex of the cone. Consider the conical horn which is connected to a cylindrical waveg-

Fig. 2.4. Geometry of Conical Horn [4].
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uide, as illustrated in Fig. 2.4, operating at the dominant TE11 mode. The electric field

components over its aperture can be represented by

Eρ =
E0

ρ́
J1

(
χ ′

11
ρ́
a

)
sin(ϕ´) e− jkδ (ρ́ ) ρ́ ≤ a (2.11)

Eϕ = E0 J1́

(
χ ′

11
ρ́
a

)
cos(ϕ´) e− jkδ (ρ́ ) ρ́ ≤ a (2.12)

where k = 2π/λ , χ ′
11 = 1.8412, E0 is the normalized amplitude of incident electric field,

Jm (x) is the Bessel function of first kind of order m, Jḿ (x) is the first derivative of Jm (x)

with respect to the entire argument x, and the other primes (ρ́,ϕ´) indicate cylindrical coor-

dinates of the equivalent excitation source over the antenna aperture. For the conical horn,

there are two degrees of freedom that impact its performance: the axial length L, and the

aperture diameter of the horn dm. Some references may use the flare angle, which is related

to L and dm.

The second approach is based on the assumption that the conical horn can be treated as

a conical waveguide whose field components are deduced from Maxwell’s equations, using

electric and magnetic vector potentials. It is possible to approximate the aperture field of a

finite/truncated conical horn antenna from the fields within an infinite conical waveguide.

Consider the same conical horn, as illustrated in Fig. 2.4, operating at the dominant

TE11 mode. Its aperture electric field components, using the modal solution of the conical

waveguide [10], are represented by

Eθ =
E0

sin(θ )́
J1

(
χ ′

11
θ´
α0

)
sin(ϕ´)

H(2)
v+0.5 (kŕ )

√
ŕ

(2.13)

Eϕ = E0
χ ′

11
α0

J1́

(
χ́11

θ´
α0

)
cos(ϕ´)

H(2)
v+0.5 (kŕ )

√
ŕ

(2.14)
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where α0 is the semi-flare angle of the cone; H(2)
m (x) is the Hankel function of second kind

of order m; ŕ,ϕ ,́θ´are the standard spherical coordinates with the origin at the vertex of the

cone; v is the eigenvalue of the TE11 mode inside the conical waveguide, or

v =−0.5+

√
0.25+

(
χ ′

11
α0

)2

(2.15)

Although the field components, in both approaches, have different mathematical ex-

pressions over the aperture, amplitude and phase distributions of these components are

nearly the same, especially for small flare angles.

The fields radiated by the horn can be obtained by utilizing the field equivalence prin-

ciple [11]. In this case, the conical horn is not mounted on a ground plane. Therefore,

the electric and magnetic equivalent current densities (Js, Ms) across the aperture have to

be considered [1], [11]. Assuming the spherical aperture phase distribution, the total elec-

tromagnetic fields radiated by the horn aperture in the far-field region, due to electric and

magnetic sources, are calculated by using the Aperture Integration method (AI), and they

can be written as [1], [11]. These equivalent sources produce the same fields as the original

sources in the region outside of the horn aperture.

Eθ = j
E0kρk

4r
e− jkr (1+ cosθ) sinϕ Lθ (2.16)

Eϕ = j
E0kρk

4r
e− jkr (1+ cosθ) cosϕ Lϕ (2.17)

where

Lθ =
∫ a

0

[
ρ ′J0

(
kρρ ′)J0

(
kρ ′ sinθ

)
−ρ ′J2

(
kρρ ′)J2

(
kρ ′ sinθ

)]
e− jkδ (ρ́ ) dρ ′ (2.18)
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Lϕ =
∫ a

0

[
ρ ′J0

(
kρρ ′)J0

(
kρ ′ sinθ

)
+ρ ′J2

(
kρρ ′)J2

(
kρ ′ sinθ

)]
e− jkδ (ρ́ ) dρ ′ (2.19)

kρ =
χ ′

11
a

(2.20)

and δ (ρ́ ) is presented by (2.1).

For the second approach, the similar procedure is followed by using the Aperture In-

tegration method to find the far-zone radiated fields. The only differences are the terms

related to the integration part where they are given by

Lθ =
∫ a

0

[
ρ ′J0

(
kρρ ′)J0

(
kρ ′ sinθ

)
−ρ ′J2

(
kρρ ′)J2

(
kρ ′ sinθ

)]
f (ρ ′)dρ ′ (2.21)

Lϕ =
∫ a

0

[
ρ ′J0

(
kρρ ′)J0

(
kρ ′ sinθ

)
+ρ ′J2

(
kρρ ′)J2

(
kρ ′ sinθ

)]
f (ρ ′)dρ ′ (2.22)

where

f (ρ ′) =
H(2)

v+0.5

(
k
√

L2 +(ρ ′)2
)

√
L2 +(ρ ′)2

(2.23)

2.2.3. Gain

The conical horn gain, for a given length, increases with increasing flare angle until it

reaches a maximum, beyond which it starts to decrease because of the large phase variations

over the aperture. The maximum gain of a lossless horn can be calculated using

G = 4π
Umax

Prad
(2.24)

where Prad is the total radiated power calculated by simply integrating the average power

density over the horn aperture Aa as follows

Prad =
1
2

∫∫
Aa

Re
(

E′×H′∗
)

dρ ′ (2.25)
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Prad =
|E0|2π

2η

∫ a

0

[(
J1
(
kρρ ′))2

/ρ ′+ρ ′
(

J1́
(
kρρ ′))2

]
dρ ′ (2.26)

and Umax is the maximum radiation intensity directed along the z-axis (θ = 0◦). It is

calculated using the far-zone electric field components of the horn antenna, and it is given

by

Umax =U(θ ,ϕ)
∣∣
max =

r2

2η
∣∣E∣∣2max =

r2

2η

(∣∣Eθ
∣∣2
max +

∣∣Eϕ
∣∣2
max

)
(2.27)

Umax =
|E0|2k2k2

ρ

8η

∣∣∣∫ a

0
ρ ′J0

(
kρρ ′)e− jkδ (ρ́ ) dρ ′

∣∣∣2 (2.28)

Since the integrand in (2.18)-(2.22), (2.26), and (2.28) contains advanced functions,

a closed-form analytical expression cannot be attained. Hence, Levin’s integration algo-

rithm [12-14] was used to find the far-zone E- and H-plane amplitude patterns, displayed,

respectively, in Figs. 2.5 and 2.6, and gain which is shown in Fig. 2.7.

The data in these figures indicate that when the flare angle is small, the amplitude

patterns in the E and H planes of a conical horn, obtained using the Spherical Phase Distri-

butions (SPD), are in excellent agreement with the values calculated by using the Quadratic

Phase Distributions (QPD) or the Modal Solution (MS). However, for large flare angles, the

amplitude patterns in the E and H planes, obtained by using the spherical aperture phase

distribution are not in good agreement with those calculated using the quadratic aperture

phase distribution and the modal solution. In addition, it is shown that the amplitude pat-

terns in the E and H planes of a conical horn antenna, by using the quadratic aperture phase

distribution and the modal solution, are in better agreement. For the modal solution, it is

possible to approximate the aperture field of a finite/truncated conical horn antenna from

the field of an infinite conical waveguide. The wavefronts of the aperture fields of the
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Fig. 2.5. Simulated Far-Zone E-Plane Amplitude Patterns of a Conical Horn Antenna by
Using Spherical and Quadratic Aperture Phase Distributions, and Modal Solution.

infinite conical waveguide are nearly spherical. However, the fields have different wave-

fronts when the infinite conical waveguide is truncated. Although such wavefronts are not

analytically separable at finite cone lengths, based on our calculations the truncated modal

solution wavefronts are in better agreement with the quadratic instead of the spherical phase

wavefronts.

Fig. 2.7 illustrates also that for a conical horn with a given axial length L, the gain

increases as the aperture diameter dm increases up to a certain optimum value. Beyond the

optimum value, the gain begins to decrease because large phase variations at the aperture

begin to occur. This follows the same trend exhibited for the pyramidal horn [1]. As indi-
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Fig. 2.6. Simulated Far-Zone H-Plane Amplitude Patterns of a Conical Horn Antenna by
Using Spherical and Quadratic Aperture Phase Distributions, and Modal Solution.

cated in Fig. 2.7, the gain values obtained using the spherical aperture phase distribution

are, as would have been expected and based also on the results of [9], in closer agreement

with the Gray and Schelkunoff results than those obtained using the quadratic aperture

phase distribution.

The computed gains, using spherical and quadratic aperture phase distributions and

HFSS simulations, are listed in Table 2.1 for different horn geometries. The waveguides

used have the same diameter dw = 0.333λ . The results show good agreement between

HFSS-simulated data and data obtained using the spherical aperture phase distribution.

The assumed dimensions in this table give different results using the quadratic and spher-
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Fig. 2.7. Simulated Gain of a Conical Horn Antenna as a Function of Aperture Diameter
and for Different Axial Horn lengths.

ical aperture phase distributions. This agreement is further evidence on the validity of the

spherical aperture phase distribution adopted in this work.

Table 2.1. Simulated and Calculated Gain of Conical Horns

L(λ ) dm(λ ) GHFSS(dBi) GQPD(dBi) GSPD(dBi)
1.0 3.0 7.95 3.49 7.653
2.0 3.0 15.03 14.19 15.13
2.8 4.1 14.7 12.79 14.55
3.1 3.6 16.99 16.44 16.97
3.5 3.4 17.98 17.46 17.67
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2.2.4. Optimum Horn

The conical horn dimensions which correspond to a maximum gain, lead to optimum

gain designs. The optimum design line is indicated by the black solid straight line in Fig.

2.7. Referring to Fig. 2.7, as the optimum gain increases, the optimum dimensions are in

excellent agreement for the spherical and quadratic aperture phase distributions. By using

curve fitting of the data obtained numerically, based on the spherical aperture phase distri-

bution, improved equations were developed for optimum design. By fitting data, represent-

ing the optimal gains and axial lengths, to a linear model using least-squares techniques, a

new equation is introduced.

Gopt ≈ 15.9749 (L/λ )+1.7209 (2.29)

For the relationship between the optimal gain and optimal diameter, the second-order

polynomial regression was useful for fitting a model, resulting in

Gopt ≈ 5.1572(dm/λ )2 −0.6451 (dm/λ )+1.3645 (2.30)

Similarly, the relationship between the optimal axial lengths and diameters was mod-

eled using a second-order polynomial regression leading to

L ≈ 0.3232(dm/λ )2 −0.0475 (dm/λ )+0.0052 (2.31)

The data in Fig. 2.8, as well as (2.29)-(2.31), can be used to design optimum gain horns. By

specifying the optimum gain (in dB) and using these equations, the optimum dimensions

(in wavelengths) of a conical horn can be determined. For optimum axial lengths and
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Fig. 2.8. Optimum Design of the Conical Horn Antenna Based on Spherical and Quadratic
Aperture Phase Distributions.

diameters, (2.29)-(2.31) match the data obtained by using spherical or quadratic aperture

phase distributions when the optimum gain is equal to or larger than 20 dB. From Fig. 2.8,

it can be seen that the spherical and quadratic aperture phase distributions result in different

optimum axial lengths when the gain is less than about 20 dB.

2.2.5. Aperture Efficiency

The aperture efficiency represents the reduction in gain due to the amplitude and phase

tapers across the horn aperture. Here, the TE11 mode, which is the dominant mode of a

circular waveguide, has a non-uniform amplitude distribution that results in an amplitude

taper efficiency εt of 0.836 [1]. The aperture phase (εp) and amplitude (εt) tapers are

represented by Lp and Lt , respectively, and they are related to the aperture efficiency (εap)
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and the loss factor by [1]

LF(s) =−10log10(εap) =−10log10(εtεp) = Lt +Lp (2.32)

where

εap = εtεp (2.33)

Lt =−10log10(εt) =−10log10(0.836) = 0.778 dB (2.34)

Lp(s) =−10log(εp) (2.35)

The aperture efficiency is the product of the taper efficiency and phase efficiency [1].

The taper efficiency represents the uniformity of the amplitude distribution of the field

over the horn aperture, while the phase efficiency represents the phase uniformity of the

field over the horn aperture. The gain (in dB) is related to the aperture area and aperture

efficiency by

G(dB) = 10log10

[
εap

4π
λ 2

(
πa2)]= 10log10

(
C
λ

)2

−LF(s) (2.36)

s =
d2

m
8lλ

(2.37)

where s is the maximum phase deviation, a is the radius of the horn at the aperture, C is the

aperture circumference, and LF (in dB) is the loss factor that accounts for the reduction in

gain due to the aperture efficiency. The first term in (2.36) represents the gain of a circular

aperture with uniform distribution, whereas the second term, represented by (2.34) and

(2.35), are correction factors to account for the loss in gain due to the amplitude and phase

tapers, respectively.

25



It is difficult to find an exact expression for the loss factor, hence the gain. However,

using numerical integration and curve fitting, new equations were developed for the loss

factor and gain. The data which represent the loss factor were fitted with a third-order

polynomial. The obtained expressions were compared with other expressions that are read-

ily available in the literature. The available closed-form approximations for the conical

horn loss factor, and hence the gain, were examined. It turns out that the first approxima-

tion in [1] and [15] is not consistent with the conical horn gain pattern for aperture phase

deviation s ≥ 0.5λ , whereas the second approximation in [5] is not consistent with the con-

ical horn gain pattern for an aperture phase deviation s ≥ 0.5λ and an axial length L ≤ 3λ .

For the first approximation, a polynomial expression for LF (in dB) is given in [1], [15]

LF(s)≈ 0.8−1.71s+26.25s2 −17.97s3 (2.38)

The second approximation proposed in [5] improves the loss factor and gain prediction

at large axial lengths (L > 3λ ). Here the loss factor is represented by:

LF(s)≈ 0.75+0.66s+9.4s2 +6.8s3 (2.39)

In this work, improved expressions are derived for the gain and loss factor for a con-

ical horn. From the data obtained numerically, it is difficult to get one equation for all

dimensions. Therefore, two equations were derived; one when L is equal to or smaller than

3λ and the other when L is larger than 3λ . These equations improve the accuracy of the

predicted loss factor (in dB) and gain values.

LF(s)≈ 0.5030+5.1123s−7.1138s2 +23.1401s3 L ≤ 3λ (2.40)
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Lp(s)≈−0.275+5.1123s−7.1138s2 +23.1401s3 L ≤ 3λ (2.41)

LF(s)≈ 0.7853−0.3976s+13.112s2 +3.901s3 L > 3λ (2.42)

Lp(s)≈−0.3976s+13.112s2 +3.901s3 L > 3λ (2.43)

The conformity of (2.32) used with (2.38)-(2.43) for the loss factor and gain is examined

Fig. 2.9. Conical Horn Loss Factor as a Function of Maximum Aperture Phase Deviation
(L = 1.5λ ).

in Figs. 2.9 and 2.11 for a small axial length (L = 1.5λ ) and in Figs. 2.10 and 2.12 for a

large axial length (L = 50λ ), where the loss factor and gain of a conical horn antenna are

plotted as a function of the maximum aperture phase deviation.

It is apparent that the new expressions, (2.40) and (2.42), predict the loss factor and gain

more accurately, unlike (2.38) and (2.39) where the first approximation is not consistent

with the conical horn gain pattern for a maximum aperture phase deviation more than 0.5λ .
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Fig. 2.10. Conical Horn Loss Factor as a Function of Maximum Aperture Phase Deviation
(L = 50λ ).

The second approximation proposed in [5] improves the gain prediction for large axial

lengths (L > 3λ ), but gives inaccurate predictions for small axial lengths (L ≤ 3λ ). From

(2.43), it is seen that when s = 0, the loss is equal to zero because L is large enough to

generate spherical waves at the aperture, but for small L, the loss is nonzero when s = 0

because the assumption of a virtual point source is no longer valid for small L. It is obvious

that the new expressions are fairly accurate for predicting the loss factor; hence the gain

of the conical horn antennas, and these expressions are restricted to a maximum aperture

phase deviation of about 1λ .
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Fig. 2.11. Conical Horn Gain as a Function of Maximum Aperture Phase Deviation (L =
1.5λ ).

Fig. 2.12. Conical Horn Gain as a Function of Maximum Aperture Phase Deviation (L =
50λ ).
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CHAPTER 3

UNCOATED APERTURE ANTENNAS

In many applications, uncoated aperture antennas are used either in free space or

mounted on ground planes. In both cases, the aperture edge or the ground plane edge affects

the radiation characteristics of the antenna because of the scattering from these edges. The

geometry of the edge (straight or curved), the size of the ground plane, and the aperture di-

mension have an impact on the intensity of the diffraction in the region around the antenna.

In some applications, the aperture antennas are not mounted on ground planes, utilized as a

gain standard for calibration and gain measurements, where the diffractions of the aperture

edge need to be investigated. For aviation applications, aperture antennas are integrated

into the surface of the spacecraft or aircraft. Then the diffractions coming from the ground

plane edges need to be examined to predict accurately the radiation characteristics of the

antenna.

3.1. Geometrical Optics

One of the most versatile and useful ray-based high-frequency techniques is the Ge-

ometrical Optics (GO) [11], [16]. The geometrical optics ray field consists of direct, re-

fracted, and reflected rays. When an infinite scatterer is illuminated by a high-frequency

radiating source, the GO accurately predicts the total field (direct and reflected) at any ob-

servation point. But, the GO fails to account for impact that results when the scatterer is

finite. It is well known that electromagnetic waves are physically continuous, in magnitude

and phase, in time and space domains. However, the geometrical optics has limitations

where the GO yields fields that are discontinuous across the shadow boundaries created by

the geometry of the problem. GO is insufficient to describe completely the scattered field
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in practical applications due to the inaccuracies inherent to GO near the shadow boundaries

and in the shadow zone. The GO predicts zero fields in the shadow zone. This prediction

does not physically exist. To overcome some of the deficiencies of geometrical optics, the

Geometrical Theory of Diffraction (GTD) and Uniform Theory of Diffraction (UTD) were

introduced [17-22]. The GTD/UTD is a ray method enhancing the GO by incorporating

diffracting rays to geometrical optics [23].

The GO fields radiated from aperture antennas are determined from a knowledge of

the fields (magnitude and phase) over the aperture of the antenna. The aperture fields

become the sources of the fields radiated at far observation points. This is a variation

of the Huygens-Fresnel principle, which states “each point on a primary wavefront can be

considered to be a new source of a secondary spherical wave and that a secondary wavefront

can be constructed as the envelope of these secondary spherical waves” [1], [11].

To find far-zone radiation characteristics of an aperture antenna, the equivalence princi-

ple, in terms of equivalent current densities Js and Ms, can be utilized to represent the fields

at the aperture of the antenna. When the antenna is not mounted on an infinite ground plane,

an approximate equivalent is utilized in terms of both Js and Ms [11]. An exact equiva-

lent is formed utilizing only Ms expressed in terms of the tangential electric fields at the

aperture mounted on an infinite ground plane [11].

Most aperture antennas are excited by waveguides. For the conical horn antenna, a

circular waveguide is used as a feed. To find the aperture field of the horn, the dominant

mode fields in the waveguide are projected forward to become an approximate of this field,
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and then they can be used in an equivalent principle. An analytical study on the radiation

characteristics of a conical horn, either unmounted or mounted on a ground plane, requires

accurate amplitude and phase expressions for the fields over the aperture. A spherical

phase term, representing the spherical phase variations over the aperture, is added to the

waveguide-derived fields such as the aperture fields have emanated from a virtual vertex

located in the waveguide at the point of intersection of the horn walls.

The total fields in space at a given observation point are a combination of the compo-

nents of GO and GTD/UTD. Depending on the geometry of the problem, GTD/UTD can

provide other diffraction mechanisms (slope diffraction, equivalent current contribution)

to increase the prediction accuracy. The total field in space at a given observation point

around the wedge can be represented by

ETotal = EDirect +EReflected +EDiffracted

ETotal = EGO +EGTD/UTD

where GO represents the direct and reflected field contributions and GTD/UTD represents

the diffracted field contributions. By summing vectorially the GO and GTD/UTD contri-

butions, the total field is computed at a given observation point.

Since the GTD/UTD is an extension of geometrical optics to describe diffraction phe-

nomena, the geometrical optics analysis of a conical horn in both cases, unmounted and

mounted on a ground plane, will be briefly reviewed. In addition, the geometrical optics

analysis of a circular waveguide mounted on a ground plane will be derived using some

advanced functions and identities.
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3.1.1. Free Space Solution of Conical Horn Antennas

Based on the previous section, we assume the TE11 mode in the circular waveguide

continues to propagate within the horn in the form of a cylindrical Bessel function with

a spherical phase distribution, rather than a uniform plane wavefront along the symmetry

axis of the antenna, as shown in Fig. 2.4. The conical horn, with an aperture radius a, is

connected to a circular waveguide, and the electric field components over its aperture can

be represented by

Eρ =
E0

ρ́
J1

(
χ ′

11
ρ́
a

)
sin(ϕ´) e− jkδ (ρ́ ) ρ́ ≤ a (3.1)

Eϕ = E0 J1́

(
χ ′

11
ρ́
a

)
cos(ϕ´) e− jkδ (ρ́ ) ρ́ ≤ a (3.2)

where k = 2π/λ , χ ′
11 = 1.8412,´= ∂

∂ ρ́ , and δ (ρ́ ) is the path difference term representing

the fields’ spherical phasefronts, and it is represented by (2.1).

In this case, the conical horn is not mounted on a ground plane. Therefore, the electric

and magnetic equivalent current densities across the horn aperture have to be considered

[1], [11]. The total electromagnetic fields radiated by the horn aperture in the far-field re-

gion, due to electric and magnetic sources, are calculated by using the Aperture Integration

method (AI), and they can be written as [1], [11]

Eθ = j
E0kρk

4r
e− jkr (1+ cosθ) sinϕ Lθ (3.3)

Eϕ = j
E0kρk

4r
e− jkr (1+ cosθ) cosϕ Lϕ (3.4)

where

Lθ =
∫ a

0

[
ρ ′J0

(
kρρ ′)J0

(
kρ ′ sinθ

)
−ρ ′J2

(
kρρ ′)J2

(
kρ ′ sinθ

)]
e− jkδ (ρ́ ) dρ ′ (3.5)
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Lϕ =
∫ a

0

[
ρ ′J0

(
kρρ ′)J0

(
kρ ′ sinθ

)
+ρ ′J2

(
kρρ ′)J2

(
kρ ′ sinθ

)]
e− jkδ (ρ́ ) dρ ′ (3.6)

These components represent the field radiated in the forward direction of 0 ≤ θ ≤ π
2 .

Also zero radiation is assumed in the back region (shadow zone).

3.1.2. Infinite Ground Plane Solution of Conical Horn Antennas

In this case, a circular aperture of a conical horn antenna is mounted on an infinitely

thin perfectly electric conducting ground plane. The fields over the aperture of the horn

are those of a TE11 mode for a circular waveguide. The only difference is the inclusion

of a complex exponential term which represents the spherical phase distribution over the

aperture.

To find the radiation characteristics of a conical horn mounted on PEC ground plane,

the equivalence principle, in terms of an equivalent magnetic current density Ms, can be

utilized to represent the fields at the aperture of the horn. Because of the boundary con-

dition, only the magnetic equivalent current density is nonzero over the aperture [1], [11].

By using the aperture integration method, the far-zone fields of the conical horn antenna

mounted on an infinite ground plane are given by

Eθ = j
E0kρk

2r
e− jkr sinϕ Lθ (3.7)

Eϕ = j
E0kρk

2r
e− jkr cosθ cosϕ Lϕ (3.8)

where Lθ and Lϕ are presented, respectively, by (3.5) and (3.6).
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Equations (3.7)-(3.8) represent the three-dimensional distributions of the far-zone fields

radiated by a conical horn antenna mounted on an infinite PEC ground plane, in the forward

direction of 0 ≤ θ ≤ π
2 .

3.1.3. Infinite Ground Plane Solution of Circular Waveguide Antennas

The geometry of a circular aperture of radius a, mounted on an infinite ground plane,

is shown in Fig. 3.1. The coordinate system is located at the center of the aperture. The

cylindrical coordinate system is the most convenient to represent the fields at the aperture

and to perform the integration due to the circular aperture’s configuration.

Fig. 3.1. Geometry of a Circular Waveguide Mounted on an Infinite Ground Plane.
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The electric field components over the aperture are assumed to be the TE11-mode fields

of the circular waveguide and are expressed as

Eρ =
E0

ρ́
J1

(
χ́11

ρ́
a

)
sin(ϕ´) ρ́ ≤ a (3.9)

Eϕ = E0J1́

(
χ́11

ρ́
a

)
cos(ϕ´) ρ́ ≤ a (3.10)

These fields are assumed to be known and are produced by the circular waveguide

which feeds the aperture antenna mounted on the ground plane. Here the exponential term,

included for the conical horn, is not considered because the flare angle is zero. The problem

is to determine the radiated fields at far observation points. The fields radiated by the

aperture can be computed by using the fields equivalence principle [1] which states that the

aperture fields may be replaced by equivalent electric and magnetic surface currents whose

radiated fields can then be calculated using the techniques of Sec. 12.2 of [1]. Using the

equivalence principle, the equivalent electric and magnetic surface currents, respectively,

are:

J s = 0 everywhere (3.11)

M s =−2n̂×E a ρ́ ≤ a (3.12)

where n̂ is a unit vector normal to the surface and on the side of the radiated fields, and E a

is the total electric field over the aperture S. Since the electric surface current is zero due to

the infinite ground plane, the potential vectors are expressed as follows:

A =
µ0

4π

∫∫
S

J s
e− jkR

R
dS′ = 0 (3.13)
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F =
ε0

4π

∫∫
S

M s
e− jkR

R
dS′ ̸= 0 (3.14)

where S is the area of the aperture and R represents the distance from any point in the source

(aperture) to the observation point.

As shown in section 12.3 of [1], for the far-field observations R can most commonly be

approximated by

R ≃ r− r′ cosψ for phase variations (3.15)

R ≃ r for amplitude variations (3.16)

where ψ is the angle between the vectors r̂ and r̂′, as shown in Figure 12.16 of [1]. Using

this far-field approximation, the vector potential F , defined for the magnetic source M s,

can be expressed as

F =
ε0

4π

∫∫
S

M s
e− jkR

R
dS′ ≃ ε0

e− jkr

4πr
(θ̂Lθ + ϕ̂Lϕ ) (3.17)

where

Lθ =
∫∫

S
[Mρ cosθ cos(ϕ −ϕ ′)+Mϕ cosθ sin(ϕ −ϕ ′)−Mz sinθ ] e jkr′ cosψds′ (3.18)

Lϕ =
∫∫

S
[−Mρ sin(ϕ −ϕ ′)+Mϕ cos(ϕ −ϕ ′)] e jkr′ cosψds′ (3.19)

from (3.12), we have

M s = ρ̂Mρ + ϕ̂Mϕ ρ́ ≤ a (3.20)

where Mρ = 2Eϕ , and Mϕ =−2Eρ
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Since Mz is zero, the expression in (3.18) can be simplified. Thus, θ and ϕ components

of the L vectors for the far-field radiation reduce to

Lθ = cosθ
∫∫

S
[Mρ cos(ϕ −ϕ ′)+Mϕ sin(ϕ −ϕ ′)] e jkρ ′ sinθ cos(ϕ−ϕ ′)ρ ′dρ ′dϕ ′ (3.21)

Lϕ =
∫∫

S
[−Mρ sin(ϕ −ϕ ′)+Mϕ cos(ϕ −ϕ ′)] e jkρ ′ sinθ cos(ϕ−ϕ ′)ρ ′dρ ′dϕ ′ (3.22)

where

r′ cosψ = ρ ′ sinθ cos(ϕ −ϕ ′) (3.23)

After substituting the tangential magnetic sources (Mρ and Mϕ ) into (3.21) and (3.22),

they reduce to

Lθ = 2E0 cosθ
∫ a

0

[
−J1

(
χ́11

ρ́
a

)
Iθ1 +ρ ′J1́

(
χ́11

ρ́
a

)
Iθ2

]
dρ ′ (3.24)

Lϕ =−2E0

∫ a

0

[
J1

(
χ́11

ρ́
a

)
Iϕ1 +ρ ′J1́

(
χ́11

ρ́
a

)
Iϕ2

]
dρ ′ (3.25)

where

Iθ1 =
∫ π

−π
sinϕ ′ sin(ϕ −ϕ ′) e jkρ ′ sinθ cos(ϕ−ϕ ′)dϕ ′ (3.26)

Iθ2 =
∫ π

−π
cosϕ ′ cos(ϕ −ϕ ′) e jkρ ′ sinθ cos(ϕ−ϕ ′)dϕ ′ (3.27)

Iϕ1 =
∫ π

−π
sinϕ ′ cos(ϕ −ϕ ′) e jkρ ′ sinθ cos(ϕ−ϕ ′)dϕ ′ (3.28)

Iϕ2 =
∫ π

−π
cosϕ ′ sin(ϕ −ϕ ′) e jkρ ′ sinθ cos(ϕ−ϕ ′)dϕ ′ (3.29)

To solve the complex integrations above, the exponent needs to be expanded in terms

of Bessel functions and trigonometric functions [24] as follows:

e jkρ ′ sinθ cos(ϕ−ϕ ′) = J0(kρ ′ sinθ)+2
∞

∑
n=1

jnJn(kρ ′ sinθ)cosn(ϕ −ϕ ′) (3.30)
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As a result, (3.26)-(3.29) are simplified to

Iθ1 =−π cosϕ(J0(kρ ′ sinθ)+ J2(kρ ′ sinθ)) (3.31)

Iθ2 =+π cosϕ(J0(kρ ′ sinθ)− J2(kρ ′ sinθ)) (3.32)

Iϕ1 =+π sinϕ(J0(kρ ′ sinθ)− J2(kρ ′ sinθ)) (3.33)

Iϕ2 =+π sinϕ(J0(kρ ′ sinθ)+ J2(kρ ′ sinθ)) (3.34)

After substituting (3.31)-(3.34) into (3.24)-(3.25) and assuming that β = k sinθ and

α = χ́11
a , they simplify to

Lθ = k0 cosθ cosϕ
∫ a

0

([
J1
(
αρ ′)+ρ ′J1́

(
αρ ′)]J0(βρ ′)

+
[
J1
(
αρ ′)−ρ ′J1́

(
αρ ′)]J2(βρ ′)

)
dρ ′ (3.35)

Lϕ =−k0 sinϕ
∫ a

0

([
J1
(
αρ ′)+ρ ′J1́

(
αρ ′)]J0(βρ ′)

−
[
J1
(
αρ ′)−ρ ′J1́

(
αρ ′)]J2(βρ ′)

)
dρ ′ (3.36)

where k0 = 2πE0

Useful identities relating Bessel functions and their derivatives [24] are given by

Jn−1 (x) =
n
x

Jn−1(x)+
dJn(x)

dx
(3.37)

Jn+1 (x) =
n
x

Jn−1(x)−
dJn(x)

dx
(3.38)

substituting (3.37) and (3.38) into (3.35) and (3.36), we have

Lθ = k0 α cosθ cosϕ
∫ a

0
ρ ′
[
J0(αρ ′)J0(βρ ′)+ J2(αρ ′)J2(βρ ′)

]
dρ ′ (3.39)
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Lϕ =−k0 α sinϕ
∫ a

0
ρ ′
[
J0(αρ ′)J0(βρ ′)− J2(αρ ′)J2(βρ ′)

]
dρ ′ (3.40)

These are evaluated with the help of the Lommel integral formula [24]

∫ ρ ′

0
ρ ′Jn

(
αρ ′)Jn(βρ ′)dρ ′ =

ρ ′

α2 −β 2

[
Jn(αρ ′)

dJn(βρ ′)

dρ ′ − Jn(βρ ′)
dJn(αρ ′)

dρ ′

]
(3.41)

Using this formula for n = 0 and n = 2, we have

γ0 =
∫ a

0
ρ ′J0

(
αρ ′)J0(βρ ′)dρ ′ =

a
α2 −β 2

[
αJ1(αa)J0(βa)−βJ1(βa)J0(αa)

]
(3.42)

γ2 =
∫ a

0
ρ ′J2

(
αρ ′)J2(βρ ′)dρ ′ =

a
α2 −β 2

[
βJ2(αa)J1(βa)−αJ2(βa)J1(αa)

]
(3.43)

and then (3.39) and (3.40) reduce to

Lθ = k0 cosθ cosϕ(γ0 + γ2) (3.44)

Lϕ =−k0 sinϕ(γ0 − γ2) (3.45)

which reduce to

Lθ =
2aα2k0

α2 −β 2 cosθ cosϕ
(

J1(αa)J′1(βa)
)

(3.46)

Lϕ =−2k0

β
sinϕ

(
J1(αa)J1(βa)

)
(3.47)

Finally, the far-zone fields radiated by the circular waveguide antenna can be written as

Eθ =
jkaE0e− jkr

r
sinϕ J1(χ́11)

J1(kasinθ)
kasinθ

(3.48)

Eϕ =
jkaE0e− jkr

r
cosθ cosϕ J1(χ́11)

J′1(kasinθ)
1− (kasinθ

χ́11
)2

(3.49)
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3.2. Geometrical Theory of Diffraction for an Edge on a Perfectly Conducting Sur-

face

As is well known, geometrical optics has some limitations because it does not predict

the fields in the shadow region. Also, GO is inaccurate in the vicinity of the shadow bound-

aries. The GO predicts zero diffracted fields everywhere and zero direct and reflected fields

in the shadow region. Therefore, the Geometrical Theory of Diffraction (GTD) is required

to overcome these deficiencies. The GTD supplements and enhances geometrical optics by

adding contributions due to edge diffractions at perfectly conducting edges. The introduc-

tion of the Geometrical Theory of Diffraction (GTD) by Keller [17-18] and its modified

version, the Uniform Theory of Diffraction (UTD) introduced by Kouyoumjian and Pathak

[19-22], have proved to be very valuable in solving antenna problems that otherwise may

have been intractable. However unlike GTD, UTD accurately predicts the diffracted field

along the incident and reflection shadow boundaries. The application of this theory on a

λ/4 monopole mounted on infinitely thin, perfectly conducting, finite square and circular

ground planes has been examined in [11]. Also, the thickness of the ground plane affects

radiation patterns. This effect has been studied both theoretically and experimentally in

[25], where the amplitude patterns of a λ/4 monopole mounted on thick finite circular

and square ground planes are presented. The uniform theory of diffraction was used in

[26] to calculate the edge diffracted fields from the finite ground plane of a microstrip an-

tenna. In this study, a model of combining the slot theory [27], [28] and the method of

uniform theory of diffraction [23] to account for the finite ground plane edge diffractions
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in both E- and H-plane calculations. In addition, the radiation patterns of an infinitesimal

monopole mounted on the tip of a perfectly conducting, finite length cone was calculated

using diffraction techniques where the amplitude patterns were obtained from the super-

position of the field radiated directly from the infinitesimal dipole mounted on the tip of a

perfectly conducting infinite length con and the field diffracted from the edge of the finite

length cone [29].

The aperture edge effect on the amplitude patterns in the E and H planes of a conical

horn antenna without a ground plane has been reported in the literature. The modal solu-

tion was used to obtain the fields within the horn, and then UTD was applied to evaluate

the diffraction from the aperture edge assuming the incident fields propagate from a vir-

tual apex along the slant radius [30], [31]. In [30], the measured patterns have not been

extended below -40 dB in the H plane because of the limited dynamic range of the receiver

used. The validity of calculation and measurements was restricted to regions over which

validation was achieved in [31]. Therefore, it is really not known how well the calculated

and measured patterns agree beyond the limit of the experimental dynamic range.

In this chapter, the GTD analysis of the far-zone E-plane and H-plane amplitude pat-

terns of circular aperture antennas, unmounted or mounted on finite square and circular

ground planes, is presented. The study enables one to accurately predict the far-zone E-

and H-plane amplitude patterns over the main beam, near and far sidelobes, and backlobes.

The analysis of the edge diffraction of the ground plane on the amplitude patterns of

conical horn and circular waveguide antennas mounted at the center of finite square and
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circular ground planes is presented. The fields of conical horn and circular waveguide

antennas mounted on an infinite ground plane or the field of a conical horn antenna with-

out a ground plane, which are well known, are supplemented, respectively, by the fields

diffracted at the edges of the ground plane and the antenna aperture. The UTD is utilized

to calculate the diffracted field components.

The circular edge of the circular ground plane and the antenna aperture has a caustic

along its axis, and the GTD/UTD predicts an infinite field there, which physically does

not exist. This deficiency can be overcome by the use of equivalent edge currents [32].

This method extends GTD/UTD to any direction, and uses the equivalent currents as the

source of the diffracted field. The fictitious currents, both electric and magnetic, flowing

along the edge, produce a finite field value at the caustic region using the line integral

technique of these currents around the circular rim. These currents do not really exist at the

discontinuity edge, but they are a mathematical aid to accurately predict the diffracted field

at and near the axial caustics. Away from the axial caustic region, the regular GTD/UTD

leads to a prescription of the total diffracted field as the sum of contributions from a pair of

the diametrically opposed flush points.

3.2.1. Diffracted Field Solution

The total field can be calculated by summing the GO fields and the fields diffracted

from the edge of the ground plane, or from the antenna aperture’s edges for the antennas

that are not mounted on a ground plane. According to the uniform theory of diffraction
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[11], the diffracted field can be expressed as

E d
= E i

(Qd) ·D
√

ρc

s(ρc + s)
exp(− jks) (3.50)

where E i
(Qd) is the electric field incident at a point Qd on the edge, D is the dyadic

diffraction coefficient D = −β̂ ′
0β̂0Ds − ϕ̂ ′ϕ̂Dh, where Ds and Dh are, respectively, the soft

and hard diffraction coefficients. ρc is the distance between the caustic at the edge and

the second caustic of the diffracted ray. The unit vectors β̂ ′
0, β̂0, ϕ̂ ′, ϕ̂ , together with ρc, are

illustrated in Figure 13-31 of [11]. ρc is given by

1
ρc

=
1
ρ i

e
− n̂.(ŝ′− ŝ)

ρg sin2 β ′
0

(3.51)

where ρ i
e is the radius of curvature of the incident wavefront at Qd taken in the plane

containing the incident ray and the unit vector tangent to the edge at Qd; ρg is the radius of

curvature of the edge at Qd; n̂ is the unit normal to the edge directed away from the center

of curvature; β ′
0 is the angle between the incident ray and the tangent to the edge at Qd; and

ŝ′, ŝ are, respectively, unit vectors in the direction of incidence and diffraction. The soft

and hard polarization diffraction coefficients are represented by

Ds,h =
−e− jπ/4

2n
√

2πk sinβ ′
0

({
cot

[
π +ξ−

2n

]
F [kLig+(ξ−)]+ cot

[
π −ξ−

2n

]
F [kLig−(ξ−)]

}

∓
{

cot

[
π +ξ+

2n

]
F [kLrng+(ξ+)]+ cot

[
π −ξ+

2n

]
F [kLrog−(ξ+)]

})
(3.52)

where F(x) is the Fresenel integral, given by

F(x) = 2 j
√

x e jx
∫ ∞
√

x
e− jt2

dt (3.53)
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g±(ξ ) = 1+ cos(2nπN±−ξ ), ξ± = ϕ ±ϕ ′; N± is the positive or negative integer or zero

which most nearly satisfies

2nπN+−ξ =+π

2nπN−−ξ =−π

n is a wedge factor given by γ = (2−n)π , where γ is the interior angle between the 0 face

and n face of the wedge. For the present problem, n = 2 where the wedge has 0◦ interior

angle. For the definitions of distance parameters (Li, Lrn, and Lro), refer to [11]. Because

the intersecting surfaces forming the edges are plane surfaces, the distance parameters are

equal, that is,

Li = Lro = Lrn = L (3.54)

For far-field observations, L is given by

L ≈ s′ s ≫ s′ (3.55)

where s′ is the source distance to the diffracting points in the E and H planes.

3.2.2. Edge Diffraction of Conical Horns in Free Space

The incident field at points Qd1 and Qd2, as shown in Fig. 3.2, is found from (3.3) and

(3.4) after substituting θ = π/2 and r = a; a is the radius of the horn aperture. ρc1 and ρc2

are determined from (3.51), and they are written as

ρc1 =
a

sinθ , ρc2 =− a
sinθ

(3.56)

The distance parameter of (3.54) is:

L1 = L2 = a (3.57)
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Fig. 3.2. Two-Dimensional Ray Analysis for Radiation Pattern Calculations.

The diffracted field components from diffracting points Qd1 and Qd2 are:

Ed1
θ = E i

θ

(
a,

π
2
,
π
2

)
Dh
(

L1,ψ1,α ,
π
2
,2
)√

ρc1
e− jkr1

r1
(3.58)

Ed2
θ = E i

θ

(
a,

π
2
,
π
2

)
Dh
(

L2,ψ2,α ,
π
2
,2
)√

ρc2
e− jkr2

r2
(3.59)

for the E-plane amplitude radiation pattern, and

Ed1
ϕ = E i

ϕ

(
a,

π
2
,0
)

Ds
(

L1,ψ1,α,
π
2
,2
)√

ρc1
e− jkr1

r1
(3.60)

Ed2
ϕ = E i

ϕ

(
a,

π
2
,0
)

Ds
(

L2,ψ2,α,
π
2
,2
)√

ρc2
e− jkr2

r2
(3.61)

for the H-plane amplitude radiation pattern.

where

ψ1 =
π
2
+θ +α (0 ≤ θ ≤ π) (3.62)
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ψ2 =


π
2 +α −θ (0 ≤ θ ≤ π

2 )

5π
2 +α −θ (π

2 < θ ≤ π)

(3.63)

For far-field observations

r1 ≃ r−acos
(π

2
−θ
)
= r−asinθ (3.64)

r2 ≃ r+acos
(π

2
−θ
)
= r+asinθ (3.65)

for phase terms, and

r1 ≃ r2 ≃ r (3.66)

for amplitude terms.

Therefore the diffracted fields from the diffracting points Qd1 and Qd2 reduce to

Ed1
θ = E i

θ

(
a,

π
2
,
π
2

)
Dh
(

L1,ψ1,α ,
π
2
,2
)√

ρc1 e+ jasinθ e− jkr

r
(3.67)

Ed2
θ = E i

θ

(
a,

π
2
,
π
2

)
Dh
(

L2,ψ2,α ,
π
2
,2
)√

ρc2 e− jasinθ e− jkr

r
(3.68)

for the far-zone E-plane amplitude radiation pattern, and

Ed1
ϕ = E i

ϕ

(
a,

π
2
,0
)

Ds
(

L1,ψ1,α ,
π
2
,2
)√

ρc1 e+ jasinθ e− jkr

r
(3.69)

Ed2
ϕ = E i

ϕ

(
a,

π
2
,0
)

Ds
(

L2,ψ2,α ,
π
2
,2
)√

ρc2 e− jasinθ e− jkr

r
(3.70)

for the far-zone H-plane amplitude radiation pattern.

Due to the circular symmetry of the aperture’s edge, the edge behaves as a continuous

ring radiator which leads to the formation of a caustic. Therefore, a caustic correction is

needed for angles at and near the axis of the antenna. The UTD can be used to correct
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for this caustic. Ryan and Peters [31] showed that UTD equivalent currents can be used to

correct for this caustic. Using this method, equivalent magnetic and electric currents are

created along the edge of the aperture. Then radiation integrals are used to obtain fields

due to these currents, which correct the diffracted fields at and near the symmetry axis of

the antenna. The electric and magnetic equivalent currents take the form of

Ie
ϕ =−

√
8πk
ηk

e− jπ/4DsE i
ϕ (Qd) (3.71)

Im
ϕ =−

√
8πk
k

e− jπ/4DhE i
θ (Qd) (3.72)

The fields radiated by each of the equivalent currents can be obtained using techniques

of Chapter 5 of [1]. Thus the radiated field for a loop carrying an electric current Ie are

given by

Ee
θ =− jωµa

4πr
cosθe− jkr

∫ 2π

0
Ie(ϕ ′)sin(ϕ −ϕ ′)e jkacos(ϕ−ϕ ′)sinθ dϕ ′ (3.73)

Ee
ϕ =− jωµa

4πr
e− jkr

∫ 2π

0
Ie(ϕ ′)cos(ϕ −ϕ ′)e jkacos(ϕ−ϕ ′)sinθ dϕ ′ (3.74)

The duality theorem can be applied to obtain the fields radiated by a magnetic current

Im , rather than an electric current Ie, with the result being

Em
θ =−η

jωεa
4πr

e− jkr
∫ 2π

0
Im(ϕ ′)cos(ϕ −ϕ ′)e jkacos(ϕ−ϕ ′)sinθ dϕ ′ (3.75)

Em
ϕ = η

jωεa
4πr

cosθe− jkr
∫ 2π

0
Im(ϕ ′)sin(ϕ −ϕ ′)e jkacos(ϕ−ϕ ′)sinθ dϕ ′ (3.76)

Now, by numerically integrating (3.75)-(3.76), corrected diffracted fields are obtained

at and near the caustic.
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3.2.3. Edge Diffraction of Aperture Antennas Mounted on Finite Ground Planes

In this section, two geometries, circular aperture antennas mounted on circular and

square ground planes, are treated similarly, and they are calculated analytically following

the same procedure as described previously in the free space case. Far-zone E-plane and

H-plane amplitude patterns are calculated for the circular and square ground planes. Also,

it should be noted that since the incident field is at grazing incidence, the total GO field is

multiplied by a factor of 1/2 [1], [11]. The incident field at points Qd1 and Qd2, as shown

in Fig. 3.3, is found from (3.7) and (3.8) for the conical horn antenna and from (3.48) and

(3.49) for the circular waveguide after substituting θ = π/2 and r = d; d is the radius of the

circular ground plane or the half width of the square ground plane. ρc1 and ρc2 are found

from (3.51). For a circular aperture antenna mounted on a circular ground plane:

ρc1 =
d

sinθ
(3.77)

ρc2 =− d
sinθ

(3.78)

and for the square ground plane:

ρc1 = ρc2 = d (3.79)

The distance parameter L of (3.54) is the same for both the circular and square ground

planes:

L1 = L2 = d (3.80)
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(a) Circular ground plane.

(b) Square ground plane.

Fig. 3.3. Diffraction Mechanism by Edges of Ground Planes.

The diffracted field components from diffracting points Qd1 and Qd2 , for either the

square or the circular ground planes, are:

Ed1
θ =

1
2

E i
θ

(
d,

π
2
,
π
2

)
Dh
(

L1,ψ1,0,
π
2
,2
)√

ρc1
e− jkr1

r1
(3.81)
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Ed2
θ =

1
2

E i
θ

(
d,

π
2
,
π
2

)
Dh
(

L2,ψ2,0,
π
2
,2
)√

ρc2
e− jkr2

r2
(3.82)

for the E-plane diffracted field, and

Ed1
ϕ =

1
2

E i
ϕ

(
d,

π
2
,0
)

Ds
(

L1,ψ1,0,
π
2
,2
)√

ρc1
e− jkr1

r1
(3.83)

Ed2
ϕ =

1
2

E i
ϕ

(
d,

π
2
,0
)

Ds
(

L2,ψ2,0,
π
2
,2
)√

ρc2
e− jkr2

r2
(3.84)

for the H-plane diffracted field.

where

ψ1 =
π
2
+θ (0 ≤ θ ≤ π) (3.85)

ψ2 =


π
2 −θ (0 ≤ θ ≤ π

2 )

5π
2 −θ (π

2 < θ ≤ π)

(3.86)

For far-field observations

r1 ≃ r−d cos
(π

2
−θ
)
= r−d sinθ (3.87)

r2 ≃ r+d cos
(π

2
−θ
)
= r+d sinθ (3.88)

for phase terms, and

r1 ≃ r2 ≃ r (3.89)

for amplitude terms.

Then the diffracted fields from the diffracting points Qd1 and Qd2 reduce to

Ed1
θ =

1
2

E i
θ

(
d,

π
2
,
π
2

)
Dh
(

L1,ψ1,0,
π
2
,2
)√

ρc1 e+ jd sinθ e− jkr

r
(3.90)

Ed2
θ =

1
2

E i
θ

(
d,

π
2
,
π
2

)
Dh
(

L2,ψ2,0,
π
2
,2
)√

ρc2 e− jd sinθ e− jkr

r
(3.91)
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for the far-zone E plane, and

Ed1
ϕ =

1
2

E i
ϕ

(
d,

π
2
,0
)

Ds
(

L1,ψ1,0,
π
2
,2
)√

ρc1 e+ jd sinθ e− jkr

r
(3.92)

Ed2
ϕ =

1
2

E i
ϕ

(
d,

π
2
,0
)

Ds
(

L2,ψ2,0,
π
2
,2
)√

ρc2 e− jd sinθ e− jkr

r
(3.93)

for the far-zone H plane.

So far, the diffraction effects are accounted for by using only the diffraction which

depends on the incident field. However, this indicates that the diffracted field would be zero

if the incident field is zero. Physically, the diffracted fields do not go to zero. Thus a second-

order diffraction, due to the rapid change of GO field near the edge, can be incorporated

into the analysis. In the H plane for the circular and square ground planes, for grazing

incidence, higher order term in the asymptotic solution must be considered. Otherwise, the

diffracted fields are zero, which leads to large discontinuities in the pattern. The first-order

diffracted fields are zero because the electric field on the surface of a conducting wedge

vanishes for a grazing incident wave. Therefore, the slope diffracted fields, second-order

diffracted fields, from the diffraction points are given by [11]

Eslope
θ =

1
jk

[
∂E i

θ (Qd)

∂n

](
∂Dh

∂ϕ´

)√
ρc

s(ρc + s)
e− jks (3.94)

Eslope
ϕ =

1
jk

[
∂E i

ϕ (Qd)

∂n

](
∂Ds

∂ϕ´

)√
ρc

s(ρc + s)
e− jks (3.95)

where

∂E i
θ

∂n

∣∣∣∣∣
Qd

= n̂.∇E i
θ

∣∣∣∣∣
Qd

=− 1
s′

∂E i
θ

∂ϕ´

∣∣∣∣∣
Qd

= slope of incident field for hard polarization.

52



∂E i
ϕ

∂n

∣∣∣∣∣
Qd

= n̂.∇E i
ϕ

∣∣∣∣∣
Qd

=− 1
s′

∂E i
ϕ

∂ϕ´

∣∣∣∣∣
Qd

= slope of incident field for soft polarization.

n̂ is unit normal in ϕ´direction.

s′ is the distance from the aperture center to the diffraction point.

∂Dh,s

∂ϕ´ = slope diffraction coefficient for hard and soft polarization, respectively, given

by

Ds,h
slope =

−e− jπ/4

2n2
√

2πk sinβ ′
0

({
csc2

[
π +ξ−

2n

]
Fs[kLg+(ξ−)]

− csc2
[

π −ξ−

2n

]
Fs[kLg−(ξ−)]

}
±
{

csc2
[

π +ξ+

2n

]
Fs[kLg+(ξ+)]

− csc2
[

π −ξ+

2n

]
Fs[kLg−(ξ+)]

})
(3.96)

where

Fs(x) = 2 jx[1−F(x)] (3.97)

and F(x) is presented by (3.53).

For circular ground planes, as mentioned before, the edge behaves as a continuous

ring radiator which in turn leads to the formation of a caustic, where the diffracted fields

are infinity. Therefore, a caustic correction is needed for angles at and near the axis of

the antenna. Equivalent magnetic and electric currents are created along the edge of the

circular ground plane by using this method. Then, radiation integrals are used to obtain

fields due to these currents which correct the diffracted fields at and near the axial caustic.

The electric and magnetic equivalent currents are calculated by using (3.73)-(3.76).
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The electric current is zero because the ϕ component of the incident electric field (GO

field) is zero at the edge. Therefore, the radiated field due to the electric current is zero.

The corrected diffracted fields in the E and H planes due to a magnetic current around the

ground edge are obtained at and near the caustic by solving numerically (3.75)-(3.76).

For the square ground plane, the slope diffraction does not significantly improve the

radiation pattern in the backlobe region of the H-plane amplitude radiation pattern. How-

ever, one needs to include the contributions from the E-plane edge diffractions because

the E-plane edge diffraction has a much greater magnitude than that of the H-plane edge

diffraction. This contribution can be calculated by using an equivalent currents method that

was described previously.

3.3. Validation

All the measurements were performed in the ElectroMagnetic Anechoic Chamber

(EMAC) facility at Arizona State University. Computer programs were written in Mat-

lab to calculate the normalized far-zone field amplitude patterns in the E and H planes for

all the cases examined in this work. In addition, HFSS simulations were performed.

3.3.1. Conical Horn Antennas in Free Space

The far-zone E- and H-plane amplitude patterns of conical horns of arbitrary flare an-

gles, excited by the TE11-mode circular waveguide, are obtained by employing geometrical

optics and the uniform theory of diffraction methods. Validity of the amplitude pattern anal-

ysis over the main beam, the near and far sidelobes, and back lobe presented in previous

sections has been verified by calculating the far-zone E- and H-plane amplitude patterns of
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commercial X- and C-band conical horns. The analytical results are compared with mea-

surements and HFSS simulations. The resulting patterns, over a dynamic range of 80 dB,

are shown in Figs. 3.4-3.7.

The agreement between theory, experiment, and HFSS simulation is good in the E and

H planes for the X- and C-band horns, having a total flare angle of 35◦ and 23◦and an axial

length L = 7.148λ and L = 3.724λ , respectively, as shown in Figs. 3.4-3.7. Although

the complex back structure of the antenna is not considered in the UTD analysis, a fairly

good agrement is found between the amplitude patterns over the main beam, near and far

sidelobes, and back lobe.

For the measurements, a waveguide (rectangular-to-circular waveguide transition) and

an adaptor were used to connect the conical horns to a coaxial RF cable. In the diffraction

modeling of the horn using the UTD, the feed structures shown in Fig. 3.8, due to their

complex geometries, were not taken into account. However, these structures become inte-

gral parts of the overall structure and significantly distort the pattern, especially in the back

region. Including these structures in the UTD modeling is not an easy task, and they cre-

ate more computational problems and deficiencies which cannot easily be simulated with

UTD. Therefore, to calculate their impact on the radiation characteristics of the conical

horns, HFSS was used to simulate the back feeding structures. As indicated in Figs. 3.4-

3.7, very good agreement was attained between the measurements and HFSS simulations

which incorporate the complex feeding structures. This demonstrates that the back feed

structures are responsible for the deviations between the measurements and UTD results.
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Fig. 3.4. Far-Zone E-Plane Amplitude Patterns of an X-Band Conical Horn Antenna at
10.3 GHz (L = 7.148λ , 2α0 = 35◦).

Fig. 3.5. Far-Zone H-Plane Amplitude Patterns of an X-Band Conical Horn Antenna at
10.3 GHz (L = 7.148λ , 2α0 = 35◦).
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Fig. 3.6. Far-Zone E-Plane Amplitude Patterns of a C-Band Conical Horn Antenna at 4.9
GHz (L = 3.724λ , 2α0 = 23◦).

For both antennas, the amplitude patterns in the E-plane is more broad than those in

the H-plane. Also the diffraction in the back region for the X-band horn is less than that of

the C-band horn because of its higher directivity. The more directivity the horn has, like

the X-band horn, the less diffraction will exist in the back region especially at and near the

antenna axis.

3.3.2. Conical Horn Antennas Mounted on Square and Circular Ground Planes

Models for the circular and square ground planes, with a conical horn antenna mounted

at the center, have been constructed. The width of the square ground plane and diameter

of the circular ground plane are 25.2 in. for the C-band. For the X-band antenna, the width
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Fig. 3.7. Far-Zone H-Plane Amplitude Patterns of a C-Band Conical Horn Antenna at 4.9
GHz (L = 3.724λ , 2α0 = 23◦).

of the square ground plane and diameter of the circular ground plane are 12.2 in.. The

ground planes are made of aluminum. Validity of the radiation pattern analysis over the

main beam, the near and far sidelobes, and back lobe presented above has been verified by

calculating the far-zone E- and H-plane amplitude patterns of commercial X- and C-band

conical horns. The frequencies at which the measurements were preformed are 4.9 GHz

and 10.3 GHz. The diameters of the horn apertures are 5.36 in. and 3.708 in. of the X-band

and C-band, respectively. The diameters of the waveguides (used for the measurements

and HFSS simulations) are 0.9 in. and 1.918 in. of the X-band and C-band, respectively.

Analytical and measured data are compared with simulated data based on Ansoft’s High

Frequency Structure Simulator (HFSS).

58



(a) (b)

Fig. 3.8. Photographs of (a) C-Band, and (b) X-Band Conical Horns.

Figs. 3.9 and 3.10 display, respectively, the far-zone E-plane amplitude patterns of the

X-band and C-band horn antennas mounted on the square and circular ground planes. Very

good agreement between theory, experiment and simulation is indicated; the total fields

consist of the GO (3.7), and first-order diffracted fields (3.90) and (3.91). In addition,

the fields associated with the equivalent currents of (3.73) and (3.75) are included for the

circular ground planes.

The far-zone H-plane amplitude patterns of the X-band and C-band horn antennas

mounted on the square and circular ground planes are, respectively, shown in figs. 3.11

and 3.12. The results of experiments and HFSS simulations show a good agreement with

the theoretical calculations. The total analytical fields consist of the GO (3.8), first-order
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diffracted (3.92) and (3.93), and slope diffracted fields (3.95). In the backlobe region of

the H-plane pattern of antennas mounted on the square ground planes, the contributions

from the E-plane edge diffractions are included because the E-plane edge diffraction has a

significant effect (more than that of the H-plane edge slope diffraction), as shown in Fig.

3.13. In addition, the fields associated with the equivalent currents of (3.74) and (3.76) are

included for the circular ground planes.

The H-plane electric field component of the incident field vanishes along the ground

plane edge (grazing incidence). Thus, only diffraction by the E-plane edges contributes

significantly to the E- and H-plane diffraction patterns. To obtain the far-zone E-plane

amplitude pattern, only the diffraction from the midpoints of the E-plane edge contributes

to the amplitude pattern. For the far-zone H-plane amplitude pattern, diffraction accruing

at all points along the E-plane edge, non-normal and normal incidence of the incident GO

fields at the edge, must be taken into consideration.

The discrepancies between the theoretical and measured results in the backward region

of the far-zone E- and H-plane amplitude patterns can be attributed to the inability to ac-

curately model the structure feeding the horn as well as the structure used to support the

antenna during the measurement. These discrepancies are more significant for the horns in

free space as shown in the previous section.

As mentioned, the amplitude patterns in the E-plane are broader than those in the H-

plane. Also the diffraction in the back region for the X-band horn is less than that of the

C-band horn because of the directivity.

60



(a) X-Band Conical Horn Antenna at 10.3 GHz.

(b) C-Band Conical Horn Antenna at 4.9 GHz.

Fig. 3.9. Far-Zone E-Plane Amplitude Patterns of Conical Horn Antennas Mounted on
Square Ground Planes.
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(a) X-Band Conical Horn Antenna at 10.3 GHz.

(b) C-Band Conical Horn Antenna at 4.9 GHz.

Fig. 3.10. Far-Zone E-Plane Amplitude Patterns of Conical Horn Antennas Mounted on
Circular Ground Planes.
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(a) X-Band Conical Horn Antenna at 10.3 GHz.

(b) C-Band Conical Horn Antenna at 4.9 GHz.

Fig. 3.11. Far-Zone H-Plane Amplitude Patterns of Conical Horn Antennas Mounted on
Square Ground Planes.
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(a) X-Band Conical Horn Antenna at 10.3 GHz.

(b) C-Band Conical Horn Antenna at 4.9 GHz.

Fig. 3.12. Far-Zone H-Plane Amplitude Patterns of Conical Horn Antennas Mounted on
Circular Ground Planes.
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(a) X-Band Conical Horn Antenna at 10.3 GHz.

(b) C-Band Conical Horn Antenna at 4.9 GHz.

Fig. 3.13. Far-Zone H-Plane Amplitude Patterns of a Conical Horn Antenna Mounted a
Square Ground Plane: UTD, Slope Diffraction, and MEC.
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The ripples in the amplitude patterns, especially in the backlobe region, are attributed

to the edge diffractions. The ripples shown in the patterns are due to the constructive

and destructive interference of the diffractions from the diametrically opposite diffraction

points. In the E-plane, these ripples are more significant because the incident electric field

at the point of diffraction is more intense in this plane than in the H plane for the X-band

horn. However, for the C-band horn, the edge diffractions have less impact on the amplitude

patterns in the forward region because of the broadness and strength of the geometrical

optics fields in the region.

Although the side of the square is equal to the diameter of the circular, it is very clear

from the patterns of Figs. 3.9-3.12 that the E- and H-plane amplitude patterns of the circular

ground plane are greater than those of the square ground plane at and near the antenna axis

(θ = 180◦). This is due to the ring radiator which contributes about an additional 10-13

dB.

3.3.3. Circular Waveguides Mounted on Square and Circular Ground Planes

The circular and square ground planes with the circular waveguide mounted at the cen-

ter have been constructed. The aperture antenna has been excited by the TE11-mode circular

waveguide. The width of the square ground plane and diameter of the circular ground plane

are 12 in.. The ground planes are made of aluminum. Validity of the radiation pattern anal-

ysis over the main beam and the near and far sidelobes presented above has been verified

by calculating the far-zone E- and H-plane amplitude patterns of the aperture antennas.

The frequency at which the measurements were performed was 10 GHz. The diameter of
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the aperture is 0.938 in.. Numerical and measured data are compared with simulated data

based on Ansoft’s High Frequency Structure Simulator (HFSS).

Figs. 3.14 and 3.15 show the far-zone E-plane amplitude patterns of antennas mounted

on the square and circular ground planes, respectively. The agreement between the theo-

retical analysis, experimental, and HFSS-simulated results is very good. The total fields

consist of the GO (3.48), and first-order diffracted fields (3.90) and (3.91). In addition,

the fields associated with the equivalent currents of (3.73) and (3.75) are included for the

circular ground planes.

The far-zone H-plane amplitude patterns of antennas mounted on the square and circu-

lar ground planes, respectively, are shown in Figs. 3.16 and 3.17. Very good agreement

between theory, experiment and simulation is observed; the total fields consist of the GO

(3.49), first-order diffracted (3.92) and (3.93), slope diffracted fields (3.95).

In the backlobe region of the H-plane pattern of antennas mounted on the square ground

planes, the contributions from the E-plane edge diffractions are included because the E-

plane edge diffraction has a significant effect - more than that of the H-plane edge slope

diffraction. Also, the fields associated with the equivalent currents of (3.74) and (3.76) are

included for the circular ground planes.

Comparing to the conical horn antenna in the previous section, the amplitude patterns

in the E and H planes of the circular waveguide are broader because the circular waveguide

has a low directivity.
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Fig. 3.14. Far-Zone E-Plane Amplitude Patterns of a Circular Waveguide Mounted on a
Circular Ground Plane at 10 GHz (a = 0.397λ , 2d = 10.16λ ).

Fig. 3.15. Far-Zone E-Plane Amplitude Patterns of a Circular Waveguide Mounted on a
Square Ground Plane at 10 GHz (a = 0.397λ , 2d = 10.16λ ).
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Fig. 3.16. Far-Zone H-Plane Amplitude Patterns of a Circular Waveguide Mounted on a
Circular Ground Plane at 10 GHz (a = 0.397λ , 2d = 10.16λ ).

Fig. 3.17. Far-Zone H-Plane Amplitude Patterns of a Circular Waveguide Mounted on a
Square Ground Plane at 10 GHz (a = 0.397λ , 2d = 10.16λ ).
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CHAPTER 4

COATED APERTURE ANTENNAS

In this part of the work, the impact of finite coated ground plane edge diffractions on the

amplitude patterns of circular aperture antennas is investigated. A model based upon the

uniform theory of diffraction for an impedance wedge and the geometrical optics method

is presented to calculate the amplitude patterns of a circular aperture antenna mounted on

square and circular finite ground planes that are coated with a lossy dielectric on one face.

The diffracted fields and the geometrical optics fields for a dielectric-covered PEC plane

are vectorially combined to determine far-zone amplitude patterns in the E and H planes.

The model is validated by comparisons with experimental results and those simulated by

Ansoft’s High Frequency Structure Simulator (HFSS).

4.1. Introduction

Aperture antennas are most commonly used at microwave frequencies in many appli-

cations, both aerospace and ground based. They are very practical for space applications

where they can be conveniently integrated into the surface of the spacecraft or aircraft

without affecting its aerodynamic profile, which is very critical in high-speed applications.

Their openings can usually be covered with a dielectric material to protect them from envi-

ronmental conditions [1], [2]. An investigation of the effect of finite coated ground planes

on aperture antenna performance will aid in understanding the full-scale antenna when it is

placed in more complex structures.

The uniform theory of diffraction, extended for impedance wedges, is utilized with

the geometrical optics method to calculate the amplitude patterns of a circular waveguide

antenna mounted on square and circular finite ground planes which are coated with a lossy
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dielectric on one face. A modal technique is used to calculate the electric field distribution

over the antenna aperture. After the field distribution over the antenna aperture is obtained,

the GO field can be easily calculated while considering the dialectic cover by using the

spectral domain method. Then, UTD is employed to account for the diffracted fields from

the coated ground plane edges.

A very detailed modeling of the radiation mechanism of the circular aperture anten-

nas mounted on finite coated square and circular ground planes is developed based on

geometrical optics and diffraction theory. Depending on the shape and geometry of the

scatterer, UTD may provide many different mechanisms, including first-order UTD diffrac-

tion, (higher-order) slope diffraction, and equivalent currents, to increase the accuracy of

the diffracted-field calculations. Far-zone amplitude patterns in both the E and H planes are

calculated for circular waveguide antennas, and the calculated results are compared with

measurements and HFSS simulations over a dynamic range of 80 dB.

4.1.1. Dielectric-Covered Aperture Antennas

It is generally necessary to cover aperture antennas for different purposes. For exam-

ple, aperture antennas in aircrafts and spacecrafts are covered by a dielectric material to

protect them from environmental conditions. For the space shuttles, antennas are covered

by a dielectric material as a protective heat shield. Also, the electromagnetic properties of

the coating may be used to obtain certain radiation performance and to increase the design

parameters of the antenna. However, since the coatings have a relative permittivity greater

than unity, or have a complex relative permittivity, such a coating can be expected to impact
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the radiation characteristics and performance of the antenna. Therefore, the effects of a di-

electric cover has investigated and received much attention in the last several decades [33],

[34]. Many researchers investigated the coating impact on slot antennas on conducting cir-

cular [35-42] and elliptic [43-48] cylinders loaded and/or coated by dielectric and plasma.

The spectral domain method was applied to aperture antennas mounted on infinite ground

planes [11], and on infinite dielectric-covered ground planes [49]. This method, previously

developed to determine the radiated fields from an aperture in a coated cylinder [50], is

extended to obtain the solution for the radiated fields by an aperture in a coated ground

plane. In particular, the radiation structure considered is an infinite perfectly conducting

plane with a circular aperture excited by a specified tangential electric field distribution.

The entire plane is generally covered by a dielectric layer of complex permittivity, complex

permeability, and thickness t as depicted in Fig. 4.1.

Fig. 4.1. Circular Aperture Antenna Mounted on a Coated Perfectly Conducting Plane.
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The fields, radiated by a coated aperture on a perfectly conducting plane due to the

field distribution over the circular aperture, are obtained by solving a two-region boundary-

value problem [49]. The first region is 0 ≤ z ≤ t and the second region is t ≤ z ≤ ∞, as

shown in Fig. 4.2. The spectral domain method is used to solve for the far-zone radiated

fields. The axial z components of both the E and H fields satisfy the scalar wave equation

in each region, namely ▽2u+β 2
c u = 0 where u can represent any of the axial components

of either the electric or magnetic fields in either region and βc is the cutoff phase factor.

The coating and the free-space regions above it are denoted as “Region I” and “Region II,”

respectively, in Fig. 4.2. In region I the propagation is taken as e±γ1z; γ1 is the propagation

factor in the coating. In region II, the phase is represented by e− jβ2z; β2 is the phase

factor in the region external to the coating. Double Fourier transforms are used to express

the axial field solution over mode space. Then, Maxwell’s equations and the assumed

propagation are used to find the transverse fields. In general, by applying the tangential

boundary conditions at the surfaces z = 0 and z = t, the fields radiated by a coated aperture

are given by [49]

Eθ (r,θ ,ϕ) = f (θ)(Ex cosϕ +Ey sinϕ) (4.1)

Eϕ (r,θ ,ϕ) = g(θ)(−Ex sinϕ +Ey cosϕ)cosθ (4.2)

where Ex and Ey are the double Fourier transforms of the x and y components, respectively,

of the electric field over the aperture, and

f (θ) =
e jkt cosθ

cosψ + jZh sinψ
(4.3)
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Fig. 4.2. Two-Dimensional Geometry of a Circular Aperture Antenna Mounted on a Coated
Perfectly Conducting Plane.

g(θ) =
e jkt cosθ

cosψ + jZe sinψ
(4.4)

with

ψ = kt
√

µrεr − sin2θ (4.5)

Zh =

√
µrεr − sin2 θ

εr cosθ
(4.6)

Ze =
µr cosθ√

µrεr − sin2 θ
(4.7)

where k is the free space wave number, εr is the complex relative permittivity, and µr is the

complex relative permeability.

For the same aperture excitation, the far-zone fields radiated by a coated aperture,

mounted on an infinite ground plane, are related to those of an uncoated by simple mul-

tiplicative functions which depend only on the parameters of the dielectric coating, the
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coating thickness, and the off-axis angle (θ).

Eθ (r,θ ,ϕ) = f (θ) ·E0
θ (r,θ ,ϕ) (4.8)

Eϕ (r,θ ,ϕ) = g(θ) ·E0
ϕ (r,θ ,ϕ) (4.9)

where Eθ , Eϕ are the electric field components of the covered aperture and E0
θ , E0

ϕ are the

electric field components of an uncovered aperture, respectively, given by (3.48) and (3.49).

When the permittivity of the dielectric layer equals the permittivity of free space, or

when the thickness of the dielectric coating t is zero, (4.8) and (4.9) reduce to those for the

uncoated case.

The antenna under consideration consists of a circular waveguide, opening onto a finite,

perfectly electric conducting flat ground plane coated with a dielectric material of thickness

t and complex permittivity and permeability as shown in Fig. 4.2. The circular waveguide

dominant TE11 mode is assumed over the circular aperture, and the higher-order reflected

modes are taken to be negligible. It is also assumed that no higher-order waveguide modes

are excited at the aperture. The medium inside the waveguide and external to the structure

is assumed to be free space. The fields within the circular waveguide are uniquely defined

by a discrete TE vector potential with one unknown, the reflection coefficient. Standing

waves represent the fields inside the dielectric coating, and these waves are described by

integral transforms of TE and TM potentials, each containing two unknown coefficients.

In addition, each potential exterior to the dielectric coating has one unknown coefficient.

To solve for the these unknowns, the boundary conditions at the aperture and at the outer

surface of the dielectric coating are used.
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4.1.2. Impedance Surface Boundary Conditions (ISBCs)

The increasing application of lossy/lossless dielectric materials increases the need for

suitable methods to characterize the response of these materials, including the scattering

effects of edge/wedges and discontinuities. The approximate impedance boundary con-

ditions are widely used in scattering, edge/wedge diffraction, and propagation problems

to simulate impact of the material properties and the surface geometry. The approximate

impedance boundary conditions are an effective approach to model the surface impedance.

The impedance surfaces play an important role in the modelling of metallic and nonmetal-

lic objects. This approach is good for conductors and lossy materials where there is some

penetration of the field. The electromagnetic scattering from a wedge with impedance

faces is one of the most important canonical problems in the geometrical theory of diffrac-

tion analysis. The boundary conditions can be used when the fields outside the material

body are required. If the fields inside the body are required, the boundary conditions are

unapplicable.

The impedance surface boundary conditions, introduced by Leontovich in 1940’s [51],

are widely used to simulate the material properties of a scatterer, and they can be very

helpful in simplifying the analytical and numerical solutions of scattering problems. The

surface impedance concept was used in 1938 in an attempt to simplify the analysis of prop-

agation of electromagnetic (radio) waves over the surface of the earth [52]. Using the exact

boundary conditions of the earth’s surface results in complicated analytical and numeri-

cal analyses. Consequently, approximate boundary conditions are applied to simplify the
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problem. Since then, the use of impedance surface boundary conditions has resulted in new

methods of computation.

The geometry of the actual scattering object can be locally approximated by canonical

shapes, whereas its electromagnetic properties can be accounted for by adopting suitable

approximate impedance surface boundary conditions [52]. ISBC’s constitute a very useful

approximation for approaching scattering problems, since they allow evaluating the mate-

rial effects while avoiding the calculation of the fields within the material itself.

To better understand the concept of impedance surface boundary conditions, the perfect

conductors are reviewed first. In a perfect electric conductor, the tangential components of

the electric and normal components of the magnetic field vectors are zero. So there are

no surface currents over the PEC surface, and the surface impedance is zero. Because the

field penetration is zero, the perfect conductor is entirely excluded from computation [52].

However, its impact must be taken into account by imposing boundary conditions (surface

impedance) at the PEC ground plane. Reflections from the ground plane are properly taken

into account by the boundary conditions to accurately calculate the field in the space near

the conductor. However, for a non-perfect electric conductor, some of the electromagnetic

field will penetrate inside the conductor due to the skin effect. Therefore, the longitudinal

electric field component will vanish. This condition produces a non-zero surface impedance

associated with the skin-effect phenomenon. Because of the continuity properties of the

electromagnetic field across the conductor’s surface, the ratio of the tangential electric and
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tangential magnetic fields at the interface is assumed to be equal to the wave impedance in

the conductor.

Based on the impedance surface boundary condition, the tangential electric and mag-

netic field vectors can be related by a constant impedance which is related only to the

properties and configurations of the coating and is independent of the source illumination.

At the surface interface, the tangential electric and magnetic field vectors are mutually per-

pendicular and related by the impedance of the surface [52]. Similar to the circuit theory

where the ratio between voltage and current is denoted by the term impedance, the approxi-

mate boundary conditions have received the name surface impedance boundary conditions.

In a vector equation, the impedance surface boundary condition can by written as

E− (n̂ ·E)n̂ = Zn̂×H = ηZ0(n̂×H) (4.10)

where E is the electric field vector, H is the magnetic field vector, and n̂ is the outward

unit normal to the surface. Z is the surface impedance, and η is the normalized impedance

relative to the intrinsic impedance Z0 of free space.

Since these approximate boundary conditions relate the electric and magnetic fields

outside the scatterer, the scattered fields can be evaluated without involving the internal

fields. Thus, the problem of analysis is considerably simplified by involving only the exter-

nal fields imposed at the outer surface to simulate the material properties of the body. Then

a two-media problem is converted into a one-media problem.

The normalized equivalent surface impedance may be obtained from a simple transmis-

sion line model [53-54], where the short-circuited transmission-line approximation is used
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to account for the coating impedance. By considering the coating as a section of a trans-

mission line of length t and characteristic impedance η , terminated with the impedance ηL,

the input impedance, corresponding to the normalized equivalent surface impedance of an

obliquely incident plane wave, is

ηeq = η
ηL + jη tan(k1t sinφt)

η + jηL tan(k1t sinφt)
(4.11)

for a coated perfect electric conductor (ηL = 0), (4.11) reduces to

ηeq = jη tan(k1t sinφt) (4.12)

where η is the characteristic impedance of the coating material
√

µ1ε0/µ0ε1, and k1 is the

phase constant ω√µ1ε1. For lossy materials, the permittivity ε1 and permeability µ1 may

be complex.

The angle of reflection φt can be determined, given the angle of incidence φi and the

constitutive parameters, by [54]

sinφt =

√
1− µ0ε0

µ1ε1
cos2 φi (4.13)

4.2. Geometrical Theory of Diffraction for an Edge on an Impedance Surface

The subject of non-specular electromagnetic scattering by impedance structures has

been an area of great interest in recent years where the scattering of electromagnetic waves

by impedance wedges has many practical applications. The scattering properties of a struc-

ture are a function of both its geometrical and materials properties. The solution of scat-

tering problems in Chapter 3 is applicable only to the PEC wedge. However, in many
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applications, the wedges are not perfect metallic. Therefore, investigation of the reflec-

tion, transmission, and diffraction properties of impedance wedges is important. Among

the various structures studied, the impedance wedge has received considerable attention.

Unlike reflection, diffraction contributes to wave propagation within the shadow zone. To

study the scattering properties of impedance wedges, Leontovich developed a boundary

condition known as the impedance or Leontovich boundary condition, which greatly sim-

plifies the analysis. Although the impedance boundary conditions provide an approximate

relationship between the electric and magnetic field on the surface of the scatterer, it is a

very useful approximation because they provide and simplify the analytical and numerical

solution of many practical problems which otherwise could not be solved.

The GTD/UTD [18], [22] has been widely and successfully employed in terms of solv-

ing a wide variety of perfectly conducting electromagnetic problems involving diffraction

at edges in perfectly conducting surfaces. Its extension to the case of non-perfectly con-

ducting surfaces may provide a significant improvement to the applicability of ray methods.

With the impedance wedge’s diffraction coefficients it is possible to solve the scattering

problem of a wide variety of new problems for which the impedance surface boundary con-

ditions can be applied. The uniform GTD formulation was rigorously derived by asymp-

totically evaluating the exact solution given by Maliuzhinets [55], who used the method

of Sommerfeld. A uniform high-frequency solution to the diffraction by a wedge with ar-

bitrary uniform isotropic impedance faces is provided by this method. The wedge face is

illuminated by a plane wave normally incident on the edge of the wedge. The impedance
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wedge UTD formula is achieved by introducing suitable multiplying factors. Although

these factors involve a special function which is difficult to calculate for a general exterior

(nπ) wedge angle, more numerically tractable expressions are available when n is a ratio-

nal number. In particular, this function can be very easily calculated for the four important

cases n = 1/2,1,2,3/2.

The Maliuzhinets method basically consists of expressing the total field as a spectrum

of plane waves over a Sommerfeld contour, represented as an integral with an unknown

spectral function. The unknown spectral function is then determined using the boundary

conditions. Next, the integral equation is transformed into a first-order functional difference

equation whose solution gives the unknown spectral function. When the spectral function

is obtained, the diffracted field can be asymptotically evaluated. This solution yields the

GO fields as well as the diffracted fields and surface waves, if they exist. However, the

diffraction coefficient obtained from this solution is only applicable to two-dimensional

structures and for practical applications it is necessary to derive coefficients applicable to

three dimensions. This requires the solution of the impedance wedge problem with a plane

wave excitation at skew angles. So far, the exact solution to this problem has only been

obtained for a few wedge angles. In particular, solutions are possible only for wedges with

angles of 0 (half plane) [56], π
2 (with one face perfectly conducting) [57], π and 3π

2 (with

one face perfectly conducting) [48], [59].

The main difficulty in obtaining the skew incidence solution for the diffraction by an

impedance wedge is the lack of techniques to solve the resulting four coupled functional
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difference equations. For the specific wedges mentioned above, the resulting four differ-

ence equations can be decoupled yielding the solution given by the references. However,

the coupling of the four difference equations for other wedge angles is not yet solved. An

approximate solution for an impedance wedge, illuminated at skew incidence, has been

developed using Maliuzhinets method [56]. In this solution, the exact diffraction coeffi-

cients are recovered for the impedance half plane, illuminated at skew incidence, and for

the impedance wedge illuminated at normal incidence.

4.2.1. Diffracted Fields

The calculation of the diffracted fields for material wedges is considerably more com-

plex than for PEC surfaces. For non perfect surfaces, the boundary conditions couple the

magnetic and electric fields. The two dimensional (2-D) geometry of the wedge scattering

problem is depicted in Fig. 4.3. The impedance wedge has its edge along the z-axis of a

cylindrical coordinate system (ρ ,ϕ ,z). The top face is 0 face and the bottom face is n face.

The exterior wedge angle is denoted by nπ , and the angles of incident and of diffraction,

measured with respect to the 0 face, are denoted by ϕ0 and ϕ , respectively. The ISB and

RSB refer to the Incident Shadow Boundary and Reflected Shadow Boundary, respectively.

The surface impedance at ϕ = 0 and ϕ = nπ faces are denoted by Z0 and Zn, respectively.

The surface impedances are usually complex numbers whose real parts must be nonnega-

tive because of energy considerations. A time harmonic dependence exp(iωt) is assumed

and suppressed in the following.
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Fig. 4.3. Geometry for the Diffraction by a Wedge with Impendence Faces.

The longitudinal components of the normal incident field can be expressed as

E i
z or H i

z = e jk cos(ϕ−ϕ0) (4.14)
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where k is the wave number of free space.

According to Maxwell equations, two groups of boundary conditions for corresponding

faces of the third kind are obtained; for TE wave

1
ρ

∂Hz

∂ϕ
∓ jk sinθ h

0,nHz = 0 ϕ = 0,nπ (4.15)

and for TM wave

1
ρ

∂Ez

∂ϕ
∓ jk sinθ e

0,nEz = 0 ϕ = 0,nπ (4.16)

sinθ h
0,n =

Z0,n

Z
sinθ e

0,n =
Z

Z0,n
(4.17)

where Z is the free space impedance, “−” and 0 in 4.15 and 4.16 correspond to ϕ = 0 while

“+ ” and n correspond to ϕ = nπ . The surface impedance for each of the wedge faces is

used to determine the Brewster angle, θ0,n, for that surface, where the Brewster angle is the

angle at which no reflection is present. The Brewster angle is polarization dependent; for

soft polarization

θ0 = sin−1 (1/η0
)

θn = sin−1 (1/ηn
)

(4.18)

and for hard polarization

θ0 = sin−1(η0) θn = sin−1(ηn) (4.19)

where η0 =
Z0
Z and ηn =

Zn
Z

In this study, the Brewster angle of the coated face is complex because the coating has

a complex surface impedance.
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Throughout this work, superscripts e and h have been suppressed. The TM and TE cases

are treated together, and the expressions presented later on apply to both cases provided that

the proper value for θe,h is used based on 4.18 and 4.19.

According to the Sommerfeld-Maliuzhinets method, the exact solution for the total

fields, in the region surrounding the wedge at observation point P(ρ,ϕ), can be expressed

in plane wave spectral integral form as [11], [55]

Ut(ρ ,ϕ) =
1

2nπ j

∫
γ

ψ(α + nπ
2 −ϕ)

ψ(nπ
2 −ϕ0)

·
sin ϕ0

n

cos α−ϕ
n − cos ϕ0

n

e jkρ cosαdα (4.20)

the γ = γ1 + γ2 is the Sommerfeld integral path shown in Fig. 4.4, ψ(α) = ψ(α ,θ0,θn,n)

is the auxiliary Maliuzhinest function. This function depends explicitly on the integration

variable α and implicitly on the parameters θ0,θn,and n, and it is defined as [55]:

ψ(α) = ψn

(
α +

nπ
2

+
π
2
−θ0

)
·ψn

(
α − nπ

2
− π

2
+θn

)
·

ψn

(
α +

nπ
2

− π
2
+θ0

)
·ψn

(
α − nπ

2
+

π
2
−θn

)
(4.21)

ψn(α) is the Maliuzhinets function given by [55]:

ψn(α) = exp
[
− 1

2

∫ ∞

0

cosh(αs)−1
scosh(π

2 s)sinh(nπs)
ds
]

(4.22)

The exact solution for the total field in (4.20) is not practically convenient as it stands, and

the integral of (4.20) is difficult to evaluate efficiently. To construct a more useful form

of the integral, the exact solution is transformed to an integral along the Steepest Descent

Paths (SDPs) through the saddle points at (±π), which account for the diffracted fields

by the edge, and the residue contributions of the real and complex poles, which account,
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Fig. 4.4. Sommerfeld Contour in the Complex α Plane [11], [56].

respectively, for the geometrical optics fields and the surface wave fields. After deformation

of it to the steepest descent path, the total field can be written [11]

Ut(ρ ,ϕ) = 2π j∑Res.− j
2nπ

∫
SDPs

ψ(α + nπ
2 −ϕ)

ψ(nπ
2 −ϕ0)

·
sin ϕ0

n

cos α−ϕ
n − cos ϕ0

n

e jkρ cosαdα

(4.23)

Ut(ρ ,ϕ) =Ui +∑U±
r +∑U±

s − j
2nπ

∫
SDPs

ψ(α + nπ
2 −ϕ)

ψ(nπ
2 −ϕ0)

sin ϕ0
n

cos α−ϕ
n − cos ϕ0

n

e jkρ cosαdα

(4.24)

where SDPs is the path SPD(+π)+SDP(−π)

The last term in (4.24) is the diffracted field Ud while the remaining terms are pole

residue terms giving the geometrical optics incident field Ui, the geometrical optics re-

flected field from the wedge faces U+
r , U−

r , and surface waves U+
s , U−

s , traveling away
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from the edge along each wedge face. The residues are those of the poles α = αp such that

−π < Re(α)− cos−1
(

1
cosh(Im(α))

)
sign(Im(α))< π (4.25)

The poles responsible for surface waves are, in general, complex, but those producing the

incident and reflected fields are real. Of the latter, the only ones satisfying (4.24) are

αi = ϕ0 −ϕ α+
r =−ϕ0 −ϕ +nπ α−

r = ϕ0 −ϕ −nπ (4.26)

The incident field Ui is determined from αi in the illuminated region, whereas α+
r and

α−
r give rise to the fields reflected from the 0 and nπ faces of the wedge, respectively.

The surface waves in (4.24) are evaluated by identifying the surface wave poles. These

poles accrue at

α0
s = ϕ +π +θ0 αn

s = ϕ0 −π −nπ −θn (4.27)

The surface wave contribution depends on the complex Brewster angles θ0,n of the

surfaces of the wedge. These angles are complex if η0,n are complex or real with |η0,n|> 1.

When kρ is large enough, the uniform diffracted solution can be obtained by the modi-

fied Pauli-Chemmow steepest descent method, which considers the effects of the four poles

nearest the steepest descent paths. These poles yield four Fresnel transition functions pro-
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viding continuity across the shadow boundaries [11].

Ud(ρ ,ϕ) =
e− jkρ
√ρ

[
− e− jπ/4

2n
√

2πk

]
·
[

ψ(−π + nπ
2 −ϕ)

ψ(nπ
2 −ϕ0)

·
sin ϕ0

n + sin θ0
n

sin ϕ+π
n + sin θ0

n

cot
(

π +β−

2n

)
F [kρ(1+cos(β−−2nπN+

− ))]

+
ψ(+π + nπ

2 −ϕ)
ψ(nπ

2 −ϕ0)
·

sin ϕ0
n + sin θ0

n

sin ϕ−π
n + sin θ0

n

cot
(

π −β−

2n

)
F[kρ(1+cos(β−−2nπN−

− ))]

+
ψ(−π + nπ

2 −ϕ)
ψ(nπ

2 −ϕ0)
·

sin ϕ0
n + sin θ0

n

sin ϕ+π
n + sin θ0

n

cot
(

π +β+

2n

)
F[kρ(1+cos(β+−2nπN+

+ ))]

+
ψ(+π + nπ

2 −ϕ)
ψ(nπ

2 −ϕ0)
·

sin ϕ0
n + sin θ0

n

sin ϕ−π
n + sin θ0

n

cot
(

π −β+

2n

)
F [kρ(1+ cos(β+−2nπN−

+ ))]

]
(4.28)

where F(x) is the Fresnel integral, and the N’s are the positive or negative integer or zero

which most nearly satisfies:

2πnN+
− −β− = π (4.29)

2πnN−
− −β− =−π (4.30)

2πnN+
+ −β+ = π (4.31)

2πnN−
+ −β+ =−π (4.32)

The diffraction coefficients in (4.28) have the same structure as those of the UTD in

its original formulation for a perfectly conducting wedge. The preceding UTD solution

predicts vanishing diffraction coefficients for grazing incidence because it retains only the

first term of an asymptotic expansion. Therefore, the diffracted fields do not contribute to

the total field, leading to large discontinuities in the plate plane. To correctly compensate
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for these discontinuities in the pattern, the high-order nonvanishing terms of an asymptotic

expansion need to be retained. To derive a high-frequency expression for the diffracted

field, which is uniformly valid at any incident aspect and for any impedance boundary

condition, more accurate asymptotic evaluation as in [60] is employed. For the half plane,

it is given by

Ud(ρ ,ϕ) =
e− jkρ
√ρ

e− jπ/4
√

2πk

·
ψ2(

5π
2 −ϕ +θ0)ψ2(−π

2 −θ0)ψ2(
π
2 +ϕ +θ2)ψ2(

3π
2 −θ2)

ψ2(
5π
2 −ϕ −θ0)ψ2(−π

2 +θ0)ψ2(
π
2 +ϕ −θ2)ψ2(

3π
2 +θ2)

·
sin θ0−3π

4 sin θ2−π
4

sin θ0−ϕ
4 sin θ2+ϕ−2π

4

· sinϕ
1+ cosθ2

·(1+ sin(θ2)[ f2(
3π
2

−θ0)+ f2(
π
2
+θ0)+ f2(−

π
2
−θ2)+ f2(−

3π
2

+θ2)+
1

2cos ϕ
2

])

·
F [2kLcos2(ϕ

2 )]−F [2kLsin2(θ2
2 )]

cos2(ϕ
2 )− sin2(θ2

2 )
(4.33)

where all parameters are defined in [60].

4.2.2. Surface Waves

The surface waves propagate along the surface of the wedge, and they are exponentially

decaying away from the face of the wedge. Although they decay rapidly along the wedge

face, their contributions can be more dominant than other scattering mechanisms near the

wedge surface.

The surface waves are determined by the residues of complex poles of the auxiliary

Maliuzhinets function enclosed between the steepest descent paths. The location of the

surface wave poles depend on the properties of the wedge material and hence the surface
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wave only exists for certain impedances. They exist only over a specified angular region

given by [11]:

−π <

[
αr − cos−1

(
1

cosh(αi)

)
sign(αi)

]
< π (4.34)

where α = αr + jαi; the surface wave poles are located at

α0 = ϕ +π +θ0 (4.35)

αn = ϕ −nπ −π −θn (4.36)

for the 0 and n faces, respectively. The capacitive surfaces support the surface wave only

for the soft polarization. For inductive surfaces, the surface wave exists only for the hard

polarization.

In this work, the n face is perfectly conducing. Therefore, this face can not support

surface waves. As a surface wave pole moves outside the steepest descent paths, its contri-

bution vanishes. After calculating the complex pole residue, the expressions for the surface

waves that exist on both faces of a general impedance wedge are [11]:

U0
sw =

2sin π
2n

ψ(nπ
2 −ϕ0)

sin ϕ0
n

cos(π+θ0
n )− cos(ϕ0

n )
e− jkρ cos(ϕ+θ0)

·ψn

(
nπ − π

2

)
ψn

(
π
2
+nπ +2θ0

)
ψn

(
3π
2

+θ0 −θn

)
ψn

(
π
2
+θ0 +θn

)
(4.37)

Un
sw =

−2sin π
2n

ψ(nπ
2 −ϕ0)

sin ϕ0
n

cos(π+θ0
n )− cos(ϕ0

n )
e− jkρ cos(ϕ−nπ−θn)

·ψn

(
nπ − π

2

)
ψn

(
π
2
+nπ +2θn

)
ψn

(
3π
2

+θn −θ0

)
ψn

(
π
2
+θ0 +θn

)
(4.38)

90



Discontinuities at the surface wave boundaries occur because the surface waves exist

only over a limited angular region close to the wedge faces. To provide proper continuity

in the total field across the surface wave boundaries, the surface wave transition field needs

to be considered. As the uniform theory of diffraction compensates the geometrical optics

discontinuities at the shadow boundaries, the surface wave transition field corrects for the

surface wave discontinuities. The method of Felsen-Marcuvitz is used to determine the

complex surface wave pole contribution in the steepest decent integral, which is given by

[11]

U0
swtr =

e− jkρ

ρ

[
−
√

j
π sin( π

2n)

ψ(nπ
2 −ϕ0)

]
sin(ϕ0

n )

cos(π+θ0
n )− cos(ϕ0

n )

[
F [kρ(1− cos(ϕ +θ0))]−1

]√
k(cos(ϕ +θ0)−1)

ψn

(
nπ − π

2

)
ψn

(
π
2
+nπ +2θ0

)
ψn

(
3π
2

+θ0 −θn

)
ψn

(
π
2
+θ0 +θn

)
(4.39)

Un
swtr =

e− jkρ

ρ

[
−
√

j
π sin( π

2n)

ψ(nπ
2 −ϕ0)

]
sin(ϕ0

n )

cos(nπ+π+θn
n )− cos(ϕ0

n )

[
F [kρ(1− cos(ϕ −nπ −θn))]−1

]√
k(cos(ϕ −nπ −θn)−1)

ψn

(
nπ − π

2

)
ψn

(
π
2
+nπ +2θ0

)
ψn

(
3π
2

+θn −θ0

)
ψn

(
π
2
+θ0 +θn

)
(4.40)

where F(x) is the Fresnel integral with complex argument.

When the observation angles are outside the surface wave boundaries, the surface wave

and surface wave transition terms vanish and only the geometrical optics and diffracted

fields are considered to calculate the total field. The surface wave transition terms must be

included if the surface wave pole is close to the steepest descent paths even if the surface

wave does not contribute.
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For circular edges, the GTD does not provide a valid diffracted field at the axial caustics.

The reason is that the first-order stationary phase evaluation of the integral expression,

representing the diffracted field, yields the GTD result at point observations away from

caustics. Therefore, a caustic correction is needed for angles at and near the axis of the

antenna. Using the method of equivalent currents and wedge diffraction coefficients, the

caustic problem can be corrected [5]. In this method, equivalent magnetic and electric

currents are created along the edge of the ground plane. Then, radiation integrals are used

to obtain the fields due to these currents which correct the diffracted fields at and near the

symmetry axis of the antenna.

For the square ground plane, the edge diffractions do not significantly contribute to the

H-plane radiation pattern in the backlobe region. However, the edge diffractions in the

E-plane are much more intense and contribute more significantly to the overall pattern,

above and below the ground plane. Therefore, one needs to include the contributions from

the E-plane edge diffractions using the method of equivalent currents [5]. By using the

equivalent currents concept, it is possible to evaluate the diffracted field outside the Keller

cone directions.

4.3. Validation

To experimentally determine effects of ground plane edge diffractions on radiation pat-

terns of coated circular aperture antennas, a circular aperture antenna was measured in the

ElectroMagnetic Anechoic Chamber (EMAC) facility at Arizona State University. Validity

of the analysis is established by satisfactory agreement between the predicted and measured
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data and those simulated by Ansofts High Frequency Structure Simulator (HFSS). Good

agreement is observed for all cases considered.

4.3.1. Circular Waveguide Mounted on Square and Circular Coated Ground Planes

A model for the circular and square dielectric-covered ground planes with the circular

waveguide mounted at the center has been constructed. The aperture antenna is assumed to

be excited by the TE11-mode circular waveguide. The width of the coated square ground

plane and the diameter of the coated circular ground plane are 12 in.. The relative per-

mittivity (εr) and the loss tangent (tanδ ) of the coating material are, respectively, 2.9 and

0.02 at 10 GHz. The thickness of the dielectric layer, made from polycarbonate (Lexan),

is 0.099 in. and the normalized surface impedance is 0.7480+ j0.4894 calculated using

(4.12). The validity of the radiation pattern formulation over the main beam and the near

and far sidelobes has been verified by calculating the far-zone E- and H-plane amplitude

patterns of the aperture. The frequency at which the measurements were performed is 10

GHz. The diameter of the aperture is 0.938 in.. Measurements and numerical data based

on diffraction techniques were also compared with the HFSS simulations.

Figs. 4.5 and 4.6 exhibit, respectively, the far-zone E- and H-plane amplitude patterns

of a circular aperture mounted on circular dielectric-covered ground planes. For the square

dielectric-covered ground planes, the amplitude patterns of the E and H planes are, respec-

tively, shown in Figs. 4.7 and 4.8. Because the amplitude patterns of interest are in the

principle planes, the most significant diffractions come from two diffraction points which

are diametrically opposite to each other and along the principle planes [5]. Good agreement
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between GO/GTD/UTD calculations, experiments, and HFSS simulations is indicated. As

shown in the figures, the amplitude patterns in the E-plane are broader than that in the

H-plane. The ripples in the amplitude patterns, especially in the backlobe region, are at-

tributed to the impedance edge diffractions. The ripples shown in the patterns are due of the

constructive and destructive interference of the diffractions from the diametrically opposite

diffraction points. In the E-plane, these ripples are more significant because the incident

electric field at the point of diffraction is more intense in this plane than in the H-plane.

Although the side of the square is equal to the diameter of the circular, it is very clear

from the patterns of Figs. 4.5 - 4.8 that the E- and H-plane amplitude patterns of the circular

coated ground plane are greater than those of the square coated ground plane at and near

the antenna axis (θ = 1800). These are due to the ring radiator which contributes about an

additional 8-10 dB.

The radiation amplitude in the back region of the aperture antenna mounted on coated

ground planes depends significantly on the size and geometry of the ground plane. Fig. 4.9

indicates, as expected, that the amplitude pattern level at θ = 180◦ decreases monotonically

with increasing the ground plane size for both geometries, circular and square. Because of

the ring radiator of the circular ground plane, its amplitude in the back lobe is more than that

for the square ground plane. As the size increases, the edge diffractions do not introduce

any noticeable ripples in the forward region, and the diffraction level in the back region

becomes very comparable to the noise level in the detection system. The periodicity of the
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Fig. 4.5. Far-Zone E-Plane Amplitude Patterns of a Circular Waveguide Antenna Mounted
on a Coated Circular Ground Plane at 10 GHz (a = 0.397λ , 2d = 10.16λ ).

Fig. 4.6. Far-Zone H-Plane Amplitude Patterns of a Circular Waveguide Antenna Mounted
on a Coated Circular Ground Plane at 10 GHz (a = 0.397λ , 2d = 10.16λ ).

95



Fig. 4.7. Far-Zone E-Plane Amplitude Patterns of a Circular Waveguide Antenna Mounted
on a Coated Square Ground Plane at 10 GHz (a = 0.397λ , 2d = 10.16λ ).

Fig. 4.8. Far-Zone H-plane Amplitude Patterns of a Circular Waveguide Antenna Mounted
on a Coated Square Ground Plane at 10 GHz (a = 0.397λ , 2d = 10.16λ ).
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ripples in the patterns depends upon the size of the ground plane, while the amplitude of

the ripples depends upon the strength of the edge excitation.

Fig. 4.9. Impact of the Ground Plane Size on the Amplitude Pattern Level at θ = 180◦.

The amplitude pattern level at θ = 180◦ for different coating thickness is also displayed

in Fig. 4.10 for circular and square coated ground planes. It is apparent that the back lobe

radiation at θ = 180◦ is stronger for thinner coatings. As shown in Fig. 4.11, by increasing

the relative permittivity of the coating, the amplitude level of the diffracted field at θ = 180◦

decreases for both geometries. Based on the simulated data, increasing either the thickness

or relative permittivity of the dielectric coating leads to less radiation in the back lobe

region.
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Fig. 4.10. Amplitude Pattern Level at θ = 180◦ Due to the Coating Thickness.

Fig. 4.11. Amplitude Pattern Level at θ = 180◦ Due to the Relative Permittivity of the
Dielectric Layer.
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CHAPTER 5

MALIUZHINETS FUNCTION AND ITS PROPERTIES

The Maliuzhinets function (MF) has been used for the diffraction of waves by a wedge

with different face surface impedances. For a wedge with an arbitrary angle, the Mali-

uzhinets function is cumbersome to compute, which is a major limitation of the application

of rigorous theory of diffraction in the electromagnetic scattering by an impedance wedge.

In this chapter, an exact closed-form solution is obtained to evaluate a known integral rep-

resentation of the MF. The tanh-sinh quadrature rule is employed to successfully calculate

the integral in the Maliuzhinets function, and the highly accurate numerical computation

for Ψn(z) is obtained over the entire complex z plane and for all n. For special wedge an-

gles, the exact formulation is numerically verified by comparing it with the results obtained

by numerical integration of the Maliuzhinets function.

5.1. Introduction

Maliuzhinets was the first who applied the Sommerfeld integral technique to the diffrac-

tion by an impedance wedge. In [55], Maliuzhinets derived a solution (in integral form) for

the diffraction problem of waves by a wedge with different face impedances; therefore, the

MF is pivotal in the theory of diffraction [11]. With increasing interest in how the mate-

rial properties of a wedge impact its scattering, the diffraction coefficients for imperfectly

conducting wedges have to be applied and MFs have to be computed. Because of its com-

plexity, it is desirable (if not essential) to be able to compute the Maliuzhinets function in a

simple and computationally efficient manner. However, for only two special cases, n = 0.5

and n = 1.5, the MF can be represented in a simple closed-form [55]. Also, the integral in

the MF for n = 1 and n = 2 can be simplified [55].
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Because of the significance of the scattering from the impedance (n = 1) and (n = 2)

planes for many applications, the half- and full-plane Maliuzhinets functions [Ψ1(z),Ψ2(z)]

have been paid attention to and studied extensively [61]. Both functions are related to each

other, so Ψ1(z) can be expressed in terms of Ψ2(z) as follows:

Ψ2(z) =

√√
2cos( z

2)+1
√

2+1
1

8
√

cosz
exp
[
− 1

4π

∫ z

0

s
coss

ds
]

(5.1)

Ψ1(z) = 4
√

cosz exp
[ 1

2π

∫ z

0

s
coss

ds
]

(5.2)

Comparing (5.2) with (5.1), Ψ1(z) can be expressed, in terms of Ψ2(z), as

Ψ1(z) =

√
2cos z

2 +1
√

2+1
1

Ψ2
2(z)

(5.3)

The Maliuzhinets functions above can be represented exactly if the integral of∫ z
0

s
cos(s) ds is analytically evaluated. In [61] the exact closed forms of the Maliuzhinets

functions in terms of the dilogarithem function, for the two cases of n = 2 and n = 1, have

been evaluated and they are, respectively, given by

Ψ2(z)=
e

c
2π

8
√

cosz

√√
2cos( z

2)+1
√

2+1

[
− j tan

( z
2
+

π
4

)]− z
4π

exp

(
− j

Li2(− je jz)−Li2( je jz)

4π

)
(5.4)

Ψ1(z) = e−
c
π 4
√

cosz
[
− j tan

( z
2
+

π
4

)]− z
2π

exp

(
− j

Li2(− je jz)−Li2( je jz)

2π

)
(5.5)

where Li2(z) is the dilogarithm function defined as Li2(z) =
∞

∑
k=1

zk

k2 and C ≈ 0.916 is the

Catalan constant. Based on the comparisons between these formulations of (5.4) and (5.5)

and the numerical solutions of (5.1) and (5.2) for the MFs, the accuracy of the closed-form

expressions is verified and the discrepancies are negligible (< 10−14).
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In [62], approximate formulas for the Maliuzhinets function of a real argument are

derived using the modified Chepyshev polynomials for different wedge angles. The coef-

ficients of the Chepyshev polynomials are tabulated in [62]. Although the expressions are

only derived for real arguments, they may still be accurate for a restricted range of complex

arguments with small imaginary parts. An empirical formula for arbitrary wedge angles is

also obtained using the same technique.

Volakis and Senior [63] derived a simple approximation for the half-plane Maliuzhinets

function
[
Ψ2(z)

]
which is used only in the strip 0 ≤ Re(z) ≤ π/2 and Im(z) ≥ 0. Ψ2(z)

can be evaluated throughout the entire complex plane using the recurrence relations that

relate Ψ2(z) to its value at the corresponding point within the strip. For 0 ≤ Re(z) ≤ π/2

and Im(z)≤ 4.6, Ψ2(z) is expressed as

Ψ2(z)∼= 1−0.0139 z2 (5.6)

and for 0 ≤ Re(z)≤ π/2 and Im(z)≥ 4.6, it is represented by

Ψ2(z)∼= 1.05302
√

cos[0.25(z− jln2)] exp
( jz

2π
e jz
)

(5.7)

In [64], approximate analytical expressions were derived for exterior wedge angles (1≤

n ≤ 2). For small arguments 0 ≤ Re(z)≤ π/2 and Im(z)≤ 4, Ψn(z) is approximated by

Ψn(z)∼= 1− z2
(

δ
Φ2

)
(5.8)

with

δ = 0.04626+0.054Φ−0.0078Φ2 (5.9)

101



Φ =
nπ
2

(5.10)

For the large argument, 0 ≤ Re(z)≤ π/2 and Im(z)≥ 4, it is given by

Ψn(z)∼=

√
cos
(

z
2n

)
exp
(
− γ

π

)
(5.11)

where

γ = 2.556343Φ−3.259678Φ2 +1.659306Φ3 −0.3883548Φ4 +0.03473964Φ5 (5.12)

Andrey Osipov [65] has used the simplest approximation using a single cosine function

to evaluate the Maliuzhinets function, which is given by

Ψn(z) =
[

cos
( vz

2+ v

)] 2+v
4

(5.13)

where v = 1/n

This expression is only valid for 0.5 ≤ n ≤ 2. The error of the approximation is less

than 6% over the entire complex plane (z− plane).

Although several researchers have constructed approximate solutions of the Mali-

uzhinets function for certain wedge angles and/or restricted real or complex values of the

argument (z), an accurate and efficient numerical computation of the MF over the entire

complex z plane for an arbitrary wedge angle is desirable. The objective of this work is

to obtain such a closed-form expression for the Maliuzhinets function where the tanh-sinh

quadrature transformation is used to calculate the integral in the MF. The sections that

follow are devoted to briefly review the Maliuzhinets function and its properties, and then

discuss the numerical technique used to compute the integral of the MF.
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5.2. Maliuzhinets Function

The Maliuzhinets function is a meromorphic function of a complex argument defined

by many equivalent forms [54], [55]. One of them is the product form given by

Ψn(z) =
∞

∏
l=1

∞

∏
m=1

[
1−
( z

nπ(2l −1)+ π
2 (2m−1)

)2
](−1)m+1

(5.14)

and the double-integral formula is given by

Ψn(z) = exp

[
− j

1
4nπ

+ j∞∫
− j∞

z∫
0

tan
( v

2n

) 1
cos(v−u)

du dv

]
(5.15)

Performing integration on z, an alternate expression for the MF is

Ψn(z) = exp

[
− 1

2

∫ ∞

0

cosh(zs)−1
scosh(π

2 s)sinh(nπs)
ds

]
(5.16)

where z = x+ jy and n is the wedge parameter (0 < n ≤ 2). An exterior wedge has values

of n in the range of 1 ≤ n ≤ 2, while for an interior wedge 0 < n < 1.

The last expression (5.16) converges if | Re(z) |< π
2 + 2n and hence the MF is regular

in this strip; it can be used to determine values outside the strip by suitable recurrence

relations. Some of these relations of the MF are summarized in [55]. The MF is an even

function of its argument and conjugating the MF is equivalent to the MF of the conjugate

of the argument and represented by:

Ψn(z) = Ψn(−z) (5.17)

Ψn(z)∗ = Ψn(z∗) (5.18)
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By using the recurrence equations, the MF can be determined for any z outside the strip

by

Ψn(z+nπ)
Ψn(z−nπ)

= cot
( z

2
+

π
4

)
(5.19)

Ψn(z) = Ψ2
n(0.5π)

cos
(

z−0.5π
2n

)
Ψn(z−π)

(5.20)

Ψn

(
z+

nπ
2

)
Ψn

(
z− nπ

2

)
= Ψ2

n

(nπ
2

)
Ψ n

2
(z) (5.21)

Equation 5.16, together with the recurrence relations of (5.19)-(5.21), implies that the

Ψn(z) can be found for any complex value of z when it is known in the strip 0 ≤ Re(z) ≤

π/2+nπ and Im(z)≥ 0.

There are four special wedge angles for which the MF can be expressed in a closed

form or simplified integral form. These correspond to the interior 90◦ wedge (n = 0.5),

the exterior 90◦ wedge (n = 1.5), the full-plane wedge (n = 1), and the half-plane wedge

(n = 2) [55]. The explicit expressions for these special wedge angles are

Ψ0.5(z) = cos
( z

2

)
(5.22)

Ψ1.5(z) =
4cos2( z

6)−1
3cos( z

6)
(5.23)
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2 −2s
coss

ds

]
(5.25)

For some practical cases, the |Im(z)| is very large. Therefore the asymptotic formula of

the MF is given by

Ψn(z) =
1√
2

Ψn

(π
2

)
exp
(
− j

z
4n

sign(Im(z))
)

|Im(z)|>> 1 (5.26)
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In addition to the MF, there is another special monomorphic function referred to as

the Auxiliary Maliuzhinets Function (AMF), which is applied to calculate the diffraction

from the impedance wedge [11], [54]. MF and AMF are related to each other where the

Auxiliary Maliuzhinets function can be written as a product of four Maliuzhinets functions

with different arguments as follows:

Ψ(z) = Ψn
(
z+

nπ
2

+
π
2
−θ0

)
Ψn
(
z+

nπ
2

− π
2
+θ0

)
Ψn
(
z− nπ

2
− π

2
−θn

)
Ψn
(
z− nπ

2
+

π
2
+θn

)
(5.27)

where θ0 and θn are the surface impedance Brewster angles of the 0 and n face, respectively.

In the practical cases of ideal boundaries, the AMF expression can be simplified. For a

perfectly conducting wedge and hard polarization, the Brewster angles vanish (θ0 = θn =

0). Then (5.27) reduces to

Ψ(z) =
1
2

Ψ4
n

(π
2

)
cos
( z

n

)
(5.28)

In the case of soft polarization, a perfectly conducting wedge implies θ0 = θn = π/2−

j∞, and the asymptotic formula of the AMF is given by

Ψ(z) =
1
4

Ψ4
n

(π
2

)
exp
( 1

2n

(
|Im(θ0)|+ |Im(θn)|

))
(5.29)

In our work, for the soft polarization, the imaginary part of the argument of the MF or

AMF goes to infinity. Therefore the previous asymptotic formulas need to be used.

Figs. 5.1 and 5.2 show the 3-D plots of the magnitude and phase of Ψn(z) with n = 1.65

and varied values of the real x and imaginary y parts of the complex argument z = x+ jy.
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Fig. 5.1. Three-Dimensional Plot of the Magnitude of Ψ1.65(z) with Varied Values of x and
y (−6 ≤ x,y ≤ 6).

Fig. 5.2. Three-Dimensional Plot of the Phase of Ψ1.65(z) with Varied Values of x and y
(−6 ≤ x,y ≤ 6).
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5.3. Tanh-Sinh Quadrature Rule

The tanh-sinh quadratic scheme is based on the Euler-Maclaurin formula, where an

integral with a bell-shaped integrand, vanishing at the end points, can be approximated

with high accuracy by using the trapezoidal rule with an equal mesh size. Consider the

evaluation of the following integral

I =
∫ 1

−1
f (t) dt (5.30)

By changing variables [t = g(x)] and then using the standard trapezoidal rule when the

integrand is defined on the interval (−∞,∞), the definite integral is approximated by [66]

∫ 1

−1
f (t) dt =

∫ ∞

−∞
f
[
g(x)

]
g′(x) dx ≈ h

N

∑
m=−N

f
[
g(mh)

]
g′(mh) (5.31)

where g(x) is any continuous increasing function mapping (−1,1) into (−∞,∞), h > 0 is

the grid spacing, and N is chosen sufficiently large that
∣∣ f [g(mh)

]
g′(mh)

∣∣< ε for |m|>N.

With a suitable choice of g(x), the g′(x) factor will decrease rapidly as x −→±∞. If g′(x)

has zeros in the region of the singularities of g(x), these singularities are cancelled out

from the new integrand [ f [g(x)] ·g′(x)]. To satisfy this condition, the tanh-sinh quadrature

(doubly-exponential) transformation [67] is used

g(x) = tanh
[π

2
sinh(x)

]
(5.32)

with

g′(x) =
π cosh(x)

2cosh2 [π
2 sinh(x)

] (5.33)
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It is obvious that g(x) has the property that g(x)−→±1 as x −→±∞, as shown in Fig.

5.3. This property is useful to shrink the integrand to a certain region of space. Therefore,

more accurate and efficient evaluation will be obtained.

Before the tanh-sinh quadrature rule is applied, the Maliuzhinets function needs to be

transformed to an integral of the appropriate form in order to use this technique.

Fig. 5.3. g(x) and its Derivative.

By mapping the integral from (0,∞) into (0,1) in (5.16) and by using the symmetry

property, the Maliuzhinets function is given by

Ψn(z) = exp
(
− 1

4

∫ 1

−1
f (n,z,s) ds

)
(5.34)

where

f (n,z,s) =
cosh(zs)−1

scosh(π
2 s)sinh(nπs)

+
cosh( z

s)−1
scosh( π

2s)sinh(nπ
s )

(5.35)
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Now the solution of the Maliuzhinets function is obtained using (5.34) and the closed-

form formula of the integral as follows:

∫ 1

−1
f (n,z,s)ds ≈ h

N

∑
m=−N

f
(

n,z, tanh
[π

2
sinh(mh)

])
· π cosh(mh)

2cosh2 [π
2 sinh(mh)

] (5.36)

Ψn(z)≈ exp
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− h

4

N

∑
m=−N

f
(

n,z, tanh
[π

2
sinh(mh)

])
· π cosh(mh)

2cosh2 [π
2 sinh(mh)

]) (5.37)

The number of points in (5.37) is essentially infinite so that the summation has to be

truncated at appropriate upper values of m. In this case N represents the maximum number

of points at which f [x,z,g(x)] of (5.37) is evaluated.

To verify the obtained closed-form expression of (5.37) for the MF, Ψn(z) is plotted

in Figs. 5.4-5.6, as a function of the imaginary part y of the argument, for three real part

x values of z (x = 0.5, 1, and 1.5). The values of the MF of n = 0.5,1.5 for the complex

variable z were calculated and compared with the exact solution given by (5.22) and (5.23),

respectively. For n = 1, the calculated values of the MF, based on the closed-form expres-

sion, were compared with the numerical solution of (5.24). For all the cases examined,

excellent agreement between the closed-form expression of (5.37) and numerical solution

is indicated with high accuracy.
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Fig. 5.4. Comparison of the Magnitude and Phase of Ψ0.5(z) with the Exact Values for
Fixed Values of x While the Imaginary Part of z is Varied.

Fig. 5.5. Comparison of the Magnitude and Phase of Ψ1(z) with the Numerical Integration
for Fixed Values of x While the Imaginary Part of z is Varied.
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Fig. 5.6. Comparison of the Magnitude and Phase of Ψ1.5(z) with the Exact Values for
Fixed Values of x While the Imaginary Part of z is Varied.
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

6.1. Conclusions

In this work, new expressions for the loss factor and gain of conical horn antennas have

been developed based on the spherical aperture phase distribution of the fields over the horn

aperture. The gain of a conical horn antenna, using the spherical instead of the quadratic

aperture phase distribution, is:

• Mainly the same for large axial length horns (L > 60λ ) or small peak aperture phase

errors (S < 0.4λ ).

• Considerably higher, by as much as 0.84 dB, for intermediate axial length horns

(10λ < L < 20λ ) and intermediate peak aperture phase errors (0.4λ < S < 0.9λ ).

• Higher for large values of the peak aperture phase errors (S > 0.9λ ).

Also, improved formulas for the design of optimum gain horn antennas are proposed. These

formulas do not approximate the path length term, and thus they give more accurate horn

dimensions for a given optimum gain. The new formulas are highly useful for the design

of conical horns because they reduce the computational time significantly. Based on the

design equations, the optimum axial lengths and diameters (in wavelengths) obtained by

using spherical aperture phase distributions are in good agreement with those obtained

using quadratic aperture phase distributions when the optimum gain is equal to or larger

than 20 dB. However, the spherical and quadratic aperture phase distributions result in

different optimum axial lengths when the gain is less than about 20 dB.
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The aperture edge of a conical horn antenna without a ground plane, is a factor that

impacts the radiation patterns in the diffraction zone. This effect has been examined both

analytically and experimentally. Two commercial conical horns were chosen for this in-

vestigation. The study indicates that the aperture edge does not affect significantly the

pattern at the forward region. Its main impact appears in the far side lobes and back lobe.

It was also shown that to correct the axial caustic, UTD equivalent currents can be used

with good agreement between experiment, simulation, and theory for a range of angles. In

the diffraction modeling of the horn using the UTD, the feeding and supporting structures

were not taken into account due to their complex geometries. However, these structures

significantly distort the pattern, especially in the back region. Including these structures in

the UTD modeling is not an easy task, and they create more computational problems and

deficiencies which cannot easily be simulated with UTD. However, very good agreement

was attained between the measurements and HFSS simulations which incorporated these

complex structures. This demonstrates that the back feeding and supporting structures are

responsible for the deviations between the measurements and UTD results.

For X- and C-band conical horn and circular waveguide antennas mounted on finite

PEC ground planes, the edges of the finite ground planes influence the amplitude patterns.

Two ground planes, square and circular, were selected to be examined. The study indicates

that the ground plane edge diffractions do impact the main forward lobe pattern, especially

in the E plane. Its primary impact appears in the far side lobes and back lobe region.

The aperture integration method, augmented by the UTD diffraction, for the prediction
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of aperture antenna radiation was implemented. The UTD edge diffractions are included

for the finite ground plane in both the E- and H-plane predictions. In the E plane, single

edge diffractions plus the direct GO field contribute to the total field. In the H plane, the

total field consists of the direct GO field, single edge diffractions, slope diffracted field,

and E-plane edge equivalent current field. In addition, the contributions of the electric and

magnetic equivalent currents must be included for the circular ground plane to correct the

caustic created by the diffracted fields at and near the axis of the antenna. The numerical

results obtained are compared with measured data and those simulated by Ansofts High

Frequency Structure Simulator (HFSS). The measured and simulated results indicate that

the theoretical predictions, for both circular and square ground planes, are in very good

agreement. This work demonstrates that the finite edge effect must be included in the

calculation to obtain very accurate results of the radiation patterns, especially for extended

dynamic ranges.

For aperture antennas mounted on finite coated square and circular PEC ground planes,

good agreement is obtained between the analytical, experimental, and HFSS-simulated

amplitude patterns in the E and H planes. All these results are indicators that the extended

uniform theory of diffraction is a useful tool to calculate the amplitude patterns of a circular

aperture antenna mounted on coated ground planes, square and circular. In addition, the

contributions of the electric and magnetic equivalent currents must be included for the

circular coated ground plane to correct the caustics created by the diffracted fields at and

near the axis of the antenna.
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The radiation amplitude in the back region of the aperture antenna mounted on coated

ground planes depends significantly on the size of the ground plane where the amplitude

pattern level at θ = 180◦ decreases monotonically with increasing the ground plane size

for both geometries, circular and square. Based on the simulated data, by increasing either

the thickness or relative permittivity of the dielectric coating, the amplitude level of the

diffracted field at θ = 180◦ decreases for both geometries.

For uncoated and coated cases, the H-plane electric field component of the incident field

vanishes along the ground plane edge (grazing incidence). Thus, only diffraction by the E-

plane edges contributes significantly to the E- and H-plane diffraction patterns. To obtain

the far-zone E-plane amplitude pattern, only the diffraction from the midpoints of the E-

plane edge contributes to the amplitude pattern. For the far-zone H-plane amplitude pattern,

diffraction accruing at all points along the E-plane edge, non-normal and normal incidence

of the incident GO fields at the edge, must be taken into consideration. The discrepancies

between the theoretical and measured results in the backward region of the far-zone E- and

H-plane amplitude patterns can be attributed to the inability of the diffraction techniques

to accurately model the structure feeding the aperture antennas as well as the supporting

structure.

Although the side of the square is equal to the diameter of the circular, the E- and H-

plane amplitude patterns of the circular ground plane are greater than those of the square

ground plane at and near the antenna axis (θ = 180◦) due to the ring radiator.
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Finally, an exact closed-form solution of the Maliuzhinets Function (MF) is obtained.

The tanh− sinh quadrature rule is employed to successfully calculate the integral in the

Maliuzhinets function, and the highly accurate numerical computation for MF is obtained

over the entire complex z plane and for all n.

6.2. Recommendations

The work in this dissertation has focused on circular aperture antennas. The study

methodology is general and can be applied to other antenna configurations, such as rectan-

gular aperture antennas, probe-excited circular or rectangular cavity-backed slot antennas,

either uncoated or coated.

This study may easily be extended to find the radiation characteristics (radiation pat-

terns, edge diffractions, and mutual coupling) for aperture arrays mounted on finite un-

coated or coated ground planes.

This research project is limited in its investigation to a single dielectric coating. In

many applications, multilayer dielectric covers are used as superstrates to increase the an-

tenna directivity, either for a single element or an array. Therefore, multilayer dielectric

diffractions must be introduced to predict the radiation characteristics of the antenna such

as amplitude patterns.

The results produced by the analytical model here are predicated assuming that the

aperture antenna is excited by a single TE11 mode. In practice, circular horn antennas with

high efficiency and low cross polarization can be realized by introducing multiple modes.

Also, for rectangular horn antennas, a circularly-polarized elliptical-shaped beam can be
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generated if the antenna is designed to support only the TE10 and TE01 modes. Extending

the theory to account for multi-mode excitation would be a straight-forward task, although

more complicated and advanced computations are needed.

To a large extent, improving system performance and satisfying system requirements

need microstrip antennas with low profile, weight, and cost. In addition, they need to be

easily integrable into arrays or with microwave integrated circuits. Microstrip antennas

satisfies above all aspects can be conformed to any shape. All of these aspects drive the de-

velopment of microstrip antenna systems. Therefore, microstrip antennas have found many

applications in both the military and the civil sectors, such as aircraft, radar, communica-

tions, navigation, landing systems, missile radar, telemetry, satellite communication, direct

broadcast TV, remote sensing radar, radiometer, ship communication, land vehicles, mo-

bile satellite telephone, mobile radio, and biomedical systems. There are several microstrip

configurations like the square, rectangular, circular, elliptical, triangular, rectangular dipole,

circular ring, and ring sector. In general, each one has different radiation characteristics and

uses. Because patch antennas consist of a substrate and a finite ground plane, the impact of

these factors, represented by impedance surfaces, surface waves, and edge diffractions, can

be examined using the uniform theory of diffraction of the impedance wedge. In addition,

by optimizing the coating thickness and the relative permittivity of the substrate, the edge

diffractions, especially in the back region, can be reduced.
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