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Human Behaviour

If you ever get close to a human and human behaviour, be ready to get confused.
There is definitely no logic to human behaviour, but yet so irresistible.

There is no map to human behaviour.

They are terribly moody, then all of a sudden turn happy.
But, oh, to get involved in the exchange of human emotions is ever so satisfying.

There is no map, and a compass would not help at all.

Bjork Gudmundsdottir / Nellee Hooper

aan Kitty



Abstract

This thesis treats the development of a deterministic model for the electromagnetic (EM)
field-strength prediction in built-up areas. The mode] uses Geometrical Optics (GO) to-
gether with various diffraction contributions based on the Uniform Theory of Diffraction
(UTD) to determine the interaction of the EM wave with the environmental objects. Two
applications of the model are discussed in this dissertation.

The first one concerns the determination of the effectiveness of placing an obstacle on the
propagation path of an interfering signal in order to raise the signal-to-interference ratio of
an earth-space link. Results of this intentional signal obstruction are presented for various
obstacle types and positions of the observation point. Attention is also paid to the case
where a receiving antenna is very close to the obstacle. In that case, a separate far-field
treatment of obstacle and antenna diffraction is no longer allowed and a combined analysis
should be carried out. This near-field analysis is performed for two types of parabolic
reflector antennas, and results for the shielding effectiveness of obstacles are presented and
compared. Also the validity of applying spatial far-field antenna weighting functions in
field-strength prediction models based on ray methods is discussed.

The second application of the model described in this thesis is the prediction of the EM
field strength of a Land Mobile Satellite (LMS) signal in an urban environment. Due to its
deterministic character the model developed is capable of analysing effects such as specular
reflection and strong shadowing. The latter are not taken into account in conventional
statistical LMS field-strength prediction models. Because the GO/UTD model accepts
a detailed description of the urban environment, it can be used to analyse an arbitrary
environment, whereas conventional statistical models are suited for one specific geometry
only. To demonstrate the capability of the model, it was used for the determination of the
field strength along two trajectories at the campus of Eindhoven University of Technology.
Not only the field strength, but also the Doppler spectrum, the time-delay profile and
the delay-Doppler spectrogram were derived. The deterministic model is expected to be a
valuable complement to existing statistical LMS field-strength prediction models, especially

if detailed digital databases of towns and cities are available.
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Chapter 1

Introduction

1.1 Background

Due to the scarcity of available frequency spectrum, the use of the same frequency band
by different users is unavoidable. This frequency reuse may introduce mutual interference
between, for example, operators of an earth-space and a terrestrial radio link.

An important parameter in the frequency assignment is the coordination area, which,
according to the Radio Regulations, is the area associated with an earth station outside
which a terrestrial station sharing the same frequency neither causes, nor is subject to
interfering emissions that exceed a permissible level. Obviously, the coordination distance,
i.e. the distance beyond which a terrestrial station neither causes, nor is subject to inter-
fering signals exceeding some threshold level, depends on the electromagnetic (EM) wave
propagation mechanisms that occur in the medium in between the two terminals. Espe-
cially anomalous propagation conditions such as ducting and elevated-layer reflection are
known to cause very high interfering signal levels, fortunately only for very small time
percentages. In many cases where a high system reliability is needed, protective measures
against inadmissible interference signal levels must be taken.

One method to reduce this interference is the placement of an object on the interfering
signal propagation path, as schematically shown in Figure 1.1. This methodology is called
site shielding. It can be seen in the figure that the undesired signal is obstructed by the
obstacle. The signal is attenuated, but not completely removed, due to diffraction of the
wave at the obstacle, and from the weaker signal it appears as if the interference source
is at a larger distance. This technique can be used in operational communication systems
liable to interference, to reduce the coordination distance and consequently to increase the
reuse of a frequency band. So by taking into account this obstacle blockage in the planning
stages of a new telecommunications link, the service planners can take advantage of the
modifications introduced in this coordination parameter.

Currently available models for the prediction and analysis of the site shielding effective-
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wanted signa

interfering signal

Figure 1.1: The principle of site shielding.

ness of isolated obstacles are provided by the CCIR [1, 2] and take into consideration only
very simple geometries. In most of the cases the obstacle is assumed to be infinitely wide,
while the antenna characteristics are extremely idealised and therefore unrealistic.

To enhance the accuracy and applicability of these site shielding models, Working
Group 3 of Project 235" of the European organisation COST? specifically focuses on this
topic with the aim of developing new, accurate site shielding models. Attention is paid to,
for example, the shape of the object, the type of antenna, the obstacle-antenna distance, and
the propagation mechanism responsible for the interference. Evidently, a detailed knowl-
edge of the interaction of the interfering EM wave with the obstacle is needed. Further a

thorough understanding of the spatial filtering of the receiving antenna is indispensable.

The signal blockage introduced in the site shielding method is intentional and raises the
system performance, i.e. it improves the signal-to-interference ratio. In Figure 1.2 a daily
situation is visualised in which the signal blockage is unintentional, and therefore unde-
sirable. It shows a user of a Land Mobile Satellite (LMS) channel subject to ‘shadowing’
and multipath propagation; both effects are known to degrade system performance. This
example closely resembles the previously discussed site shielding geometry since in both
cases the effect of an obstacle on the signal propagation path needs to be assessed, albeit
that in the latter example more objects surrounding the receiver are present. Also here a

detailed knowledge concerning the interaction of the EM wave and the obstacle can be of

! COST 235: Radio wave propagation effects on next-generation fixed-service terrestrial telecommunica-
tions systems.
? Coopération Européenne dans le Domain de la Recherche Scientifique et Technique
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Figure 1.2: Signal blockage in an urban environment.

help in analysing this specific practical problem.

Currently available models for the planning of new LMS systems and the analysis of
already installed systems are few, and most of them represent regression fits to results from
measurement campaigns. Therefore they are suited for one generalised geometry only,
and the strong shadowing effect as well as the specular reflection depicted in Figure 1.2 are
usually not modelled adequately. Since the market for mobile telecommunications has been
growing rapidly during the last few years, tools for the prediction of the field strength in
an urban environment that explicit model these reflection and shadowing mechanisms have
received much attention. Most of the models proposed, however, consider only a small
number of propagation phenomena, such as reflection and diffraction, or are essentially
two-dimensional. Obviously, a more realistic approach should involve three-dimensional
geometries, and should contain a versatile, accurate and vectorial wave-propagation model.
In general the model should enable the user to take into account near-field antenna effects,
i.e. the case where the antenna is very close to the object, while the model should also
have a deterministic character because of the desired detailed environmental input such as
buildings, trees, bridges, etc. By extracting and using data from nowadays commercially
available digital databases, the model itself should be applicable to nearly any scenery.

In this thesis Geometrical Optics (GO) and the Uniform Theory of Diffraction (UTD)
are adopted for the composition of a ray-based field-strength prediction model matching
the criteria previously mentioned. Models based on GO/UTD are well established and have
been very popular ever since their introduction in the early seventies. From a theoretical
point of view, they appear to be sufficiently accurate for the present application, and this

will be verified in the present study. Further they permit the antenna characteristics to be
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elegantly taken into account by the use of spatial antenna weight functions. The model to
be developed should predict the field strength for various obstacle shapes and materials,
source and observation point positions, frequencies, polarisations and types of receiving
antennas.

In this study the EM wave-propagation model is applied to the site shielding as well
as to the LMS geometry, although other applications such as wideband indoor radio and
mobile-cellular communication services can also be thought of.

1.2 Framework of the research

As mentioned in the preceding section, two applications of the deterministic model are
treated in this dissertation. For both of them a collaboration with other research institutes
has been established through the years.

The site shielding problem was introduced and studied by Scheeren [3] for the case of
a half-plane obstacle. These results were submitted to the European project COST 210%,
which was the predecessor of COST 235. At the end of COST 210 quite a number of ques-
tions concerning site shielding remained unanswered, and it was decided to carry forward
these points of attention into project COST 235. In the latler, a fruitful collaboration
between the University of Glamorgan (UK), the Rutherford Appleton Laboratory (UK),
Eindhoven University of Technology and some other groups was started in 1991 to com-
bine their individual knowledge about site shielding in order to derive a better and more
accurate model than presently offered by the CCIR. The author of this thesis worked in
this international COST 235 project as coordinator for the subject of EM wave diffraction
modelling.

A collaboration with the research centre of the European Space Agency, ESTEC, resulted
in the realisation of the wave-propagation model for LMS field-strength prediction. The
result of this work is also reported in this thesis.

1.3 Scope of the thesis and survey of its contents

This thesis is intended as a contribution to the development of deterministic wave-propaga-
tion models that can enhance the performance of currently available models for site shield-

ing and field-strength prediction in urban environments. Note that it should not be con-

3 COST 210: Influence of the atmosphere on interference between radio communications systems at fre-
quencies above 1 GHz, 1984-1991.
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sidered as a replacement, but rather as a complement of current statistical models. The
emphasis in the thesis will be put on the modelling of the various wave-propagation mecha-
nisms, the practical verification of these models, the antenna spatial filtering and the use of
elementary object shapes in the wave-propagation model. This is reflected in the structure
of the thesis.

In Chapter 2 the high-frequency modelling of EM wave propagation as used in GO and
UTD is reviewed. Theories for reflection and diffraction are discussed. Also the extension
of UTD to account for surface roughness of the obstacle faces and non-perfect conductivity
is examined, and a heuristic extension of UTD to account for irregular edges is proposed.
Furthermore, a formal treatment of reflection and diffraction is given that can be of help
in the preparation of a numerical wave-propagation model.

In Chapter 3 the site shielding models derived from GO and UTD are discussed, incor-
porating objects with simple shapes and an isotropic antenna at the source and observation
point. For the finite-width screen with knife edges, an engineering approach for site shield-
ing is derived, and theoretical results from three different field-strength prediction models
(UTD, Fresnel surface integral and parabolic equation model) used within COST 235 are
compared.

Chapter 4 concerns the practical verification of the models proposed in the previous
chapter. The measurements were performed on scaled objects at a frequency of 50 GHz.
During the verification a new hardware calibration scheme was developed that enables the
measurements fo be performed in an ordinary echoic room using a vector network analyser
and signal processing techniques. Results on the relevance of diffraction by vertices, polar-
isation dependence of the field, and the theoretical extension of UTD to lossy material are
reported and examined. Attention is also paid to scattering by cylinders.

Chapter 5 focuses on the shielding of symmetrical parabolic reflector antennas. Single-
and double-reflector antennas are considered, and special attention is paid to the case where
the antenna is very close to the obstacle. Results for half-plane shielding of a parabolic
single- and double-reflector antenna having identical size and edge illumination are com-
pared. Three different, but related, approaches for half-plane shielding are introduced, and
results predicted by them are presented and compared. The use of the so-called far-field ap-
proach, i.e. a separate treatment of obstacle and antenna scattering as usually performed in
field-strength prediction techniques, is examined. The proposed near-field models, which
perform a combined analysis of obstacle and antenna diffraction, can also be of use in
the determination of the optimal placement of Very-Small-Aperture Terminals (VSATSs) in
urban environments.

Chapter 6 covers the LMS ficld-strength prediction tool and the coupling of the latter
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to (commercially available) digital databases using an object with a standardised shape.
Results from this model are given, and derived data such as field-strength and Doppler-
shift statistics are presented. Also a time-efficient computation scheme is proposed which
is useful for the derivation of statistical information. Furthermore, the application of the
model proposed to other types of telecommunication systems such as microcellular and
terrestrial systems is discussed.

In Chapter 7 the main results of this thesis are summarised and conclusions are drawn.



Chapter 2

Review of the modelling of high-frequency
EM wave propagation

2.1 Introduction

For the description of the interaction of an electromagnetic (EM) wave with objects a
number of theories can be used. In general, integral representations for the EM field provide
very accurate answers to scattering and diffraction problems but have the disadvantage that
they are time consuming and that they do not provide a substantial insight into the problem
just sketched. For this reason, and because the obstacles considered in this thesis all will
be large compared to the wavelength A, ray methods have been chosen to be used for the
description of the wave interaction with obstacles.

The Geometrical Theory of Diffraction (GTD) [4] and its uniform extensions UTD
[5] and UAT [6, 7] owe their popularity to the straightforward description of the edge-
diffraction process and to the large number of applications that have been reported in the
literature. In this thesis the UTD is used for the edge-diffraction modelling because this
theory has been furthest developed, and numerous examples of its use have been reported.
The fact that UAT is mathematically more rigorous is acknowledged, but from an engi-
neering point of view the differences between the results provided by both uniform theories
appear to be negligible [8, 9]. Furthermore, the uniform theories essentially reduce to GTD
outside the transition regions around the shadow boundaries and therefore possible (small)
differences between UTD and UAT only exist in these small regions. Therefore the UTD
was adopted to model the edge-diffraction process.

A comprehensive overview between the exact solution, Kirchhoff’s approximation, GTD,
UTD and UAT is given in [3] for the case of a plane wave incident upon a perfectly
conducting half-plane. There it is shown that, for engineering purposes, both uniform
theories UTD and UAT can be used and give identical results, even if the incident wave is

non-uniform with a zero amplitude at the obstacle edge.
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This chapter is completely devoted to a mathematical description of the various types
of wave-interaction processes such as reflection and diffraction. In Section 2.2 the high-
frequency representation of EM waves is dealt with. In Sections 2.3 and 2.4 reflection and
diffraction of an EM wave by an obstacle and an obstacle edge, respectively, are discussed.
In some regions surrounding an object the inclusion of higher-order diffraction contributions
is necessary because the first-order edge-diffracted fields vanish. For this reason, higher-
order propagation mechanisms, viz. slope, corner and double diffraction, are described in
Section 2.5. A heuristic extension of UTD for non-perfectly conducting wedges with rough
faces is reviewed and analysed in Section 2.6. The problem of diffraction of a plane wave
by a half-plane with a rough edge is addressed in Section 2.7.

In Section 2.8 attention is paid to the problem of reflection and diffraction by obstacles
with convex shapes. An example of an application of this theory is the problem of the
interaction of an EM wave with a street lamp post. Unless otherwise mentioned all obstacles
are assumed to be perfectly conducting.

In Section 2.9 a formal description of the reflection and diffraction mechanism is pre-
sented which is quite helpful when the theory presented in this chapter is implemented in

numerical algorithms.

2.2 High-frequency representation of EM waves

In this thesis we are concerned with time-harmonic EM fields propagating through free
space. The time dependence adopted is ¢! with w the radial frequency, but this exponen-
tial factor will be suppressed throughout the thesis.

To find the high-frequency asymptotic behaviour of the EM field, the electric field is

expanded into an asymptotic series of the form

= : E
E  e~ik¥ —_—
fgo (jw)

2.1)

where k = 2r /A is the wave number for free space and 2 is the phase function. Equa-
tion (2.1) is called the Ansatz and is the starting point in the derivation. The electric field
E is dependent on both the position vector 7 and w, while the terms E,, and ¢ are dependent
on the position vector 7 only. Ior the magnetic field H an identical series-representation
1s used.

In the subsequent part of this chapter our attention is confined to the zeroth-order

terms FEo and Hy. This yields the following expressions for the ray-optical, geometrical
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optics (GO) fields E and A (w — 00)
E « e'ﬁ‘“’E‘g, (2.2)
H o e Hy, (2.3)

where the surfaces 1) =constant are called equi-phase surfaces or wavefronts.
By substitution of equation (2.2) into Maxwell’s curl equation for the electric field, and
performing some mathematical manipulations, an explicit relation between Eo, Hy and V)

is obtained. This relation is given by
\71{) X E‘.O = Zggﬂ, (2.4)

where the direction V1 is perpendicular to the wavefront, and Z; is the impedance of
free space. Substitution of equation (2.2) into Maxwell’s zero-divergence equation for the
electric field results in

Vi By =0. (2.5)

Repeating the previous steps for the magnetic field H yields

Zy (V?f) X H’o) = —Ey, (26)
and
V- Hy = 0. (2.7)

After substitution of equation (2.4) into equation (2.6) we obtain the eikonal equation
VY =1. (2.8)

It is found that the rays in a homogeneous, isotropic medium are straight lines in space,

perpendicular to the wavefronts. The ray trajectory is determined by

7(s) = 7(0) + sV, (2.9)
where 7(0) is the position vector of the point where s = 0. Furthermore,

dip = |Vip|ds = ds, (2.10)

where ds is an incremental distance along a ray path. So the phase variation along the ray
trajectory is given by

P(s) = 9(0) + s, (2.11)
where s is the distance along V1) measured positively in the direction of V4, and (0) is
the initial phase at s = 0.
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In the subsequent part of this chapter our attention is confined to the electric field only
because the magnetic field can easily be calculated from equation (2.4) once the electric
field is known. The flow of energy is determined by the transport equation for Eqy which is
found by substitution of equation (2.2) into the Helmholtz equation:

2(Vip- V) Eo + (V%) By = 0. (2.12)

Let EU(U) be the electric field at the reference point s = 0. From the transport equation
(eq. (2.12)) and the use of the ‘ray-tube concept’ it is found that the change in amplitude
of Ey along the ray is given by

= o M2

Ey(s) = Ep(0) m, (2.13)
where py, are the principal radii of curvature of the wavefront at s = 0 with associated
principal directions Z;,. Here, and in the following, a caret denotes a vector with unit
length. A positive (negative) radius of curvature implies that in the corresponding plane
spanned by &; ( = 1,2) and Z3 = V1 the wave is diverging (converging). It is found that
at the points s = —p; the denominator of the radical in equation (2.13) vanishes, and hence
the amplitude of the field approaches infinity. At these points the foregoing description
is invalid. These points are called caustics, and the actual evaluation of the field at such
a point should be based on another method [4, 10]. The value of s at which a caustic is
located is referred to as the caustic distance. If (s + p;) changes sign, a phase shift of +7/2
is introduced.

The radical in equation (2.13) is called the divergence or spreading factor. Equa-
tion (2.13) reduces to the familiar 1/s amplitude dependence of waves with a spherical
wavefront for p; = p, (with py2 = 0 at s = 0), and to the non-decaying behaviour of
a plane wave for p; = p; = co. The amplitude behaviour of a wave with a cylindrical
wavefront is found for p; = oo or p; = 0.

For the electric field E it is therefore found that

& 5 102 =i

B(s) = E(0) mz—){me ks, (2.14)
with E(O) the electric field at the position s = 0. See Figure 2.1 for an illustration of prin-
cipal radii of curvature p; 5 and their associated principal directions &, ,, and the wavefront
of an EM wave.

The expression of the electric field in equation (2.14) is valid for high-frequencies. If the
electric field along a ray can be calculated using equation (2.14), then the field is said to
exhibit a ray-optical behaviour.
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wavefront

AN .S:_pz

Figure 2.1: Wavefront, principal directions &, ; and direction of propagation is.

From equations (2.4) and (2.6) it follows that the complex Poynting vector E x H* is
in the direction of V4. This indicates that the power flow is in the direction #a. Therefore
&3 = V1 is the direction of propagation, and &, 23 form an orthonormal system.

Notice that the propagating wave is characterised by its direction of propagation 3, its
principal directions ;. and its principal radii of curvature p; 4, its amplitude and phase
dependence as given by equation (2.14), and E(0) at the reference point s = 0.

Sometimes it is necessary to calculate the radius of curvature of the wavefront in a
plane that is not coincident with one of the principal planes. Let this normal section be
spanned by #; and m (Fig. 2.1) such that it makes an angle o = arccos(&, - /) with the
plane spanned by &3 and &;. The radius of curvature in the plane spanned by #3 and  is

denoted by p,, and is calculated from Euler’s law

1 2 L]
_=cos a+sm ) (2.15)
Pm A P2

2.3 Reflection of an EM wave

If an EM wave is incident upon an obstacle, or in general an impedance boundary such as
a perfect conductor, reflection occurs. To distinguish between the fields which are present
before and after reflection, the superscripts z and r are introduced, referring to the incident
and reflected field, respectively. The interaction of the EM wave with the obstacle will

occur at the intersection R of the incident ray and the reflecting surface ¥.
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At R the ray-optical reflected wave is generated and consequently its amplitude and
phase dependence can be described by equation (2.14). It is characterised by a triplet &7 , 4,
the radii of curvature pj , of the wavefront, and E". These parameters of the reflected wave
are not only dependent on the parameters of the incident wave, but also on the (curvature)
parameters of the reflecting surface ¥ at R, and the reflection coefficients of ¥ at R. The
parameters of the reflecting surface ¥ are described by a triplet 5511:',2.3 and principal radii of

curvature pE,. These vector triplets are shown in Figure 2.2.

=>

N
*3
Figure 2.2: Reflection of a EM wave at R.

Let A% = #¥ be the normal vector to the surface £ at R pointing into the direction from
which the wave is incident, such that 2% - #} < 0. The sign of the radius of curvature of a
principal plane at R is positive (negative) if the corresponding normal section bends away
from (towards) 2*. With this sign convention a convex normal section has a positive radius
of curvature, while a concave has a negative one. For a convex surface the normal vector
is pointing away from both centres of curvature, while for a concave surface, the reverse is
true.

The direction of propagation #j of the reflected wave depends on #% and #% at the

reflection point R. The relation between }, 4 and &% is called Snell’s law and is given by
85 = &4 — 285 (2L - £3). (2.16)

The calculation of the reflected field parameters ] , and p; 2 is not a trivial task [5]. To



2.3 Reflection of an EM wave 13

this end the (2 x 2) matrices é‘ and Q_: are introduced with the elements

; 1
== (2.17)
~
i _ 1
Q% = <% (2.18)
P2
Qir'= i =0, (2.19)
Subsequently, the matrix P is introduced as
= Ay AF & oAl
; Lytly. by g
Pi= [ff-as - ﬁz], (2.20)
2 Ty T I3

With these definitions, the curvature matrix 5’ for the reflected field is given by [5]
1

=G - (P) @ (P) (221)

where the ~T operation is the transpose of the inverse of a matrix, and the ~! operation
corresponds to the inverse of a matrix. The curvature matrix Q" is defined with respect to

the basis vectors &}, given by

gl . my A5 i )

i1, = &), — 283 (3'1,2 : 33) ‘ (2.22)
These vectors are not the principal directions of the wavefront of the reflected wave. How-

ever, they are needed in the calculation of the latter.

Expressions for the elements of the matrix (5’ can be found in [5, 3]

1 2 1‘:‘- 3 £2 P 2 P 2
Q;‘l = — - ( 3 =.31 (( 2;) + ( ‘251:) ) , (223)
PL et (P*) Pi P2
2 Al oL Piopr Pi pPi
Q= @5 = 2B 55) ( o z) ) (2.:24)
det. (Paj M P2
1 2 3t -iE RY P:‘ 2
Q;'z =—- ( 3 — 3)2 (( 'lg] 1+ ( lé) ) , (2‘25)
P2 et (P.-) A Pz

where det (P‘) denotes the determinant of the matrix P Using the expressions for the

elements of the matrix 5", the principal radii of curvature of the wavefront of the reflected
wave are found to be
1

™
P12

1 T T 1 r D r 21172
=3 (Q1: + Q%) £ 5 [( 11— @) +4(Q%) ] ) (2.26)
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whereas its principal directions are given by

i i -1/2
&= [( 2= E) i'{' - ;2535}] : [(QE: - E] + (Q;E)Ejl 3 (2'27)

35 = —3) x &]. (2.28)
The reflected field £ follows from the incident field E* and the normal vector &5 at the

reflection point R. The boundary condition for the total electric field £ = Ef + E™ at R
only determines the tangential parts of £

2% x EY(R) = &5 x E'(R) + 2% x E"(R) = 0. (2.29)
Furthermore, the divergence relation for the total electric field at R gives that
V-E(R)=V-E(R)+V-E(R) =0, (2.30)
which yields
E'(R)- 2% = E'(R) - #5. (2.31)

This leads to the relation between E”, E' and the surface normal % at the reflection point

R
E"(R) = —E'(R) + 235(F(R) - 33). (2.32)

The relation between E7, E* and &5 at R can compactly be written as
E"(R) = E'(R)- R, (2.33)
where the dyadic reflection factor R” is given by
R =& & R + e”e” e (2.34)
and, in the case of reflection by a perfect conductor, K are given by
wh = FlL. (2.35)

In equation (2.35) the subscripts s and h refer to soft and hard, respectively. For soft
polarisation the electric field is perpendicular to the plane of incidence, which is spanned
by the vectors & and #¥. For hard polarisation, the electric field is parallel to the plane of
incidence. For reflection by a dielectric impedance boundary, the R}, are given by Fresnel’s
reflection coefficients.

The unit vectors étu used in equation (2.34) are given by

i, aE
i oo 23X &y
Bl =6y =

(2.36)

|13Xz3l
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& = &) x i, (2.37)
& =€, x 3. (2.38)
The reflected field at an observation point P along the ray trajectory in the direction 5

is thus found from

= _ fr P1P3 —jks
E™(P)=E"(R) —_{p‘{ s YE s)e 5 (2.39)

where s is the distance from R to P along #3. Equation (2.39) conforms to the propagation
of a ray-optical field as discussed in equation (2.14). The reflected field E™ at R is calculated
using equation (2.33), while the radii of curvature of the wavefront of the reflected field o7 ,
at R can be calculated using equation (2.26).

As can be seen from equation (2.39), the reflected field is proportional to the incident
field. For this case it is said that the reflected field is of order k° with respect to the incident
field of order k°.

2.4 Diffraction of an EM wave

Since in GO the waves travel along straight lines, this asymptotic theory does not allow for
the propagation of EM waves around edges. This means that, if at an observation point P
the direct, 1.e. GO, contribution for some reason is obstructed, no field would be present at
all. Actually, this implies that the GO field is discontinuous in the case of ray obstruction.
The location where this obstruction takes place is called a shadow boundary (SB); there
is a shadow boundary associated with the incident field (ISB) and one associated with
the reflected field (RSB). In geometrical optics the direct and reflection contributions are
indeed discontinuous, and for this reason a diffracted field is introduced to complement the
GO terms. The diffracted field is also discontinuous at the same location where the GO
field, either direct or reflected, is discontinuous. The sum of the GO field and the diffracted
field, however, remains continuous when .

In this section we pay attention to edge-diffracted rays. An edge is a curve where the
wedge surfaces meet such that the normal vector 7 for both surfaces is different, i.e. # is
discontinuous when going from one surface to the other one via the edge. The incident
wave propagates along rays in the direction %, and one of these rays intersects the obstacle
edge in the diffraction point Q. At @ the edge locally is approximated by two planes that
are tangential to the obstacle surfaces. These planes form a wedge geometry.

The diffraction mechanism is different from the reflection mechanism in that a whole
family of diffracted rays is generated at (). A point of similarity with the reflection mech-
anism is that the diffracted wave is also ray-optical, so the amplitude and phase along
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a diffracted ray can be described by equation (2.14). The superscript d is introduced to
indicate the diffracted wave. The diffraction point @ at the edge of the obstacle serves
as a caustic of the diffracted field since all the diffracted rays seem to emanate from this
point. For this reason the introduction of only one radius of curvature p? suffices, i.e. after
diffraction one of the radii of curvature of the diffracted wavefront p{ , has a zero value at
Q.
At the point @) Keller’s law of edge diffraction yields the directions of the edge-diffracted
rays [4]
§-e=8§-¢, (2.40)

where §' corresponds to the direction of the incident ray, § is the direction of the diffracted
ray, and é is the unit vector tangent to the edge at ). This law can be seen as the diffraction
equivalent of Snell’s law for reflection. In general, the diffracted rays form a cone with the
apex at the diffraction point @, semi-angle § = arccos(§’ - €) and axis of symmetry é. The
diffraction cone is depicted in Figure 2.3. In case the angle § = 7 /2, the cone degenerates

P

Figure 2.3: Cone of diffracted rays generated at straight edge.

into a plane through the diffraction point @ perpendicular to the edge tangent é.
To describe the diffraction mechanism at @, a so-called edge-fixed coordinate system
is introduced which is shown in Figure 2.4a. The following edge-fixed unit vectors are

introduced .,
¢ = (2.41)

|3 x é

(113
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(b)

Figure 2.4: The edge-fixed coordinate system is shown in part (a), while a projection of the
vectors §' and § on a plane perpendicular to & through () is depicted in part (b).

B=¢ x4, (2.42)
7 EX35

!P:|AX§|‘ (2.43)
B=¢xa. (2.44)

The exterior wedge angle is nw. At the diffraction point ) the unit normal vector 7, to the
o-face, and the unit normal vector i, to the n-face are introduced (Fig. 2.4b). The unit
tangent vectors {, and i, are found from {, = f, X é and {, = & X A,.

Referring to the triplets 1‘:}‘_’{13 for the description of the ray-optical fields and the triplets
(7,é,1) and (#,¢',8), (B,%,3) for the description of the fields and the diffraction mecha-
nism, it may seem that one of these descriptions is redundant. So why not use only one,
consistent definition? The answer is that the description using :?:‘,’{f-, is used for a general
description of GO wave propagation and it can effectively be used in ray-tracing techniques.
The other coordinate systems are dependent on the orientation of the wedge and therefore
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are specific for the diffraction mechanism. When implementing a numerical algorithm the
various vector triplets will often be used in a mixed way.
The diffracted electric field £ at an observation point P on the diffracted ray can be
calculated from the incident field E* at the diffraction point @ using [5]
EYP)=E(Q)-D _A e (2.45)
s(pt +s)
In this equation Ed[P) is the diffracted field at an observation point P, with s the dis-
tance from Q to P along the diffracted ray, E*(Q) is the incident field at Q, D a dyadic
diffraction factor and p? the radius of curvature of the wavefront of the diffracted wave.
In equation (2.45) the optical characteristics in terms of phase dependence and spreading
factor are evident. Furthermore, only one radius of curvature p? is present because s is
measured from the diffraction point @, and hence the point with coordinate s = 0 is a caus-
tic. Note that due to the product E'(Q) - D the wave can be depolarised by the diffraction
process.
The dyadic diffraction factor D in equation (2.45) is given by [5]

D= —p'BD, — $'$Dy, (2.46)

and the factors D, are called the three-dimensional diffraction coefficients. The subscripts
s and h correspond to the soft (,5'") and hard (¢') components of E'. The soft component
of E' is parallel to the plane spanned by & and €, while the hard component of Eiis
perpendicular to this plane. The coefficients D, are given by [5]

Dyp = Dy + Dy + R Ds + RS D, (2.47)
with -
e " T+ S
Dy =-— t F(kL'a* ; 2.48
! 2n\/21rksin,6co ( 2n ) (ke (g7 )) (2:48)
eim/4 T — <p'j
Dy =— = t F(kL'a™(¢7)), 2.49
8 Qnﬁﬂksinﬂm ( 2n (kL'a" (7)) (2:48)
8—3'1!{4 (w+@+)
Dy=— t F(kL™a* (%)), 2.50
S e BrranE TN @ TLEl) (2503
e—jn{d .ﬂ._(P+
Dy=— t F(kL™a (¢")), 2.51

and ¢¥ = ¢ F ¢'. The reflection coefficients R, and R}, for a perfect conductor are
the reflection coefficients as given in equation (2.35). In equations (2.48) to (2.51), ¢’ is

the angle between the projection §, of & onto a plane through @ perpendicular to é and
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the wedge surface, ¢ is the angle between the projection §, of § onto a plane through @
perpendicular to é and the wedge surface. Both angles are measured from the o-face, as
indicated in Figure 2.4a. The projections of, respectively, & and § onto the plane through

() perpendicular to é are given by the unit vectors

- —§ 4+ (8- €é)é —3§"+ cos Bé
S T E T : ; 2.52
5t | =8+ (8- é)é | sin 3 (2.52)
. §—(5-e)e 5 — cos fJé
= = : L)
HETi—(3-8¢|  sinp (2:53)
The angles ¢’ and  can be unambiguously determined by [11]
o' =n— [1’!‘ — arccos($} - fa)] sgn(s) - n,), (2.54)
p=mr— [1.' — arccos(§, - to)] sgn(8; - n,), (2.55)
where the sgn(:) function is introduced according to
1 fz>0
n(z) = et =g 2.56
) {—1 Jifz <0, Sl

The transition function F'(-) in equations (2.48) to (2.51) involves a Fresnel integral and is
given by [5]
2 =] .
F(z) = 2j\/ze ff =37 dy. (2.57)
This function may be approximated for small and large arguments by simpler expressions.
For z < 0.1, the transition function is well approximated by

- i
F(z) = [\/7.':} — 2z’ — E{PS——] eil=tn/9), (2.58)

whereas for large arguments (z > 10) a series expansion for F(z) is given by

Flaymis -3 i1 109

— 2.59
2z  4z? 82® 162 ( )

For small arguments the transition function F(z) is of order 2'/2, as for large arguments it is
of order 2°. An approximation of the Fresnel function convenient for numerical evaluation
for 0.1 < z < 10 is given in [12]. The real and imaginary part of F(z) are given in
Figure 2.5.

The functions a*(-) in equations (2.48) to (2.51) are given by [5]

(2.60)

+
a*(z) = 2 cos? (M—m) g

2
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Fix)

Figure 2.5: Real (—————) and imaginary (— — — — — ) part of the transition function
F(z).

where N* (N* € {—1,0,1}) are integers which minimise the functions f and g given by
f(z)= |21mN"’ -z - ?r‘ , (2.61)

g(z) = ‘21rnN_ —-z+ fr‘. (2.62)
It should be noted that the superscript + is associated with the n-face, whereas the su-
perscript — is associated with the o-face. More details concerning the functions a* can be
found in [5].
The distance parameter L' in equations (2.48) and (2.49) is given by
Li = S(pe+5)piph
PPy + 5)(p} + s)

The parameter p! is the radius of curvature of the wavefront of the incident wave in the

sin? 3. (2.63)

plane spanned by § and €, and can be calculated using Euler’s law (eq. (2.15)). For a
wave with a spherical or plane wavefront p} = p , = p and the expression for L' simplifies
considerably:

i_ 8P . 2
L —S+Psm B. (2.64)

Also for a wave with a cylindrical wavefront some simplifications for L' are introduced, but
they will not shown here.
It is found from a theoretical investigation that the radii of curvature pi%™" of the

wavefront of the reflected wave are also necessary to evaluate the diffraction coefficients,
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viz. in the factors L™®™. The distance parameters L™ have similar expressions as that

of the distance parameter L%

s(pL%™ + s)p " " py "
P (P 4 8) (02 + 5)

where p;%"" are the principal radii of curvature of the wavefront of the wave reflected from

Lrorm —

sin? g, (2.65)

the o- or n-face, respectively. They can be found by applying the matrix transformation
of incident-field parameters and surface parameters to the reflected-field parameters, viz.
equation (2.21). The radius of curvature of the wavefront of the reflected wave in the plane
spanned by é and #} is denoted by p.®™, where the superscripts ro and rn refer to reflection
from the o-face and n-face, respectively. It can be shown that this particular choice of
Lo enforces continuity across the shadow boundaries for non-converging incident waves
[3]. For incident converging waves, a complex correction factor should be used [13]. Notice
that if the matrix P' in equation (2.21) is singular, the transition functions in the three-
dimensional diffraction coefficients should be replaced by the value 1. This is the case if
fiom L 4, which corresponds to grazing incidence.

Until now nothing has been said about the curvature of the edge at the diffraction point
Q. The radius of curvature of the wavefront of the edge-diffracted field p¢ in equation (2.45)
is found from [5] 1 @

1 a,-(8-5
P ;‘; T a.sin’p j‘ (2:66)
with a. > 0 the radius of curvature of the edge at the diffraction point @, and 7, is the
normal vector to the edge, pointing away from the centre of curvature, as depicted in

Figure 2.6. It is in this way that the curvature from an edge affects the diffracted field

Figure 2.6: Definition of the radius of curvature a. of the edge and the edge normal #i,.

from the wedge. This knowledge can for instance be used to suppress the amplitude of
diffracted fields in antenna systems and compact test ranges [14]. It is possible that the
observation point P is located at a caustic of the diffracted field. In this case the UTD can
not be applied.
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Around the incident and reflection shadow boundary, respectively, a region can be dis-
tinguished in which the diffracted field exhibits a rapid spatial variation. These regions are

called the transition regions, and are bounded by [11]
kLa* = 2. (2.67)

For plane wave illumination this equation defines an area with a parabolic contour, with
either the incident (ISB) or the reflection shadow boundary (RSB) as symmetry axis, and
the edge as the focus. The higher the frequency, the smaller the transition region becomes;
for A — 0 the width of the transition region reduces to 0. The transition regions are
shown in Figure 2.7. The interpretation of the fransition function F'(-) is that it makes

incident

\ Transition
" regions

/ ISB

Figure 2.7: Transition regions at a wedge illuminated by a plane wave. The upper transition
region is associated with the reflection shadow boundary (RSB), as the lower
transition region is associated with the incident shadow boundary (ISB).

the UTD bounded at the shadow boundaries. Setting F' = 1 results in a reduction of
UTD to GTD, being singular at the shadow boundaries. The argument of F' becomes
zero for observation points on the shadow boundary, while the cotangent function becomes
singular. The product of the transition function F' with the cotangent function, however, is
finite. Traversing the shadow boundary from the lit region to the shadow region results in a
discontinuity of the edge-diffracted field which precisely compensates the abrupt obstruction
of the GO field. The total field is therefore continuous across the shadow boundary.
Outside the transition regions the edge-diffracted field is of order k='/2 with respect to
the incident field of order k°. Inside the transition regions, the edge-diffracted field is of

order k°.
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2.5 Higher-order diffraction contributions

The edge-diffraction contributions just discussed are the main contributions to the to-
tal field if the GO terms (direct, reflected) are not present. If also the first-order edge-
diffraction contributions for some reason vanish, higher-order diffraction contributions
should be taken into account in calculating the field strength at an observation point
P. Some of these are discussed in the following. Notice that the adjective ‘higher-order’ is
used for diffraction terms of order k™", where n > 1/2, as well as for multiple-diffraction
terms. The latter are also of order ™™, n > 1/2, but this is due to a repeated interaction
with the obstacle. The higher-order terms discussed in this section do not correspond to

the ‘higher-order’ terms E, used in equation (2.1).

2.5.1 Slope diffraction

From equation (2.45) it can be seen that the diffracted field is proportional to the amplitude
of the incident field at the diffraction point Q. In the case of an incident field with a zero
amplitude at the edge, the next higher-order term needs to be incorporated for an accurate
computation of the diffracted field. This term is called the slope-diffracted field, and can
be calculated using [15]

1 0E,,(Q)dD,, ke
jksinf  on B\ s(p? + s) ’

Egy(P) = (2.68)
with E}, ,, denoting the soft (A") and hard (') component of the incident field at the
diffraction point @, respectively. The directional derivative of the incident field is in a
direction 7 that points from the shadow region into the lit region, perpendicular to both
the direction of propagation &' and the edge tangent vector é. Apart from the first-order
edge-diffracted field (eq. (2.45)), the total edge-diffracted field consists of higher-order terms
of which the slope-diffracted field is one. In [16] it is shown that the total edge-diffracted
field E£,,, can compactly be written as

Bl =Bl 4 Edvlors L B 4., (2.69)

where E¢ is the diffraction field proportional to the incident field amplitude given in equa-
tion (2.45), E®slor i the conventional slope-diffracted field proportional to the directional
derivative of the incident field as given in equation (2.68), and E* is an additional slope-
diffraction term proportional to the incident-field amplitude. If the amplitude of the in-
cident field is zero it can readily be deduced from equation (2.69) that the term Edslore

is indeed the next higher-order term because the other terms E? and E vanish. If the
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amplitude is not equal to zero, the £ term, as well as the £4%°7¢ and the E%, should be
taken into account. At present, no UTD expressions for this term have been formulated,
but GTD-like expressions are given in [16].

For an incident field of order ° it is found that the slope-diffraction term E®/¢ given
in equation (2.68) is of order k~*/2 outside the transition regions, while it is of order k=1/2

in the transition regions.

2.5.2 Corner diffraction

The geometry for corner diffraction is shown in Figure 2.8. The point source S illuminates
a perfectly conducting quarter-plane, and the observation point P is in the shadow region
of the obstacle as seen from S. One of the rays from the source hits the corner D,
which is defined as an intersection of two edges. In the geometry shown, also an edge-
diffraction point D, is identified. The importance of the corner-diffraction contribution
can be demonstrated by assuming that the observation point P moves into the direction
specified by the edge tangent é. The edge-diffraction point D, will move towards D,
until they coalesce. At this point P is said to be on the diffraction shadow boundary
because any further movement of P into the direction of é will cause the edge-diffraction
contribution to suddenly vanish. This discontinuity is compensated for by the corner-
diffraction contribution in a similar way as the edge-diffraction contribution compensates
the discontinuous GO contribution. The sum of edge-diffracted and corner-diffracted fields
is continuous through the diffraction shadow boundary [17]. Since a corner is made up
from at least two edges there is a corner-diffracted field for each edge.

If an incident field with a spherical wavefront is considered, the corner-diffracted field

E¢ of a planar geometry (Fig. 2.8) associated with a corner and edge 1 of the obstacle is

2oy . ss'(s 4 s.) eI
E°(P) = E'(D.) - D, Tl T 5 (2.70)

where s is the distance from S to D, s, is the distance from S to D,, s” is the distance

given by

from D, to P, and s is the distance from D, to P. Notice that the corner-diffracted ray has
a 1/s amplitude dependence, indicating that the corner acts a point source. The dyadic
factor D, is given by

D, = —f'BD: — ¢'¢D;, (2.71)

and the corner diffraction coefficients DS, are expressed as

. ’ —jn/4
VS0 BacSINBe bt or 4 o — o) e (2.72)
cos foc — cos e

Dj‘j,_ = C.s,h(-DP) \/Q_Trk.’
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edge extension

IS

P
Quarter-plane

(b)

Figure 2.8: Geometry for corner diffraction at a quarter-plane (a), and definition of angles
¢ and ¢’ in a plane perpendicular to é (b).

and

Cs,h(De) =

—e~i"/4 [F(kffa(so')) |F ( La(e™)/A )
2/ 2rksinB | cos(p~[2) kL.a(m + Bo: — Be)
. F(kLa(¢")) La(p*)/A
“ cos(et2) |1 (kLca(vr + Boe — ,65)) ] (2:78)

where the reflection coefficients R}, for a perfect conductor are given by R, = FL.

The angles ¢ and ' are defined in Figure 2.8b, while a(z) = 2cos?(z/2). The distance
parameters L and L. are given by

L=——sin?B, (2.74)

and

(2.75)
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respectively. The angle f. is measured from é to the incident ray at D., whereas S, is the
angle measured from the edge to the corner-diffracted ray. The angle 3 is the angle between
the incident ray at D, and é. The transition function F'(-) is given by equation (2.57). The
modification factor

‘F( Lalw™)/) ) (2.76)

kLca(ﬂ' + Bo. — JBc)

is a heuristically derived function which ensures that the diffraction coefficient will not

change sign abruptly when it passes through the diffraction shadow boundary of the edge
[17].

The expression for the function C,; as given in equation (2.73) is only valid for a
geometry in which the exterior wedge angle is 2r. If the corner is part of some three-
dimensional geometry then another expression for the coefficient C, should be used [18].
Every pair of edges making up a corner geometry should be treated independently, and the
exterior wedge angle nm of each geometry may be different from 2. If a geometry is not
illuminated by a source S then its contribution is neglected.

For n # 2 the proper expression for C; , is given by

Cin(D.) = D§ + D5 + R}, D5 + RS, D (2.77)
with -
el T+
Df = — ol S (kL'a* (7)), 2.78
! 2n\/21r.-'csinﬁm ( 2n ) ) ( )
e_.?.’rf" T — (P
D =— { % kL' = 2.79
. 2n\/‘2?rksin,8co ( 2n ) (¢ )) (2:19)
(i ™+t )
D =- t EL™at 2.80
i 2nv/ 2wk sin B « ( 2n (¢" )) (2.80)
e=iml T—
D =— t S kL™a” 2 2.81
T T onarksing ( 2n ] ( (+) (2.81)

and where the function S(-) has been introduced according to

S(z) = Fz) |F (kLca(rI~+/~2;;Jc = 3:)) ‘

and the function F' has been defined in equation (2.57). It can easily be shown that for n = 2

(2.82)

equation (2.77) reduces to equation (2.73). Equation (2.77) shows some similarity with
equation (2.47). The reflection coefficients RS, and R}, were also used in this equation;
+h = F1for a perfect conductor, while for a dielectric they are given by Fresnel’s reflection

coefficients.
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The formulation used here is based on an approximate method which provides continuity
when fraversing the diffraction shadow boundary. Investigations have revealed that this
formulation shows good numerical agreement with another approach [19] which is based on
an approximation to the radiation integral to account for corner diffraction phenomena [20].
From the comparison of results in [20] it is concluded that, for the application considered in
this thesis, the present formulation of the corner-diffraction coefficient will suffice, although
the physical basis, i.e. the induced surface currents and their behaviour near the corner,
may be criticised.

The corner-diffracted field is of order k™! outside the transition regions, it is of order
k=1/2 inside the transition regions associated with the edge-diffracted field (¢* =~ =) or if

Boe = B., and of order k° in the transition region where ¢* ~ 7 and fo. = S..

2.5.3 Double diffraction

The diffraction terms dealt with on the previous pages are called higher-order diffraction
terms because they can be used in addition to the edge-diffracted field. In case none of the
formerly discussed wave contributions are present it is sometimes necessary to incorporate
also double-diffracted waves. The double-diffracted wave can be calculated by performing
twice the procedure as outlined for the single-diffracted wave, with the diffracted field
from the first diffraction point @ acting as incident field for the second diffraction point
@2. A typical geometry for using double diffraction is depicted in Figure 2.9a. Below
the diffraction shadow boundary (DSB) double diffraction is the only remaining type of
contribution.

The diffracted field from the first edge is called the primary diffracted field. This field
is present in the whole space, except in the region to the right of the obstacle and below
the DSB. The only field in the latter region is the diffracted field from the second edge and
it is called the secondary diffracted field.

The primary diffracted field, incident at grazing angle upon the second, perfectly-
conducting edge, has a zero B component due to the boundary condition. For this compo-
nent the slope-diffracted field should be used to obtain continuity of the total field if the
DSB is traversed. For the ¢ component of the primary diffracted field this is not necessary.
In fact, the slope-diffracted field for the ¢ component is zero. Now a consecutive application
of the edge-diffraction algorithm yields a continuous total field when the DSB is traversed.
In addition, a factor 1/2 is introduced for the amplitude of the secondary diffracted field
because its incident and reflection shadow boundary coalesce [15].

Some caution is needed in the evaluation of the double-diffracted field because the
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DSB

DSB

(b)

Figure 2.9: Diffraction at a pair of joined wedges; non-overlapping transition regions shown
in (a), and overlapping transition regions shown in (b).

incident field should be ray-optical. In the calculation of the secondary diffracted field
the distance from @, to @2 should be large compared to A. Furthermore, the distance
from S to @, and from @2 to P should be large compared to the wavelength [21]. If the
second edge lies in the transition region of the primary diffracted field, severe errors will
be introduced by mechanically applying wedge diffraction. See Figure 2.9b for an example
of overlapping transition regions. To cope with this problem, closed form, double-wedge
diffraction coefficients have been derived during the last decade for the case of overlapping
transition regions [22, 23, 24, 25].

The double-diffracted field E% can be thought to arise from two sequential interactions

E%(P) = Dq, (Dq, (EY)), (2.83)

where Dg, corresponds to diffraction at the point Q; (I =1,2), and E' is the incident field
at (). The diffraction operator D corresponds to the calculation of the diffracted field for
the associated edge as set out in equation (2.69) and further. The operation Dy, (E) yields
the primary diffracted field at @, while Dg,(-) gives the secondary diffracted field at P.
The incident field " is of order k°. For non-overlapping transition regions, the double-
diffracted field is of order k= outside, and of order k~'/? inside one of the transition

regions. In case the transition regions are overlapping, the double-diffracted field is of
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order k7! outside the (overlapping) transition regions, and of order k° inside the transition
regions. As already mentioned, errors will be introduced in the computation of E? if the

transition regions of the primary and secondary diffracted field overlap.

2.6 Extension of UTD for non-perfectly conducting

wedges with rough faces

The reflection coefficients R’} as used in GTD and UTD can be modified to include effects
of non-perfect conductivity and roughness of the wedge faces. Notice that this extension
does not satisfy Maxwell’s equation in any formal sense, but encouraging results have been
obtained by using this method [26, 27].

The soft and hard reflection coefficients R3™ and R;™ in the factors R" (eq. (2.34)), D
(eq. (2.47)), and Cj x (eq. (2.77)) are replaced by Fresnel’s reflection coefficients RY, in case
the object is made of dielectric material, while also an additional attenuation factor p, for
the surface roughness is be taken into account. This results in the following expressions for
R [26, 27, 28]

Ren = BE p, = (00— VE 0t 0] _auppa (2.84)
4 8.0 sin@ + /e, — cos? f !
and
RO = RF p — g, sinf — /e, — cos?l (8012 (2.85)
h h £, 8inf + /e, — cos?f ’

where it has been assumed that the relative permeability p, of the obstacle is equal to 1,
and the complex relative permittivity is given by £,. Furthermore, the angle 8 is the angle
between the reflecting surface and the direction of propagation of the incident or reflected

ray. For reflection by either the o- or n-face the angle 6 is given by
6 = 7 /2 — arccos (—§' - 1), (2.86)

where the unit normal vector n = #, for reflection by the o-face, and n = n, for reflection
by the n-face. The normal vectors 71, , have been introduced in Figure 2.4b,
The parameter Ay is related to the surface roughness and is given by

Ap = 2kAhsing, (2.87)

with Ah being the standard deviation of the surface height which has a normal distribution
and zero mean. The expressions for RF, as in equations (2.84) and (2.85) automatically
reduce to F1 in case the faces of the wedge are perfectly conducting (le,| > 1) and their
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roughness is zero (Ah = 0). In the extension of UTD for non-perfectly conducting objects
several assumptions have been made that will be briefly discussed.

The reflection coefficients as given by equations (2.84) and (2.85) are the average reflec-
tion coeflicients for rough surfaces. An underlying assumption is that the irregularities of
the surface have a normal distribution, and that the irregularities of two adjacent surface
points are uncorrelated, i.e. the correlation distance T = 0 [28]. Furthermore, it is assumed
that the transmission of the incident wave through the object may be neglected, indicating
that the complex relative permittivity has a large absolute value. If the assumption of
transmittivity is not fulfilled also multiple reflections within the wedge should be taken
into account. Recently this problem including internal reflections was solved for a lossless
dielectric wedge, where the wave is incident under an angle of /2 with the edge tangent
é (B =m/2) |29, 30]. The mathematical solution proposed, however, is very complicated
and not suited for engineering purposes.

To have a continuous total field across the reflection shadow boundary, the same reflec-
tion coefficients should be used for the GO reflected ray and the edge-diffracted ray. If
these reflection coefficients are also used in the calculation of the slope-diffracted field, it
can be shown that a continuous total field is obtained [31]. If the derivatives are calculated
taking into account the partial derivatives of the reflection coefficients with respect to 8,
the slope-diffracted field for a non-perfectly conducting wedge automatically provides a
continuous total field across the shadow boundary.

As can be deduced from the foregoing, the modification of the diffraction coefficient for
non-perfectly conducting objects only affects the part that is proportional to the reflected
field of either the o- or n-face. For a perfectly absorbing wedge the reflected wave amplitude
is zero. This implies that the part of the diffraction coefficient associated with the reflected
wave vanishes. Consequently, the reflection shadow boundary disappears and the diffraction

coefficient D, ; reduce to

D, = D,&, = .D1 + DQ, (288)

with D,z as given in equations (2.48) and (2.49). A similar result is reported in [32].

The usefulness of the heuristic extension of the UTD in the way just explained is dis-
cussed in [33], where also a comparison is made between results obtained from the extended
UTD and a method based on a canonical solution for diffraction by a wedge with impedance
faces [34]. Good agreement was obtained between the results calculated by both methods.
A comparison of predicted results using the extended UTD and measured results for diffrac-

tion by a three-dimensional object can be found in Section 4.5.
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The complex relative permittivity e, used in equations (2.84) and (2.85) is given by

&y =i (2.89)

H
WEep

where ¢ is the relative permittivity of the material, ¢ is the permittivity of vacuum, and

o is the conductivity. Values of ¢ and o of some common materials are given in Tables 2.1
to 2.3.

Table 2.1: Relative permittivity € and conductivity o of some materials [35]; ¢ in Q7 'm™1.

Material e |o-107°
Al 1 37
Cu 1 58
Fe 1 4.8
Zn 1 1.6
Ni 1 1.3

glass 5-10 | 10718
wood 3-7 10718

perspex 3 10-%
porcelain 7 10718

Si 12 10~

| dry ground | 3 10710

Table 2.2: Relative permittivity e and conductivity o of brick as function of relative hu-
midity at a frequency of 37.5 GHz [36]; o in @ 'm™".

Rel. Hum. (%] | ¢ [o-10°
0 31 0
2 3.6 173.2
4 3.8 | 577.9
6 4.2 | 1274.6
8 4.8 | 2086.2
10 5.1 13129.3
12 59 |4172.3
14 6.4 | 5570.1
16 7.1 | 7656.3
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Table 2.3: Relative permittivity € and conductivity o of brick as function of frequency and
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humidity [36]; o - 10%, & in Q7 'm™".

Relative Humidity
frequency [GHz] | 0% [ 5% 10% 15%
0.1 &£=33|.e=53 e=28.7 =129
o=0 |o=44 og=6.6 oc=238.9
0.3 e=33|e=53 e=8.7T e=12.9
c=0 |oc=6.6 o=117 o=16.7
1 £=33|e=53 e=8.T7 e=129
o=0 |o=16.7 o=334 o =46.2
3 E=33|e=53 =87 e=129
c=0 |o=2834 o=156.9 | o= 267.0
10 e=33|e=49 e="15 e=11.6
c=0 |oc=23894 |o=10014  o=1780.2
30 e=33|e=44 e=95.8 e=T1.6
o=0 |o=1168.3 | o =3004.1 | o = 5507.0

2.7 Diffraction by a rough edge

Up to now, the theory presented considers the edge on which the diffraction point lies to
be smooth. In many cases, however, the edge is rough. A literature survey revealed that
currently no theory is available to tackle the problem of diffraction by a rough edge, neither
in a deterministic nor in a statistical way.

The problem of reflection of an EM wave at a rough surface was solved in [28], and
this solution was used in the heuristic extension of the UTD to account for non-perfect
conductivity and surface roughness (Sec. 2.6). The modified reflection coefficients R, can
compactly be written as

Rsp = R_f:;. Pry

where R, are the Fresnel reflection coefficients and p, is the reflection attenuation factor.

(2.90)

Expressions for RY, and p, are given in Section 2.6. It seems plausible that also for
diffraction by a rough edge some modification factor for the diffraction coefficient should
be introduced. To investigate the influence of edge roughness on the diffracted field, in this
section a modification factor is derived for the special case of a plane incident wave and a
crenated half-plane edge.

To this end, the concept of equivalent edge currents is used [37]. According to this
theory, the far-zone diffracted field due to the edge C of a wedge with plane faces is given
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by

BY7) jk[c [ZoI(7")3 x (§ x &) + M(7")3 x & G(7",7)dl, (2.91)
where k is the wavenumber of the incident wave, Z; is the impedance of free space, ¥ and
7' are the position vectors of the point of observation and of an integration point on the
contour C, respectively. The tangent vector to C at 7' is denoted by é and the direction
of observation § is given by
e 2 (2.92)

The three-dimensional Green’s function G is expressed as

e—jks

G(',7) = (2.93)

4ws

The quantities I(7') and M(7') are the tangential parts of the electric and magnetic
equivalent currents, respectively. For a perfectly-conducting half-plane edge (n = 2, a. =

o) these currents are given by [37]

2jv/2Y, sin(¢’/2)(sin B’ — sin f cos ) 2E(7') - & £

1) k(sin 8/)3/%(sin 8 cos ¢ + sin ' cos ')
2jv/2 cos ¢ cos(¢’ /2)(sin® B cos B’ — sin? B cos B)H (7' - ¢ (2.94)
k(sin 8')3/2sin B(sin B cos ¢ + sin ' cos ') (sin ' — sin fcos p)1/2"
and
o 222 sin @ cos(¢'J2)H(F") - & sin 3’ L
Mpr)= Jksin B(sin B cos + sin #' cos ') \ sin ' — sin fcos ’ (Ae0b)

where E(7’) is the incident electric field at the integration point, H(7) is the incident
magnetic field, Y5 = 1/Z; is the admittance of free space, ¢’ (¢) is the angle between the
plane of incidence (diffraction) and the screen face, and ' () is the angle between the
direction of incidence (diffraction) and the edge tangent é. These angles are defined in
Figure 2.10.

Equation (2.91) expresses that the edge-diffracted field can be found using some inte-
gration of (hypothetical) electric and magnetic currents. The (GTD) diffracted field can
be found using an asymptotic evaluation of the integral in equation (2.91).

In this section we will confine ourselves to diffraction by a half-plane with a crenated
edge. This obstacle is shown in Figure 2.11 and can be thought of as an infinite array of
joined strips of width 2T, placed in the yz-plane. Each strip extends infinitely into the
—y direction, and the end is at y = £. At the centre of the strip-end an origin O; with
coordinates (0, £, 6 +2T'1) is introduced, with [ = ..., —-2,-1,0,1,2,.. ., and § an arbitrary
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Figure 2.10: Geometry for integration of equivalent currents.

constant with 0 < § < 2T. Furthermore, £ has a normal distribution with zero mean and
variance pg. The plane wave is incident under an angle 8’ = 7 /2 with the z-axis,

The unit vector from O; to the point P with coordinates (z,,y,,0) is denoted by §, and
the distance from O; to P is s;. The tangent vector é to the strip-end is é = Z. Along
segment [ the distance s;(z) from a point on this segment to P is approximated by

si(2) &2 )+ Esin P cos ¢ — z cos By, (2.96)

where z varies from —T to +T with respect to O;, and ; is the angle between § and é.
For ' = 7 /2 some simplifications in the expressions for the equivalent currents I and M
arise

2jV2Yosin(¢'/2)(1 — sin Bcos ) 2E(7') - &
k(sin B cos ¢ + cos¢’)
2jv/2 cos p cos(' [2) cos BH(F') - &

I pmrpy =

ksin B(sin Bcos ¢ + cos @')(1 — sin G cos )1/2’ (2.97)
MYy = W2asingcos(@ DAY (1 \ (2.08)
A= jksin B(sin Bcosp +cos’) \1—sinfcose . ’

In the subsequent analysis it will be assumed that £ < T. Therefore only the strip
ends oriented into the z-direction will contribute to the diffracted field at P, and con-
sequently the field due to the connection between strip | and strip (! + 1) is neglected
(l=...,-2,-2,0,1,2,...).
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Figure 2.11: Geometry for diffraction by a crenated half-plane edge.

For an E-polarised wave, E = E,? exp [—jk(—zsiny' + y cosy')], it can be readily seen
that M = 0 and that the diffracted field is given by

E‘d(P) _ _/C Qﬁsin(go!ﬂ)[l — sin 3 cos tp)lfz

il Boshp L oo lirs E,exp|—jks — jkE cos '] § x (§ x 2)dz.

(2.99)
The integral can be approximated by the sum of the contributions of the individual segments
[, while also the co-polarised z-component of the field is extracted

O+T (1 — sin f cos )2
-1 47si(sin B cos i + cos ')

EYP) = —2VZsin(¢'/2)E, Ef

(S; * (5; X 2)}2

exp[—jks; — kag(coscp + sin By cos ) + jkz cos f] dz, (2.100)

where for every segment = f; has been used. The integral over z can be solved analytically
and gives rise to a sinc-function, while the triple product gives an additional factor — sin® ;.
Also the distance s; can be expressed as s; = sp/ sin i, where sy = | !xg + y;-; is the shortest
distance from P to the z-axis. This results in

V2sin(¢'[2)E,T lic’ (1 —sin B cos )'/?
SoT 12—, (sin By cos p + cos ')

exp [—jkso/ sin By — jkéi(cos ' + sin fj cos )] . (2.101)

ES(P] = sinc(kT cos B;) sin® 3, -
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The ratio E?/Eq can be compactly expressed as

Ed l=co > . 3 .
?2 — z f[‘P ¥ T': ﬁf)exp [—kaf(COS‘P + sin COS‘P)] ] (2102)
0 =—on
with
; V2T sin(ip'/2)(1 — sin B cos )" 2sinc(kT cos ) sin® Be~ikso/sins
f(@' 0, T, B) = ('/2)( ) sindt A) . (2.103)

som(sin 3 cos ¢ + cos ')
The previous procedure can also be carried out for an H-polarised wave. The incident
magnetic field is given by H = HyZ exp [—jk(—zsin ¢’ + ycos¢')]. For this case it appears
that the fields due to the electric current [ are cross-polarised. Therefore only the diffracted
field caused by M is considered to derive the ratio H¢/H,. Repeating the previous analysis
for this incident field yields

Hd I=co . , .
Hz = Y g(¢', ¢, T, B) exp [—jk&(cos ' + sin By cos )], (2.104)
0 l=—co

with

V2T sin ¢ cos(¢' [2)sinc(kT cos B) sin® fe~7kso/ sinf
som(cos ¢’ + sin B cos )(1 — sin B cos p)'/?

9(¢', 0, T,B) = (2.105)

The results for the ratios E¢/E and HZ/Hy can be regarded as the product of an attenu-
ation function pg with the integral representation of the GTD edge-diffracted field. In the
far-field sy — co and f§; = 7/2. Both results can then be expressed as

=00
Ve= Y fl¢' o T m[2)e 54, (2.106)
l=—c0
=00 _
V=Y (¢, T,m/[2)e i, (2.107)
l=—co
with
a = k(cos ¢’ 4 cos ). (2.108)

These expressions relate the amplitude and phase of the diffracted field to the incident field.
The quantity Vg g is a complex number consisting of an infinite amount of components
with a random phase aé;. It can be shown that the average value Vg g of Vg y is given by
28]

=00

Ve =1 3 f(¢0,T,7/2), (2.109)
I=—ra

— 5 s =00

Vi =e 2 %" g(¢' 0, T,7[2), (2.110)

[=—00
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The series containing f and g can be written as an integral of equivalent currents along a
straight edge in order to derive the GTD diffracted fields. After using a stationary phase
approximation to the integral in equation (2.91), the ratio E¢/Ey is expressed as

Ed 2 e—jksa e-—jkso
s _ _9 [k +/9 - 79 ]DGTD — ., )GTD :
5 = oxp [ 2 [bucos(* /2)cos(p™ 2)] | DI = puDIT 2 )
while the ratio H¢/Hp is given by
d 2 e—jksa e—jksg
e 4 —o[& +/9 - /9 ]DGTD _ . pGTD :
T = oxp | =2 [bucos(i*/2) costy™/2)] | Df T =P, e

where p* = ¢ + o', ps is the diffraction attenuation function, and the diffraction coeffi-
cient DETP for a half-plane with a straight edge can be deduced from equation (2.47) by
substitution of n = 2 and F(-) = 1 in equations (2.48) to (2.51). An explicit expression for
the GTD diffraction coefficients is given in equation (3.5) where the transition functions F
should be set to 1.

Equations (2.111) and (2.112) indicate that the diffraction coefficient DS, of a crenated
GTD
sih

half-plane edge is given by the diffraction coefficient D'y ™ of the smooth balf-plane edge

multiplied by the diffraction attenuation function ps. This is expressed by

DSy, = DSEP pa (2.113)

Sy,

where pgq is given by
pa = €Xp [—'2 [J'c,'.f. cos(t /2) cos(yp™ /2)]2] ; (2.114)

Notice that py = 1 for p* = 7 and ¢* = 3. This indicates that on the shadow boundaries
the crenatures have no effect on the amplitude of the diffracted field. Obviously the GTD
diffraction coefficients are singular here.

Also the average power at P, V_é.;, was determined. This result, however, does not
allow a straightforward interpretation and will not be given here.

The value of py as function of ¢ and kp is given in Figure 2.12 for ¢’ = x/2.

Note that the diffraction attenuation function ps can also be derived in an other way.
To this end we consider the two-dimensional geometry shown in Figure 2.11, where all the
strips are aligned along the z-axis (§ = 0). The diffracted field arriving at the observation
point P with coordinates (z,,yp,0) originates from the diffraction point @ located at the
origin. Next we assume that the half-plane edge has a small deviation in its location. So
the edge is not placed along the z-axis, but it is parallel to the z-axis at 2 = 0, y = £.

Consequently the diffraction point @ has coordinates (0,6,0). The parameter £ has a normal
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Figure 2.12: Diffraction attenuation function pg for @' = 7/2, kp = /8 (————),
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distribution with zero mean and variance g. The change in the phase of the diffracted field
at P is found to be A¢ = ké(cos ¢ + cos’). The average value of the diffracted field at P
can be found by integration over the probability distribution of £. In this way we arrive at

the same diffraction attenuation function py.

2.8 Reflection and diffraction by a convex obstacle

The geometries considered in the previous section all had one or more edges where the
diffracted wave was generated. Diffracted waves are also excited when a ray attaches to a
convex surface and couples into a surface ray. Whilst propagating along the convex surface,
this surface ray sheds energy into the shaded space by launching rays into a direction
tangential to the convex surface.

In this section the problem of reflection and diffraction of an EM wave by a perfectly
conducting convex surface is studied. Some applications of this theory are for example the
scattering by lamp posts and road signs in an urban environment, and the scattering of
struts in a reflector antenna system. In the following sections a general description of the
reflection and diffraction problem will be given.

The geometry is depicted in Figure 2.13 which schematically shows the reflection and

surface-diffraction phenomena. The field at P consists of various parts. If P is in the lit
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lit zone

Figure 2.13: Rays associated with reflection and diffraction by a (two-dimensional) convex
obstacle.

zone (F)), the GO reflection contribution should be taken into account. One of the rays of
the source S intersects the obstacle at @, and reflection takes place. The GO reflection
contribution can be calculated according to the theory as discussed in Section 2.3. Some
of the rays originating at S are tangential to the reflecting surface and excite reflected rays
which are also tangential to the reflecting surface. The latter divide the space surrounding
the reflecting obstacle into two regions, as depicted in Figure 2.13. The first region is the lit
zone, and the second is the shadow zone. There is a shadow boundary (SB) at the location
where both regions meet. Traversing this shadow boundary results in the vanishing of two
GO contributions. The first is the direct field and the second is the reflected field.

The field in the shadow zone is caused by the incident ray that is tangential to the
reflector surface at @,. This ray couples to a surface ray which, whilst propagating along
the convex surface, continuously sheds surface-diffracted rays into the shadow zone. One of
these rays reaches the point P; after having followed the reflector surface along a distance
t, as depicted in Figure 2.13. The surface-diffracted ray leaves the convex surface at the
point @2, where it is tangential to the surface.

Continuity of the field for P going from the lit zone, through the SB, into the shadow
zone is obtained if the incident and reflected fields near SB in the lit zone match the surface-
diffracted field near SB in the shadow zone. The formulation of the GO reflected field as
discussed in Section 2.3 does not provide this continuity, and consequently another theory
for reflection should be used.

In general the reflection point @, and the attachment and shedding point @ 2 are found
using numerical procedures that make use of the specific properties of these points. At
@, Snell’s law should hold, and at @, the direction of arrival and departure are both
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perpendicular to the normal vector to the surface. Together with the fact that the ray
trajectories in both cases are paths of stationary path length, i.e, the first-order variation
of the path length is zero, the reflection, attachment and shedding point can be determined.

The theory to be used for the reflection and surface-diffraction process will be presented

in the following sections.

2.8.1 Reflection by a convex surface

For the observation point in the lit zone the total field E* at P, is given by [38]

5P = Bipy 4 B AT
E'(P)=E(P)+ E(Q,) R* | ——+——¢™’ 2.115
(P) = Bi(P) + F(Q))- R\ [ B —seo, (2.15)
where E' is the directly incident field at P, and P}, are the radii of curvature of the reflected
wavefront. The parameter s” is the distance from @, to P,. The generalised dyadic reflection
factor R is defined by
R = &€ RI + &é[ Ri.- (2.116)

This definition of the generalised dyadic reflection factor R? is similar to that of the dyadic
reflection factor R” introduced in equation (2.34). The unit basis vectors éf” were intro-
duced in equations (2.36) to (2.38) and form the surface-fixed coordinate system.

The reflected field E™(P) is generated at the reflection point @, and is characterised
by pf, (I = 1,2), the reflected field E™ at Q,, and the direction of propagation 5. These
parameters can be found using the procedure as outlined in equation (2.21) and further.

The generalised reflection coefficients R, are given by [38, 11]

R, =— —4 iy {'fjm

¢ 2y/r¢

where the transition function F(-) is given in equation (2.57). A superscript [ is infroduced

(1=F (X)) + P (E’)] ; (2.117)

to emphasise that the observation point P is in the lit zone. In equation (2.117) the

following parameters are used:

¢ = —2m(Q,) cos b' < 0, (2.118)
1/3

m(Q) = l~—kp“2(Q) >0, (2.119)

cosf' = —n - &, (2.120)

X! = 2kL! cos® 0, (2.121)
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The parameter p} is the radius of curvature of the wavefront of the incident ray in the

(2.122)

normal section spanned by § and b= § x #. The parameter ¢ is called the Fock parameter
[38], m(Q-) is a curvature parameter at the reflection point Q., with p,(Q,) the radius of
curvature of the reflecting surface at @, in the normal section spanned by 3§’ and . The
angle 0" is the angle between 7 and &' and L' is a distance parameter. The curvature
parameters P?l.u in the expression for L' are to be evaluated at @, where the incident ray
is tangential to the reflecting surface. More details about these parameters are given in
(38, 11].

The functions P, in equation (2.117) are the soft and hard Pekeris caret-function [38].

They can be expressed as

q'(z) 22/’

where p*(z) and ¢"(z) are the well-tabulated Fock scattering functions [11].

Poa(z)= { P'(=) }e‘j"”" N (2.123)

In the very lit region, where |¢/| > 1 (€' < 0), it can easily be shown that the generalised
reflection coefficients RJ, reduce to R, = F1.

Outside the transition regions (F(-) = 1) the reflected field is of order £ with respect
to the incident field of order k°. At the shadow boundary the reflected field reduces to half

the incident field of order &° with an additional correction term of order £~'/2,

2.8.2 Diffraction by a convex surface

In case the observation point P lies in the shadow zone of the obstacle (FP,), neither the
direct field nor the GO reflected field reaches the observation point P. Therefore, the total
field consists of one contribution only, namely the surface-diffracted field from the convex
surface. This surface-diffracted field can be thought of as propagating along the convex
surface in a surface ray, thereby continuously shedding energy into the shadow zone.

For P in the shadow region the total field E! can be calculated from (38, 11]

EY(P,) = B(Q))-T® sd(sfilps)e_md‘ (2.124)
with E* the incident field at the attachment point Qq, 7 a generalised transmission factor
and s? the distance from the shedding point @, to the observation point P,. At the
attachment point ¢); and shedding point @), we introduce the surface normal vectors 7 3.

The vector #; = &} is the direction of arrival at Qy, {, = &% is the direction of departure
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at @, to P, and f;m = fm x 5. The surface unit vectors (19,7, 51.2) are shown in
Figure 2.14.

convex surface

Figure 2.14: Surface-ray unit vectors {, 7 and bat Q2

The parameter p, in equation (2.124) is the radius of curvature of the wavefront of
the diffracted ray in the normal section spanned by i, and by, whereas the generalised
transmission factor 779 is given by

T9 = byb,T9 + #ya,TY, (2.125)

The generalised transmission coefficients T7, are given by

—gm/4 . .
Ton = “\/m(Qﬂm(Qz]ﬁ ['SITE“ (1= F(x4)) + B, (5‘)] &%, (2.126)

where P, () are the soft and hard Pekeris caret functions (eq. (2.123)), and the transition
function F(-) was given in equation (2.57). In addition, the following parameters are
introduced, where a superscript d emphasises the surface-diffracted parameters. The Fock

parameter £ is given by
% m(t') .,
£ = f ——dt’, 2.127
1 pe(t) ( )
where m(t') and p,(t') both are functions of the integration variable t’ along the surface-ray
path. The parameter X? is given by
2
kL? (&%)
X'= ——————, 2.128
m(@)m(@) e
where the distance parameter L¢ is expressed as
i df i 1 od
Ld = [ 2 lepzll 2 § {pb;l_‘s )] . (2'129)
(P + s9)(ph + 5¢) Ph Q
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The curvature parameters pj,, should be evaluated at Q;. The arc length ¢ along the

convex surface is expressed as

Q2 ,
1= [ ar. (2.130)
@

Further details can be found in [38, 11].

QOutside the transition regions (F(-) = 1) the surface-diffracted field is of order A~'/2,
where it should be noted that the Pekeris caret functions P, play a dominant role in the
determination of the amplitude of the field along the surface-diffracted ray. At the SB the
surface-difiracted field is of order k°.

2.9 Note on the presentation of the theory

The theories as set out in this chapter are all general in the sense that simplifications in
the formulae will occur as soon as additional assumptions are made concerning the type of
illumination (spherical, cylindrical, plane wavefront), the radius of curvature of the edge
(curved, straight edge), and the radii of curvature of the surface of the object (spherical,
plane). Because it is undesirable to make these assumptions at an early stage, it is possible
that well-known results from the literature cannot be recognised immediately from the
general equations presented here.

In the following chapters the various propagation mechanisms discussed will be referred
to as just reflection and diffraction. From a practical point of view the description of re-
flection and diffraction (and also line-of-sight propagation) can elegantly be seen as trans-
formations from incident-wave parameters to reflected- and diffracted-wave parameters.

The notation is summarised for convenience. At every point M in space an EM wave is
described by:

o the vectors Z; 33, corresponding to the principal directions Z,  of the wavefront, and

the direction of propagation &s;
e the principal radii of curvature p;; in the directions & ,, respectively;

e the amplitude and phase of the electric field E of the EM wave.

The interaction process of wave and obstacle can be seen as a transformation from incident-
wave parameters at the interaction point ) to outgoing-wave parameters, usually directly
calculated at an observation point P. In this transformation the parameters of the ob-
ject where the interaction takes place, play an important role. The reflection process uses
the surface parameters 53%.2.3! pf‘:g, and the information concerning the reflection and ob-

servation point for the transformation from incident- to outgoing-wave parameters. The
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edge-diffraction process uses two additional parameters for the transformation: the nor-
mal 7. to the edge I' and the edge radius of curvature a.. These transformations can

symbolically be expressed as
i i il RD s =
8 200 0h0 B 28 [8335,082, B , (2.131)

where the superscripts ¢ and o correspond to the incoming and outgoing wave, E'° are
the incident and outgoing electric field, and R and D denote the reflection and diffraction
operators, respectively.

This symbolic presentation of wave interaction provides a convenient framework for the
development of numerical algorithms, because higher-order interactions such as combina-
tions of reflection and diffraction can easily be implemented. Because the description is a
ray method, even a very complex wave-propagation model including higher-order diffrac-
tion and reflection terms will still provide a significant insight into the wave-propagation
process. Furthermore, spatial-filtering functions for the simulation of the antenna receiving
characteristics can readily be introduced, and typical multipath phenomena such as fading
and time delay can easily be derived from the analysis.

Up to now nothing has been said about how to find the reflection and diffraction points.
Actually, these points can seldom be found in an analytical way. Because the objects to
be analysed will very often be specified numerically, the determination of the location of
the reflection and diffraction points will usually incorporate some root-finding procedure
based on Keller’s law of edge diffraction or Snell’s law of surface reflection. Knowledge
of differential geometry will prove very useful in the determination of the reflection and
diffraction points.



Chapter 3

Modelling of EM wave diffraction at

obstacles with simple shapes

3.1 Introduction

In this chapter the diffraction theory discussed in Chapter 2 will be used to formulate
field-strength prediction models incorporating obstacles with simple shapes. The prediction
models in Section 3.2 consider simple geometries such as the half-plane and the finite-width
screen, but also more complex objects such as the block-shaped obstacle.

In Section 3.3 the results from the field-strength prediction models will be compared to
results predicted by other methods such as the Parabolic Equation (PE) method and the
Fresnel Surface Integral (FSI) method. Simplified procedures for calculating the EM field
behind two- and three-dimensional objects will be proposed in Section 3.4.

Throughout this chapter results of the calculations will be presented in the form of graphs
giving parametric curves of the relative field strength or the Site Shielding Factor (SSF) as
function of position. The SSF is a parameter that quantifies the shielding effectivity and
will be introduced shortly.

Consider the case where a station operating in a satellite communication system is sub-
ject to (trans-horizon) interference from a terminal operating in a terrestrial communication
system using the same frequency band (‘frequency sharing’). This situation is schematically
visualised in Figure 3.1, where U, and U; are the wanted and interfering signals for the
receiver at P, respectively. The interfering signal may be caused by anomalous propagation
conditions such as ducting and reflection from elevated layers. Therefore the amplitudes of
these types of signals can be quite high; fortunately the probability of occurrence of these
propagation phenomena is quite low.

By placing an obstacle on the propagation path of the interference signal two (main)
effects are introduced. First, the interference signal is attenuated by the presence of the

obstacle and this effect is intentional. Second, an unintentional multipath-propagation
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Figure 3.1: Introduction of the site shielding factor (SSF); the unshielded geometry is shown
in (a), while the shielded geometry is shown in (b).

effect for the wanted signal can be introduced. In this case it is assumed that the Line-Of-
Sight (LOS) component, viz. U, (Fig. 3.1b), of the wanted signal is not obstructed by
the screen. The conventional definition of the SSF as used in [3], SSF, is the ratio of the
interference signal in the absence (I_) and the presence (1) of the obstacle, respectively

SSF, = 20 log E,—‘] [dB], (3.1)

where it has been assumed that the placement of the obstacle has no effect on the wanted

signal D. If this effect should be taken into account, the correct extension of equation (3.1)

is [39]

I_

where D, _ are the levels of the wanted signal in the presence (+) and absence (—) of the

SSFy = 20log [%] —20log [&] [dB], (3.2)
+

obstacle, respectively. Equation (3.2) expresses the change in signal-to-interference ratio
that is introduced by placement of the obstacle.

The definition of the SSF as introduced in equation (3.2) is based on the ratio of the
wanted and interference signal power in the absence and the presence of the obstacle.
For inter-system interference problems the wanted and unwanted signals are caused by
different sources, and the phase between the two can be considered to be a random variable.
Consequently, only their signal powers can be used as a quantity for expressing signal-to-
noise and signal-to-interference ratios.

Notice that another definition of the SSF, incorporating the effect of the placement of
the screen on I as well as on D, has been reported in [40]. This definition in the present

notation reads

SSFy = 20log B‘iiﬂ [d4B]. (3.3)
++ 44
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Here obviously the desired and interference signals are considered to be coherent, although
they are caused by different sources. This linear addition of the signals is meaningless be-
cause the signals are by definition incoherent, and therefore the SSF given by equation (3.3)
is wrong. Due to the assumption of coherence, the result in the numerator and denomina-
tor of equation (3.3) will be completely dependent on the phase difference between D and
I at P. The result of the summation of D + I is strongly frequency dependent, as is the
derived SSF. It can easily be proven that this frequency dependence is completely caused
by the assumption of coherence between D) and 7 [39]. Consequently, equation (3.3), which
takes into account the effect of the screen on the wanted and interfering signals, does not
reduce to the conventional and well-accepted definition of SSF, viz. equation (3.1), when
it is assumed that the desired signal level remains unchanged after the obstacle has been
placed. For these reasons the SSF as proposed in equation (3.1) will be used throughout
the thesis, unless otherwise mentioned.

A slight rearrangement of equation (3.2) yields

SSF, =20log [&] + 20log [I—‘] = 20log [&} + SSF, [dB]. (3.4)
D_ Iy D_

Equation (3.4) gives a direct insight in how the SSF can be raised. One can either enforce a
stronger wanted signal by placing the obstacle, or one can attenuate the interfering signal.
Notice that the first option for the wanted field is known as obstacle gain [3]. In most
cases, however, both the wanted and interfering signals may be attenuated by the obstacle.
As long as the attenuation for the interference signal is larger than that for the desired
signal, the user will benefit from the obstacle placement because the resulting signal-to-
interference ratio D/I is higher than the one before the obstacle was placed. Obviously,
the level of the wanted signal needs to be higher than the noise level in order that it can

still be detected.

3.2 Diffraction at obstacles with simple shapes

In this section some two-dimensional obstacles will be analysed with respect to their site
shielding performance. For the simple case of the half-plane obstacle the results according
to the various definitions of the SSF will be presented. For simplicity it will be assumed
that all obstacles are perfectly conducting, but the analyses can be readily extended to
cover non-perfectly conducting obstacles using the theory of Section 2.6.

Unless otherwise mentioned ground-plane effects like reflection will be neglected. How-

ever, these effects can be introduced if necessary.
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3.2.1 The half-plane

One of the simplest obstacles that can be analysed using the UTD is the half-plane, which
is shown in Figure 3.2. The half-plane is located in the yz-plane and has a height z, > 0.

half-plane Ad
obstacle ~—| X3

254

v

Figure 3.2: Site-shielding geometry for a half-plane obstacle.

For the case of a wave perpendicularly incident upon the edge of the half-plane, the problem
is essentially two-dimensional. In the analysis the effect of the ground plane z = 0 will be
neglected. The observation point P with Cartesian coordinates (z,,2,) is located behind
the screen as seen from the source, which is assumed to be at a very large distance. For
this reason the incident (interfering) wave has a plane wavefront. The obstacle has a height
z,5 = 60m and the frequency will be 1 GHz.

In the results to be presented, the SSF will be calculated using the definitions of SSFj 5.
The interfering as well as the wanted field are calculated in the same way, however, their
angles of arrival (¢') and amplitude will generally be different. The wanted field arrives at
an angle ¢’ = 27 /3 (satellite elevation of 30°), has a unit amplitude and is y-polarised. The
interfering signal arrives at an angle ¢’ = 7 /2 (transhorizon propagation), has an amplitude
that is ten times higher than that of the wanted signal (20 dB) and is also y-polarised. In
the following figures the SSF is calculated as function of the observation-point coordinates
(zp, zp)-

For the interference signal, the field in the lit region behind the screen (z > z,;) consists
of two parts, namely the direct field and the edge-diffracted field. In the shadow region
only the edge-diffracted field is present. For the wanted signal the same is true; the shadow

boundary is located somewhere else, however. The region where ¢ > 7 + ' = 57/3 is
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the shadow region of the wanted signal, and for ¢ < 57/3 P is located in the lit region.
Obviously, the diffraction point @ for both signals has coordinates (0, z,;).
For the half-plane obstacle the diffraction coefficients D; given in equation (2.47) may
be simplified because the exterior wedge angle is 2r, i.e. n = 2. This results in
Doy = — e/ [F(kLﬂ(‘P_)) F(kﬂa(#’*'))]
> W2k | cos(p™/2) cos(pt/2) |’
where the transition function F(-) is given by equation (2.57), and the angles p* = p+¢'.

(3.5)

Associated with the case n = 2 are some simplifications in the calculation of the radii of
curvature of the wavefront of the reflected wave, the distance parameter I and caustic

distance p?. The distance parameter L is given by
L =s= /224 (2o — 2,)?, (3.6)
while the function a(z) is expressed as
a(z) = 2cos*(z/2). (3.7)

The caustic distance py = oo, because the edge is straight (a, = oc) and the incident wave
has a plane wavefront (p; 2 = o).

Figures 3.3 and 3.4 show the SSF according to the definitions in equations (3.1) to (3.3)
as function of the position of P. In the first figure the value of z, is varied while the
value of z, is fixed to 3m. In Figure 3.4 the reverse is true. The value of z, varies as the
value of z, = 300m is kept constant. In both figures it can be clearly seen that the results
for S§Fy show very rapid fluctuations as z, or z, varies. This is completely due to the
addition of the interfering and wanted signals on a coherent basis, and for this reason the
frequency dependence reported in [40] is artificial. In Figure 3.3 the vertical line indicates
the shadow boundary for the wanted field, while in Figure 3.4 the vertical line corresponds
to the shadow boundary for the interference signal. It can be seen that the results predicted
using the SSF, definition reduce to those predicted following the SSF; definition if the
required assumption is fulfilled, i.e. Dy = D_.

Notice that this particular diffraction problem can also be solved in terms of Fresnel

integrals (41, 3]. In this case the result is given by

SSF, = 20log (j;({‘f{‘:))) (dB], (3.8)

where the contribution of the reflected field to the total field has been neglected. The
function F contains a Fresnel integral and is related to the transition function F' (eq. (2.57)).

It is defined as .
e.‘i"‘“ o0

F(&) = e ¥ du. (3.9)

LA 4
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Figure 3.3: SSF of a half-plane as function of z,: SSF; (———), SSF, (- —— — — )i
and SSF3 (+—-— - — - 2

Data: z, = 3m, z; = 60m, A = 0.3m
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Figure 3.4: SSF of a half-plane as function of z,: SSF, (——— ), SSF, (— — —— — ),
and SSF; (+—-—-—- )-
Data: z, = 300m, z, = 60m, A = 0.3m
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The parameter £p is the detour parameter and is given by [6, 3|
€ = —V2kscos(p [2), (3.10)

where ¢~ = ¢ — ¢/, and ¢' = 27/3 for the wanted signal and ¢’ = 7/2 for the interference

signal. The distance s to the screen is given by

s =22 + (205 — 2)2. (3.11)

Notice that
€ = 2kscos® (¢~ /2) = kLa(p™), (3.12)

where kLa(p™) is the argument of a transition function [ as used in UTD, viz. equa-
tion (3.5). In case the influence of the obstacle on the desired signal is neglected (F(ép) ~ 1)
equation (3.8) reduces to [3]

SSF, = —20log F(£;) [dB]. (3.13)

The shielding effectiveness for the half-plane has also been extensively discussed in [3] using
the UTD as well as other methods (exact solution, Kirchhoff formulation, GTD and UAT).

3.2.2 The finite-width screen

Obviously, using infinitely-wide obstacles for the modelling of practical objects such as
buildings is unrealistic. If a finitely-wide, perfectly-conducting obstacle is considered, ad-
ditional edges are introduced, and diffraction contributions generated at these edges and
corners have to be taken into account as discussed in Chapter 2. If the obstacle is very
wide, the diffraction angle (¢) of both vertical side edges can become very large, and then
the observation point is said to be in the deep shadow region for these edges. If this is
the case, the contributions from these edges can be neglected. If the diffracting obstacle
is narrow, however, diffraction by the vertical edges of the obstacle can produce diffracted
fields with a substantial amplitude [42]. If practical obstacles such as buildings and fences
should be modelled, it is expected that the model based on a finite-width screen is more
realistic than the model incorporating a half-plane obstacle.

In this and the following sections attention will be paid to the influence of the placement
of the screen on the interfering signal level only. For this reason the definition of SSF,
according to equation (3.1) is used. In general the models proposed here can be used for
the calculation of the interfering signal level as well as the desired signal level. If both
calculations are performed, the SSF according to equation (3.2) can readily be determined.
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For the present analysis it is assumed that the direction of propagation & is parallel
to the ground plane z = 0. It is given by &} = (sin #,cos 3,0), making an angle 8 with
the y-axis. The observation point P has coordinates (z,, ¥y, 2,). The obstacle has a width
dy+d> and a height z,; it is shown in Figure 3.5. For all edges of the obstacle the UTD with
diffraction coefficients for n = 2 (eq. (3.5)) can be used, and consequently simplifications for
calculating the diffracted field can be used. The finite-width screen is defined in a Cartesian
(z,y,2) coordinate system as 2 = 0, —dy <y < dy, (d12 > 0), 0 < 2 < z,. The left (right)
vertical edge is denoted by I'; (T'z), the horizontal edge is denoted by I's, and the corners
are denoted by I'ys. The coordinates of the edge-diffraction points @y, (I =1,2,3) can be

Figure 3.5: The perfectly conducting, finite-width screen

found using the projection of the observation point P along the Keller cone onto the edge
'y, and applying the restriction that the projection must lie on T'j:

Ql = (01 _dh zp)-, if Zp < Zob,y (314]
Q? = (Os d21 zp)r if Zp < Zob, (315)
Q3 = (0,yg, 2e), if —dy <y, < dy, (3.16)

where y, is defined as
:rg + (zob — z,)?

tan g3 (T

Yo = Yp —
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The corner-diffraction points can be found at the intersections of I'; with I's, and I'» with
Fg:
Qq = .[14 = (01 _dlazob)a (3'18)

Qs =TI's = (0,dz, zos). (3.19)

Using this information, the individual diffraction contributions can be determined. The

total field at the observation point P is given by

5
E'=¢E'+) k), (3.20)

=1
where E! is the total field at the point P, E? is the incident field and £9 is the edge-diffracted
or corner-diffracted field. For the sake of notational simplicity, the edge-diffracted fields are
denoted by E&,;,y and the corner-diffracted fields by Esl_s, In equation (3.20) the shadow

indicators ¢; and el ({ = 1,...,5) are introduced according to

_ { 1, if the contribution exists at P, (3.21)

0, if the contribution does not exist at P.

For P in the lit zone ¢; = 1, while if P is in the shadow zone ¢; = 0. Furthermore, ¢;, =1
for z, < ze, €12 =0 for z, > z», €3 = 1 for —dy < y, < d2 and €3 = 0 otherwise, ¢55 =1
for all locations of P.

The width of the screen used in the results shown in Figure 3.6 is dy = d2 = 43m. The
observation point P has coordinates z, = 100m, z, = 1.5m, while —50m < y, < 150m,
and the frequency used is 1 GHz. Furthermore, the polarisation of the incident wave is
vertical (z). The solid curve is for a screen with z,; = 10m and for f = 90°. The strong
fluctuations in the curve are caused by constructive and destructive interference of the
wave contributions from the vertical edges and the corners, superimposed on the constant
level of the horizontal-edge contribution. The horizontal line is the result of a half-plane
treatment of the obstacle, i.e. dj = d; = co. In the latter case the only contribution comes
from the horizontal edge I'; and is constant as a function of y,.

The dashed curve in Figure 3.6 is for an obstacle with z,;; = 60m. It is seen that
the SSF for this obstacle is considerably larger than that for z, = 10m. Furthermore,
the fluctuations of the SSF for the case z,; = 60m are larger than those for z,, = 10m.
This is due to the fact that the contribution from the horizontal edge is of the same
order of magnitude as those from the vertical edges. For this reason total cancellation
of contributions can occur, resulting in large SSF values. The importance of the corner-
diffraction term can best be seen for small height differences z,, — z, [43]. If the corner-

diffraction term would be neglected, discontinuities in the total field would be introduced.
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Figure 3.6: SSF of a perfectly conducting finite-width screen as function of y,: z, = 10m,
B =90 (——), z = 60m, B = 90° (————— ), and z, = 10m,
B =582 (—r—=v=> ). The horizontal lines are predictions of a half-plane
approximation (d; = dy = c0).
Data: z, = 100m, z, = 1.5m, dy = dy = 43m, A = 0.3m

These are caused by the step discontinuity in the contribution from the horizontal edge
I's, if P moves from the shadow region behind the screen into the lit region. When P
crosses the shadow boundary, two discontinuities need to be cancelled. The first one is the
discontinuity in the directly incident field at P. This is cancelled by the edge-diffracted
field from a vertical side. The second discontinuity is that of the contribution from TI's.
For small height difference z,, — z, this contribution will be substantial, and consequently
continuity is only obtained if the corner-diffracted contributions are taken into account.

The accuracy of this corner-diffracted field has been checked in [20] against results from
another method [19]. Good agreement between the results from both methods was obtained
for several geometries. This confirms the usefulness of the current formulation of corner
diffraction, despite its heuristic character.

If the angle of incidence # is changed from 90° to 52°, and z,;, = 10m, the SSF given by
the dash-dotted curve shown in Figure 3.6 is obtained. It can be seen that the complete
SSF curve is more or less shifted laterally over a distance Ay = z,/tanf = 78m, and
that the result for the half-plane approximation differs just slightly from that for the case
B =90°.

I desired, some weighting function for the fields along the individual rays can be em-
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ployed to simulate the directivity of a receiving antenna placed at P. It is stressed that
this spatial weighting cannot always be used for the modelling of the shielding of a reflector
antenna, because the obstacle may be in the near field of the antenna. Theoretically, the
pattern assumed for the point receiver at the observation point P can be replaced by the
receiving pattern of the antenna if the obstacle is in the far field of the antenna, i.e. if
the separation of obstacle and antenna is larger than the Rayleigh distance 2D?/), where
D is the largest physical dimension of the antenna. This matter is carefully studied and

analysed in Chapter 5 for single- and double-reflector antennas.

3.2.3 The metallic cylinder

The obstacles considered thus far all had edges where the diffracted waves were generated.
In this section the problem of diffraction by a circular cylinder is discussed. The cylinder is
infinitely long in the y-direction, and its radius is a. The incident wave propagates into the
z-direction, and the observation point P has coordinates (x,,2,), where the y-coordinate is

discarded because the problem is essentially two-dimensional. For P in the lit region, i.e.

AL

ISB

(b)

Figure 3.7: Cylinder geometry with P in the lit zone (a) and P in the shadow zone (b).

|zp| > a, the total field at P, consists of four parts: the direct incident field, the reflected
field and two first-order surface-diffracted fields. The direct and reflected fields are easily
calculated using the theory from Section 2.8. The main difficulty is the determination of
the reflection point @,. Since this point lies on the cylinder surface, the location of the
reflection point is determined by one coordinate only, namely the angle a,. The value of
a, that corresponds to the reflection point @, can be found from Snell’s law using a simple
root-finding procedure. Furthermore, two surface-diffracted fields arrive at Pj; the ray path
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of one of these fields is shown in Figure 3.7a. The wave propagates around the cylinder
in a counter-clockwise direction. It has its attachment point @, at @, = 37/2, and the
shedding point @, can again be found using a root-finding procedure. The second surface-
diffracted field is shed by a surface wave that propagates in a clockwise direction referring to
Figure 3.7a. This ray has its attachment point for ¢, = /2, and a root-finding procedure
needs to be used to find the associated shedding point @, for which 7/2 < e, < 7.

So, in the lit region the total field £}, at P is given by

E"f!:'t = E‘. + E.T + E’d Jit + ccwhﬁ (3'22)

where E' is the direct (GO) field reaching P, E" is the reflected field by the cylinder
and B E

cw ity ecw, it

clockwise and counter-clockwise directions, respectively.

are the surface-diffracted fields shed by surface waves propagating in

For P in the shadow region (Fig. 3.7b), i.e. |z,| < a, the total field E,,,,, arriving at
P, consists of two first-order diffracted fields

ot _ psd risd
Eshadow — 1"‘:u.v,.s.fh'.ldcm,' + Eccw,s.‘mdnw! (3‘23)

where E%¢

S shadow a0 Em, shadow arise from surface diffraction with attachment points at

a, = /2 and o, = 37/2, respectively, and propagate into the shadow region behind
the cylinder. The location of the shedding points can be determined by a root-finding
procedure.

Comparing equations (3.22) and (3.23), it can be deduced that one surface-diffracted
wave is continuous across the Incident Shadow Boundary (ISB). More specifically, at the
upper ISB (z = a) one has B2, ,;, = B2 whereas at the lower ISB (z = —a) one has

ccw,shadow )
Es2 i = B2 aow- Continuity of the field across, for example, the upper ISB is obtained
if

B4 B B, = E% 2 (3.24)

cw,lit cw,shadow

in that £

is different from £ cwlit

cw,shadow

Notice that £

22 Fit travels nearly once around the

cylinder, while for E*¢

0 shadow the path along the cylindrical surface is only a short arc of

the cylinder circumference. Actually, the path length ¢ along the cylinder for E.;irm and
E:d

cw shadow

approaches ¢ = 2wa for § | 0, while for 2, = a — é the path length approaches t =0 (6 T 0).

shows a discontinuity of 1 = 2wa; for z, = a + 6 (6 < a) the path length 1

It can be proven that equality (3.24) holds true, so that the total field is indeed continuous
across the 1SB [38].

In the following examples the SST is calculated for a circular cylinder of varying radius for
a = 0.15m, 0.3m, 1.5m and 3m, while the observation point P has coordinates =, = 100m,
z,. The frequency used is 1 GHz and vertical () as well as horizontal () polarisation is
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Figure 3.8: SSF of a circular cylinder of radius a as function of z, for vertical (V) and
horizontal (H) polarisation: a = 0.15m (——— ), a = 0.3m (— — — — — ),
a=15m(—+——- Janda=3m (-+--r-0-- ). The curves for vertical polari-
sation have been raised by 20 dB for legibility.

Data: z, = 100m, A = 0.3m

considered. The results of these calculations can be found in Figure 3.8 for |z,| < 6m. From
this figure it is seen that the SSF for a value of z, = 100m is quite low. An investigation
for smaller z, revealed that also for the cylinder considerable values of the SSF can be
obtained if P is quite close fo the obstacle and if a is large compared to A. In practical
situations, the occurrence of this type of obstacle with a large radius is low. Also, for some
regions the SSF is negative, indicating that the directly incident and the obstacle-scattered
field are in phase.

Numerous kinds of cylindrically-shaped obstacles with small radii are present in practical
sceneries, e.g. lamp posts and road signs, and it appears that for these obstacles with small
cross-sections the surface-diffracted waves are not the most important wave contributions.
The reflected waves from these obstacles are more important, and can cause strong fading
effects as is well known from the literature. This indicates that, for the site shielding
application, cylindrically-shaped obstacles are useful only if their radius is quite large in
terms of the wavelength, and if the observation point P is close to the obstacle.

If the incident wave is obliquely incident onto the cylinder axis, the SSF can also be
determined using the UTD for convex obstacles. Details concerning the ray-tracing proce-
dures and the validity of UTD for cylinders with small radii (a &2 A) can be found in [44],
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where also a comparison is made between the results predicted by UTD and those based on
an exact solution in terms of Bessel functions. Some results of this study are summarised

in Section 4.6.

3.2.4 The block-shaped obstacle

Obviously, the accuracy of the modelling of an obstacle can be improved by considering
three-dimensional objects rather than two-dimensional ones. For this reason a versatile
block-shaped obstacle is introduced in this section, which can also be used for the (numer-
ical) modelling of diffraction by a half-plane and by a finite-width screen.

Generally speaking, the block-shaped obstacle is described by an ordered sequence of
eight corner points. This ordered sequence determines 8 vertices, 12 straight edges and 6
plane faces of the solid block, some of which are indicated in Figure 3.9. Furthermore, it

is allowed that corner points nearly coalesce. In this way, a suitable combination of only

8

Figure 3.9: The general block obstacle consisting of 8 vertices, 6 plane surfaces and the 12
straight sides.

two block-type obstacles is an accurate model for a house, including a rooftop. The block-
shaped obstacles considered in this thesis are always convex. This imposes requirements on
the relations between the coordinates of the vertices. The use of the block-shaped obstacle
is, among others, discussed in Chapter 6.

The rectangular block (rectangular parallelepiped) can be derived from the block-shaped
obstacle. Tts edges are parallel to the axes of a properly chosen Cartesian coordinate system,
and it is described by —d/2 < & < d/2, —h/2 <y < h/2,0 < 2 < z,. The obstacle under
consideration is placed on the ground plane (zy-plane) and the influence of the latter is

neglected. It is depicted in Figure 3.10. From the geometry of this rectangular block it
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tz

Figure 3.10: The perfectly conducting rectangular block, with some wave contributions.

is observed that there can be various kinds of wave contributions at the observation point
P, some of which have already been discussed. The following types of ray-optical fields
contribute to the total received field at the point P:

1. The directly incident field E! (not indicated in Figure 3.10). This is the geometrical
optics (GO) field and it is present only if the observation point P is in lit space. Its
contribution to the total field is calculated using standard GO techniques;

2. The reflected field E” (not indicated in Figure 3.10). This is another GO field and
it is only present if one of more reflection points R exist in one or more faces of the
obstacle, such that the incident ray through R and the reflected ray from R to P

satisfy Snell’s law;

3. The single-diffracted field E“. This is a diffraction field and it is present only if there
exist one or more diffraction points (}4 on one or more edges of the rectangular block,
such that the incident ray through Q4 and the diffracted ray from Q4 to P satisfy
Keller’s law of edge diffraction. Since all edges are straight, simplified expressions
for diffraction parameters can be used. For the distance parameters L' = L? because
the faces are plane; the caustic distance for diffraction p? = p., because the edges are
straight a, = oo;

4. The double-diffracted field £%. This is another diffraction contribution and it con-
tributes only if a pair of diffraction points exists on different edges of the block obstacle
(or on edges of different obstacles), such that Keller’s law of diffraction is satisfied
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at both diffraction points. The double-diffraction contribution is calculated by ap-
plying twice the diffraction operation as indicated in equation (2.83), whereby the
diffracted field arising at the first diffraction point ), acts as incident field at the sec-
ond diffraction point (). Furthermore, a slope-diffracted field is incorporated in case
the secondary incident field has a zero amplitude at ¢);. This contribution is calcu-
lated using the theory from Section 2.5.1; see equation (2.68). In case of overlapping
transition regions (Fig. 2.9), discontinuities of the double-diffracted field will occur.
It is observed that for the present application, the double-diffraction contribution is
only needed in case no other wave contributions are present [45];

5. The corner-diffracted field £%. This is another diffraction term which is almost
continuously present. The corresponding diffraction point is one of the vertices or
corners of the obstacle and is denoted by Q.. Mostly, corner diffraction is neglected
in the analysis because it is of secondary importance. In some cases, however, corner

diffraction may become important, as shown in [43].

The total field E* at P is found by adding the contributions from the incident, reflected,
single-diffracted and double-diffracted fields. Thus

EI = E,Ei + E,E'r + zédJE'él + zedd,mgid i TR (325)
| P

where the e-factors are introduced as shadow indicators. In general, any combination of the
right-hand-side terms can occur: an edge-diffracted field can consecutively be diffracted by
a corner.

As an illustration of the use of the rectangular block, the SSF behind a block with
dimensions d x h x z,, = 20m x 86m x 68m is calculated for a frequency of 1 GHz. This
corresponds approximately to the dimensions of the building of Electrical Engineering at
Eindhoven University of Technology. The point source was placed on the negative z-
axis in such a way that in a certain region double diffraction is needed because all other
contributions are obstructed. In Figure 3.11 an identification of the areas where different
ray contributions are present, can be found. Besides the ISB and RSB, also the shadow
boundary of the diffracted field (DSB) is shown; across the DSB the double-diffracted field
together with the single-diffracted field provides continuity of the total field.

The SSF has been calculated in points P with coordinates z, = 250m, y,, z, = 1.5m, for
—150m < y, < 150m. The source is positioned at (—162.5m,0,12.5m), and is modelled as
having an isotropic radiation pattern. Furthermore a horizontal polarisation, i.e. parallel
to the ground plane, is used.
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Figure 3.11: Definition of the areas where different field contributions have to be taken
into account. Incident, reflection, and diffraction shadow boundaries can be
distinguished.

The SSF on the observation line mentioned is shown in Figure 3.12. From the results
shown here it is observed that the SSF is continuous across the shadow boundaries ISB
and DSB and that strong interference exists in the region where double diffraction is the
only contribution. As in the case of the finite-width screen analysis (Fig. 3.6), numerous
peaks are produced by the interfering diffraction contributions. The very large SSF in the
region behind the obstacle is found because there the only contribution stems from double
diffraction. In most practical situations the (interfering) source will directly illuminate some
edge which is also visible from the observation point, indicating that there will usually be a
single-diffraction contribution. The SSF calculation for the block-type obstacle is strongly
polarisation dependent as will be shown in Section 4.4.

As can be seen from the figure, the models predicts continuous fields everywhere. It
should be remarked that the geometry analysed here corresponds to a worst-case analysis.
In the example the source and observation point have no edge in common, i.e. no edge
seen from the source is visible from the observation point and vice versa. In most practical
cases they will have one or more edges in common, especially if the source is placed in
such a way that the incident field arrives from a direction not parallel to the ground plane.
This is, for example, the case in an earth-space link. In the latter case a less sophisticated

wave-propagation model can be used, as will be demonstrated in Chapter 6.
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Figure 3.12: SSF behind the rectangular block as function of y,: total field (— — — — — )
and a result from an engineering model (—————) discussed in Section 3.4.8.

Data: x, = 250m, z, = 1.5m, d x h X z; = 20m x 86m x 68m, A = 0.3m

3.2.5 Finding reflection and diffraction points

In the previous sections nothing has been said about how to find the reflection and diffrac-
tion points at obstacle faces and edges, respectively. In general, this job is quite tedious,
and a number of papers in the literature deal with the problem of finding reflection and
diffraction points [46, 47]. Usually some kind of root-finding procedure has to be used to
locate the points where the rays satisfy Snell’s law, equation (2.16), or Keller’s law of edge
diffraction, equation (2.40). In this section alternative methods are proposed that make
use of the specific properties of the block-shaped obstacle.

First we describe a very important algorithm in the determination of reflection and
diffraction points and in the verification of the existence of ray paths. This algorithm has
the symbolic name RAY-EXISTS, and it provides a boolean variable with the value TRUE if
a ray from a point A to a point B is not obstructed. It has the value FALSE otherwise. The
arbitrary points A and B should not lie inside an obstacle.

The question to be answered by RAY-EXISTS is: does the line [ = A + a(§ - /51'),
0 < a < 1, have an intersection with any face of any obstacle? If the answer to this
question is affirmative, then there is ray obstruction. Otherwise, the ray path from A to B

exists.
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As a start, we assume that the ‘environment’ is defined by N block-shaped obstacles,
as introduced in Section 3.2.4. Each obstacle definition is an ordered list of points V,

(f = 1,...,8) with Cartesian coordinates (z;,v:,z). First, we determine the centre of
gravity G of each obstacle, and the maximum distance rg from G to V;. This is easily
performed:
1=3
G=) Vi/8, (3.26)
i=1
re = max; |G — V.l, . (3.27)

where the max-function determines the maximum of |G — Vi| for i = 1 to 8. Then, we
perform a selection of obstacles that possibly can obstruct the ray path from A to B. For
this we need the point G and rg. If the distance from G to I is larger than rg then this
obstacle cannot obstruct the ray path. The solution for & which corresponds to the smallest
distance from G to [l is oy

ap = ol . , (3.28)

and 0 < op < 1. T ag < 0 or ag > 1, we set the value of ag to 0 or 1, respectively. If
for this particular obstacle |G + (o — l)fi‘- aog| > rg, it cannot obstruct the ray path.
After this selection the number of obstacles M to be considered for ray obstruction is less
or equal to V, i.e. M < N. In practice, only a very limited number of obstacles need to
be considered for ray obstruction, so M < N.

Next, we select a face of an obstacle. Let this face be determined by the vertices V4, V3,
V3, and V4 in an infinitely-extended plane Y. If [ is parallel to Y no intersection can exist,
and this case will not be considered. If [ is not parallel to ¥ then the intersection I of [
and Y can easily be calculated because the face is plane.

In order to find out whether [ lies in the polygon defined by the vertices Vi, Vo, Vi,
Vi, it is sufficient to calculate the vectors W; from V; to I (1=1,...,4), and the vectors
X, from V. to Visr (Vs = Vi), Then the vector product Z, = X; x W, is calculated. If
the orientation of the vectors Z is such that all of them point into the same direction,
then the intersection I lies inside the polygon. This procedure should be repeated for
every face of every obstacle M, i.e. 6M times. Of course, the algorithm can be stopped
as soon as obstruction takes place. Only if none of the faces of the M obstacles give rise
to ray obstruction, then RAY-EXISTS has the value TRUE. This approach is much simpler
than solving a parametric equation to determine whether I lies in the polygon. Often this
calculation is fairly complex because the polygon can have any (convex) shape. This ends
the description of the RAY-EXISTS algorithm.
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Before the calculations of the reflection and diffraction points are started, we first de-
termine the vertices, edges and faces of the obstacles that are visible from the source §
and the observation point P; this procedure is referred to as pre-selection. In this way
we consider optical blockage of vertices, edges, and faces by the obstacle itself. This is
done because reflection points, edge-diffraction points, and corner-diffraction points have
the property that they are visible from § as well as P. The algorithm RAY-EXISTS is used
to determine whether the rays from S to V; and from P to V, (z = 1,...,8), exist. The
blockage properties of the edges and faces can be derived from those of the vertices V.
After this selection, we know which faces, edges and vertices should be considered in the
determination of the reflection and diffraction points.

In the following we will consider only one particular obstacle, because other obstacles
are treated in the same way. To find the reflection points it is needed to calculate the
mirror image of either S or P in the face under consideration. Obviously the face should
be visible, and this we know from the pre-selection. For the block-shaped obstacle the
determination of the mirror-image corresponds to the calculation of a maximum of six
images, and consequently the verification of the existence of six reflection points. The
procedure to do this is as follows. '

First the mirror image of either S or P is calculated. This is easily done because all
faces of the obstacle are plane, and information regarding the normal vector 7 to the face
is available. From here on it will be assumed that the mirror image P’ of the observation
point P is available. Subsequently, the intersection R of the line from S to P’ with the
(infinitely extended) plane face of the obstacle is calculated. The intersection R is a true
reflection point if, and only if, it is located inside the polygon formed by the four edges of
the face under consideration. If it lies outside this polygon it is a virtual reflection point.
This is schematically shown in Figure 3.13. To determine whether R lies inside the polygon,
the approach outlined in the description of RAY-EXISTS can be used. If R proves to be a
true reflection point then it has to be determined whether the rays from S to R, and from
R to P are obstructed by any of the other obstacles using the algorithm RAY-EX1sTS. If
this is not the case, then R is a visible reflection point, and consequently its GO reflected
field should be taken into account.

The location of the diffraction points can be found using approach which stems from
differential geometry [48]. To find the diffraction point Q on the edge from ¥ to V;, we
first construct the plane W which contains the source point S and the vertices V; and V5.
Furthermore, we identify a rotation axis [ given by the line through V; and V5. Subsequently,
P isrotated around [ until the rotated point P’ is in W. This process is schematically shown
in Figure 3.14. After this rotation, S, [ and P’ all lie in the plane W. The diffraction point
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Figure 3.13: Procedure to find the reflection point R in a face of the block shaped obstacle.

@ is found as the intersection of the vector from S to P’ and [, as shown in Figure 3.15.
Obviously, @ should lie in between Vi and V;. After the determination of ), it should
be verified whether the ray from S to @ and from @ to P is obstructed by any of the
obstacles. This is performed using the algorithm RAY-EXISTS. If no obstruction is present,
the diffraction point @ found is a visible diffraction point, and its diffraction contribution
can be taken into account. This is determination of diffraction points is performed for all
visible edges.

The approach to find the diffraction point @ can also be employed to find higher-order
diffraction paths. To find the double-diffracted ray path, for example, we proceed as follows.
We first construct the plane W, which is uniquely determined by three of the four vertices
of the two edges under consideration. A property of the block-shaped obstacle is that the
fourth vertex also lies in W, (plane faces). Next, the observation point P is rotated around
Iy through V5 and Vi, until it lies in W;. This point is called P’. Then the source S, the
first edge (V4,V4), and P’ are treated in the same way as outlined for single diffraction.
A plane W, is determined by S and the two vertices of the first edge (V4,V2). Then P’
is rotated around Iy through Vi and V; until it is in W,. This point is called P”. Now
S, the first edge, and P” lie in a planar geometry. The diffraction point @y on the first
edge is the intersection of the line from § to P” and l;. The second diffraction point @
is the intersection of the line from @, to P’ with ;. Of course, @}; should lie in between
Vi and V5, and @ should lie in between V5 and V4. The double diffraction path is from §
to @, from @, to @3, and from @, to P. Also here RAY-EXISTS is used to check whether
ray obstruction arises. Notice that the two edges under consideration should be in the
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Figure 3.14: Geometry for calculation of the diffraction point Q).

same plane for the procedure to be useful. This means that the rays do not penetrate
the obstacle, and consequently one edge can be combined with six other edges to make
a double-diffraction geometry. These edges obviously determine the two faces of which
the selected edge is part. Information from the pre-selection is used to select only those
edges that are visible from S. In simulations involving a lot of obstacles (N large), an
additional pre-selection to determine the vertices, edges and faces visible from P might
prove worthwhile.

The simplicity of the procedures to find reflection and diffraction points is the main

planar Vi
| geometry

Figure 3.15: Planar diffraction geometry.
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advantage of the use of the versatile block-shaped obstacle. These points need not be
determined by some iterative procedure, but can be calculated in a straightforward way.

There is one possible disadvantage in using the block-shaped obstacle. Convex obstacles
such as cylinders need to be approximated, and cannot be modelled accurately. This
deficiency can, however, be removed by using the UTD for convex obstacles as described
in Section 3.2.3. In [49] it is shown that for practical applications the circular cylinder can
be replaced by a polygonal cylinder with equal height and same volume. It was found that
not the diffracted, but reflected contributions from the circular-cylindrical structure are
important in communications engineering. These reflections cause a multipath behaviour
of the communications channel (fading). The effect of the strong reflection contributions
from the cylindrical structures are modelled by the effects of reflected and diffracted waves
from a polygonal cylinder if the block-shaped obstacle is used.

3.3 Comparison of three field-strength prediction

models

In this section! a comparison is made between three methods to calculate the EM field
diffracted by a perfectly-conducting rectangular block. The models, that are first briefly
described, include a ray-based model (Uniform Theory of Diffraction) and two wave-based
models (Fresnel Surface Integral and Parabolic Equation method). A test case is analysed
with all methods resulting in a good agreement between the predicted results for two linear

orthogonal polarisations.

3.3.1 The rectangular block

The problem of field strength prediction has gained renewed interest during the last years.
Applications lie in the field of mobile and personal communications and interference re-
duction, and the latter is one of the research topics of the European project COST 235
(50].

Accurate field-strength predictions are required to account for diffraction of EM waves
by buildings. In this section three diffraction models based on the Uniform Theory of
Diffraction (UTD), the Fresnel Surface Integral (FSI) [51] and the Parabolic Equation

! Note: the major part of this section was already published: G.A.J. van Dooren, C.J. Haslett, and M.F.
Levy: Diflraction by a rectangular building: Comparison of three field-strength prediction techniques,
Elec. Letters, vol. 29, no. 15, pp. 1334-1335, 1993.
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(PE) [52], are compared.
The geometry considered is shown in Figure 3.16. The positions of S(ource) and

A

Figure 3.16: Coordinate system and obstacle geometry for field-strength prediction models.

Obs(ervation point) are given in a Cartesian (z,y,z) coordinate system. The source S
is placed at the origin and emits a signal that is either horizontally (z) or vertically (z) po-
larised. The electric field Eqp, will be calculated at Obs (z,y,z) for —16m =z, <z <z, =
15m, at y = 120m and a frequency of 1 GHz. The obstacle has its top-face at z4 = 1m,
while y4 = yg = 100m, yo = yp = 110m, £4 = zp = —5m and z5 = z¢ = 5m. It is fur-
ther assumed that the obstacle extends indefinitely into the —z-direction. The parameter
Az is defined by Az = z4 — zo4,.

3.3.2 UTD field-strength prediction model

Using UTD, the total field Egys at the observation point position is given by
Eops = E° + 3 B+ Y EX* 4+ Y Edh (3.29)
! m n

where ES is the geometrical optics field, E%* is the single-diffracted field at the obstacle
(eq. 2.45), E%4 the double-diffracted field (eq. 2.83), and E%" are higher-order diffracted
fields. Notice that EC is included only for observation points in the lit space. The
summations in equation (3.29) extend over the number of ray paths originating from §
to Obs, which contain one (single diffraction) or more (double/higher-order diffraction)
points located on the edges of the rectangular block. It was found from numerical analyses
that higher-order diffraction contributions should be taken into account up to order k=3/2,
where k = 27 /) with A being the wavelength (Sec. 4.4). The contributions of order k—3/2

correspond to waves undergoing both corner and edge diffraction.
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Recently, the performance of this field-strength prediction model has been experimen-
tally tested for scaled obstacles at a frequency of 50 GHz using a vector network analyser.
Excellent agreement in great detail between theoretical and measured results was found for
conducting obstacles with various geometries (Sec. 4.4).

The main advantage of the UTD model is that it provides a clear insight into the
diffraction process at edges of buildings, and that diffraction at an obstacle and an antenna
may be analysed in a combined way. It is very well suited for the description of diffraction
phenomena if the observation point is near the obstacle.

3.3.3 FSI field-strength prediction model

In this model initially three waves are considered: one propagating over the top face of the
obstacle and one around each side. Each of these paths is regarded as a two-dimensional
system with a line source as the transmitter. The obstacle outline of each two-dimensional
system may be likened to a flat-topped terrain obstacle [51]. It entails evaluating the
relative electric field strength due to a double knife-edge system, and adding it to that for
the wave undergoing a reflection in the connecting surface [51]. The diffracted field at Obs
is found using a kind of integration, similar to Kirchhoff’s theory.

When the model is extended to a three-dimensional one, parts of the two-dimensional
systems are found to overlap, so that it would be incorrect to simply add the three relative
field strengths together. Rather the total relative electric field is given more accurately by

Eobs = By + Ex+ Es — By N Ey — By N B3, (3.30)

where E; is the relative electric field strength for the top face calculated by integration
over the surface y = yp, z > 2zp [51], E; for the left-hand edge of the building calculated
by integration over the surface y = y¢, * > z¢, and Ej; for the right-hand edge of the
building calculated by integration over the surface y = yp, z < zp. The terms E, N E; and
E; N Ej; represent the field contributions due to the overlapping portions of the surfaces of
integration.

In predicting the diffracted field for a vertically (z) polarised wave in the shadow of
a conducting rectangular block, an effective reflection coefficient R = 1 is assumed for
the top face diffraction component and B = —1 for the side-face components. These
are reversed for a horizontally-polarised wave. Additionally, for a practical building, an
effective reflection coefficient R must be assumed with 0 < |R| < 1 (eq. (2.84) and (2.85)).
If the electrical characteristics of the solid rectangular block are unknown, then an assumed

reflection coefficient of zero may give reasonable predictions [53]. It should be noted that
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only reflections in the surfaces connecting two edges are considered, i.e. surfaces parallel to
the zy- and the yz-planes. Furthermore, the pattern of the antenna at Obs is not modelled.

The main advantage of this method is that it may be rapidly implemented using well-
established methods.

3.3.4 PE field-strength prediction model

The PE technique provides a numerical full-wave solution to radio propagation problems.
PE methods have been applied successfully to propagation over irregular terrain [52] and
more recently to propagation in urban environments [54].

In three dimensions, a function u = u(z, y, z) which is slowly varying with respect to the
variable y, is associated with a field component Egy, = exp(—sky)u(z,y, z) propagating
into the y-direction. Then u satisfies approximately the outgoing wave PE [52]

du . 1 o2 1 82
a—y—}k (l—‘/l-i-ﬁw‘i'k—g“é?) u. (3.31)

Notice that in equation (3.31) incoming wave solutions have been discarded [54]. The sec-

ond order partial derivatives in the argument of the radical in equation (3.31) are now
approximated in a numerical way. The parabolic nature of equation (3.31) allows the
solution to be marched from one plane y =constant to the next. It can be solved by
two-dimensional FFT techniques or by finite-difference methods. FFT techniques are more
efficient numerically, but currently it is not known whether arbitrary boundary conditions
at the obstacle surfaces can be modelled. Finite-difference techniques require smaller in-
tegration step sizes and are hence slower, but they allow accurate modelling of boundary
conditions. The results to be presented have been obtained by means of a two-dimensional
split-step/FFT technique. An image model has been used to account for reflections in
the obstacle faces, which can be either (perfectly) absorbing or conducting. This simple
approach works well for a rectangular block with faces parallel to the Cartesian axes. The
extension to an obstacle with finite conductivity, or to an obstacle of more complicated
shape, is not straightforward.

The three-dimensional split-step method is straightforward to implement and can be

used in the shadow region as well as the transition regions.

3.3.5 Comparison of results

Typical results obtained from the three methods discussed are shown in Figure 3.17 for

both vertical (V) and horizontal (H) polarisation and for Az = 5m. The results for vertical
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Received field [dB]

x[m]

Figure 3.17: Field strength behind the rectangular block as function of z: UTD
(———), FSI (— — — — — )and PE (- —-—-—- ); vertical polarisation
(lower curves) and horizontal polarisation (higher curves). The results for ver-
tical polarisation have been lowered by 20 dB for legibility.
Data: Az = 5m, y = 120m, A = 0.3m

polarisation have been lowered by 20 dB for legibility. Agreement is very good except for
vertical polarisation in the interval 4 < |z| < 6, where there are small differences. These are
probably due to the treatment of corner diffraction. All models predict the same average
level of the received field in the shadow region behind the building, as well as the strong
polarisation dependence (Sec. 4.4). Comparisons for other values of Az lead to similar

conclusions.

3.3.6 Conclusions

Three diffraction models have been described and compared for the case of diffraction by
a perfectly-conducting rectangular block at a frequency of 1 GHz and a realistic building
geometry. Despite their very different nature, results of the three methods show remarkably
good agreement for the predicted field strength behind the obstacle, and they confirm the
strong polarisation dependence of the diffracted field.
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3.3.7 Addendum: comparison of results for the half-plane and
the finite-width screen

Results for the SSI predicted by the UTD, FSI and PE methods were also compared
for the half-plane obstacle and the finite-width screen, depicted in Figures 3.2 and 3.5.
These geometries are analysed in this section. The results for the half-plane are shown in
Figure 3.18 for z, = 60m, z, = 100m and 0 < z, < 90m and a frequency of 1 GHz. It
can clearly be seen from this figure that good agreement between the result of all three
methods exists, although the FSI and PE results slightly overestimate the SSF for small
Zp.

The calculated SSF results for the finite-width screen shown in Figure 3.5 can be found
in Figures 3.19 and 3.20. Good agreement between all results is found for both obstacle
heights, although some differences between the UTD/FSI and the PE method can be
found at y, = £43m where corner diffraction is important. The differences between UTD
and FSI would be more explicit if another polarisation would be used; the UTD results
change as function of polarisation while the FSI results remain unchanged. The result from
Figures 3.19 and 3.20 compare very well to the corresponding graphs given in Figure 3.6.
The differences between the results shown in Figures 3.18 to 3.20 are due to the fact that FSI
as well as PE neglect the part of the diffraction field caused by the reflected field, present
in the UTD formulation through the coefficients Dj 4 in equation (2.47). Furthermore, PE
also suffers from a paraxial approximation [52]. Other investigations have revealed that if
the reflection coefficients in the UTD formulation are set to zero, the UTD results and the
FSI results are identical for the half-plane and the finite-width screen analyses.

It is concluded that for simple site shielding problems incorporating single, isolated
objects UTD, FSI and PE give (nearly) identical results., They can therefore all be used
for site-shielding predictions, and the user can benefit from the specific advantages of the
methods discussed.
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Figure 3.18: SSF of a half-plane as function of z,: UTD (————), FSI (— ———— )
and PE(-— - —- )

Data: z, = 100m, z,, = 60m, A = 0.3m
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Figure 3.19: SSF of a finite-width screen as function of y,: UTD ( ), FSI

Data: z, = 100m, 2z, = 1.5m, z5 = 10m, dy = d2 = 43m, A = 0.3m
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g
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Figure 3.20: SSF of a finite-width screen as function of y,: UTD (—— ), FSI
(————— )and PE (- —- — . —. )

Data: z, = 100m, z, = 1.5m, z,5 = 60m, d; = dp = 43m, A =0.3m

3.4 An engineering approach for site shielding cal-

culations

In this section?, two models for the approximate calculation of the field distribution in
the vicinity of a perfectly-conducting finite-width screen are discussed. The first model is
derived from the Uniform Theory of Diffraction (UTD), and is simplified such that the am-
plitude of the individual field contributions can be easily calculated (pseudo-UTD model).
The second model is based on a graphical approach. Coefficients that are representative
for the dimensions of the obstacle and for the relative position of the observation point
are used together with standardised equations to calculate the field strength in the whole
shadow region behind the screen. Also a modification of the current CCIR procedure for
knife-edge diffraction is proposed, such that it can be applied to a finite-width screen.
Results of all models are compared with results from the more accurate model based

on UTD. All models proposed are simple to apply and provide an essential extension to

2 Note: the major part of this section was already published: G.A.J. van Dooren and M.H.A.J. Herben:
An engineering approach for site shielding calculations, International Journal of Satellite Communications,
vol. 11, no. 6, pp. 301-311, 1993.
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currently available engineering models. It is found that the pseudo-UTD model has the
best performance with respect to the reference UTD (full-UTD) approach. The graphical
method, however, is more user friendly than the pseudo-UTD model, because less interme-
diate results need to be calculated. Moreover, the use of this method yields a field-strength
distribution for the whole shadow region of the obstacle instead of the field in just a single
point. It is found that also the modified CCIR approach can be used with good accuracy.

The models discussed answer some questions formulated by the CCIR concerning site
shielding, and extend the currently available engineering models for this interference re-
duction technique.

3.4.1 Introduction

For the calculation of the scattered field in the surroundings of an obstacle several theories
can be used [45, 55]. A very attractive approach from an engineering point of view is the
Geometrical Theory of Diffraction (GTD) and its uniform extension (UTD), because of
their ability to provide a substantial insight into the diffraction mechanisms at the obstacle
edges. From a practical point of view, however, it is often necessary to even further simplify
the GTD/UTD approach. As a result, approximate methods for efficiently evaluating the
scattered field and/or the site shielding factor (SSF), which is a measure for the additional
propagation loss along the propagation path, have been developed. Obviously, these ap-
proximate methods suffer from a number of shortcomings of which the most important are
a limited range of applicability, and the fact that only scattering by infinitely wide obstacles
can be accounted for [1].

Currently available engineering methods for the analysis of site shielding are provided by
the International Radio Consultative Committee (CCIR, now the Radio Sector of the ITU)
[56, 57, 58]. The methods offered, however, are either two-dimensional, or have a limited
applicability. International cooperation projects, such as for example the project COST 235
of the European Community, focus on the development of reliable prediction procedures for
site shielding and other interference reduction techniques [59]. Applications of the wave-
propagation models are the analysis of the reduction of interference due to anomalous
propagation, which strongly influences the coordination distance of earth stations for small
time percentages.

In this section we are mainly concerned with finding approximate methods to the ap-
proaches that have been proposed in Section 3.2 for the calculation of the (scattered) field
strength and/or site shielding factor of some specified finite-width screen with knife-edges.

The UTD reference model presented in [55] has been extensively verified by laboratory
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measurements with scaled obstacles (see also Sections 4.2, 4.3, 4.4 and 4.5). The measure-
ments were performed at a frequency of 50 GHz in an ordinary room using a vector network
analyser. A comparison of the results of the measurements and of the UTD model used can
be found in Sections 4.2 and 4.3 and in [43], where also the accuracy of the measurements
is discussed. In all cases considered extremely good agreement between measurements and
theory was established. Since the full-UTD model is quite complex and needs a substan-
tial amount of calculation time, and because the results show very rapid fluctuations as
function of position, other parameters deduced from the field-strength distribution behind
the obstacle may be of help. In this section a simplified approach for the prediction of
the site shielding factor will be derived from the full-UTD model. It can be used for the
calculation of the average and minimum SSF behind a finite-width screen and it is referred
to as the pseudo-UTD model. Also an extension of the current CCIR method for knife-edge
diffraction will be proposed such that it can be used for the analysis of an obstacle of finite
extent.

3.4.2 Average and minimum SSF

In Section 3.2.2 the calculation of the field distribution in the surroundings of a perfectly-
conducting finite-width screen was studied. Using UTD, the total electric field ¢ at a

point P behind a screen can be calculated using

3
E'=eE + Y ¢ES (3.32)
=1
where P is an arbitrary observation point with Cartesian coordinates (z,,yp, z,), the fac-
tors ¢; and €; (j = 1,2,3) are shadow indicators accounting for wave obstruction, E' is
the directly incident field at P and E“gj are the individual diffraction contributions from
diffraction points @; on the edges I';. It is assumed that the projection P’ of P onto the
obstacle, along the diffraction cone generated at @;, is sufficiently removed from the cor-
ners with coordinates (0,%d, z;). If this is not the case, a corner-diffraction contribution
becomes important (Sec. 3.2.2), which, for simplicity, is not included in the derivation of
the engineering methods. To our opinion, these corner-diffracted field contributions are not
important in the site shielding analyses as performed in this section, because site shielding
is only effective in the shadow region behind an obstacle. Corner-diffraction contributions
become important at shadow boundaries, where the SSF is fairly low (approximately 6 dB).
However, in other applications such as mobile communications (Ch. 6), this type of field
contribution may be important.

The geometry considered and the diffraction points are shown in Figure 3.5, repeated for
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convenience in Figure 3.21. The obstacle is a screen in the yz-plane, of finite width 2d. The

Figure 3.21: Definition of diffracting obstacle and location of diffraction points.

height of the obstacle is z., and the zy-plane is considered to be the ground plane. The
effect of the latter is neglected. The finite-width screen is described by 2 =0, —d < y < d,
0 € z < z,. The incident wave is assumed to be generated by a very distant source and
therefore it can be considered as a plane wave. The direction of propagation is

&% = (sin B, co0s B,0). (3.33)

It is obvious that 2} is parallel to the ground plane, and two transverse polarisation direc-
tions are defined

# = (—cos B,sin 8,0), (3.34)
and

& = (0,0,1). (3.35)

In the following, the polarisation of the incident wave is taken as a linear combination of
# and #5. The calculation of the total field E*, as given by equation (3.32), is dependent
on the polarisation of the incident (interference) field, and a dyadic diffraction coefficient
is needed to treat the different types of polarisation (eq. (2.45)). Since, in general, the
polarisation of the incident field is not exactly known, it is necessary to be able to vary the
polarisation of the incident field for analysis purposes.

The locations of the diffraction points @; (j = 1,2,3) were already given in equa-
tions (3.14) to (3.16), where z,,z, > 0. Furthermore, the analysis will be restricted to
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points P in the shadow region behind the obstacle. This means that ¢; = 0 in equa-
tion (3.32)
In case of a plane incident wave with a unit amplitude, the SSF of the finite-width screen

can be calculated from equation (3.1)
SSF = 20log [}'—‘] = —20log |E*| [dB, (3.36)
+

where the level of the field in the absence of the screen I_ = 1, and I = |EY|. The SSF
expresses the attenuation of the interference wave caused by the placement of the screen on
the propagation path. Typical results of the calculation of the SSF for observation points
behind a finite-width screen can be found in Section 3.2.

In practice, the SSF cannot be measured in exactly one poinf, but it will always be
measured in a cluster of points. Therefore, it will be more or less an average of the SSF of
the individual points. For this reason it seems more appropriate to calculate a measure for
the ‘average’ value of the SSF, SSF,, which is defined as [55]

3

SSF4y = —10log [

=

| 23, [2} [dB]. (3.37)

Notice that SSF is obtained as an addition of power levels of the individual contributions
E.gj. Equation (3.37) is valid in the shadow region behind the obstacle only, and therefore
e; = 0 in equation (3.32), while ¢; = 1 ( = 1,2, 3). This restriction is being used because
the site shielding principle is only effective in this shadow region [55, 45], and, moreover,
it simplifies the calculation.

From a practical point of view also another parameter is of interest. This is the minimum
attainable SSF, SSFyr, and represents some ‘worst case’ value of the site shielding factor.

An expression for SSFy; is given by
3 —
SSFy = —20log | |ES,|| [dB]. (3.38)
i=1

Notice that §5Fy is obtained as an addition of amplitude levels of the individual contri-
butions E‘éj‘ Both expressions (3.37) and (3.38) can compactly be written as

ssF="2 g |5~ 184 M| B 3.39
— Dyog |50 188, Y| (4B (3.39

=t

where SSF, is obtained from equation (3.39) for N = 2, and SSF)y is obtained for N = 1.

Equation (3.39) has a relation with vector calculus. Using N = 2 results in the calculation
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of the L, or Euclidean norm of a vector in some three-dimensional space, while the use of
N =1 results in the L; norm. Using this analogy, it is clear that all contributions |Eé,|
should be independent. This implies that equation (3.39) may only be used with individual
contributions that have an independent phase behavior [45, 55].

In the following we are interested in finding a simple approach for the calculation of
SSFy and SSFy of a specific finite-width screen. First, a pseudo-UTD model is presented
[55]. Second, the current CCIR procedure for knife-edge diffraction is extended such that
it can be used for the analysis of a finite-width screen. Finally, an even more simplified
approach is presented that uses coefficients to be read from tables and graphs. All models
proposed are simple to apply and give approximated results for SSFy as well as SSFy,.

3.4.3 A pseudo-UTD site shielding model

Next we will derive the pseudo-UTD model for finite-width screen shielding. In equa-
tions (3.37) and (3.38) it can be seen that only the magnitude of the individual ray con-
tributions is needed. A major simplification in the SSF calculation would therefore be to
avoid complex arithmetic. Another simplification would be the use of some intermediate
polarisation direction of the interfering incident wave. A logical choice for this polarisation
direction is a polarisation constant a with the value a = %\/i, corresponding to an incident
polarisation é,o of
byt = [o8} + VI= @], o= SV |5+ 4] (3.40)

Throughout this section, results will be presented for this type of incident polarisation.

Since only the magnitude of the diffracted field is needed, the dyadic operation in equa-
tion (2.45) can be simplified. Because the polarisation is chosen in such a way that part of
the incident field is in the 3’ direction, and the same part is in the ¢’ direction (Fig. 2.4),
a typical contribution as used in equations (3.37) and (3.38) is given by [55]

,- 2 _ |D,|* + | Dy?

Eg,| (3.41)

3

where s is the distance from @); to P, and D, are given by equation (3.5), repeated here

for convenience

(3.42)

Do, = 2 [F(M»a(so')) . F(kLate*)]

U 22rk | cos(p7/2) cos(p*/2)
For the vertical edges the distance parameter L is given by L = s, while for the horizontal
edge L = ssin? 3. Furthermore it is found that

a(z) = 2 cos*(z/2), (3.43)
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and the caustic distance p? = oo because the edges are straight (a. = o0). In equa-
tion (3.42), ¢* are given by ¢* = p & ¢’ and these angles are defined in Figure 3.22. From

Figure 3.22: Definition of @1, @), @2, w5 and Ay.

equation (3.42) it is immediately clear that the complex character of the calculation is
caused by some exponentials and the transition function F' given by equation (2.57). Since
the primary interest for the present application is lgé).l, and because only |D; 1| is needed,
further simplifications can be made. Using equation (3.42) and equation (3.41) yields

1 [|F(kLa(p7))l? 1
[ cos?(¢~ /2) * 0052(‘P+/2)] '

where the transition function for the reflected part of the diffracted field has been set to

|E'd|2 o

~ 8mks (3:44)

one because the reflection shadow boundary lies in lit space ¢ < 0. In the following it will

prove advantageous to approximate the magnitude of the transition function F by
( 2 2
¢4J%—z—§)+a(§—x) ,if0 <z <0.1,

3 2
+0.329log = + 0.838 ,if0.1 <z <10,

] ,if z > 10.

The relative error of this approximation with respect to the exact transition function (2.57)
can be found in Figure 3.23. As can be seen from this figure, the maximum relative error

is always less than 1%.
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Figure 3.23: Relative error in the computation of |F(z)]|.

Following the approach that led to equation (3.44) results in an expression for the
individual field contribution |E'51|

LE.Q1 2= (3.46)

= [6052(% 75 " ot} /2)]

where s; is the distance from @; to P

s1= /25 + (yp +d)? (3.47)

and 3
+
o1 =1 — ) = T 4 B+ arctan (y,, ) : (3.48)
2 Ty
5 d
T =1+ = ?7( — (B + arctan (y z+ ) . (3.49)
P

The factor F? is given by
2
F} = |F (2ks1 cos’(7 /2))| (3.50)
and |F'(z)| is given by equation (3.45).
An identical evaluation for the second contribution generated at @» gives

Bl 2 1 F2? 1
| = Brks, [coﬂ(:p,z /2) 5 cos?(pF /2)] (3.51)
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with s, the distance from Q5 to P

s2 = /22 + (y, — d)?, (3.52)

and 4 j
¢7 =2~ ¢y = = — B —arctan (y’" ) (3.53)
2 Ty
3 —d
o =Pty = ?T + B — arctan (y,x ) : (3.54)
P

The factor F7 is calculated using Ff = |F(z)|* with z = 2ks; cos?(y;3 /2).

The diffraction angles ¢ and ¢’ for the first and second diffraction point ()2 can be
found in Figure 3.22, where it can easily be seen that the center of the shadow region to
the right of the screen at a distance z, is located at

T
Ay = —2— ;
v= s (3.55)
and that the shadow region extends from —d + Ay < y, < d + Ay.
The contribution generated at Q3 can be found in a similar way
2
1Ba* = 81rk3—; sin? 8 [cosz(q% /2) * cosz((p}"/Z)] : ()
where 33 is the distance from Q3 to P
23 + (2p — zo)?
po NPT SR a
83 = Sn B ; (3.57)
and
3 = a—py =1 —arctan (%) ; (3.58)
P
YT = p3 + ¢4 = 21 — arctan (%—;—-@) ; (3.59)
P

The factor F? can again be calculated using F2 = |F(z)|? with z = 2ksa sin® B cos?(y3 /2).

The definition of the angles 3 and 5 is shown in Figure 3.24. The expressions for
SSF4 and SSFys are readily obtained using equations (3.37) and (3.38), in combination
with equations (3.46), (3.51) and (3.56)

SSFy = |24, + | B3, |’] [dB], (3.60)
$SFu = —201log || B, | + |E3,| +|E4,|] (4B, (3.61)

The pseudo-UTD model described in the foregoing can easily be implemented in a numerical
model, and still offers the insight that is provided by the full-UTD model. A comparison
between results obtained from the full-UTD and the pseudo-UTD model will be given in

one of the following sections.
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Figure 3.24: Definition of w3 and }; also the projection of #4 and the vector from Q3 to
P on the zz-plane are shown.
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3.4.4 Modification of the CCIR site shielding procedure

The CCIR does not provide a method to calculate the SSF of a finite-width screen. For a
single knife-edge an approximate model is available that is based on the Kirchhoff approx-

imation. Introduce the parameter v as

v = 2sin (1/2) \FTS, (3.62)

Pp=p —m. (3.63)

Notice that » has a close relation with the detour parameter £ as introduced in equa-

tion (3.10): v = £/2/.

The site shielding factor for a single knife-edge is known to be given by [3, 1]

where 9 is related to ¢~ by

SSF =20log [L(v)] [dB], (3.64)
with
L) =21(ViZ+1+v). (3.65)

Notice that this version of the CCIR formula was found to be more accurate than the
most recent one [1]. The CCIR formula is (theoretically) valid for small diffraction angles
1 due to approximations in the derivation of the solution for half-plane diffraction, viz.
equation (3.65). In [1] an upper limit of the diffraction angle ¢ = 12° is given as a
maximum in order for equation (3.65) to be accurate, and this may restrict the use of the
CCIR formula. Whether the formulation given in equation (3.65) imposes restrictions on

its use and accuracy will be investigated in the following,.
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The CCIR model can be extended in the same way as was done for the pseudo-UTD
model. In this way, the following expressions for the minimum and average SSF of the

finite-width screen can be obtained

1 1 1
SSF4=—10log [ﬁ“(yl) +£2(Vz) + Ez(v;,)] [dB], (3.66)
SSFy = =200 [ L T ] (dB] (3.67)
M= 20R) T E(m) " E(m) ’ ;

where

s 1o3—T 2
Viaa = 2sin (801,2,; ) \/ 31\‘2‘3, (3.68)

and the distances s;, (7 = 1,2,3), are from the diffraction points @; to the observation
point P.

3.4.5 Comparison of two SSF prediction methods

In this section the accuracy of the pseudo-UTD and extended CCIR methods in comparison
with the method of finite-width shielding as described in Section 3.2.2 will be investigated.
The average and minimum SSFs derived from the full-UTD model, incorporating edge- and
corner-diffraction, will act as a reference.

In the following a screen will be considered with a total width of 200, hence d = 1004,
and a height z,, = 200\. The SSF will be calculated at an observation point P with
coordinates z, = 100A or 8001, y,, z, = 5A, as a function of y,. In practical terms this
means that, at 1 GHz, the dimensions of the obstacle are d = 30m and z,, = 60m, while
z, = 30m or 240m. For simplicity § = 7 /2, such that the incident wave propagates parallel
to the z-axis, perpendicular to the screen.

In Figure 3.25, SS Fas 4 based on the extended CCIR method are compared for z, = 100\
with results predicted by the full-UTD method. The results from the pseudo-UTD method
are not shown in Figure 3.25 because they are indistinguishable from those of the full-UTD
method. Despite the fact that diffraction angles much larger than 12° have been used, the
modified CCIR model still predicts the average and minimum SSF quite accurately.

In Figure 3.26 the z, coordinate has been changed to z, = 800\ = 240m. Again, the
pseudo-UTD results are identical to the results predicted by the full-UTD method and are
not shown. It is seen that the results predicted by the extended CCIR model are quite

accurale.
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Figure 3.25: SSF' of a finite-width screen as function of y,: results from full-UTD
(—————) and the extended CCIR method (- —- — - — - ), and results from
the graphical approach discussed in Section 3.4.6 (-+++----- ); SSF4 (higher

curves) and SSFy (lower curves).
Data: z, = 30m, z, = 1.5m, d = 30m, z,4 = 60m, A = 0.3m
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Figure 3.26: SSF of a finite-width screen as function of y,: results from [ull-UTD
(———) and the extended CCIR method (- —- — - —- ), and results from
the graphical approach discussed in Section 3.4.6 (-+---+--- ); SSF4 (higher
curves) and SSFy (lower curves).

Data: z, = 240m, z, = 1.5m, d = 30m, z, = 60m, A = 0.3m
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3.4.6 A graphical method for finite-width screen shielding

In the pseudo-UTD model six angles (¢, p3, p¥), three approximate transition functions
(Fi,3), three field-strength levels (|E‘5]_2|3|'), and SSF,4 and SSFuy need to be calculated.
The same is true for the extended CCIR method, although the number of intermediate
calculations is somewhat less. A further simplification in the calculation of S5 » would
be a graphical model, e.g. an approach using standardised equations and coefficients in
graphs, expressing the field strength as a function of d, z,, and the Cartesian coordinates
of P. Considering the number of degrees of freedom (d, zos, Zp, ¥p, 2p), it seems unlikely
that less than five coeflicients will need to be tabulated for the SSF calculation.

As a first step, the contributions from the vertical and horizontal edges are separated.
In this way, the two vertical edges are treated as an infinitely long, perfectly-conducting
strip of width 2d. The horizontal edge is subsequently treated as a perfectly conducting
half-plane of height z,;. Furthermore, it is assumed that § = r/2, such that the middle of
the shadow region is at y = 0. In case 8 # 7/2, it is assumed that the complete SSF curve
for § = 7/2 may be translated parallel to the y-axis along a distance Ay = z,/tan f as
visualised in Figure 3.6 and in [55].

A major problem in the numerical determination of the shielding properties of a finite-
width screen is finding an expression which can be used to accurately approximate the
y- and z-dependence of the site shielding factor. Because the field strength due to ver-
tical and horizontal edges is calculated separately, two functions that approximate these
dependencies are needed.

An expression that can be used to model the field strength behind the strip as function

of the y-coordinate of P was found to be

exp (ly/d|"") - 1)

—— (3.69)

E, (y, esy, evy, ) = es, + (ev, — esy) (
where es, is the field strength calculated at the centre of the shadow region behind the
screen (y = 0), ev, is the value of the field strength at the shadow boundary (y = =+d)
and cy is a coefficient. It can readily be deduced from equation (3.69) that for y = 0, E,
reduces to esy, i.e. the field strength calculated at the middle of the shadow region. At
the shadow boundaries, i.e. for y = +d, F, has the value ev,. The shape of the curve for
0 < |yp| < d is determined by the exponential factor with argument |y/d|*¥. It is reminded
that the SSF is only calculated in the shadow region behind the screen because in the lit
region the SSF will go to zero.

The procedure to calculate the field strength behind the screen due to the vertical edges
is as follows. Since the contribution from the horizontal edge is not yet taken into account,
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the z, coordinate of P is not of interest, because the strip is assumed to be infinitely long.
For this reason the field strength as function of z,, y, and d needs to be calculated. The
first parameter is the d/z, ratio, where d is the half-width of the screen. For a given d/z,

ratio, the parameter es, for use in the SSFy prediction can be calculated using

1

ESym =

where 7 = L arctan (d/z,) and s, = (a2 +d2)'"". This expression is obtained if the two
contributions from the edges y = +d are calculated using the expressions for |E‘5:| Fur-
thermore, the factor corresponding to the diffraction field proportional to the reflected field
has been neglected. The corresponding value of es, necessary for the determination of

SSF, is given by
1

2m\/2s, siny’

Notice that equations (3.70) and (3.71) express the amplitude decay of a wave with a

ESya =

(3.71)

cylindrical wavefront through the factor 1/,/s,.

The parameters evy,, evy,, and ¢y can be determined from Figures 3.27, 3.28 and 3.29,
respectively. Notice that different values of ev, should be used depending on the calculation
of SSFy4 or SS§F)y, while identical coefficients cy can be used. The curves in Figures 3.27
to 3.29 correspond fo different distances x, by the parameter logz,. It can be seen from
these figures that for large z,, ev,n, and evy, approach the asymptotic value of 0.5 at the
shadow boundary, corresponding to an equivalent SSF of 6 dB [45]. Coefficients es,, ev,
and cy have been derived for d/z, ratios of 0.1 to 3, while z, ranges from log(z,/)\) = 1
to log(z,/A) = 3 with steps of 0.1. If needed, the figures can be extrapolated to cover
smaller and larger d/z, ratios and larger distances z, because all coefficients show some
kind of asymptotic behaviour for small and large d/z,, and for large z,. At this point, the
field strength caused by diffraction at the vertical edges of the strip can be calculated as
function of y, by means of equation (3.69) for —d <y, < d.

The calculation from the contribution of the horizontal edge proceeds in a similar way.
Obviously, this field strength is dependent on the z-coordinate of the observation point P.
It was found that an expression closely resembling equation (3.69) can be used to calculate

the field strength at P caused by diffraction at the horizontal edge

exp (|2/2|%") — 1) , (3.72)

E.(z,es.,ev,,¢c) = es. + (ev. — es;) ( 1

where es, is the field strength at z = 0, ev, is the field strength at the shadow boundary
z = zu, and cz is a coefficient. As can easily be seen, equation (3.72) has the same
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Figure 3.27: Field strength ev,, at the shadow boundary y = +d used in the calculation of
SSFy; curves are given for 1 < log(z,/)\) < 3, with a 0.1 step.
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Figure 3.28: Field strength ev,,, at the shadow boundary y = +d used in the calculation
of SS§Fy; curves are given for 1 < log(z,/A) < 3, with a 0.1 step.
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behaviour as equation (3.69), and it approximates the field strength behind the half-plane
assumed.

For a given z,/z, ratio the field strength es, at z = 0 is calculated according to

1

4. /s;sine’

(3.73)

€5,

1
2

has half the amplitude of the expression for es,m given in equation (3.70). This is of course

where o = 7 arctan (z,/z,) and s, = (:cf, + sz)uz. It is seen that the expression for es,
due to the fact that the strip geometry has two edges, while the half-plane has only one.

Furthermore it was found that the parameter ev. is not dependent on z,/z,, but only
on z,. The value of ev, can be determined from Figure 3.30 as function of z,. As can be
seen from this figure the value of ev, is always very close to 0.5, and for simplicity some
intermediate value of ev, can be used for all z,, say ev, = 0.49. The last parameter that
is needed in the calculations is the coefficient cz. For a fixed z,/z, ratio, the coefficient
¢z can be found as function of z, and z, in Figure 3.31. These curves correspond to
different distances z,. The field strength due to the horizontal edge can be calculated with
equation (3.72) for 0 < z, < z,. Coefficients es,, ev, and cz have been derived for z,/z,
ratios of 0.1 to 3, while z, ranges from log(z,/A) = 1 to log(z,/A) = 3 with steps of 0.1.

The final step in this graphical method is the calculation of SSF4 and SSF)s based on
the field quantities F, and E.. This calculation shows much similarity with equations (3.37)
and (3.38); the expressions for SSF4 a are given by

SSFa = —10log [E2 + E?| [dB], (3.74)

SSFy = —20log [E, + E,| [dB]. (3.75)

Results of the use of the graphical method have been shown in Figures 3.25 and 3.26
as the dotted curves. As can be seen from these figures, the accuracy of the graphical
method is reasonable, but not as good as can be achieved when using the pseudo-UTD
method. Especially for small z, (large d/z,) the graphical method shows the tendency of
overestimating the SSF results.
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Figure 3.29: Coefficient cy of exponential in E, used in the calculation of SSF4; curves
are given for 1 < log(z,/\) < 3, with 2 0.1 step.
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Figure 3.30: Field strength ev, at the shadow boundary z, = z,, used in the determination
of E..
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Figure 3.31: Coefficient cz of exponential in E, used in the determination of S5 F4 p; curves
are given for 1 < log(z,/A) < 3, with a 0.1 step.
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Figure 3.32: Iso-SSF lines behind the finite-width screen: SSF4 (—————) and S5Fy
(————- ); results from graphical method are shown on the left, while

pseudo-UTD results are shown on the right.
Data: z, = Im, d = 43m, 2, = 68m, A = 0.3m
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3.4.7 Application of site shielding in a realistic situation

In most cases, high interference signal levels are caused by anomalous wave propagation
conditions such as ducting and elevated-layer reflection. For this reason it will be assumed
that the interference signal is due to a very distant source and therefore it can be considered
as a plane wave. For simplicity § = w/2 is taken, but this is not a prerequisite for the
analysis. The dimensions of the obstacle are chosen to be those of the Electrical Engineering
building at Eindhoven University of Technology, namely, a total width of 86m, hence
d = 43m and a height z,, = 68m. At a frequency of 1 GHz this means d/) = 143 and
zop/ A = 226. In addition, it is assumed that the three-dimensional building may be treated
as a two-dimensional one, which in fact leads to a worst-case approach. The graphical
method as well as the pseudo-UTD approach will be used to determine SSF4 and SSFy
as function of the location of the observation point behind the building.

The minimum and average SSF were calculated as function of z, and y, for z, = Im(=
3)), where 10m(= 33)) < z, < 300m(= 1000)) and —30m(= —100)) < y, < 30m(=
100A). The results are shown in Figure 3.32.

Since the plots for the minimum and average SSF are symmetrical with respect to the
line y = 0, the results from the graphical method are shown on the left (y, < 0), while the
pseudo-UTD results are shown on the night (y, > 0). The SSF, corresponds to the solid
line, while SSFys is drawn as a dashed line. From this figure it can be deduced that also
for very large z, still a substantial SSF can be obtained, and that the graphical method

can be used for SSF prediction behind a finite-width screen with reasonable accuracy.

3.4.8 An engineering model for shielding by a rectangular block

The types of obstacles considered thus far were two-dimensional in the sense that the
thickness is zero. In this section an engineering model for the calculation of the shielding
by a rectangular block will be proposed. It will be shown that this simplified approach
gives a lower limit for the screening by an rectangular block. In the analysis a double
finite-width screen model will be used, that is visualised in Figure 3.33. It is seen from
the figure that the derived finite-width screen model essentially consists of the front- and
back-side face of the rectangular block, as seen from the source position.

In the following we will calculate the SSF along an observation line parallel to the y-axis
with z > 0. Since each finite-width screen will cause diffracted rays in the shadow regions
behind and in between both screens, it is necessary to split the observation line behind the

block into several parts.
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o |
\ incident field "

Figure 3.33: Rectangular block type geometry (left), and double finite-width screen model.
The finite-width screens consist of the front- and back-faces of the rectangular
block as seen from the direction of propagation of the incident wave.
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Figure 3.34: Determination of the SSF in regions 1 (lit zone), 2 (shadow zone of screen 1)
and 3 (shadow zone of screen 2).

screen 1

Three parts on this line can be distinguished as shown in Figure 3.34:
1. The lit region. In this region, the SSF is close to 0 dB;

2. The shadow region of the first (nearest) plate. The SSF in this region is determined
by the diffraction taking place at the edges of the first screen;

3. The shadow region of the second plate. The SSF in this region is determined by to
the double-diffracted field.
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In the following it is assumed that the polarisation of the incident wave is parallel to the
zy-plane, but the other polarisation can be treated in exactly the same way.

The calculation of the SSF in regions 1 and 2 is fairly standard, and has been dealt
with in Section 3.2.2. For a spherical incident wave, equations (3.37) and (3.38) can not be
used for the calculation of the SSF. For a spherical incident wave the SSF is defined as in
equation (3.1). The fact that the incident field has a spherical wavefront causes that the

incident field without the obstacle is dependent on the position of the observation point

P. This is not the case for an incident plane wave. The field in region 3 is calculated in a
special way. The field incident upon the second screen is due to diffraction of the directly
incident field at the edges of the first screen.

Since the diffracted field arising at the second screen is proportional to the incident field
at the diffraction point at screen 2, the double-diffracted field can be found by assuming
that the incident field at screen 2 is a plane wave having an amplitude equal to that of
the diffracted field of screen 1, evaluated at screen 2. In fact the wavefront at screen 2 is
cylindrical, but the assumption of plane wave illumination enables us to use the pseudo-
UTD approach as discussed in the foregoing. In this way, the SSF in regions 1 and 2 is
determined by screen 1, while the SSF in region 3 is determined by screen 2.

The result using the simplified approach is shown in Figure 3.12 as the solid curve.
The result has been calculated using the minimum SSF for the contributions of screens
1 and 2 and may be compared with results calculated with the UTD model, also shown
in Figure 3.12. It is seen from this figure that the agreement between both approaches is
quite good. Obviously, the rapid variations of SSF in region 3 are absent due to the use of
the minimum SSF. The result shown suggests that the results of the present engineering
approach slightly overestimate the SSF for points behind the second screen, where the
double diffraction contribution is most important. Furthermore, it was found that this
engineering approach for the SSF calculation is much more efficient in terms of CPU time,
obviously at the expense of accuracy.

In case the second screen is also directly illuminated by the source, the engineering
model can be extended in a straightforward way to also include the diffracted field due to
the directly incident field at screen 2. This will not be elaborated any further.

If the second screen is also illuminated by the source, an alternative for the three-
dimensional engineering model would be the replacement of the rectangular block by
a finite-width screen having a width equal to the diagonal cross-section of the three-
dimensional obstacle. To illustrate this, the obstacle considered in Section 3.2.4 has
been used; however, the source has been moved from (—162.5m, 0, 12.5m) to (—162.5m,

—60m, 12.5m), such that also a side face is visible. The observation line still extends from
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—150m < y, < 150m, while z, = 250m, y, = 1.5m.

In Figure 3.35 a comparison between the results from the full-UTD method and the
method where the obstacle is replaced by a finite-width screen, is shown. As can be seen
from this figure, the result of the finite-width screen approach overestimates the SSF of the
rectangular block slightly. The computational effort of the method incorporating the finite-
width screen analysis is, however, only a fraction (= 10%) of the one for the calculations

with the rectangular block.

SSF_I [dB]

-150 -100 -50 0 50 100 150
y_pm]

Figure 3.35: SSF' behind the rectangular block as function of y,: total field calculated
using full-UTD method (—————) and the result of the simplified approach
(————— ) where the three-dimensional obstacle is replaced by a finite-width
screen corresponding to its diagonal cross-section.
Data: z, = 250m, z, = 1.5m, d X h X z,; = 20m x 86m x 68m, A = 0.3m

3.4.9 Conclusions

In Section 3.4, simplified methods for the calculation of the SSF behind a finite-width screen
were discussed. Emphasis is placed on a systematic simplification of the UTD models that
have been described in Section 3.2.

For the calculation of the SSF behind a finite-width screen two simplified models were
discussed. The first model is a pseudo-UTD model because the well-known transition
function of UTD has partly been eliminated, while the field near shadow boundaries remains

bounded. The graphical model for approximating the SSF of a finite-width screen is based



98 Ch. 4: Experimental verification

4.2 Large-bandwidth diffraction measurements at
54 GHz using both time-domain filtering and fre-

quency smoothing

This section' describes the high-frequency measurements of the fields diffracted at the
edges of an obstacle. The measurements are performed in an ordinary room by using the
time-domain filtering and frequency-smoothing options of a vector network analyser.

The field distribution on a circular arc is measured without the obstacle, and with the
obstacle present. The measurement approach in both cases is rather different. Without the
obstacle, a modified calibration method should be used together with frequency smooth-
ing, while in the presence of the obstacle, the same calibration set needs to be used in
conjunction with time-domain filtering. In the latter case, however, the use of frequency
smoothing is not allowed.

The results of the two measurements sessions can be condensed into one parametric curve
expressing the additional attenuation of the radio signal, which is caused by the presence
of the object on the propagation path. Practical and theoretical curves are compared for
several object dimensions, and very good agreement is obtained in all cases.

4.2.1 Introduction

The topic of field-strength prediction in an urban or mobile environment has received much
attention in recent years. Statistical models [60, 61, 62] and deterministic models [63, 64, 45|
have been developed to predict characteristic multipath phenomena such as fading and
time delay of the received signal. Obviously, these multipath phenomena degrade system
performance and limit the channel capacity. For this reason, telecommunications operators
can benefit from prediction models in that they can design future communication links with
appropriate margins in field-strength level at the users’ premises, either fixed or mobile.
The UTD field-strength prediction derived from the model developed in Section 3.2
uses the concept of site shielding. Actually, site shielding is an interference reduction
technique [3] that tries to raise the signal-to-interference ratio by introducing an additional

attenuation for the interfering wave, and keeping the desired (wanted) signal unaffected.

! Note: the major part of this section was already published: G.A.J. van Dooren, M.G.J.J. Klaassen and
M.H.A.J. Herben: Large-bandwidth diffraction measurements at 54 GHz using both time-domain filtering
and frequency smoothing, Proceedings of the 14th annual meeting and symposium A.M.T.A., Columbus,
Ohio, U.S.A., pp. (13-9)-(13-14), Antenna Measurement Techniques Association, 1992.
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A parameter which expresses the effectiveness of the shielding is the site shielding factor
(SSF), which has been defined in Section 3.1. As can be readily deduced, it expresses the
level of the received field relative to the free-space level.

In a practical situation, the field distribution without the obstacle is easily calculated
using the radio equation, while the received field with obstacles present needs to be cal-
culated using a more sophisticated method [45, 55]. Such a method should satisfy the
requirements that the interactions of the wave and obstacles are accurately modelled, that
the method is reasonably fast and that it has a vectorial character. A method satisfying
all of these requirements is geometrical optics (GO), supplemented with the Geometrical
Theory of Diffraction (GTD), or its uniform extension (UTD). An additional advantage of
the methods mentioned is that they are ray-based methods, which provide a clear insight
into the wave-propagation, reflection, and diffraction mechanisms. Furthermore, GO and
GTD/UTD facilitate the calculations of channel characteristics such as the Doppler-shift
and the power-delay profile. Together with the modelling of the urban environment by a
standardised type of obstacle such as the block-shaped obstacle introduced in Section 3.2.4,
the use of GTD/UTD is a powerful approach for both field-strength prediction and SSF
calculation.

Obviously, the theoretical approaches mentioned need some practical verification in the
form of measurements. These types of measurements can be performed either indoors or
outdoors. The latter type of measurements closely approximates the situation encountered
in practice, when installing a new telecommunications link. A major drawback of this type
of measurement, however, is that the measurement setup is very vulnerable to (man-made)
interference. Also external influences such as the weather can disturb the measurement
results, and can largely extend the time needed to complete the measurements. For these
reasons, one often carries out the measurements indoors, where they can be performed in
a more controlled way.

For indoor measurements, the obstacles used for the modelling of the urban environ-
ment cannot have the dimensions of the original obstacles, so scaling of the obstacles is
necessary to build a compact measurement setup, and hence high frequencies are to be
used. A drawback of laboratory measurements is that reflections can disturb the results,
and the high-frequency measurements are more complex than the low-frequency measure-
ments performed outdoors. A simple, but expensive, solution to the reflection problem is
to build an anechoic chamber. Another solution to suppress reflections is the use of data
processing techniques such as time gating and frequency smoothing, which are present on
most modern VNAs such as the Hewlett-Packard 8510C.

In this section, the measurement setup for the verification of the model for field-strength
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prediction in mobile communications and site shielding is described. Also the measurements
performed without and with the obstacle present, necessary to derive the SSF, will be dis-
cussed. Actually, both measurements are field-strength measurements, but it will be shown
that they are quite different from a measurement-technique point of view. Subsequently,
the SSF for some obstacles with a selected geometry will be derived from the measure-
ment results, and it is compared with results obtained from a theoretical model based on
GTD/UTD. Main objectives of the measurements are the verification of the theoretical
prediction model mentioned, and a general verification of the high-frequency methods GO
and UTD.

4.2.2 The measurement setup

As already mentioned, a major drawback of indoor measurements are the inherent reflec-
tions from walls, ceiling, floor and objects placed within the room. These reflections can
roughly be classified into two groups: near and distant reflections. The distant reflections
present in an anechoic chamber are suppressed by absorbing panels which are mounted
against the walls, on the ceiling and the floor. In an ‘echoic’ chamber, the distant reflec-
tions can be suppressed using data-processing techniques such as time gating, provided the
room is large enough, so that distant reflections can be distinguished in the time domain
from the wanted and obstacle-diffracted field contributions. Therefore, the near reflections
need to be dealt with in a separate way, depending on the actual geometry.

The measurements were performed in a standard room with dimensions 6m x 6m x 3m.
The choice of carrying out the measurements in this ‘echoic’ room has several implications
for the measurements. First of all, the measurements should be performed in the swept-
frequency mode of the VNA, covering a [requency span large enough to obtain the desired
time-domain resolution. Actually, this gives a lower limit for the bandwidth needed. Also,
a balanced frequency-point-to-frequency-span ratio is needed to eliminate aliasing in the
time interval of interest. Furthermore, an upper limit for the bandwidth used is set by
the frequency-dependent radiation properties of the transmitting (T) and receiving (R)
antennas. In the verification measurements it is desirable that a sufficiently large portion
of the obstacle is illuminated by the T-probe. Therefore the physical dimensions of the
R-probe must be as small as possible, in order to be able to measure the rapid spatial field
strength fluctuations behind the screen. This implies that the T- and R-probes should not
have a too directive pattern.

It was found that a rectangular waveguide carrying the TE;; mode is very well suited

to be used as transmitter and receiver probe. The directivity is reasonable, while also
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the radiation properties of the WR19 waveguide are quite good in the frequéncy range
of interest (40-60 GHz). A bandwidth of 8 GHz was found to be sufficient to perform
the measurements, and within this bandwidth nearly no dispersion is present. The used
bandwidth results in a time-domain pulse width of 0.24ns, and this value will also be used
in the theoretical simulations.

To guarantee the desired level of accuracy, the VNA is also used in stepped-frequency
mode. This results in a measurement time of nearly 17 hours for 501 observation points.
The measurement setup without and with the obstacle is shown Figures 4.1 and 4.2. In
these figures, the rotating table and the VNA are shown. An arm is mounted on the
table such that the obstacle, a finite-width screen with knife-edges, can be rotated. The
photographs were made from a location close to the R-probe. Rotating the table results in
a circular scan of the received field at the R location. The step size during this rotation is
0.1°, and usually scans are recorded from an angle of —25° to 25°, resulting in 2 maximum
of 501 observation points per scan. Each point in this scan takes approximately 2 minutes
of measurement time. In this period, the measurement data are acquired, processed and
transferred to the control computer. The computer also repositions the table and initialises
the VNA for the following measurement. The T- and R-probes are approximately 100cm
apart, and the distance from T to the obstacle is 50ecm. The finite-width screen used for
the verification measurements is made from aluminum with a thickness of 0.7mm, which
is small compared to the wavelength. Therefore, the rims of the obstacle can be regarded
as knife-edges.

The dynamic range of the measurement setup, which is mainly limited by the signal-to-
noise ratio at the input of the VNA, and its sensitivity, is approximately 45 dB. Note that
some of the near reflections are suppressed by use of absorbers, however, not all reflections
can be suppressed down to a sufficiently low level. Especially the wave reflected from the
absorber on which the screen is mounted will be difficult to suppress.

A block diagram of the measurement setup is shown in Figure 4.3, where also the network
analyser and control computer are shown. A schematic representation of the measurement
setup is depicted in Figure 4.4. In the theoretical model it is assumed that the observation
point moves along a circular arc of radius r parallel to the zy-plane, with the z-axis as the
axis of rotation. The position of the R-probe is therefore completely determined by r and
the azimuth angle ¢.
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Figure 4.2: Measurement setup with obstacle.
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Figure 4.3: Block diagram of the measurement setup.

Figure 4.4: Schematic geometry for field strength measurements.

4.2.3 Calibration method and measurements

A major problem in the calibration measurement of the VNA is the presence of the wave
reflected by the absorber material. The constructive and the destructive interference be-
tween the direct and the reflected wave results in a characteristic fading behaviour of the
received signal as a function of frequency. A seemingly straightforward but incorrect way
to eliminate this multipath propagation is to calibrate the VNA such that the presence of
the reflected wave is accounted for by the analyser software. This method introduces two
errors. First, an accurate compensation of the reflected wave is difficult to obtain, and after
calibration a large residual error of approximately £0.25 dB remains in the (calibrated)

frequency-domain signal. Second, a non-removable error is introduced in the measurement
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with the obstacle present, if the same calibration set is used. In this case, the wave reflected
by the absorber is obstructed, but its compensation in the calibration set is siill present!
The calibration sets for both the measurements without and with the obstacle should be
identical, however. This implies that the correct solution for eliminating the absorber re-
flected wave is that the calibration set should be related to the direct wave only. This is
accomplished by using a gated calibration, such that all reflections are suppressed. Using
this approach, the residual error after calibration is much smaller (+0.1 dB).

The calibration results obtained using the erroneous and the correct approach can be
found in Figures 4.5 and 4.6, respectively. The measurement procedure is now as follows.
The first measurement, performed without the obstacle, is an orientation measurement
to figure out which time-domain signal is the pulse of interest. Subsequently, a gated
calibration is performed, and the resulting calibration set is solely based upon the direct
wave. The gate settings for both the measurements with and without the obstacle are
determined from the calibration measurement without obstacle, and the UTD-simulations
with obstacle.

The direct and reflected waves are shown in Figure 4.7, where also the (theoretically)
expected diffracted wave is indicated. The gate settings should be such that the earliest
arriving wave in the time domain, i.e. the direct wave, as well as the latest arriving wave,
i.e. the diffracted wave with largest propagation path from T to R-probe as function of
table position, fall inside the selected time gate. The settings used in the measurements
are a gate start of —0.5ns and a gate stop of 1.5ns. The gate width used can be chosen
somewhat smaller, but this does not affect the measurement results.

A practical implication is that, for deriving the SSF, two measurements need to be
carried out. The first measurement in the SSF verification concerns the determination of
the free-space level as a function of table position. Actually, this amounts more or less to
the determination of the radiation pattern of the T-probe. The second measurement is for
the determination of the field-strength distribution behind the screen.

Using the previously determined calibration set, we find that the characteristic two-ray
frequency response is now explicitly present in the measurement without the obstacle, as
shown in Figure 4.8. Although theoretically possible, time gating to suppress the reflected
wave from the absorber was not used, because the gate settings should remain fixed in
both measurements. To remove the interference pattern, frequency smoothing can be
used, provided the smoothing factor is equal to n times (n = 1,2,3,...) the period of the
interference pattern. The result of this smoothing operation can be found in Figure 4.8,
where a smoothing factor of 17% has been used. In this figure, also the non-smoothed
signal is shown. The resulting T-probe pattern with and without smoothing can be found
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in Figure 4.9, as a function of the azimuth angle. The measurements in the presence of
the obstacle are performed next. In this case no frequency smoothing is employed, because
the destructive and constructive interference as a function of frequency and position are
of primary interest. In Figure 4.10 the field distribution along the circular arc using the
correct approach is shown. The finite-width screen used has a width d = 30cm and a height

of z, = 35em.

4.2.4 SSF determination

Using the results from both measurements described in the previous subsection, the SSF
along the circular arc can be derived. In Figure 4.11, the SSF obtained from Figures 4.9 and
4.10 is shown, together with a theoretical result for the same geometry. The theoretical
result is based on the UTD analysis, including corner-diffracted waves (Sec. 3.2.2). In
both measurements with the obstacles present, the R-probe was positioned 4¢m below the
horizontal edge of the obstacle.

It can be seen from Figure 4.11 that excellent agreement exists between the measured
and the theoretical results. Some discrepancies occur at the locations where sharp peaks
exist in the theoretical curve. Of course, the VNA has a finite dynamic range, and precisely
at the locations of the sharp peaks the signal-to-noise ratio at the receiver input reaches a
minimum value. This problem can be solved by using an amplifier at the T side, such that
a higher signal-to-noise ratio results at the R side, and a larger dynamic range is obtained.
In Figure 4.12, an additional comparison is given for a wider screen. In this case, the screen
width is d = 35¢m, and its height z, is also 35¢m. Again, excellent agreement between
theory and measurements is found.

From the complete series of measurements it was found that the main sources of error
are the positioning errors in the measurement setup, and the presence of a residual error
after gated calibration. It was found that the geometry could be determined with an
accuracy of £1mm, while the rotating table introduced an error in azimuth of £0.05°.
Using the simulations, it was observed that rather large discrepancies between theoretical
and measured curves also appear in case the dimensions of the obstacle are subject to error.
In general, an error in the width of the screen results in an amplification of this error at the
location of the R-probe. A wider or narrower shadow region behind the screen is found, and
the error in the width is multiplied by a proportionality constant > 1. This is especially
manifest around the shadow boundaries, where the SSF curve has a steep slope.
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4.2.5 Conclusions

The UTD model for the calculation of the SSF proves to be very accurate. The measured
and theoretical results compare extremely well, and major discrepancies can be explained
by the finite dynamic range of the measurement equipment, and the introduction of errors
in the determination of the dimensions and relative position of the obstacle. Furthermore, it
was argued that, in case of a calibration compensating for strong reflected fields, problems
may arise when in a subsequent measurement these compensated reflected fields for some
reason are absent. The calibration set used incorporates these reflected fields, and they will
automatically be present in the measured results. It was shown that the error introduced in
the measurements can be reduced by using another calibration procedure. In this procedure,
the characteristic two-ray frequency response is eliminated using frequency smoothing,
while the calibration set used in both measurements is based on the direct (LOS) wave
only.

4.3 Measurement of diffracted fields behind a thin

finite-width screen

The previous section considered the calibration procedure necessary to perform the EM
diffraction measurements in an ordinary room, and details concerning the measurement
setup were given. In this section? a comparison between the measured and the theoretically
predicted SSF of some finite-width screens is made. The SSF is measured along a circular
arc behind the screen at a frequency of 50 GHz. The measured SSF curves compare very well
with those predicted by a theoretical model which uses UTD and includes corner diffraction.
Good agreement is also found between the measured and the theoretically derived time-
domain results. The latter clearly demonstrate the ray behaviour of the diffracted fields,
in accordance with UTD.

4.3.1 Introduction

Site shielding is an interference reduction technique that tries to introduce an additional
propagation loss for an interfering radio signal, while the desired radio signal remains

(nearly) unaffected. The propagation loss may be caused by a natural or a man-made

2 Note: the major part of this section was already published: G.A.J. van Dooren, M.G.J.J. Klaassen and
M.H.A.J. Herben: Measurement of diffracted electromagnetic fields behind a thin finite-width screen, Elec.
Letters, vol. 28, no. 19, pp. 1845-1847, 1992.



4.3 Measurement of diffracted fields behind a thin finite-width screen 111

obstacle located on the propagation path, and the effectivity of the shielding is expressed
by the site shielding factor (SSF) that was defined in Section 3.1.

In this section theoretically derived results for the SSF of a finite-width screen are
compared with results from a measurement setup incorporating an HP8510C vector network
analyser (VNA) operating at 50 GHz. The SSF at various positions behind the screen is
theoretically predicted and measured, and these results are compared with each other. Also
a comparison is made between the predicted time-domain response of the multipath radio

channel and the measured response using the time-domain option of the VNA.

4.3.2 Theoretical model and geometry

The geometry used in the theoretical model and the measurements is shown in Figure 4.13.
A Cartesian (z,y,z) coordinate system is used to describe the positions of the T(ransmit)

and R(eceive) probes and the screen. The T-probe is located at the position (z7,0,z7) and

Figure 4.13: Geometry as used in the theoretical model and the measurement setup.

emits a spherical wave. The source used is a vertically polarised rectangular waveguide,
with its symmetry axis pointing into the z-direction. Waveguide WR19 has been used
for the T- and R-probes because of bandwidth considerations. The observation point R
is located on a circular arc parallel to the zy-plane with radius rg, and the z-axis is the
axis of rotation. Its height above the zy-plane is zgr. The azimuthal angle ¢g is allowed
to vary between —25° and 25°. The height of the horizontal edge above the zy-plane is
z.s, while the width of the screen is d. The diffraction model used in the simulations
was discussed in Section 3.2 and uses a total of six field contributions. The types of field
contributions included are: the direct field propagating from T to R, three edge-diffracted
field contributions generated at the edges of the screen, and two corner-diffracted fields

originating at the corners of the screen. The effect of the ground plane is neglected.
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4.3.3 Measurement setup

Accurate, coherent measurements are needed to verify the details of the diffraction models.
Since such measurements can hardly be carried out in the field with objects having realistic
dimensions, e.g. houses and buildings, scaled obstacles have been used in the laboratory
measurements.

The measurement setup has been built according to the geometry depicted in Fig-
ure 4.13. Using the VNA, the determination of the SSF along the circular arc amounts
to performing two transmission measurements between T' and R. The first measurement is
performed with the screen absent. This approximately yields the radiation pattern of the
T-probe, because the symmetry axis of the R-probe is always directed towards the z-axis.
In the second measurement the screen is present. Now the field distribution along the
circular arc is due to multipath propagation of the wave transmitted at T. Each diffracted
field arriving at the R-probe is spatially weighted by the probe’s receiving pattern. The
SSF as a function of azimuth angle wg is found by relating the results of the first and
second measurements, according to the definition of the SSF. Data processing techniques
such as time-domain filtering and frequency smoothing have been applied in a fundamental
way, together with a novel calibration scheme of the VNA. This calibration scheme was
described in Section 4.2.

In the results to be presented the T-probe is located at zo0 = 18.2¢m, yr = 0, 21 =
31.6cm and rg is 113.6e¢m. The screen has dimensions d = 30cm and z,, = 50cm; hence
the screen is described by z = 68.6cm, —15em < y < 15¢m, 0 < 2 < 50cm. The frequency
used is 50 GHz. The screen used is thin (< A/8), so that the edges can be treated as
knife-edges. The measurement corresponds to the reduction of a signal from a terrestrial

radio station which interferes with a satellite signal at a VSAT.

4.3.4 Comparison of measured and theoretical results

In Figure 4.14 two sets of SSF curves can be found, both showing measured and theoretical
results. Animportant parameter in the measurementsis the height difference Az = z,,—zg.
For the upper curves Az = Tem, while for the lower curves Az = 2¢m. Comparison of
the theoretical and measured curves shows that excellent agreement exists in both cases,
despite a small pointing error for the experiment with Az = Tem. Experiments with other
values of the screen width d and screen height z, resulted in similar curves as shown
in Figure 4.14. In Table 4.1, the average SSF, S5F,,., around g = 0° and the ripple
ASSF are summarised for various values of d and Az. It has been found that for small
Az (Az < 15 A) the contribution from the horizontal edge determines the average level of
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Figure 4.14: SSF of a finite-width screen: measured (—————) and calculated
(————-— ) for Az = 2cm (lower curves) and Az = Tem (upper curves).

Data: d = 30cm, z,, = 50cm, A = 6mm

Table 4.1: SSFuye and ripple ASSF in the centre of the shadow region behind the screen

(pr = 0°).
[Az[em]| d[cm] | S5F,, [dB]| ASSF [dB]
2 30 10.7 +1.0
4 25,30,35 15.7 +4.0,4+1.3,+£3.7
T 30 19.7 +1.5

the SSF, while the contributions from the vertical edges cause a superimposed fluctuation.
Furthermore, the corner-diffraction contributions are explicitly needed to obtain a good fit
of the total field across the shadow boundary at g = & 14° [43]. Increasing the screen
width d merely resulis in a global widening of the pattern, thereby leaving SSF,,. in the
centre of the shadow region, ¢r = 0°, nearly unaffected.

Also the arrival of the individual field contributions at R has been measured using the
time-domain option of the VNA for ¢ = 3°. By use of a sweep bandwidth of 18 GHz, suf-
ficient time-domain resolution is available to distinguish the individual wave contributions.
Attention is paid to the differences in individual path lengths of the field contributions,
and to their amplitudes determined by the diffraction process at the edges. In this way

the measured and theoretically expected time responses of the radio channel from T to
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R can be compared. The results are shown in Figure 4.15, in which the horizontal line

indicates the lower limit of the dynamic range of the VNA. Responses below this level are
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Figure 4.15: Measured (—————) and calculated (— — — — — e) time response. The line-
dotted horizontal line indicates the lower level of the dynamic range.
Data: d = 30cm, z, = 50cm, pp = 3°, A = 6mm

attributed to time-domain filtering and data processing. From Figure 4.15 it is seen that
again good agreement is found in the position of the pulses as well as in their individual
amplitudes. Only three pulses are measured because the direct ray from T to R is blocked.
In the time domain the two corner-diffraction contributions cannot be distinguished from
their associated edge-diffraction contributions.

4.3.5 Conclusions

The measured and theoretical results for the SSF of a thin finite-width screen were com-
pared. It was found that for small values of Az the SST is mainly determined by the field
contribution from the horizontal edge, which has the smallest diffraction angle. The fluc-
tuations superimposed on the constant level due to diffraction at the horizontal edge are
caused by constructive and destructive interference of the field contributions from vertical
edges and corners. The theoretical model shows that corner-diffraction terms are explic-
itly needed to obtain a total field that is continuous across the shadow boundary. The
use of UTD for edge diffraction and the inclusion of corner diffraction yields theoretical

results which agree very well with the measured results. Also the time-domain response
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of the radio channel has been calculated and measured using a Fourier transformation of
the measured frequency-domain data. Also in this application, the UTD diffraction model
correctly predicts the inter-arrival times and amplitudes of the individual pulses. Further-
more, the measured pulses clearly demonstrate the ray behaviour of the diffracted fields,
in accordance with UTD.

So, from the presented results it can be concluded that the prediction model, which
includes edge and corner diffraction, is a good description of the diffraction processes at the
edges and corners of the finite-width screen. The model can therefore be used for accurate
field-strength prediction to enable an optimal placement of VSATSs in urban areas, and for
the prediction of the coverage of land-mobile satellite systems thereby taking into account

screening effects.

4.4 Polarisation-dependent site shielding factor of a

rectangular block

The obstacle considered in the previous section is essentially two-dimensional, and it was
found from additional measurements with a horizontal polarisation that the received field
does not exhibit a considerable polarisation dependence [43]. In this section® a comparison
is made between the measured and theoretically predicted site shielding factor (SSF) of
an obstacle resembling a building. The SSF is measured along a circular arc behind the
obstacle at a frequency of 50 GHz. The theoretical model for the analysis uses UTD
including corner, double, and edge-corner diffraction. The agreement between the measured
and theoretically derived results is excellent. The strong polarisation dependence of the
SSF appears to be due to slope diffraction.

4.4.1 Introduction

The tactical placement of obstacles to obstruct interfering radio waves is one method to re-
duce interference in radio communication systems [3]. The shielding effectiveness is called

the site shielding factor and was defined in equation (3.2). A rearrangement of equa-

3 Note: the major part of this section was already published: G.A.J. van Dooren and M.H.A.J. Herben:
Polarisation-dependent site shielding factor of a block-shaped obstacle, Elec. Letters, vol. 29, no. 1, pp. 15-
16, 1993.
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tion (3.2) yields equation (3.4), repeated here for convenience

SSF = 20log [21} + 20log [I—'} [dB], (4.1)
D_ I

where D and I are the levels of the desired (wanted) and the interference (unwanted) signal,
respectively. The subscripts refer to the cases that the obstacle is present (+) or absent
2

If the placement of the obstacle has no effect on the desired signal level, then the first
term in the right-hand side of equation (4.1) vanishes and this equation reduces to the
conventional definition of the SSF as introduced in equation (3.1).

In this section the theoretically derived results for the shielding of an obstacle resembling
a building are compared with results from a measurement setup incorporating an HP8510C
vector network analyser (VNA) operating at 50 GHz. In the Section 4.3 resulis have been
presented for the SSF of a finite-width screen, which appear to be almost independent of
polarisation [43]. In this section it will be demonstrated that a rectangular block gives
rise to a polarisation-dependent SSF. The measured SSF curves agree very well with those
predicted by the UTD model for both orthogonal polarisations considered.

4.4.2 Theoretical model, geometry and measurement setup

The geometry used in the theoretical model and in the measurement is shown in Fig-
ure 4.16. The positions of the T(ransmit) and R(eceive) probes are given in a Cartesian

Figure 4.16: Geometry as used in the theoretical model and the measurement setup.

(z,y,2) coordinate system. The polarisation of the T-probe with position (z7,0,27) is
either horizontal (y) or vertical (z). Its symmetry axis points into the z-direction. The

R-probe moves along a circular arc parallel to the zy-plane with radius rg, and the z-axis
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is the axis of rotation. The height of the R-probe above the zy-plane is zg. The obstacle
is a rectangular block with edges parallel to the axes of the Cartesian coordinate system.
Its height is z., its width is d, and its thickness is h. Furthermore, the rectangular block
is assumed to be perfectly conducting. The SSF is measured and calculated as a function
of the azimuth angle g with |pg| < 25°.

In the theoretical analyses (Sec. 3.2.4), the following types of field contributions are
considered: the direct field propagating from T to R, edge-diffracted fields, corner-diffracted
fields, and field contributions due to edge-edge and edge-corner interactions. The effect of
the ground plane (zy-plane) is neglected.

The reader is referred to Section 4.2 for a detailed discussion of the measurement pro-
cedure for SSF-measurements in an ‘echoic’ room, and for a description of the novel VNA
calibration method used.

4.4.3 Comparison of measured and theoretical results

In the results to be presented, the rectangular block has dimensions h = 8.7¢cm, d = 30.0cm,
and z,, = 50.0cm. Therefore the rectangular block is described by 68.8cm < z < 77.5¢m,
—15em < y < 15¢m, and 0 < z < 50cm. The T-probe is located at zy = 25.2¢m, yr = 0,
zr = 46.0cm, while rp = 114.8cm and zp = 40.0cm. The T- and R-probes are rectangular
WR-19 waveguides operating at a (centre) frequency of 50 GHz. Figure 4.17 shows the
theoretical and measured results for the SSF in the two cases of horizontal (H) and vertical
(V) polarisation. The H-curves are raised by 15 dB so that they are separated from the
V-curves. The figure shows excellent agreement between the measured and theoretical SSF
curves.

The theoretical model also includes slope diffraction to account for the double-diffracted
field contribution in case the polarisation is parallel to the obstacle face joining the two
edges. A total of 16 diffraction contributions is taken into account.

The fluctuations of the SSF curve in the shadow region behind the screen for vertical
polarisation are smaller than for horizontal polarisation. Inside the shadow region the
reverse is true for the average value of the SSF. This is explained by the fact that in the
case of vertical polarisation the average SSF is mainly determined by the strong double-
diffraction contribution from the top face, while the fluctuations are due to constructive
and destructive interference of two weak slope-diffraction contributions from the vertical
edges of the side faces. This is in contrast with the result for horizontal polarisation,
where the large fluctuations are due to interference between two strong double-diffraction
contributions from the edges of the side faces, and the small slope-diffraction contribution
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Figure 4.17: SSF of a rectangular block: measured (—————) and calculated
(————— ) for vertical (V) and horizontal (H) polarisation. The H-curves

have been raised by 15 dB for legibility.
Data: h = 8.Tem, d = 30em, z, = 50em, A = 6mm

from the top face results in a large average SSF.

To test this polarisation dependence of the SSF curve, measurements with another type
of obstacle have been performed. This obstacle consists of a pair of finite-width screens
(Sec. 3.4.8), coinciding in position with the front and back face of the rectangular block. The
results of these measurements are shown in Figure 4.18. Again, excellent agreement between
measured and theoretical results is established. The SSF curves clearly demonstrate that
the polarisation dependency indeed originates from slope diffraction at the edges of the
side and top faces. For the other obstacle the polarisation dependency of the SSF curves

is much weaker than that of the SSF curves of the rectangular block.

4.4.4 Measurement of time response

The arrival of the individual field contributions at the R-probe has also been measured
in the time domain. By use of a sweep bandwidth of 18 GHz, the individual rays can be
distinguished (Sec. 4.3). Figure 4.19 shows the results of the time-domain measurements at
wr = 3° for both horizontal and vertical polarisations. The earliest pulse corresponds to the
wave propagating along the top face of the obstacle. Now, the polarisation dependence of
the diffraction process can also be inferred from the amplitudes of these pulses. It appears
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Figure 4.18: SSF of a pair of parallel, finite-width screens: measured (————) and
calculated (— — — — — ) for vertical (V) and horizontal (H) polarisation. The

H-curves have been raised by 15 dB for legibility.
Data: d = 30cm, z,; = 50cm, screen separation of 8.Tcm, A = 6mm
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Figure 4.19: Measured time-domain results for a rectangular block for vertical (——— )
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that the slope-diffraction mechanism for horizontal polarisation introduces an additional
loss of approximately 15 dB. Note that besides the amplitudes of the individual pulses,
also the inter-arrival times are correctly predicted by the theoretical model. It was found
that the relatively strong pulse at { = 0.5ns goes with a ray that traverses a side face three
times, resulting in a quadruple-diffracted field contribution. The latter mechanism has not

been implemented in the theoretical model.

4.4.5 Conclusions

Measured and theoretical SSF curves for a rectangular block show excellent agreement for
both vertical and horizontal polarisations. The polarisation dependence of the measured
and theoretical results has been clarified by comparing these results with the SSF curves
for an obstacle consisting of two finite-width screens, and by an analysis of the time-
domain measurements. It was found that slope diffraction is responsible for the polarisation
dependency. From the results presented it is concluded that the UTD prediction model for
building diffraction, including higher-order edge-edge and edge-corner interactions, provides
an accurate and reliable description of the diffraction processes at environmental buildings.
The model can therefore be used for the prediction of the shielding effectiveness of buildings,
and for the prediction of the performance of land-mobile satellite systems with (strong)
screening effects.

From the results presented in Section 4.3 and in this section, it is concluded that mod-
elling of environmental objects by (any combination of) obstacles resembling a thin finite-
width screen, a knife edge, or a pair of parallel screens, is not realistic. Instead, the obstacles
should be modelled by the rectangular block. The latter is a particular form of the general
block-shaped obstacle (Sec. 3.2.4), which numerically can also take other physical shapes

such as rooftops and pyramids.

4.5 Field-strength prediction behind lossy dielectric
obstacles using the UTD

Up to now the obstacles considered were perfectly conducting. In this section® a comparison

is made between the measured and theoretically predicted field strength in the shadow

4 Note: the major part of this section was already published: G.A.J. van Dooren and M.H.A.J. Herben:
Field strength prediction behind lossy dielectric obstacles using the UTD , Elec. Letters, vol. 29, no. 11,
pp. 1016-1017, 1993.
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region of a lossy dielectric obstacle. The field strength is measured along a circular arc
behind the obstacle at a frequency of 50 GHz. The theoretical model uses UTD including
corner, double, and edge-corner diffraction, and is heuristically extended to include effects
of non-perfect conductivity. The agreement between the measured and the theoretically
derived results is excellent for both orthogonal polarisations considered. The field behind
a lossy rectangular block proves to be less polarisation dependent than the field behind a
perfectly-conducting obstacle.

4.5.1 Introduction

Field-strength prediction on the basis of deterministic models has gained interest during the
last decade [65]. Special attention has been paid to the use of the UTD for wave-propagation
modelling, because this ray method offers a clear insight into the edge-diffraction process.
However, few tractable theories dealing with diffraction at non perfectly-conducting wedges
are available. An extension of UTD to account for non-perfect conductivity of lossy wedges,
has been proposed (Sec. 2.6) together with a slope-diffraction coefficient to be used if the
incident field amplitude is zero. In Section 4.4 it has been demonstrated that this slope
diffraction term causes a strong polarisation dependence of the field in the shadow region
of a perfectly-conducting obstacle.

In this section the formulation of the heuristic extension of UTD is examined, and
results from the theoretical model are compared to measured results. The measurements

were carried out with a vector network analyser (VNA) at a frequency of 50 GHz.

4.5.2 Theoretical model and geometry

The geometry used to describe slope diffraction is depicted Figure 4.20a. Notice that the
coordinates ' and ¢ are defined similarly for both wedges. From this figure it is clear
that the wave incident upon the second edge is at grazing incidence, and therefore !, = 0.
For a vertical (z) polarisation of the incident field, UTD predicts a diffracted field from
the first edge with a zero amplitude. In this case slope diffraction is the following term to
be included in the analysis. For a horizontal (y) polarisation the diffracted field from the
second edge is found by consecutively applying the diffraction formulas to the second edge
with the non-zero diffracted field from the first edge acting as incident field.
In general, the wedge-diffracted field is proportional to a diffraction coefficient D given
by
D < Dy + Dy + RoDs + RnDy, (4.2)

where Dy (I =1,...,4) are terms of the form D = cot(n/3+a/3)- F(g(a)) (eq. (2.48)), and
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(b)

Figure 4.20: Slope-diffraction geometry (a), and geometry as used for the theoretical model
and the measurement setup (b).

the transition function F'is given by equation (2.57). For perfectly-conducting materials,
the reflection coefficients Ko v take the values 1, depending upon the polarisation of
the incident wave. For grazing incidence Dy = D; and D, = Dy and for soft (vertical)
polarisation Ron = —1, which explains why the first-order diffracted field has a zero
amplitude. For hard (horizontal) polarisation, however, Ro v = 1 and a non-zero diffracted
field amplitude from the second edge is found.

In the heuristic extension of UTD, R v are replaced by Fresnel’s reflection coefficients
(eq. (2.84) and (2.85)). This implies that, for grazing incident waves, no diffracted fields
from wedge 2 are present because then the Fresnel reflection coefficients have a value of
-1 for both orthogonal polarisations. Hence slope diffraction fields should be taken into
account.

The formulation of the amplitude of this slope-diffracted field is given by (eq. (2.68))

o oF
dgl, dn

Esf oPe

A-C, (4.3)

where D is the diffraction coefficient of the second wedge in Figure 4.20, E* is the field

diffracted from edge 1 and incident upon wedge 2, 8/9n is the directional derivative with
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respect to the normal vector i, A is the spreading factor and C' corresponds to additional
amplitude and phase constants.

Both derivatives in equation (4.3) contain Fresnel reflection coefficients as an implicit
function of ¢} and ¢y, respectively. It can be shown that a straightforward numerical
evaluation of equation (4.3) provides a continuous total field across the diffraction-shadow
boundary (DSB) indicated in Figure 4.20. Whether this heuristically extended UTD and
its associated slope-diffraction term are accurate is not demonstrated in [31], but will be
investigated in the following.

The geometry considered in both the theoretical model and the measurements is shown in
Figure 4.20b. The positions of the T(ransmit) and R(eceive) probes are given in a Cartesian
(z,y, z) coordinate system. The polarisation of the T-probe, at position (27,0,z7) is either
horizontal (y) or vertical (z), and its symmetry axis points into the z-direction. The R-
probe moves along a circular arc parallel to the zy-plane with radius rg, and the z-axis is
the axis of rotation. Its symmetry axis is always directed towards the z-axis. The obstacle
is a rectangular block with edges parallel to the axes of the Cartesian coordinate system.
Its height is z,, its width is d, and its thickness is h. The complex relative permittivity of
the rectangular block is given by £,. The SSF is measured and calculated as a function of
the azimuth angle g with |pg| < 25°.

The diffraction model developed uses the extended UTD to model the diffraction of the
incident spherical wave at the rectangular block. In the theoretical analyses, the following
types of field contributions are considered: the direct field propagating from T to R, edge-
diffracted fields, corner-diffracted fields, and field contributions due to edge-edge and edge-

corner interactions. The effect of the ground plane is neglected.

4.5.3 Determination of complex permittivity

The specification of the shielding material is not very precise at the frequency used
(50 GHz). For this reason the complex relative permittivity of the material was deter-
mined using the waveguide insertion method [66]. First, the VNA is calibrated in such a
way that a reference plane in-between two waveguide flanges is obtained. Then a short
waveguide completely filled with a sample of the material under test is inserted between
the flanges. The amplitude and phase of the wave transmitted through the sample are
then measured. By taking into account internal reflections, an equation for the complex
relative permittivity , can be numerically solved. Following this procedure €, at 50 GHz
was found to be 1.37 — 0.99:.
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4.5.4 Comparison of measured and theoretical results

In the results to be presented, the rectangular block has dimensions A = 7.7em, d = 30.0cm,
and z,, = 50.0cm. Therefore it is described by 68.8cm < z < 76.5¢m, —15em < y < 15¢m,
and 0 < z < 50em. The T-probe is located at z7 = 25.2em, yr = 0, zr = 46.0em, while
rr = 114.8¢m and zp = 40.0cm. The T- and R-probes are rectangular WR-19 waveguides
operating at a (centre) frequency of 50 GHz.

The upper curves from Figure 4.21 show the measured and predicted field strength

along the circular arc, for vertical polarisation. The curves for horizontal polarisation have

g
H
2
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B T T R R s 10 15 2 25
AZIMUTH [degrees]
Figure 4.21: Field strength behind a rectangular block: measured (————) and cal-
culated (- —-— - —- ) for vertical (V) and horizontal (H) polarisation. The

H-curves have been lowered by 20 dB for legibility.
Data: h = 7.7em, d = 30em, z, = 50em, A = 6mm

been lowered by 20 dB for legibility. As can be seen from Figure 4.21, there is excellent
agreement between the measured and predicted results, and there is nearly no polarisation
dependence of the field behind the obstacle. It seems as if the width of the obstacle used in
the measurements is smaller than that used in the theoretical analysis. This is explained
by the fact that, at the edge tip, the material is quite thin, and the EM wave is partly
propagating through this thin region. That there are still (small) differences between the
measured curves for vertical and horizontal polarisation can be readily explained using
the formulation of the UTD. Since the diffracted field from the second edge does not

exhibit any polarisation dependence due to the grazing incidence (resulting in identical
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hard and soft diffraction coefficients), the differences between the results for both orthogonal
polarisations are caused by the polarisation dependence of the diffraction at the first edge.
This is confirmed by the fact that the Fresnel reflection coefficients used in the diffraction
coefficient for the first edge are slightly different for vertical and horizontal polarisation.
Therefore also the results for the field behind the obstacle differ for vertical and horizontal
polarisation. The polarisation dependence in the measured results for the field strength
behind the obstacle would be larger if the polarisation dependence in the Fresnel reflection

coefficients used in the first edge geometry would be larger.

4.5.5 Conclusions

A comparison between the predicted and measured field strength behind a dielectric ob-
stacle is made. Excellent agreement between theory and measurements is found for both
orthogonal polarisations considered. In contrast with the field strength behind a perfectly
conducting rectangular block (Sec. 4.4), nearly no polarisation dependence of the field
strength behind the dielectric one is found. Due to transmittivity of the dielectric at the
edge tips, the width of the obstacle in the measurements seems to be smaller than that
used in the theoretical analysis. Despite the heuristic nature of the UTD formulation, and
the assumption that the wedge may not be transparent [31] it is demonstrated that the
extended UTD model is accurate and that it is useful for field-strength prediction with an
application to the design and planning of land mobile satellite systems [67).

4.6 Comparison between measurements and UTD
simulations of EM-wave scattering by circular

cylinders

In this section® the scattering of obliquely incident electromagnetic waves by a perfectly
conducting circular cylinder is analysed. The applicability of a simulation model based
on the Uniform Theory of Diffraction (UTD) is examined by comparisons between results
obtained from the UTD and those from an exact solution. It appears that the UTD model
is accurate for cylinders with radii a > 0.3\, and that the far-field scattered power from

cylinders with smaller radii is negligibly small.

5 Note: the major part of this section was already published: H.J.F.G. Govaerts, G.A.J. van Dooren and
M.H.A.J. Herben: Comparison between measurements and UTD simulations of EM-wave scattering by
circular cylinders, to appear, 1993.
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Results from UTD simulations are also compared with results from experiments car-
ried out at 50 GHz, as a function of cylinder radius and wave polarisation. In all cases
considered, good agreement is obtained.

Experiments with multiple parallel cylinders indicate that the single-cylinder model can
also be used to predict the field strength in situations involving a row of cylinders, by

simply using superposition.

4.6.1 Introduction

In this thesis, the UTD is used in several models for field-strength prediction. The first
model can be used to predict the field strength within a shielded reflector antenna system,
thereby taking into account the scattering effects caused by the presence of the reflector
rim(s) and the shielding obstacle on the propagation path of the EM waves involved. This
application is studied in Sections 5.5 and 5.6. Its main use is the analysis of the shielding of
a satellite earth-station antenna site in order to reduce the interference caused by unwanted
signals from terrestrial transmitters. The second application concerns field-strength predic-
tion in an urban environment consisting of multiple obstacles. This application is studied
in Chapter 6.

Until now, all the obstacles used were modelled by (a combination of) three-dimensional
(3-D) block-shaped objects having eight vertices that may coincide [49]. It can easily be
coupled with digital databases that contain information of built-up areas. Although both
versions are fairly complete prediction tools, they both lack the ability to accurately cal-
culate the EM-wave scattering from cylindrical structures, the presence of which is un-
avoidable in man-made environments. A number of examples can be thought of, such as
the analysis of scattering by feed-support struts within antenna systems, or by lamp-posts,
chimneys, etc. in urban environments.

To complete the field-strength prediction tool, a 3-D algorithm based on the UTD, ac-
counting for the computation of EM-wave scattering by a straight circular cylinder of radius
a, was developed. Since the UTD is restricted in its application to obstacles having dimen-
sions large in terms of the wavelength A, it is investigated in this section to what cylinder
radius the algorithm can be used, and whether there is a need to apply an alternative
method for thin cylinders. For that purpose, a second model based on an exact solution to
the boundary value problem was derived [44], which is used as a reference for the analysis
of the applicability and the accuracy of the UTD model, by comparing numerical results
from both models. This exact solution is also presented.

Furthermore, a number of experiments were carried out in which the EM field behind a
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circular cylinder was measured, the results of which will be presented subsequently. With
the measured results the accuracy of the UTD model is verified. For this purpose, six
configurations involving five different cylinders are employed.

Finally, a configuration with an array of cylinders is considered, in order to get an
impression of the importance of multiple-reflection and multiple-diffraction contributions
to the total scattered field. Here, the emphasis is placed on practical situations, such as a
number of equidistantly spaced lamp-posts within a micro-cellular environment. Measured
results are compared with results from UTD simulations in which multiple-reflection and
multiple-diffraction phenomena are excluded.

Note that the cylinder is assumed to be perfectly conducting, and scattering effects at
its ends are excluded. The latter assumption was consciously made, because there are a
large number of conceivable cylinder-top shapes, that cannot be reduced to one general

model.

4.6.2 Scattering by a circular cylinder

The objective is to create an accurate model accounting for EM-wave scattering by a cir-
cular cylinder illuminated by either a plane or a spherical wave. The cylinder is arbitrarily
orientated with respect to a source and an observation point. The direct incident field at
the observation point P may be subject to blockage and is calculated according to Geo-
metrical Optics (GO). The UTD is used for the calculation of the reflection and diffraction
contributions to the total field in P (Sec. 2.8). In this theory, it is suggested that diffraction
by a cylinder is described by the attachment of a ray to the surface at a certain point Q,,
thereupon propagating along the surface for a while, and subsequently being launched from
a point @ in a direction tangential to the surface, as was depicted in Figure 3.7a.

The UTD solution to EM-wave scattering by a smooth convex surface has been described
in Section 2.8. The main problems in developing the model are caused by the geometry
involving obliquely incident rays. For computational convenience, the model was based
on a fixed geometry in a Cartesian (z,y, z) coordinate system, in which the cylinder axis
of symmetry coincides with the y-axis, and in which the incident ray under consideration
propagates along a vector &} that lies in the zy-plane. The fixed geometry is shown in
Figure 3.7 for the special case of normal plane-wave incidence, and the reflected ray and a
diffracted ray are also depicted. If the initial geometry of the problem under consideration
differs from the fixed geometry, translations and rotations of the whole configuration need
to be carried out in order to obtain the geometry desired before the UTD calculations

are started. Note that in case of spherical-wave incidence, 4 depends on the position of
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either the reflection point @, or the diffraction point @,, whereas in case of plane-wave
illumination its direction is fixed. This implies that for spherical-wave illumination the
translations and rotations are to be carried out separately for each contributing ray.

A problem in the analysis is the number of diffraction contributions that need to be taken
into account to obfain accurate results. In the simple case of plane-wave illumination
an infinite number of diffraction contributions exist. In the given geometry, with the
cylinder stretched in y-direction and i} = #, the first diffraction contribution attaches at
z = —a and subsequently propagates along a surface path of length ¢, < 2ma before it
is launched. Here, i; depends on the position of the observation point P. The second
diffraction contribution attaches at z = a and propagates along a surface path with length
ty < 2ma. This contribution is also shown in Figure 3.7. The third contribution also
attaches at z = —a, but it propagates along the entire circumference of the cylinder plus a
surface path with length t; before being launched. In this manner, an infinite number of

diffraction contributions can be found, with corresponding surface path lengths

t _{ ti+ (I—Vra ,if Lis odd,

= A (4.4)
to+ (l—2)ra ,if lis even,

where | € {1,2,...}. Note that with oblique incidence also an infinite number of diffraction
contributions exist, provided that the cylinder is infinitely long. In that case, the ray paths
are part of a helix.

A ray attaching at @, thus gradually sheds its energy while propagating along the surface
path. As a result, the amount of energy carried by a launched contribution decreases as
the length of the corresponding completed surface path increases. It is therefore obvious
that the third diffraction contribution is of less influence than the first, since t3 > {1,
and so on. This implies that there actually is a finite number of non-negligible diffraction
contributions, which will be determined in the following section.

The total electric field E! at the observation point P consists of the incident field E*,
the reflected field E7, and the diffracted fields E?. Obviously these fields are subject to
blockage, as explained in previous sections. In Section 3.2.3, expressions for the total field
in the lit and the shadow region have been given in equations (3.22) and (3.23), respectively.

The exact solution to EM-wave scattering by a circular cylinder is found by solving the
boundary-value problem. It has been derived and presented before, although the solution
is mostly given in cylindrical coordinates and only presented partially (# = 7/2). The
complete analytical solution in a Cartesian (z,y,z) coordinate system was derived assuming
oblique plane-wave incidence [44], the ultimate results of which are presented here. The
angle of incidence 3 is measured in the zy-plane, and § = 90° for normal incidence. Two

orthogonal linear polarisation states are considered.
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In case of parallel polarisation, the incident electric field Eiis specified by

Ei —cos B
Bz,y,2)=| B | =E| sing |eiesnbivens) (4.5)
E 0

in which k is the wavenumber (k = 2x/A). By the presence of the cylinder, a scattered
field E* is generated according to

0sB 5 pn [2eme H®)(u) + j cos pHP (u)]
n=-—0od

E*=F, —sin 3 _§ PnH,(f](u) e—jkycoaﬁ, (46]

= —n cos H(z) 2 H(Z}’
cosﬁﬂzz_jmp,. 22 H u) + jsin o H® (u)

in which
z
@ = arclan (;) ; (4.7)
u = kvVa? + 22sin 8 = kpsin 3, (4.8)
and

= Jn(kasin B) oo
" Plkasing)
Here, J, is the Bessel function of the first kind of order n, H(® is the Hankel function of

the second kind of order n, and the prime denotes a partial derivative with respect to p.

(4.9)

In case of perpendicular polarisation, the cylinder is illuminated by

0
Bi=| o |e-iHesinsiveos) (4.10)
Eq

which yields the following scattered field £°

5 ga |22 HO(u) + jsin oHE (u)]

n=—00
E* = E, 0 grikvoosp, (4.11)
£ ga [F2822HO (u) - j cos pHP ()]
with I (kasi
Gn=3"" Meiw’ (4.12)

H® (kasin B)

In the implementation of the numerical model the infinite sum was truncated with |n|

1A

N = 10, including only those terms that have a relative contribution larger than 6. =
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107%, which is the maximum error allowed, specified by the user. If the infinite series in
equations (4.6) and (4.11) are truncated to a finite sum of the first 2NV + 1 terms, the
following term has a relative magnitude smaller than é,.. In the following section the
results from this ‘exact’ solution are compared with the UTD results in order to validate

our UTD model with respect to its accuracy.

4.6.3 Numerical results

In this section a test case involving a cylinder of radius @ = 10\ and infinite extent is
analysed. The cylinder axis coincides with the y-axis. A plane wave of unit amplitude
(Eo = 1), propagating parallel to the zy-plane, is incident upon the cylinder at an angle
[ = 45°. The observation points P are located on a semi-circle of radius » = 10000\ in the
space z > 0, with P = (10000 cos ¢,0,10000Asin ). The scattered field is calculated as
a function of ¢. Results are presented in Figure 4.22 for vertical polarisation only; it was
found that comparable results are obtained for horizontal polarisation [44]. The result from

Oy
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Figure 4.22: Field scattered by a cylinder with a/A = 10 and § = 45°: scattered
(——— ), reflected (— — — — — ), and diffracted (- — - — - — - )-
Data: r = 10000, vertical polarisation

the exact solution is represented by the solid curve in the figure. The maximum relative
error 6, for this computation is less than 107%. Initially, a total number of only two
diffraction contributions were taken into account in the UTD calculation of the scattered
field, i.e. one attaching at z = —a, having a surface path length ¢, < 1z = 2wa/sinf,
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and the other attaching at z = a, with corresponding surface path length £, < {5. These
are represented by the line-dotted curves. The optical shadow boundary is determined by
|| < 0.06°, and since it is very small, it can hardly be distinguished from the figure. At
w = 0° and ¢ = 180°, both diffraction curves intersect, since they have identical path
lengths at these angles. Since ¢, increases along the entire ¢ interval, the first diffraction
curve (‘d1’) consequently falls as a function of . At the optical shadow boundary ¢ = 0.06°,
the path length ¢, shifts from 0 to 2wa/ sin 3, which yields a downward shift in the second
diffraction curve (‘d2’). A further increase of ¢ corresponds to a decrease of 15, so that the
second diffraction curve rises as a function of .

At the optical-shadow boundaries, discontinuities are introduced by the diffraction con-
tributions. On the one hand these are cancelled by the GO contribution and the reflection
contribution, but owing to the abrupt shift in surface path length, the inclusion of a third
and fourth diffraction contribution is required for continuity, and these contributions in
their turn require fifth and sixth diffraction contributions, and so on. The maximum power
level of the third and fourth diffraction contributions proved to be -168 dB in this particu-
lar case and it equals the minimum power level of the first and second contributions. This
level is extremely low, and therefore these contributions have negligible influence on the
total scattered field. The latter is demonstrated by the continuity of the total field, which
includes the GO contribution [44]. From a large number of simulations it was found that
third and higher diffraction contributions may be excluded without affecting the accuracy
of the (far-field) UTD result, regardless of cylinder radius a, angle of incidence 8, and
polarisation direction [44].

The reflection contribution is represented by the dashed curve in Figure 4.22, and it is
clearly visible that it mainly determines the ‘average’ of the scattered-power result, which
is represented by the dotted curve. This curve coincides with the result obtained using the
exact solution (solid curve), which implies that the UTD model was constructed correctly.

As mentioned before, it is expected that the UTD fails for cylinders with very small
normalised radius af). Keller found that his GTD solution is ‘quite good’ for ka > 2, with
normal incidence [4]. These findings were confirmed by a large number of comparisons
between the UTD and the exact solution for different configurations [44], and it is suggested
not to use the UTD with cylinders of radius ka < 2 (a < 0.3)), regardless of angle of
incidence 8 and polarisation direction, in order to avoid unreliable results.

The exact solution is an alternative method for calculating the scattering by wire-like
structures. The processing time needed by this method for §,.; = 107¢ depends on the value
of kasin 8. It exceeds the time needed for the calculation with UTD when kasin g > 1.3,
which reasonably well meets the requirement of ka > 2 for the UTD calculations [44]. This
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implies that there is only a small region 0.21/sin 8 < a/A < 0.3 in which the exact solution
should be used and more processing time is needed by the UTD method than required.
This region does not exist when § < 43.6°.

In some practical cases the presence of cylinders with radii @ < 0.3\ can simply be
neglected, because the total power scattered by these small cylinders has a maximum
amplitude fluctuation of less than -50 dB in the far-field [44]. Because of the latter, and
the fact that the extension of the exact solution for spherical-wave illumination introduces
integral equations which cannot be solved analytically, the exact solution for spherical-wave

illumination was not derived.

4.6.4 Experimental results

At EUT, indoor bi-static scattering measurements for the determination of the shielding
properties of various obstacles were carried out. The HP8510C Vector Network Analyser
(VNA) is used in this setup, together with a set of rectangular-waveguide probes of the
WRI19 type (with apertures of 4.775 x 2.338 mm?), between which an obstacle can be
placed. A schematic diagram and the complete description of the setup can be found in
Section 4.2. Here the Device Under Test (DUT) is a brass circular eylinder that is mounted
on a rotating table, together with the transmitter probe. The receiver probe is in a fixed
position. In the simulation model, the rotation of transmitter and DUT is modelled by the
rotation of the receiver around the same axis of rotation.

The setup and its corresponding model are schematically shown in Figure 4.23. The
upper part, Figure 4.23a, is a side view of the plane ¢ = 0°, and the lower part, Figure 4.23b,
shows a top view of the setup. The four-cylinder array depicted in Figure 4.23b will be
discussed later. The observation point is assumed to be at the receiver aperture center,
and it is denoted by R. At 1 = 0, R = R'. The horizontal distance between the axis of
rotation and the transmitter aperture center T is denoted by dr. The points T and R’ are
horizontally separated by drg, and the vertical separation between T and R is (hr — hg).
The DUT can be tilted in the vertical plane containing T' and R' by an angle y. The
horizontal distance between the cylinder axis and T is denoted by d..

The spherical wave emanating from the transmitter is slightly obliquely incident upon
the cylinder in general, since a height difference (hr — hr) exists. The radiation patterns of
the probes are taken into account in the UTD simulations of the test cases. The measure-
ments were performed in an ordinary office room, using a frequency range f € [46,54] GHz,
in order to enable FFTs. For that purpose, 801 samples per observation point were taken.

A time gate was carefully set in order to suppress spurious reflections in the vicinity of the
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Figure 4.23: Side view of the measurement setup (a), and top view of the setup (b).

DUT and at the walls of the room. The data were extracted and stored for f = 50 GHz
only, corresponding to a wavelength A = 6mm. The following non-variable parameters were
measured with an accuracy of £0.5mm: dr = 452mm, dyp = 699mm, hr = 1498mm, and
hr = 1443mm. The angle span of the observation point range was taken ¥ € [—12°,12°],
with a step of 0.1° and an accuracy of +0.05°. Five cylinders with different radii were
used as a DUT, with y = 0 & 2°. One of these cylinders was also used in tilted orienta-
tion (x = 22 + 2°). The distance d. depends on @ and x, as shown in Table 4.2, and it
was measured with an accuracy of +0.5mm. The measurements were carried out for two
orthogonal linear polarisation states. With parallel polarisation, the polarisation vector is
perpendicular to the earth’s surface.

The solid curves in the Figures 4.24a through Figures 4.24e represent the measured
results for the five different cylinders at x = 0°. The upper curves show the results for
perpendicular polarisation, and the results for parallel polarisation are shown in the lower

part of the figures with a 10 dB offset to enhance legibility. The UTD simulation results
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relative received power [dB]

Figure 4.24:

azimuth angle [degrees]

Relative received power as a function of azimuth angle: measured (——)
and calculated (— — — — — )forx =10°a/X =05 (a),af/d =1 (b),a/A =15
(c), a/A = 2 (d), a/X =5 (e), and x = 22° and a/A = 1.5 (f). The upper
curves are for perpendicular polarisation, and the lower curves for parallel
polarisation. The results for parallel polarisation have been lowered by 10 dB
for legibility.
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Table 4.2: Variable parameters in the measurement setup.

X a de
CL{| tmm] (Al | fmm)
3 1050 | 248
6 |1.00| 253
0| 9 |[1.50| 256
12 |2.00 || 259
30 |5.00| 285
22 9 [1.50 | 435

are represented by dashed curves. The optical-shadow (OS) regions are in between the
vertical line-dotted lines. In these regions, the received power is owing to the diffraction
contributions only.

From the figures it is observed that good agreement exists between measured and sim-
ulation results. The differences that occur between them are probably caused by the
inaccuracies in the determination of the lengths and angles within the setup. Furthermore,
it can be concluded that the total field is lowest if the polarisation vector is parallel to the
cylinder axis. Another striking conclusion that can be drawn from the figures is that for
cylinders with relatively small radii the minimum field strength is found outside the OS
region, which may contravene intuitive expectations. This phenomenon is of course caused
by the constructive and destructive interference of the different contributions to the total
field.

The relative-power results shown are obtained by normalising the ‘received’ power in
the presence of the cylinder to the free-space power received in the absence of the DUT.
For the tilted cylinder the relative-power results are shown in Figure 4.24f. Although the
agreement between the measured and the simulation results is acceptable, it is slightly worse
than with y = 0°. The most probable cause for this is the poor accuracy in determining x
if the cylinder is in a slanted position.

The presence of multiple cylinders on the propagation path of an EM wave gives rise
to multiple reflection and diffraction contributions to the field in an arbitrary observation
point. In the following, these contributions will be referred to as ‘interaction terms’. The
amplitude of these terms depends on the separation of the cylinders, since the waves have
a diverging character after being reflected or diffracted by a convex surface. It is likely that
the influence of these terms vanishes if the separation is sufficiently large.

Elsherbeni and Kishk presented a method by which the scattered field from multiple
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parallel cylinders can be calculated, which includes the interaction terms [68]. It is based
on the boundary value method with plane-wave illumination, and they proved that for small
separation the interaction terms cannot be neglected. In this section the aim is to get an
impression of the applicability of the single-cylinder UTD model described in the foregoing
in realistic multiple-cylinder configurations, such as an industrialised district with multiple
chimneys, or a road along which lamp posts are placed. The latter situation could occur in
a micro-cellular environment in which a communication link between a fixed transmitter
antenna and a receiver antenna on a moving vehicle suffers from the scattering by a row of
lamp posts. This practical problem is usually tackled by statistical analyses.

This situation was modelled within the EUT measurement setup by taking four equi-
distantly spaced, parallel cylinders as a DUT. The ratio a/\ = 0.415 at 1.5 GHz was used
to scale the cylinder radii to the frequency of 50 GHz as used in the experimental setup.
The cylinders are made of brass and all have identical radii @ = 2.5mm, corresponding
to 8.3e¢m at 1.5 GHz, which is representative of the radius of commonly used lamp posts.
The separation between the cylinder axes of symmetry was chosen to be 40mm, which
corresponds to 1.3 m at 1.5 GHz. Note that this is much worse than in practical situations,
since the separation of lamp posts in urban environments is generally much larger (= 50m).
The measurements were carried out for different orientations of the array with respect to
the antennas, as a function of the angle k, which is indicated in Figure 4.23b. The ar-
ray is symmetrical with respect to its axis of rotation, which is at a horizontal distance
d. = 178 + 0.5mm from T. The observation points span an angle interval 3 € [—15°,15°]
with a step of 0.1° and an accuracy of £0.05°. The remaining parameters are identical to
those used in the single-cylinder setup.

The relative-power results are depicted in Figure 4.25, for different values of k, and
parallel polarisation. The solid curves represent the measured results. The dashed curves
are obtained with UTD by simply using superposition, and thus excluding the interaction
terms. Except for the symmetric situation with k = 0°, the asymmetry of the curves is
clearly visible. For angles & up to 60°, the UTD simulation curves correspond quite well
to the measured curves. At xk = 80°, the curves also follow similar courses with coinciding
minima and maxima, but large differences in power level are present. These are readily
explained by the fact that the interaction terms become more significant as the angle
between the incident wave and the longitudinal direction of the linear array decreases. To
test the measurement repeatability, the experiment for x = 80° was repeated once, without
touching any part of the measurement setup. The second measured result is represented
by the dash-dotted curve in Figure 4.25e. It slightly differs from the first measurement,

and this is a good indication for the accuracy of the measured results.
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relative received power [dB]

azimuth angle [degrees]

Figure 4.25: Relative received power as a function of azimuth angle for four parallel cylin-
ders: measured (———) and calculated (— — — — — ) for & = 0° (a),
& = 20° (b), k = 40° (c), K = 60° (d), k = 80° (e). In (e) also a result of a
repeatability measurement is shown (- —- — - — - ).
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4,6.5 Conclusions

A UTD model for calculating the EM-wave scattering by a circular cylinder of arbitrary
radius was successfully implemented and tested. The number of diffraction contributions
that need to be taken into account can be reduced to two, providing accurate results for
cylinders with normalised radii a/A > 0.3. In a mobile-communication environment it is
suggested to simply neglect the presence of cylinders with radii @ < 0.3, since the use of
UTD is not justified, and the influence of the presence of the cylinders on the total field in
their environment is negligible anyway.

For plane-wave illumination, an alternative method which is based on an exact solution
of the boundary-value problem is presented. The application of this method is not hindered
by restrictions to the normalised cylinder radius, and it appears to perform quite well on a
PC, regarding runtime and accuracy [44].

In case of spherical-wave incidence, the geometrical aspects of the UTD mode! are more
complicated. It is shown that the model provides accurate results which agree well with
the measured results from experiments performed at EUT.

The single-cylinder model may also be applied in configurations involving multiple cylin-
ders, provided that the separation between the cylinders is sufficiently large. It is expected
that most practical multiple-cylinder arrays (and other configurations) can be modelled by
applying the single-cylinder model repeatedly. Situations where the field is incident from a
longitudinal direction with respect to the cylinder array should be considered very carefully.

The model can also be applied to tackle a variety of strut scattering problems within
a reflector antenna, since the UTD can handle both plane- and spherical-wave scattering.
With this application, the model may be a helpful design tool in order to meet the reference
curves imposed by the CCIR concerning the envelope of the radiation pattern of reflector
antennas. It can be used to determine a strut configuration such that the sidelobe envelope
meets these CCIR requirements.
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Chapter 5

Site shielding of symmetrical parabolic

reflector antennas

5.1 Introduction

The geometries considered thus far did not incorporate any spatial filtering by the antenna
located in the vicinity of the object. Instead the infinitely small antenna was assumed
to have an isotropic radiation pattern. Obviously, the modelling of an antenna by a point
receiver is not realistic, and therefore the combined problem of obstacle and antenna diffrac-
tion is analysed in this chapter. The attention will be restricted to reflector antennas of
the parabolic type. These antennas are frequently used in satellite communications, which
is the field where site shielding is often employed. Furthermore, the receiving properties of
these antennas can also be analysed using the UTD.

The common procedure for taking into account the antenna receiving properties is the
replacement of the antenna by a point receiver with some spatial weight function. This
approach is referred to as the far-field approach, because the weight function employed
corresponds to the antenna far-field radiation pattern. In this method the obstacle and
antenna scattering are treated in an independent way, and therefore its main advantage is
its simplicity.

To separate the far-field region from the near-field region of an antenna with a circular
aperture, the Rayleigh distance R = 2D} /) is commonly used, with D, the aperture diam-
eter and A the wavelength. If the obstacle is in the near field of the antenna, the far-field
approach cannot be applied and another method should invoked. This other method is
referred to as the near-field approach, and consequently the antenna and obstacle diffrac-
tion are analysed in a combined way. This implies that, in the near-field approach, the
introduction of the reflector rim amounts to the analysis of diffraction at an additional
obstacle edge on the propagation path.

In this chapter the analysis of a parabolic reflector antenna shielded by a finite-width
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screen is deall with. The analysis is merely an extension to the analysis reported in [3],
where the obstacle used for shielding is a half-plane. The model discussed in Section 5.2
reduces to that used in [3] if the screen is infinitely wide.

A comparison between results predicted by a near-field and a far-field approach for
the analysis of a parabolic reflector antenna shielded by a finite-width screen is given in
Section 5.3. In this section the field strength at the terminal of a reflector antenna is
calculated in a frequency band rather than for a continuous wave (CW) signal. In this
way possible averaging effects as encountered in radio-receiver front-ends can be studied.
Implications of using the far-field instead of the near-field approach in ray-based field
strength prediction models are given.

To study the dependence of the SSF on the type of reflector antenna, the problem of
half-plane shielding of a double-reflector antenna is analysed in Section 5.5. Although the
Cassegrain antenna has been widely used in telecommunications, few results concerning its
wide-angle receiving properties have been reported in the literature. Since these receiving
properties are needed in the site shielding analysis, also results on the receiving properties
of this type of antenna are given. The SSF as function of antenna orientation and other
geometrical parameters is determined. A comparison between the results of half-plane
shielding of single- and double-reflector antennas based on the near- and far-field approach
will be given in Section 5.6.

5.2 Shielding of a single-reflector antenna

The general site shielding problem is three dimensional in nature, and can apply to various
geometries. In this section a model for the shielding of a parabolic reflector antenna located
behind a perfectly conducting finite-width screen is described. If is assumed that the
incident (interfering) field is due to a distant source and therefore it is modelled as a uniform
plane wave. Throughout this chapter, we suppose that the earth’s surface between obstacle
and antenna is flat, and that the influence of the atmosphere in the region in between the
antenna and the obstacle is negligible. Consequently, ground reflections are not considered
in the analysis. The antenna under consideration is a parabolic reflector antenna with a
circular aperture, and the aperture cylinder of the antenna system is assumed not to be
obstructed by the obstacle. Therefore the SSF as defined in equation (3.1) will be used
in the following. The configuration is shown in Figure 5.1. It is described in a Cartesian
(z,y, z) coordinate system, and the earth’s surface is given by the plane z = 0. The finite-
width screen is defined by z = 0, —d; < y < dy, 0 € z < z,, where z, is the obstacle
height and d; ; > 0. The same geometry, but then with a point receiver, was considered in
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Figure 5.1: Geometry for shielding of a single reflector antenna by a finite-width screen.

Section 3.2.2.

The unwanted wave U;, caused by some distant source, is incident upon the obstacle from
a direction parallel to the zy-plane, and propagates into the z-direction. The wanted wave
U, is coming from a satellite, and is assumed to be unaffected by the obstacle [3]. Since
U, is received via the main lobe of the receiving terminal, the satellite position determines
the azimuth angle (y,) and the elevation angle (y.), as depicted in Figure 5.1. It should
be noted that the angles ¢, and ¢, refer to the antenna aperture centre M with Cartesian
coordinates (zar, 0, zpr), (zar, zar > 0). The height difference Az = 2z, — zp > D, /2, such
that the whole antenna is in the shadow cast by the obstacle in the half-space £ > 0. In this
way, no specific point on the reflector edge is illuminated directly by the interfering field. If
required, this simplification can be removed, as shown in [69]. The site shielding problem
amounts to the estimation of the influence of the obstacle on the receiving properties of

the reflector antenna.

5.2.1 Description of the receiving antenna

The antenna under consideration is a parabolic reflector antenna with a feed system located
at the focus F' and focal distance f,. For simplicity, the influence of the feed struts is
neglected in the present analysis, although scattering from these supports may cause some
high sidelobes in the radiation pattern of the antenna. Also, blockage by the feed is not

considered. As in most practical cases, the reflector is assumed to be in the far field of
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the feed, such that the radiation pattern of the feed at F' can be described by the far-field
radiation pattern Gy, which is rotationally symmetric. The main-beam axis of the feed
coincides with the symmetry axis of the antenna. The antenna configuration is depicted

in Figure 5.2. For the description of the geometry of the parabolic reflector antenna, a

azimuthal

Figure 5.2: Geometry for the parabolic reflector antenna.

spherical (p,1.0) coordinate system is employed, with the origin at F. The polar axis of
the spherical coordinate system coincides with the symmetry axis of the paraboloid; the
direction ¥ = 7 is the forward direction of the reflector antenna. The aperture centre M can
be described either by its Cartesian coordinates (zar,0, zar) or by its spherical coordinates
(par,0,¢). The edge of the reflector is given by (po, %0, ) with 0 < ¢ < 2x. The following

geometrical relations are found
2

O
PM = fp lﬁfp‘ (5'1)
D;
po= fp+ IGA (5.2)
_ Dy &
g = 2arctan i (5.3)

where pas is the distance from F' to M, pg is the distance from F to a point on the reflector

edge, and 1y is the subtended angle of the reflector.
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The far-field radiation pattern Gy of the feed is also described in the spherical coordinate
system. A frequently employed feed is the corrugated horn, of which the far-field radiation
patiern can well be described by a power of a cosine in the forward direction, and by a
constant in the rear-angle region for which 7 /2 < 3 < 7 [70]. The (voltage) feed radiation
pattern is assumed to be independent of ¢, and is defined as

Go(a+cos™y) ,for 0 <+ <w/2

Goa Jform/2 <y < 7. (3:4)

Gy(¥) = {
In equation (5.4), a is a dimensionless constant which determines the relative backward
radiation level for /2 <1 < =, and the exponent m determines the amplitude taper over
the reflector. This taper is given by [G (%) fy] / [G#(0)po]. The factor Gy is dependent on

a and m and is given by [3]

a 1 =3/

m+l+2(2m+l)

Gy = a? = (55)

The forward voltage gain of the feed is G;(0) = Go(a + 1). The value of the exponent
m as function of 1 and the desired relative edge illumination is shown in Figure 5.3 for

a=0.00316, corresponding to a relative rear-radiation level of -50 dB.

50

45}k

40

0 10 20 30 40 50 60 70
subtended angle [degrees]

Figure 5.3: Value of m as function of 1 for a relative edge illumination of -10 dB
(——),-15dB(— — - — — ),-20dB(-+—+—-—- Jand -25dB (+cveoeens ).
Data: a = 0.00316
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A Huygens-source polarisation of the feed is used. Vertical and horizontal polarisation
are distinguished, corresponding to a reflected field in the aperture plane parallel and
perpendicular to the azimuthal plane, respectively. The unit vector in the direction of the
electric field radiated by the feed, é,,v potp, is found to be given by

Epolv = COS (péy — siné,, for vertical antenna polarisation, (5.6)
Epolly = SINpéy + cos pé,, for horizontal antenna polarisation.
For the antenna operating in receive mode, the polarisation properties apply to the field
received by the feed by reciprocity. Note that in [3] two signs should be reversed in the
definition of é,,1v e to have the correct polarisation vector.

In the description of the antenna geometry, the vector triplet (€o, €x/2, €0 X é,/2) depicted
in Figure 5.2 can conveniently be used. The unit aperture vectors are dependent on the
orientation of the antenna in terms of the azimuth (¢,) and elevation (i.) angles and are

defined as
SIN (P, COS Yo + SiN ¢, 5in @, + COS P, Z,

Il

é

N T ) (5.7)
€xj2 = sinp,T — cosp,.j.

At an arbitrary edge point L, with spherical coordinates (po, %o, ¥0o), the surface triplet

7,5 and principal radii of curvature p¥, are given by [3]

¥ = singoéo — cOSPor/a,
ég: = cos %ﬂ(cos wo€o + 8N Yoényz) — sin %Q(éﬂ X €x/2),
& = A% =sin %ﬂ(cos ®oéo + 8in Yoéyz) + cos %g(é“ X &x/2), (5:8)

= 2o (%),
py = 2f,cos? (%‘-) ;
where pf‘_z correspond to i%z, respectively.

In terms of the aperture unit vectors (€ég, €x/2, €0 X €x/2), the location of the feed position

F and the edge point L are simply found to be given by

F =M — pu(éo X éxpa), (5.9)
and D B

L=M+ Tpcosgagég + —ngin ©0éx/2- (5.10)

Also the vector 7, normal to the edge in the aperture plane is required in the analysis.
This vector is given by

fie = COS Yoo + Sin Yolr /2. (5.11)
The curvature of the edge a. in the aperture plane is equal to the radius of the circular

aperture rima, = D, /2. It should be noted that the description of the edge and unit vectors
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in terms of the aperture vectors é, €2, €9 X €52, is dependent on the azimuth angle (p,)
and elevation angle (¢.). For constant ¢, and ¢,, the edge point L and the surface triplets
at this point are completely defined by the aperture angle ¢ and the geometrical antenna
parameters.

Since the interfering signal will usually be received by some sidelobe of the antenna
pattern, first the off-axis receiving properties of a single parabolic reflector antenna will be
discussed, i.e. the case where the antenna is not shielded by an obstacle.

5.2.2 Wide-angle reception of a parabolic reflector antenna

The antenna rim can be treated as an obstacle for which the exterior wedge angle is 2,
i.e. n = 2. Therefore the analysis of the reflector edge diffraction is straightforward. The
diffraction points Q; (i = 1,2) are located on the reflector edge, and Keller’s law of edge
diffraction should be satisfied at @;. The direction of propagation of the incident wave is
§ = it = # (Fig. 5.1). The unit vector tangent to the edge is é = &¥, and it is defined
at the candidate diffraction point ;. Note that the point Q; and its associated surface
parameters ii:,z,a are completely determined by the aperture angle ¢; corresponding to Q;.
The direction of propagation of the diffracted wave is denoted by § and is given by
st — (5.12)
Po

The coordinates of the diffraction points @; are found by applying Keller's law of edge
diffraction (eq. (2.40)) to &, §, and é at Q;. Equation (2.40) can be numerically solved for
the variable ¢; with a one dimensional root-finding procedure. Two angles ¢; ( = 1,2) are
found, which specify two diffraction points @; with 0 < ¢y < 7 and 7 < ¢, < 2r. These
values of @, correspond to diffraction points @, on the left and right part on the reflector
edge, respectively.

For an incident plane wave, the E- and H-pattern of the antenna configuration can easily
be calculated. In the following ¢. = 0, and the incident field has a vertical (2) polarisation.
Note that the wave parameters if'.z.a and p;, in this case reduce to

‘i'l = 1,

# = 3z,

- o (5.13)
Ty, = &=4g

Pi,a = 0o,

The interaction of the incident wave with the reflector edge can be described by the theory

as set out in Chapter 2. In the present case the reflector edge is curved, which is in contrast
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with the situations encountered in the former chapters. To first order, only a finite number
of (diffraction) waves contribute to the received field at the focal point F'. In the calculation
of the E- and H-plane only two diffraction points are of interest, and it is found that the
two solutions for ¢; differ precisely a factor =. This indicates that the diffraction points @Q;
(i = 1,2) are located exactly diametrically opposite. The coordinates of the points Q; are
given by (po, %o, o) and (po, 1o, wo + 7). For ¢, = 0 it is found that @y = 7/2.

The location of the points (); (¢ = 1,2) can also be found using Fermat’s principle of
stationary optical path length. The points @ correspond to a maximum and minimum
path length, respectively. For ¢, = 0 and ¢, = (0,7), an infinite number of diffraction
points are found, because there is no minimum or maximum path length. In fact, there
is only one path length. This implies that the directions ¢, = 0, @, = (0,7) are caustic
directions, and therefore the UTD description of the diffraction process is invalid in these
regions. To calculate the received field at the feed in the forward (caustic) region (¢, = 0,
¢. = 0), another method such as aperture integration can be used. For the backward
(caustic) region (i, & 7, ., = 0) equivalent edge currents [71, 72] can be used to calculate
the received field.

In the following we will restrict our attention to 0 < y, < x for reasons of symmetry,
and ¢. = 0. If only the single-diffracted fields are considered, at maximum three waves
arrive at the feed (Fig. 5.5):

1. The directly incident wave. It is blocked by the reflector for # — iy < ¢, < 7.
To simplify the notation, it is denoted by Eg, although this wave encounters no

diffraction at all. Since this contribution corresponds to the incident field, it is of £°;

2. The wave diffracted at Q. It is obstructed by the reflector for 7 /2 < ¢, < (7 +10)/2.
The parameters of the reflected field #] , ; and pj ,, needed in the calculation of the
diffraction coefficients, can be determined using equation (2.21). Simplifications occur
in the expressions for the diffraction coefficients D, (n = 2), the distance parameter
L = po (plane incident wave) and the expression for the function a(z) = 2 cos?(z/2).

The caustic distance p? is found using equation (2.66), which reduces to

oDl

A3 (5.14)

where 7, is the normal vector to the reflector rim at Q. The direction of propagation
of the diffracted wave is § = (ﬁ' - Q,)/pg. This contribution is denoted by Ef and it
is of order k='/? outside the transition regions, and of order k° inside the transition

regions with respect to the incident wave of order £°.
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3. The wave diffracted at @Q;. This contribution is never obstructed, and also here the
simplifications arise in various diffraction parameters. The direction of propagation
of the diffracted wave is § = (f‘ - ég]/po, and the diffraction contribution is denoted
by Eg Also this contribution is of order k~%/2 outside the transition regions, and of
order k° inside the transition regions.

The resulting field at F' is found as a summation of these three field contributions, each
weighted by a polarisation vector €, and multiplied by the feed (voltage) gain for the
angles of incidence g, and g, (2 =0,1,2). It is easily derived that

Q. = arccos(— - (o X Ex/2)),

#"Q], = %bQ-; = ¢0!

@g, = arccos (—% - ég/sinhg,) , (5.15)
YQ, = W/2;

¢Q, = 3r/2.

The total field EY, ;; at the feed position is given by

2
Ca(F) =Y G (%) EX(F) - Gpavpotnn(¥Qi 9Q:)s (5.16)
o

=

where ¢; is a shadow indicator accounting for blockage effects and épov poim 1s the polari-
sation vector for either vertical or horizontal polarisation corresponding to the direction of
incidence of contribution 1.

For the shadow indicators ¢; the following relations are found

— < <
- 0, form—1p <y, <, (5.17)
1, elsewhere,

<, < 2,

o= 0 form/2< e < (m+ ) (5.18)
1, elsewhere,
and

m— (5.19)

The regions for ¢, where shadowing exists are shown in Figure 5.4.

In order to check the results obtained via the aforementioned model, the E- and H-plane
receiving pattern of a parabolic reflector antenna with parameters D, = 154, f,/D, = 0.433
(o =x/3),m=1,a =0, p. =0 and 1° < ¢, < 179° were calculated. This value of
m corresponds to a relative edge illumination of -8.5 dB, and the result of this calculation
is shown in Figure 5.6. A comparison of this result with a pattern in [73], where the
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Figure 5.4: Shadow regions for field contributions: shadow region for the direct ray (a),
and for the first diffraction point @ (b).

same configuration was analysed in transmit mode, reveals that the results are identical.
The pattern in Figure 5.6 near forward and rear directions was not calculated due to the
presence of a caustic of the diffracted field in this region. In [73] other techniques have
been used to cope with this problem.

The step discontinuity at ¢, = 7 /2, present only in the E-plane pattern, is caused by
shadowing of the diffraction point §; by the paraboloidal reflector. In [73] this shadowing
problem is solved by introducing a heuristic factor R,., independent of polarisation, which
should account for the effects of surface-diffracted rays. These couple to the backside of
the reflector surface and then arrive at diffraction point ()1, as indicated in Figure 5.5.
From there on, the wave propagates to the feed F'. In Section 2.8 it was described that the
model for surface-diffracted waves includes a dyadic transmission factor 7. Since R,. does
not possess any polarisation dependence, it is concluded that the factor R, used in [73],
to account for surface-diffracted waves, does not have any physical meaning.

Another method for solving the step discontinuity in the E-plane is the introduction
of multiple-diffracted fields within the antenna system. These are depicted in Figure 5.5.
Up to now, only the single-diffracted waves SC—@Q;—F and SC—Q,—F were taken
into account. It can be seen from Figure 5.5, that also the rays SC—Q,—@Q,—F and

SC—Q;— @ — F' may contribute to the received field at the feed. In general, an incident
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incident rays
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Figure 5.5: Introduction of multiple-difiracted rays within the antenna system. SC' indi-
cates the source position.
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Figure 5.6: Receiving pattern of a parabolic reflector antenna as function of the azimuth
angle @,; shown are the E-plane pattern (————) and the H-plane pattern

(-——-- )
Data: D, = 15, f,/D, = 0433, a=0,m =1, ¢, =0
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ray excites a circular disk of diffracted rays at the diffraction point @;. One of these
diffracted rays reaches F', while another diffracted ray reaches a point on the reflector rim,
exactly diametrically opposite to the diffraction point ;. In the present case (¢.=0),
this opposite point happens to be the second diffraction point ;. The same is true for
diffraction at @), where one of the diffracted rays reaches Q;.

The double-diffraction contribution is calculated by applying the procedure outlined in
Section 2.5.3. Note that, unlike the inclusion of multiple-diffracted rays in the discussion
concerning the rectangular block, the diffracted ray is not at grazing with any face of the
reflector surface. Therefore there is no need for the inclusion of slope-diffracted fields. How-
ever, the incident field may be at grazing with the reflector surface, causing the procedure
to find the reflected field parameters using equation (2.21) to be invalid.

If the double-diffraction contributions are included in the calculation of the receiving
pattern of a parabolic reflector antenna, the step discontinuity at ¢, = 7/2 in the E-plane
disappears. Note that the H-plane pattern is unchanged by the inclusion of multiple-
diffracted rays, as shown in Figure 5.7. This result can be compared with a result given
in [73, Fig. 4-12], reprinted in this thesis in Figure 5.8. It is found that, despite the lack
of physical basis, the factor R introduced in [73] gives reasonable results as compared
to those obtained using the inclusion of multiple-diffracted rays. One major difference
between both approaches is that the surface diffraction factor used in [73] modifies the
E-plane pattern as well as the H-plane pattern. This is not the case if double-diffracted
contributions are used; these only solve the step discontinuity in the E-plane receiving
pattern, and leave the H-plane result unaffected.

To have more or less an average of the received field at the feed, the power sum of the
received ray contributions is introduced (eq. (3.37)). Let the double-diffracted fields from
@, » be denoted by qu’,,., respectively, The total field at the feed is consequently given by

i=4

EYy(F) =Y 6G (10, EAF) - Epotvpori(hais 9., (5.20)

1=0
where co- and cross-polarisation components can be separated by choosing vertical (V) or
horizontal (H) polarisation, respectively. It is found that €; = €3, and €; = 4.
The power sum Ef }; is defined according to

Eyu(F)

[lfn01(¢Qn)Eg(F) * EpotV ol H(1Qo (’0"“’)‘2
Sy € |Gy (b BAF) - éparvpanibas, va.) (524

+
2 ) 211/2
+ Gf(@bQ-+2)E:'+2(F) " epow.pow(li’o.-w ‘PQ.‘+:)| ] .

A remark is that only the contributions with an independent phase behaviour may be added
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Figure 5.7: Receiving pattern of a parabolic reflector antenna as function of the azimuth
angle ., with double-diffraction contributions included; shown are the E-plane
pattern (—————) and the H-plane pattern (— — — — — ).

Data: D, = 15X, f,/D, =0.433,a=0,m=1, p. =0
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Figure 5.8: Comparison of the E-plane pattern of a parabolic reflector antenna as function
of the azimuth angle y,; shown are the result including double diffraction in
receive mode (—————), and the result using the factor R, [73] in transmit
mode (— — — — — ).

Data: D, = 15A, f,/D, =0433,a=0,m=1, . =0
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on a power basis. This means that single- and double-diffraction confributions which both
enter the antenna system at @; may not be added on a power basis, because their phases do
not vary independently. These two parts have a fixed phase dependence which is determined
by the distance from the source to the diffraction point @;. In other words: once inside
the antenna system, the waves which enter the system at the same diffraction point need
to be added on a (complex) vectorial basis.
The polarisation-independent sum EFP is the polarisation average of the power-sum as
introduced in equation (5.21). It is given by
£ (F) = [|EE] + Egenf] "

(5.22)

Figure 5.9 is obtained for the received power at the feed due to an incident plane wave
if the polarisation independent sum is used. The same parameters as in Figure 5.7 were

employed.
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Figure 5.9: Receiving pattern of a parabolic reflector antenna as function of the azimuth
angle ,, based on the power sum; shown are the E-plane (—————) and the
H-plane (— — — — — ).
Data: D, =15, f,/Dp =0433,a=0,m=1, . =0
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5.2.3 Reception properties of a shielded parabolic reflector an-

tenna

If the obstacle is present, the analysis of the receiving properties of the single reflector
antenna changes slightly. The wave incident upon the receiving antenna is first diffracted
at the obstacle edges. This diffraction causes that the diffraction points @; (i = 1,2) at
the reflector edge will not be diametrically opposite anymore.

To simplify the procedure to find the diffraction points, we make use of the (&, /2,
€p X €5/2) coordinate system to describe the edge of the reflector antenna. Attention will be
paid only to the left vertical edge Ty of the finite-width screen (Fig. 5.1), because the other
vertical edge can be treated in the same way, and the procedure to treat the horizontal
edge has been described in [3].

Because the incident field arrives from a direction parallel to the zy-plane, the diffraction
point (,; on the edge I'y is the projection from a (candidate) diffraction point L on the
reflector edge. The point L is completely determined by ¢. This means that @, is
determined by

Qu = —dj + (L - 2)z. (5.23)

The term in braces is a function of ;, ¢, and .. The projection point @, is a diffraction
point 1f, and only if, Keller’s law of edge diffraction is satisfied at the point L. At the
vertical edge Keller's law is satisfied automatically. The location of the diffraction point
on the reflector edge is determined by one coordinate only, i.e. ¢, because ¢, and .
remain fixed. In general two solutions for the aperture angle ¢; are found from Keller’s
law, corresponding to diffraction points on either side of the reflector.
Note that, in the present geometry, the ray reaching the feed directly is also diffracted
at I'; at the point @,
Q=—dj+(F-2)s (5.24)

A similar procedure involving projections can also be used to determine the diffraction
points on the other edges I';3 of the finite-width screen. If only single-diffracted rays at
the reflector edge are considered, this results in three diffracted rays for each obstacle edge,
amounting to a nine-ray model for finite-width screen shielding. It is obvious that attention
should be paid to blockage by the reflector. This is performed in exactly the same way as
in the analysis of the unshielded geometry, and will not be repeated here. Note that for
this case the elevation angle is not equal to zero; this causes that the expressions for the
shadow indicators become more complex.

If the diffraction points on the reflector edge and their associated projections onto the
edges I'y 3 are determined, the field strength calculation is nearly identical to the un-
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shielded case. For the present geometry, however, attention has to be paid to the fact that
the waves incident upon the antenna geometry do not have plane wavefronts, but rather
cylindrical ones. This means that the changes in wave parameters ;53 and p, > have to
be taken into account as the waves propagate from the diffraction points at the screen,
towards the antenna, and into the feed at F'. Obviously, the incident field at the diffraction
points @; on the reflector edge is a diffracted field itself.

Paying attention to edge ['; only, five contributions within the antenna system are

incorporated in the analysis:

1. The ‘direct’ wave. This wave is diffracted at the edge of the finite-width screen, and
reaches the feed directly. It may be obstructed by the reflector and is denoted by E’g;

2. The ‘single-diffracted’ waves. These waves are diffracted at the obstacle edge, and
subsequently diffracted at the reflector edge. The diffraction contribution incident at
1 may be obstructed by the reflector. These contributions are denoted by E.flg;

3. The ‘double-diffracted’ waves. These waves are diffracted at the obstacle edge, and
are subsequently diffracted twice within the antenna system. The contribution of the
wave which is inserted into the antenna system via diffraction point @, has the same
obstruction properties as the single-diffracted contribution which enters the antenna
system via the same point. These double-diffracted contributions are denoted by E;{r

It is obvious that ‘direct’, ‘single-’ and ‘double-'diffracted primarily refer to the receiving
antenna.

At the feed, the waves are weighted with the polarisation vector é,ov o1 and the radi-
ation pattern G of the feed, as in the unshielded case. The total field arriving at F in the
shielded case is found by addition of the weighted field contributions as defined in equa-
tion (5.20). The angles of incidence (¥g,,¢gq;) (1 = 0,1,2,3,4) have to be determined from
the parameters of the configuration under consideration, and will not be derived explicitly.

The following configuration for the calculation of the receiving pattern of a shielded
reflector antenna is considered. The diameter D, = 100, f,/D, = 0.433, . = 7/9,
zp = 1000), zpy = 50, and z,5 = 200)\. The feed parameters are @=0.00316 and m=3.368
corresponding to a relative edge illumination of -20 dB (Fig. 5.3). The incident field is a
horizontally-polarised plane wave propagating into the z-direction. For a start, only the
contributions from the horizontal edge I'; are taken into account, i.e. dj = dy = oo [3].
In Figure 5.10 the result of this calculation is shown. It was found that some differences
occur between a result in [3] and our results, only in the cross-polar pattern at an azimuth
wa = 7/12 and ¢, = Tn /8. Further investigations revealed that this is entirely due to the
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Figure 5.10: Receiving pattern of a large parabolic reflector antenna shielded by a half-
plane, as function of the azimuth angle y, for horizontal polarisation; shown
are the co- (—————) and cross-polarised signal (— — — — — ), based on the
power sum, and a result of the pofansat:on independent sum (+ —+ — - — - )
Data: D, = 100}, f,/D, = 0.433, ¢ = 0.00316, m = 3.368, ¢. = /9,
Tp = 10004, zpr = 30A, z5 = 2007, dy = dy =

error in sign in the definition of é,sv 50 used in [3]. If in our algorithms the definition of
[3] for époiv potrr is used, identical results are obtained.

An SSF result that does include the contributions from the vertical edges is given in
Figure 5.11, together with a result of half-plane shielding of the same antenna geometry.
Again the polarisation independent sum has been used and the width of the obstacle is
150\ (dy = da = 75A).

If the calculations are based on the power sum, it is seen from Figure 5.11 that both
results look very similar, apart from a major difference in SSF level. This is explained by
the fact that for the finite-width screen geometry more energy ‘flows’ around the obstacle,
hence the SSF is lower.

The SSF as function of the distance z,s and the azimuth angle o, is given in Figure 5.12.
It is seen from this figure that the SSF curves become lower with increasing distance.
Furthermore, they become more smooth as function of ¢,. The last phenomenon can
readily be explained by the fact that the variations in gain for the individual contributions
become lower with increasing distance, and so the fluctuations of the individual signals

become less.
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Figure 5.11: SSF of a large parabolic reflector antenna as function of azimuth angle @,;
shown are the results for half-plane shielding (———), and finite-width
screen shielding (— — — — — ).

Data: D, = 100}, f,/D, = 0.433, a = 0.00316, m = 3.368, ¢. = =/9,
M= 1000)\ zp = 50A, dy = dy = THA, 2,5 = 200
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Figure 5.12: SSF of a large parabolic reflector antenna shielded by a finite-width screen as
function of azimuth angle ¢, and zp; shown are the results for zp = 500\
(upper ———), zp = 750N (— - — — — ) zp = 1000A (- —-—-—- )
zp = 1500\ (+----0--n ), and zpr = 2500\ (lower ———).
Data: D, = 100}, f,/D, = 0.433, a = 0.00316, m = 3.368, . = /9,
zyp = 50, dy = dy = 5], z5 = 200X
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5.2.4 Conclusions

In this section attention was paid to the receiving properties of a parabolic reflector an-
tenna with prescribed diameter, f,/D, ratio, and feed parameters. It was found that the
inclusion of multiple-diffracted rays within the antenna system gives more or less the same
results as obtained by application of the factor R,. as proposed in [73]. Multiple-diffraction
contributions, however, have a more rigourous basis.

Also a model for the finite-width screen shielding of a parabolic reflector antenna was
presented. If diffraction of the incident wave at the vertical edges I';; is neglected, the
configuration used in [3] can also be analysed. It was found that the signal level received
behind the finite-width screen is higher compared to that received behind the half-plane.
The derived SSF consequently is lower. Furthermore, it was found that the SSF curves as
function of ¢, for the half-plane as well as the finite-width screen geometry have more or
less the same shape. The SSF for the half-plane geometry is roughly 10 dB higher, however.
Also SSF curves as function of ¢, at various distances xp; were presented for a reflector
antenna shielded by a finite-width screen. These show that with increasing distance z

the SSF curves become lower and more smooth as function of ¢,.

5.3 On the use of antenna weight functions in field-

strength prediction and interference reduction

In most ray-based field-strength prediction models the spatial filtering at the antenna is
introduced using the far-field method, i.e. a separate treatment of obstacle and reflector-
edge diffraction. In this section® the near- and far-field approach are used to calculate the
received EM field by a parabolic reflector antenna behind a finite-width screen to study
explicitly the differences that can occur between the results from both methods. The effect
of the atmosphere and ground in between the obstacle and antenna is neglected. It is shown
that considerable differences between the results of both methods may exist, even for an
obstacle-antenna separation large compared to the Rayleigh distance of the antenna, and
both for a continuous wave (CW) and broadband analysis of the communications channel.
It is concluded that the near-field method gives the best results and can be applied to
many practical problems such as for interference reduction, and for searching the optimal

position of VSATSs in urban environments. Also for other types of antennas, results from

! Note: the major part of this section was already published: M.A.J. van de Griendt and G.A.J. van
Dooren: On the use of antenna weight functions in field strength prediction and interference reduction,
International Journal of Infrared and Millimeter Waves, vol. 14, no. 10, pp. 2233-2242, 1993.
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the far-field approach may deviate considerably from those obtained using the near-field

approach.

5.3.1 The antenna receiving pattern

The antenna used in both analyses is a parabolic reflector antenna with a circular aperture.
The geometry of this antenna is illustrated in Figure 5.13. The reflector is described by

to satellite |
A\ L azimuthal

plane

Figure 5.13: Geometry of the parabolic reflector antenna.

its diameter D, and the focal distance f,. The antenna orientation is determined by the
azimuth and elevation angle ¢, and ¢,, respectively. A Huygens-source polarisation is used
for the field radiated by the feed. Vertical and horizontal polarisation are distinguished,
corresponding to a reflected field vector in the antenna aperture being parallel and perpen-
dicular to the azimuthal plane, respectively. The far-field amplitude pattern G; of the feed
illuminating the reflector was defined in equation (5.4).

For a parabolic reflector antenna, the reception of radiation entering the system at large
angles from boresight is determined mainly by feed spillover and reflector-edge diffraction.
Besides a ray reaching the feed directly, it can be shown that only two points on the
reflector edge give a first-order diffraction contribution to the received field for each off-axis
incident wave. So, a three-ray model is adequate to describe the wide-angle reception of
the parabolic antenna (Sec. 5.2). This three-ray model is used in the simulations, and
reflector-blockage effects have also been taken into account. To describe the interaction of

the incident wave with obstacle and reflector edges the UTD was employed [69].
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The antenna geometry discussed was used to calculate the receiving antenna pattern,
which equals the radiation pattern by reciprocity. The incident plane wave is assumed
to travel into the z-direction. The E- and H-plane pattern of an antenna with diameter
D, = 25), focal distance to diameter ratio f,/D, = 0.4, and feed parameters m = 2.415
and a = 0.00316, is shown in Figure 5.14. These parameters correspond to a relative edge
illumination of -20 dB and a forward gain of 10.6 dBi. The received field can be calculated

RECEIVED POWER [dB]

AZIMUTH [degrees]

Figure 5.14: Receiving pattern of a parabolic reflector antenna as function of the azimuth
angle @, ; shown are the E-plane pattern (——————) and the H-plane pattern

(————- ).
Data: D, = 25), f,/D, = 0.4, a = 0.00316, m = 2.415, ¢, = 0

at any antenna orientation given by 0 < ¢, < 7 and 0 < ¢, < 7/2. The direction
@a = . = 0 and @, = 7, @, = 0 are caustic directions, and consequently the model can

not be used.

5.3.2 Near- and far-field simulations

By placing an obstacle in the signal propagation path, the amplitude of the interfering wave
is attenuated. The shielded geometry used in the simulations is illustrated in Figure 5.1.
It shows the antenna positioned behind a finite-width screen with its aperture centre M at
(zpr,0,20). The finite-width screen has a height z,;, and the vertical sides are at y = —d;
and y = d,. The screen is described by z = 0, —dy <y < dp, 0 € z < z,,. The incident
wave propagates parallel to the surface of the earth (z = 0) into the a-direction.
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For interference reduction the placement of the obstacle is intentional. This is in contrast
with the case where the incident wave is a desired signal. Then the obstacle obstruction
is unintentional, and signal degradation will result. The latter situation can be found in
urban areas with strong shadowing effects, where the user can not control the erection of
new buildings and structures.

In the following, the antenna is assumed to be completely obstructed by the screen, but
this is not strictly necessary. In the near-field approach each screen edge generates all of
the rays used in the three-ray model, resulting in a total of nine rays reaching the feed.

In the far-field approach, however, each screen edge generates only one ray resulting in
a total of three rays. These rays arrive at the aperture centre M and are then spatially
weighted by the far-field antenna receiving pattern. A summation of the field contributions
from the screen edges yields the total received field in both methods [69].

First, the results of the near- and far-field method for a half-plane obstacle (d; = d; = 00)
are examined. In this case only the horizontal edge '3 contributes to the received field.
This result is illustrated in Figure 5.15 as a function of antenna-obstacle distance zp. The
antenna used has the same geometry as the one used in Figure 5.14, and the position of
the aperture centre M is given by (zp,0,2a), with zpy = 25\, The screen has a height
205 = 300). For a half-plane obstacle it can be seen from Figure 5.15 that the received fields
in the near- and far-field approach do not differ much. A caustic is found at z = 0.6R;
the antenna is then pointing directly towards the horizontal screen edge and UTD predicts
infinitely strong fields.

The same simulation has been performed for a finite-width screen. In this case all
three screen edges contribute to the total received field and d; = d, = 100 is used. The
results of the near- and far-field method are illustrated in Figure 5.16. It is noted that the
received field in the analysis using the finite-width screen is considerably higher than in
the case of the half-plane obstacle. This is due the the fact that for a finite-width screen
the incident wave ‘flows’ more easily around the obstacle, and hence the field strength is
larger. Furthermore, the fluctuations of the received field behind the finite-width screen
are more rapid than those behind the half-plane. This is mainly caused by the constructive
and destructive interference of the edge contributions.

As is illustrated in Figure 5.16, differences of several dBs between the near- and far-field
approach even occur at distances zp much larger than the Rayleigh distance. Note that for
practical applications using an antenna with a diameter of 50em and a frequency of 10 GHz,
a distance of 4R corresponds to about 65m. In urban environments, some obstacles will
surely be located within this distance. A field-strength prediction method based on the

representation of antennas by point receivers should be used with caution, not only in static
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Figure 5.15: Received signal at a parabolic reflector antenna shielded by a half-plane as
function of zps; shown are the results of the near-field method (———)

and the far-field method (— — — — — %
Data: D, = 25), f,/D, = 0.4, a = 0.00316, m = 2.415, ¢, = 7 /9, zp = 25),
Zob = 300/\
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Figure 5.16: Received signal at a parabolic reflector antenna shielded by a finite-width
screen as function of zp;; shown are the results of the near-field method
(—————) and the far-field method (— — — — — ).

Data: D, = 25, f,/D, = 0.4, a = 0.00316, m = 2.415, . = 7/9, zpr = 25A,
dy = dy = 100, 2z, = 300X
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configurations (VSATSs) but also in case of mobile terminals. It should be noted, however,
that for mobile communications low frequencies are used (1.5 GHz), and the effect is not

as explicit as in the examples shown here.

5.3.3 Broadband analysis

The analysis performed in the previous section is essentially a continuous wave (CW)
analysis for one single frequency fo. In practice, the signal at the terminals of the receiving
antenna will contain a large number of spectral components within the bandwidth B of
the communications channel used. The average signal power P at the antenna terminals is

proportional to the average of the spectral power E?
P « 10log E?, (5.25)

where B

Bi= 2 [ Gradfo + DEGo+ N)E"(fo+ N, (5.26)
and F is computed using either the near- or far-field method. The filter characteristic
Gin of the receiver front-end in this case was assumed to be given by Gy = 1, and
the carrier frequency fo was 10 GHz. The screen dimensions were z,; = 9m = 300\ and
dy = d; = 3m = 100A. The location of the aperture centre M was given by (zas,0, 2p),
with zpy = 0.75m = 25X. The bandwidth B was 0.5 GHz, which is a typical value for
satellite communications. The geometry and parameters used were identical to those as
used for Figure 5.16. The result of the calculations is shown in Figure 5.17. A comparison of
Figures 5.16 and 5.17 reveals that the average received power shows slower variations than
the received power. This is completely due to the averaging effect in the calculation of EZ2.
The caustic at a distance of zpr = 0.6R is still present. The differences between the near-
and far-field method remain when performing a broadband analysis of the communication
channel. The fact that both approaches predict results that still show variation even for
very large distances xps can be explained by the fact that the obstacle is in the far field of
the antenna, but the antenna is not in the far field of the obstacle.
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Figure 5.17: Average received signal at a parabolic reflector antenna shielded by a finite-
width screen as function of zys; shown are the results of the near-field method
(————) and the far-field method (— — — — — )i
Data: D, = 25, f,/D, = 0.4, a = 0.00316, m = 2.415, @. = 7/9, za; = 25),
dy = dy = 100), z, = 300, fo =10 GHz, B = 0.5 GHz

5.3.4 Conclusions

It was shown that for the shielding of a parabolic reflector antenna by a finite-width screen
considerable differences appear in the received field calculated by the near- and far-field
approach at distances much larger than the Rayleigh distance R. From a theoretical point
of view, the near-field approach as discussed in Section 5.2 is always correct, independent
of the number of obstacle edges and the obstacle-antenna separation. The far-field method
is only accurate, however, if one strong edge contribution is present, or if s is very large
(zm > R).

If limited accuracy and a speed-up of the calculations are of interest, the use of a one-
dimensional table containing the spatial antenna weight factors of a symmetric far-field an-
tenna pattern could make the far-field approach much faster than the near-field approach.
This simplified far-field approach and the near-field approach will give considerable differ-
ences, especially if multiple obstacle edges are considered. The exact calculation of the
weight factors of the non-symmetrical antenna receiving pattern in the far-field approach
increases the accuracy as well as the calculation time. The CPU time needed for the far-

field approach then becomes comparable to that of the near-field approach. To obtain best
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accuracy the near-field method should be used.

If the number of obstacles is very large then the use of the near-field approach is im-
practical because of the huge amount of CPU time needed. The far-field approach is then
the only method tractable for implementation. The results obtained must, however, be
evaluated bearing in mind the possible inaccuracies introduced by the considerable simpli-
fications present in the far-field approach.

The model proposed can effectively be used for site shielding analyses, but also for the
prediction of the receiving performance of VSAT terminals in built-up areas. Note that
the near-field problem itself does not only arise for a reflector antenna, but also in mobile
communications, for example, where antennas are mounted on a conducting ground plane
such as the roof of a car. In this case the ground plane will influence the receiving properties
of the antenna, and consequently differences between a far- and near-field analysis may arise
in predicting the coverage of the mobile communications system.

5.4 Shielding of a double-reflector antenna

In this section the positions of the diffraction points on the reflector edges of a Cassegrain
antenna system are calculated. Therefore, this section merely supports Sections 5.5 and
5.6, because there this information is omitted.

The site shielding geometry for the Cassegrain antenna system is shown in Figure 5.18.

The geometry is described in a Cartesian (z,y, z) coordinate system, and the earth’s surface

wanted signal —  _

interference

Figure 5.18: Cassegrain antenna geometry and half-plane obstacle; = = 0 is the ground
plane.
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is given by the plane z = 0. The obstacle is defined by z = 0, 0 < z < z,,, where 2, is the
obstacle height.

The unwanted wave, caused by some distant source, is incident upon the obstacle from a
direction parallel to the zy-plane, and propagates into the z-direction. The wanted wave is
coming from a satellite, and is assumed to be unaffected by the obstacle. Since this signal
is received via the main lobe of the receiving terminal, the satellite position determines
the azimuth (¢,) and the elevation angle (.). Note that the angles ¢, and ¢, refer to
the antenna aperture centre M, with Cartesian coordinates (zp, 0, zum), (zam,2zm > 0).
The height difference Az = z,, — zar is such that the whole antenna is in the shadow of
the obstacle in the half-space z > 0. In this way, no specific point on the reflector edge is
illuminated directly by the interfering wave.

First, we focus on the receiving properties of the double-reflector system in the absence of
the shielding obstacle. To this end, we will outline an approach to find the diffraction points
on the reflector edges. This approach is used in Sections 5.5 and 5.6 to calculate the E- and
H-plane radiation (receiving) pattern of a Cassegrain reflector antenna. Subsequently, we
will treat the case where the obstacle is present. This requires a modification of the ray-
tracing procedure, but the analysis is more or less unchanged. Nearly the same geometry
was analysed in Section 5.2 for the shielding of a parabolic reflector antenna.

5.4.1 Description of the receiving antenna

The Cassegrain antenna consists of a paraboloidal main-reflector and a hyperboloidal sub-
reflector; a cross-section through the antenna system is shown in Figure 5.19. The symmetry
axes of both bodies of revolution coincide, and the second focus Fj 2 of the hyperboloid
coincides with the focus F, of the paraboloid. The antenna system makes use of the
focusing properties of the paraboloid in combination with a hyperboloid. A source placed
atl the first focus of the hyperboloid Fj; illuminates the sub-reflector and the reflected wave
seems to emanate from Fjy ;. The spherical wavefront of the incident wave is transformed
into the spherical wavefront of the reflected wave. This reflected wave illuminates the
paraboloidal main-reflector. The latter transforms the spherical incident wavefront into a
plane wavefront in the main-reflector aperture via reflection. The point M, is a centre of
rotation for changes in the azimuth ¢, and elevation . angle. The antenna feed is located
at Fyq.

Both the main- and sub-reflector are described in a spherical (p, ¥, ) coordinate system
with the origin at F,. It is seen from Figure 5.19 that three angles determine the contours of

the antenna system. These angles are ag, which is the subtended angle of the sub-reflector
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Figure 5.19: Cross-section through the Cassegrain antenna geometry; only the upper half
is shown.

as seen from Fj 1, xo, which is the subtended angle of the main-reflector as with respect to
F.1, and 1o, which is the subtended angle from the main-reflector with respect to £}, = F,.
For the configurations considered in this thesis the angle g is also the subtended angle of
the sub-reflector with respect to F,.

Since both the paraboloid and the hyperboloid are quadric surfaces, we can define them
with by a single expression. This expression is given by

_ (1+eC

# =14 ecosy’ (527)

where e = 1 for the paraboloid and 1 < e < oo for the hyperboloid; C is the distance from
F, to the intersection of the body of revolution with its symmetry axis. For the paraboloid
C = f,. For the hyperboloid we refer to this distance as the effective focal length f*, so
C = f*. The focal distance of the hyperboloid is given by 2f,. We denote the diameter of
the main-reflector with D, and the diameter of the sub-reflector with Dj.

We find the subtended angle ¥ of the main-reflector according to

o = 2arctan %. (5.28)

The distance between the focus F, and the aperture centre M, is denoted by fm and is
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given by
D?

Jm=fo— 5+ (5.29)

The relation between the subtended angle of the sub-reflector o and the angle 1 is given
by

%o
2 3
where ¢ is the eccentricity of the hyperboloid. The distance of the sub-reflector aperture

(e+1)ta.nc;—°=(e—l)ta.n (5.30)

centre M, to F, is denoted by myf and is given by

mif'= g e (5.31)

whereas the separation between both aperture planes is denoted by mmy, which is given
by
mmy, = |M, — My| = fm —myf, (5.32)

where M}, and M, are the position vectors of the aperture centres of the sub- and main-

reflector, respectively. An expression for the angle ap as a function of Dy and e is given
by

" (e=1), o) _ Dy,
ap = 2arctan ((e T tan 2 )= arctan X —mf)’ (5.33)
A relation between f,, ap and D, is
_ D, +4f, tan(ao/2)
= D, —4f, tan(ao/2)’ (0:34)
whereas an expression for the effective focal length f* is given by [74]
. Du(1 4 ecos)
Ir= 2(1 +€)sinyyy (5.85)
The angle xp is easily found as
i Dp
Xo = arctan 5~ )’ (5.36)

An important parameter in the antenna model is the amplitude taper across the sub-
reflector. This taper is determined by the power of the cosine m in the feed model, as
discussed in equation (5.4). Note that, in practice, the subtended angle of the sub-reflector
is much smaller than that of the main-reflector (g < #9). To have a reasonable taper
across the sub-reflector (10-15 dB) a much higher value of m is needed (Fig. 5.3). Commonly
used values of m in a Cassegrain geometry are 30-50. The feed placed at F},; has a Huygens



168 Ch. 5: Site shielding of symmetrical parabolic reflector antennas

source polarisation denoted by é,,v o, which is either horizontal or vertical. It will be
defined shortly.

To describe the antenna rim, we make use of the aperture unit vectors (€q,€/2,€0 X €x/2).
These vectors are defined in equation (5.7). The equation for the sub- and main-reflector

rim are given by
E;‘ = A_fi'h +7.D,/2 = )ﬁh + (COS(,Déo + sin (,aé,r;g)DhIQ, (5.37)

and

L, = M, +%.D,/2 = M, + (cos péo + sin pér/2) D, /2, (5.38)

respectively, and 0 < ¢ < 2x. The unit vector n. in the aperture plane and normal to the
antenna rim is given by

fie = COS (Pég + Sin Péyr . (5.39)

The radius of curvature of the antenna edge in the aperture plane a.h., is equal to the
radius of the circular aperture rim a., = Dy /2 and a., = D, /2 .

A point L on the main- or sub-reflector edge is completely determined by its aperture
angle ¢ and the azimuth and elevation angle. Since the latter are defined by the orientation
of the antenna, a point on a reflector rim is a function of one variable only, namely the
aperture angle . At L we introduce the surface triplet :.,‘"{':‘2‘3 and corresponding radii of
curvature pfz. For points L on the main-reflector, these parameters were already defined

in equation (5.8). For points L on the sub-reflector, these parameters are given by

nz 3y . - -
Iy = sinpep — coS ey,

2 = cos (%ﬂ-) e — sin E%"-g (€0 X éx/2),

8§ = sin (¥32) f + cos (£52) (éo X &xpa), (5.40)
e? sin? 172
PP o= fatel+ ity
. 2 3in? 3/2
sz — f (1 + 8) [l + (li:::”;,])] .

For convenience, we introduce the concept of the equivalent parabola. This concept ex-
presses that for each double-reflector system there exists an equivalent single-reflector sys-
tem with an identical aperture-field distribution. An important parameter in the definition
of the equivalent parabola is the eccentricity e of the sub-reflector. Given a double-reflector
system with prescribed Dy, D,, f, and e, we can define the equivalent parabola as having
a diameter D, and a focal distance f, of

fe= (eH)Ip- (5.41)

e—1
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Since the interfering signal will usually be received by some sidelobe of the antenna
receiving pattern, we will first focus on the determination of the diffraction points on the
reflector edges. This information is used in Sections 5.5 and 5.6 to calculate the E- and
H-plane receiving patterns of the Cassegrain antenna.

5.4.2 Wide-angle reception of a Cassegrain antenna

Before we are able to calculate the individual field contributions at the feed, we need to
know which points on the reflector edges give rise to the main contributions at the feed
point Fj ;. These points are called diffraction points, and their location can be found by
applying Keller’s law of edge diffraction (eq. (2.40)). Since a Cassegrain antenna has two
reflectors, we will focus on these reflectors separately.

The procedure to find the diffraction points on the sub-reflector is quite simple, and
shows much similarity with that used to find the diffraction points on the edge of the single-
reflector antenna (Sec. 5.2). [irst, we need the direction of propagation of the incident
wave. We denote this direction by §' and consider the case where 3'=2 (Fig. 5.18). Further
we need the unit vector é, tangent to the sub-reflector edge. Since the orientation of
é, is not important, we take €, = if', defined at some candidate diffraction point Qsus;
(: = 1,2,3,...) on the sub-reflector edge. This point Q..; is completely defined by its
aperture angle ¢, ;. The direction of propagation of the diffracted wave is denoted by 34 ;
and is given by . .

Spi = M"— (5.42)

| Fra— Qoubyi |

The coordinates of the diffraction points @,y are found by applying Keller’s law of edge
diffraction at the point Qsu; to &, §x; and éx. Equation (2.40), i.e. Keller's law of edge
diffraction, can be numerically solved with a one dimensional root-finding procedure. We
find two solutions ¢, ; (2 = 1,2), which specify two diffraction points Qus:. It is found
that 0 < ¢, < 7and 7 < ¢ ., < 27, which correspond to diffraction points Qs on
the left and right part of the sub-reflector edge, respectively. For ¢, = 0, the diffraction
points Q. are exactly diametrically opposite, so ¢,,42 = @441 + 7. At both points we
introduce the surface parameters 3,5 and p¥, as introduced in equation (5.40). These
surface parameters are needed in the calculation of the diffraction contributions at the feed
point Fj ;.

The locations of the diffraction points on the main-reflector are found in a similar way.
Now we use unit vector é, tangent to the main-reflector edge. Since the orientation of é,
is not important, we take é, = 27, defined at some (candidate) diffraction point Qmain,

(i =1,2,3,...) on the main-reflector edge. This point Q,nin: is completely defined by its
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aperture angle ¢, ... .. The direction of propagation of the diffracted wave is denoted by
5pi and is given by

i P~ Gouini

| Fiy — Qmain,i |

The angles p,,,;,; that correspond to the diffraction points @Qmain; are found by applying

(5.43)

Keller’s law of edge diffraction at the point Qmqini to &, §,,; and é,. We find two solutions
Pmain, (1 = 1,2), which specify two diffraction points Qmain,;. Furthermore,0 < ¢, ;. <7
and 7 < @00 < 27, which correspond to diffraction points Qmaini on the left and right
part of the main-reflector edge, respectively. At both of these points we introduce the
surface parameters i}, 5 and pY, as introduced in equation (5.8). We will need these
surface parameters in the calculation of the diffraction contributions at the feed point Fj ;.
Also here the diffraction points are diametrically opposite, 50 @, 40 2 = Praing 7 (e = 0).
Diffraction points that are diametrically opposite are found only for incident plane waves.

It may seem that this completes the ray tracing needed to determine the diffraction
points. This is not true, however, because the Cassegrain antenna system requires a higher-
order diffraction analysis. This means that also higher-order diffraction contributions need
to be taken into account. The reason for this is that the feed model used is such that
there can be a trade-off between diffraction loss and feed gain. An example of this is that
a wave may be subject to double diffraction, but its angle of incidence with respect to the
symmetry axis is very small. Because the feed is quite directive, the difference in feed gain
for a ray arriving at, for example, ap and a smaller angle can be quite substantial. So,
despite the fact that the wave is subject to double diffraction, part of its diffraction loss at
the reflector edges is compensated for by a high gain of the feed.

Since higher-order diffraction contributions are incorporated in the analysis, we first
make an ordered list of these types of diffraction contributions. We find the following
field contributions within the antenna system, ordered with a descending importance with

respect to the incident wave of order k°:

1. The single-diffracted ray of order k1/%;

2. The ray that is single diffracted and single reflected of order k~1/2;
3. The ray that is single diffracted and double reflected of order kY2,
4. The ray that is double diffracted of order £77;

5. The ray that is double diffracted and single reflected of order k~';

6. The ray that is double diffracted and double reflected of order k=1,
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For notational simplicity, the orders of the diffracted waves are given only for positions of
the observation point outside the transition regions. Inside this region the order is lowered,
as discussed in Chapter 2.

To simplify the ray-tracing procedure, we define four points on the sub- and main-
reflector edge, as indicated in Figure 5.20. In this figure we have introduced the points

cross section|

Figure 5.20: Introduction of diffraction and reflection points in the Cassegrain reflector
antenna; a cross-section through the antenna system at ¢ = ,,,,. A detail
from the sub-reflector is also shown.

t,b t,b
P and P,

nain that are part of a trapeze. This trapeze is found by making a cross-section

through the Cassegrain reflector antenna at the angle ¢ = ¢, ,i; 0r ¢ = @au; (1 =1,2),
and connecting the points on the reflector edges. This implies that four cross-sections can
be made to find the points of interest P.4 and Pt . Also reflection points P, on the
main- and sub-reflector are indicated in Figure 5.20.

Each wave that enters the antenna system via Qg1 = P!, excites a number of diffracted
waves. The points on the sub- and main-reflector of importance for the ray-tracing proce-
dure are given by

Piuy = Quuba = My + émpDaf2,
P}ub = J'ﬁh - émpDh/Qa

= i (5.44)
Pm.m'n - MP + emPDP/21
Pt?ml'n = Mﬂ = éMpr/Z;

where we have introduced

Emp = €OS Pyup1€0 + 5IN Py 1 x /2. (5.45)
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The reflection points Py, 2, are given by

Py = My+ (fm— 5282 (o % &xp2) + Zoéy, -
Py = Mi+(fm—1)(é0 X érj3) + h"émp, )
Here in&i(1 Y
«_smg(l+e)f”
= 1+ecosé ’ (5.47)
e 60 +e)f
- cos&(l +e)f”
= l1+ecosé (546)
where D
A
£y = 2arctan i, (5.49)
The angle ¢, is found from
_ (e— I)Dh
£, = 2arctan [—4(8 vy (5.50)

We can distinguish the following types of diffracted waves within the antenna system:

1. the single-diffracted wave: this wave is diffracted at P!

s~ This diffraction contribution
is denoted by ES, and it is of order k~1/%;

2. the single-diffracted and double-reflected wave: this wave is diffracted at P}, re-

flected at Py, and reflected at P,,. Note that this contribution arrives at a very small
angle ¢, with the symmetry axis of the antenna. Therefore the feed gain for this

contribution will be large. The diffraction contribution is denoted by ESRR, and it is
of order k~1/2%;

3. the double-diffracted wave: this wave is diffracted at P!, and P%,, or at P!, and
Prtnain‘

and they are of order k~1;

These diffraction contributions are denoted by Efs and Ef“, respectively,

4. the double-diffracted and doublereflected wave: this wave is diffracted at P!, and
P!,, and is subsequently reflected at Pi, and P,,. Its diffraction contribution is

denoted by ESSRR Also for this contribution the angle of arrival £, is very small. It

is of order k71,

For notational simplicity, the orders of the diffracted waves are given only for positions of

the observation point outside the transition regions. Inside this region the order is lowered,
as discussed in Chapter 2. Furthermore, some simplifications occur in the calculations of

the diffraction coefficients at the points Qsui (2 = 1,2) because the exterior wedge angle
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is 2r, and the incident wave has a plane wavefront. These simplifications were already
discussed in Section 5.2, and will not be repeated here.

Note that similar diffraction contributions are found that enter the antenna system at
Qsub2- These have a subscript 2, and are found in a similar way as those for the case of
Qsup1. Therefore they will not be given here.

Now that we have found the positions of the diffraction points on the sub-reflector edge,
the analysis proceeds as follows. We make a cross-section through the antenna at an angle
% = @main1» a8 shown in Figure 5.21. The points that are of importance for the ray-tracing

gl’
cross section ©,

| at =i =\ rain, | nain

Figure 5.21: Introduction of diffraction and reflection points in the double-reflector antenna.
Cross section through antenna system at @ = ¢, ,in 1.
procedure are given by

"a:ub = )ﬁ-h + émpDh/21
P':ub = Mﬁ = émpDhlza

. N o (5.51)
'Pmnin iz Qmain.l — Mp + c‘mPDP/z‘
P:min = Mp = émPDpfzv
where we have introduced
Emp = COS Pprgin.1 éo + sin Prmain,1€x/2- (5.52)
The reflection points Py, 2, given by
B, = My+ (fm— 52=) (o X énp2) + Lbmp, (5.53)
Py = Mu+ (frm—1")(€o X érp2) + h*émp.
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Now that the diffraction paths within the antenna system are known, we can identify the

diffraction contributions that enter the antenna system via P! . :

main’

1. the single-diffracted wave: this wave is diffracted at the point P! . and is denoted

by EM. 1t is of order k~1/2;

2. the single-diffracted and single-reflected wave: this wave is diffracted at the point
P! . and is reflected at the point The diffraction contribution of this wave is

denoted by EMR and it is of order k~1/%;

t
sub*

3. the double-diffracted wave: this wave is diffracted at Pt . and P?

main main?
P! ... and P!, The diffraction contributions of these waves are denoted by EMM

or at the points

and EMS, respectively, and they are of order k~1;
4. the double-diffracted and double-reflected wave: this wave is diffracted at P! . and

P!, reflected at Py, and reflected at P,,. Note that this contribution arrives at a very

5

small angle & with the symmetry axis of the antenna. Therefore, the feed gain for
this contribution will be large. The diffraction contributions are denoted by EiWSRR,

and it is of order k1.

Again, the orders of the diffracted waves are given only for positions of the observation

point outside the transition regions. Inside this region the order is lowered, as discussed in

Chapter 2. Also for these contributions some simplifications occur in the calculations of the
diffraction coefficients; the exterior wedge angle is 27, and the incident wave at the points
@main; has a plane wavefront. These simplifications were already discussed in Section 5.2,
and will not be repeated here.

This concludes the description of the diffracted wave contributions which are excited at
the diffraction point @main1. Similar contributions are excited at Qmqin,2. These will have
a subscript 2, but will not be given here.

In addition to the diffracted rays within the antenna system, there is also a ray that
reaches the feed directly. Its contribution is calculated using standard GO techniques, and
it is denoted by EPIR. Because the direct wave is the same as the incident wave, it is of
order k°, with respect to the incident wave of order k°. Adding up the rays within the
antenna system we find a total of 1 4+ (4-5) = 21 field contributions. These contributions
are weighted in amplitude and polarisation by the feed radiation (receiving) pattern.

Before we come to an expression of the total field E}, ;; at the feed, we first discuss the
obstruction properties of the Cassegrain system. For particular orientations of the antenna
system, it is possible that ray obstruction takes place. Since we have four diffraction points

(Qsub,iy@maini, 1 = 1,2) where higher-order diffraction contributions are excited, and one
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direct ray, five shadow indicators €gir, €sub iy €maini (1 = 1,2) are used to account for blockage
effects. In the following we restrict our attention to the special case ¢, = 0, which is the
value used for the calculation of the E- and H-plane receiving pattern. Now the angle 3
corresponds to the azimuth angle ¢,. For arbitrary positions of the Cassegrain antenna
another analysis should be carried out [74].

It is obvious that diffraction contributions that are excited at a certain diffraction point
Qsubi OF Qmain; automatically inherit the blockage properties of these diffraction points.
The feed and its properties are defined in spherical (v, ¥, ®) coordinate system with the
origin at Fy; and the direction ¥ = 0 corresponds to the forward direction of the antenna.
The polar axis coincides with the symmetry axis of the antenna system. For points on the
sub-reflector ¥ = ayp, while for points on the main-reflector ¥ = yg. For ¢, = 0, as used in
the calculation of the E- and H-plane receiving pattern, it is found that

Qo.mb,l = !tomain,l = ‘Dsub.? = Qmﬂiﬂ.z = rr/Q, (5»54)

and

Psub2 = Pmain2 = qub.l = {bmain"l 2l 3“/2> (5-55)

We will restrict our attention to 0 < ¢, = ¥ < 7 for reasons of symmetry. The regions of
obstruction for the diffraction points Qi and @ main: are shown in Figure 5.22. We find
the following definitions of the shadow indicators € for the feed position and the diffraction
points Qsusi and Qumaini (1 = 1,2):

1. The direct ray is obstructed for 0 < ¢, < o and xo < ¢, < 7. This is expressed by

1, f a ;
cd,-,—{ B (5.56)

0, elsewhere.

2. The first diffraction point @y on the sub-reflector is obstructed by the sub-reflector
for m/2 <, < (7 + o — a0)/2. It is also blocked by the main-reflector for ¢, >
U, = arctan ((Dp + Di)/(2mmy)). It is well possible that Uy < (7 + 1o — a0)/2,
indicating that for ¢, > m/2 the first diffraction point Q.1 is always blocked. This
is expressed by

1, for 0 <, <m/2,
0, for m/2 < ¢, < (7410 — ) /2,
1, for (7 + o — @0)/2 < a < Uy,
0, for ¥ <, <.

(5.57)

Esub.l =

If Wy < (7 + %o — @) /2 then the second unobstructed region disappears.
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(a) (b)

Figure 5.22: Shadow regions for field contributions in a Cassegrain antenna system: shadow
region for direct ray (a), for first diffraction point on sub-reflector Qsus1 (b),
for second diffraction point on sub-reflector Qsu.2 (c), and for first diffraction
point on main-reflector Q. main1 (d).
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3. The second diffraction point Q.2 on the sub-reflector is blocked by the main-reflector
for ¢, > Wy = arctan ((D, — Dy)/(2mmy)). This is expressed by

1, for 0 <, < ¥,
€sub,2 ={ ° i . (558)

0, elsewhere.

4. The first diffraction point @mnqin,1 of the main-reflector is blocked by the main-reflector
for 7/2 <, < (7+1b0)/2. 1t is also blocked by the sub-reflector in case the projected
shadow of the sub-reflector covers the point @mainy (Fig. 5.22d). Whether this occurs
is determined following a method proposed in [75], and will not be demonstrated here.
The shadow indicator for diffraction point Qmain is defined as

0, for 7/2 < o < (7 + 20)/2,
€maing = § 0, if projected shadow of sub-reflector covers Qmain.1, (5.59)
1, elsewhere.

5. The second diffraction point @Qmain2 of the main-reflector is never obstructed in our
analysis. This is expressed by
Emain,z — 1- (5.60)

The expression for the total field Ey, 5 at the feed is found by weighting each individual
diffraction contribution by the polarisation vector é,.iv po1n for the corresponding direction
of arrival, and multiplying it with the feed gain G(¥) for that direction of arrival

EYu(Fri) = €airGy(tair)épotv,porrt(Vair, Bair) - EPTR(Fy )

T2, [esuiG(@0)epatvipotr (@0, —Puus) - B (Fha)
€t i Gy (€2)épotVpotti (2, ~Pons,i) * BER(Far)

€subi G 1(0)potVipot (€0, —P s — ) - ESS(Fr1)
€4ub,iG 1(X0)€potV,pott ( X0y —Psubi) * EfM(Fy)

€subiG 1 (€2)épotvpottr(E2y —Paups — ) - ESSFR(Fy 1) (5.61)
€mainiG 1 (X0)EpotVipolH(X0s ~Pmains) - EM(Fh)
EmainiG 1 (€0)EpotV,potH(Q0, ~Prmaini) * EMR(Fy1)
€mainiG1(X0)EpotV poti (X0s ~Prmains — 7) - EMM(Fin)
EmainiG1(Q0)EpotVpol H(00; —Prmaini) - EME(Fha)
emain‘iGJ' (Ez)épdv.pn-‘h’(fz‘—‘pmm'n..'} : E?‘SRR(FP&J)] .

+ 4+ 4+ + + + + + +

4

where we have introduced the angle W4, and @4, according to

U i, = arccos(§' - (&q X €x/2)), (5.62)
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D4 = — arccos (—S : eu) . (5.63)
SN Wagr

The polarisation vector é,ovpon is used to determine the co- and cross-polar signals. It is

defined in the spherical (r, ¥, ®) coordinate system with the origin at Fj,

Epotv = (cos W cos® ® + sin® ®)ég — (1 — cos U) sin @ cos D&/, + sin U cos B(ép x é,/2),
épotti = (1 — cos U) sin ¢ cos ®ép — (cos Usin® @ + cos? ®)é,/, — sin Usin B(ég X &,/2).
(5.64)
The minus signs in equation (5.61) in the polarisation vectors are introduced because
® = —, where the (p,1,¢) coordinate system is spherical with its origin at F, and ) = 7
is the forward direction of the antenna system.
The power sum EY ,; is used to obtain some average of the received signal. Note that
only the contributions which exhibit an independent phase behaviour may be added on
basis of power. This means that all signals that enter the antenna system via the same

point should still be added on a complex basis. So only five contributions remain:
1. the direct contribution;

2. two sub-reflector contributions that enter the antenna system via Qu.:; each contri-

bution consists of a cluster of five diffraction contributions;

3. two main-reflector contributions that enter the antenna system via @) mqin,i; €ach con-

tribution consists of a cluster of five diffraction contributions.

The power sum E,‘?_H is given by

Efu(Fr) = [[earGr(War)pavpn(Vairs 0ar) - EV'R(Fy )|

T2y {|esutiGr(eo0)épotvipotri( @0, = usi) - ES(Fia)

€aubiG 1 (62)Enotv,poitt (€2, =P oups) * ESFR(Fn)

€u8,iG 1(00)Epotv.pott (00 —Pyups — T) - ESS(F )

€5ut,iG 1 (X0)EpotVpoti(X0s — o) * EEM (Fin)

€subiG 1 (€2)Epotv.potti (€2 —Paubi — ) * E§SRR(Fh.1)|2 (5.65)
‘Cmain.iGI(XO)éPoW.PBIH(XB» —‘ﬂmain,i) : EEM(F-‘%J)

€mainiG 1(00)EpotV poth (00, —Prmains) - EMR(Fhy)

€mainiG 1(X0)EpotV,pol (X0, —Prmaini — ) - EMM(F, 1)
Emain.iG!(Qﬂ)épow.pofﬁ(aﬂ‘ —(pmciﬂ,§) * F:?fstpfl.l)

i 2y71/2
Emm,sGf({z)épow,pouf(fz,—‘Pmain,s]'E.MSHR(F.&J)l }] ;

+ + + 4+ + + + + + +
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whereas the polarisation-independent sum EFF, which represents a polarisation average of
the power received at the feed, is defined in equation (5.22).

For ¢, = (0,7), ¢. = 0, the determination of the diffraction points using Keller’s law
(eq. (2.40)) breaks down. These directions are the well-known caustic directions [70, 73]. To
calculate the received field at the feed in these regions, another method such as equivalent
edge currents [71, 72] or physical optics should be used.

5.4.3 Reception properties of a shielded Cassegrain antenna

In this subsection we discuss a method to calculate the reception properties of a Cassegrain
reflector antenna shielded by a perfectly-conducting half-plane. We will follow the same
procedure as outlined for the unshielded case, and therefore we first focus on the determi-
nation of the diffraction points.

If the obstacle is present, the analysis of the receiving properties of the double-reflector
antenna changes, because the incident wave at the antenna has a cylindrical wavefront, and
its direction of incidence is not uniquely determined. In the E- and H-plane analysis two
diametrically opposite diffraction points were found. In the arbitrary case, we have to use
a root-finding procedure to find the appropriate diffraction points.

Qur analysis follows the analysis set out in [3]; we know that the diffraction point at
the horizontal edge Q" is the projection of a specific point L of the reflector edge onto
the obstacle edge, if the arriving wave is propagating parallel to the ground plane into the
direction z. This means that this diffraction point Q" is given by

Q"= (L-§)§ + 2. (5.66)

It should be noted that the term in braces is a function of ¢, ¢, and ¢.. The projection
point Q" is a diffraction point if, and only if Keller’s law of edge diffraction is satisfied
at the point L. The location of L is given implicitly as a function of ¢. In this special
case where the direction of propagation is , Keller’s law is automatically satisfied at the
half-plane edge.

We obtain diffraction points Qs and Qnain,: on the sub- and main-reflector rim that
are not diametrically opposite. Once the diffraction points on the reflector edges are found,
the wave coming from Q" is diffracted at the antenna edge and it is directed into the
antenna system. From this point on, the analysis is identical to that of the unshielded
case.

Within the antenna system, we have at maximum 1 + (4 - 5) = 21 contributions, as in
the unshielded case:
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1. the ‘direct’ wave: this field contribution is diffracted at the point Q% = (Fj1-9)i+ zop3
and reaches the feed directly.

2. the waves that enter the antenna system via Quu1: the wave is diffracted at Q% , =
(Q_.sub,] - 9)¥ + zopZ, and excites a cluster of five diffraction contributions;

3. the waves that enfer the antenna system via ()52 the wave is diffracted at Q-‘:‘ub,z =

(Qsubz - 1) + zop2, and excites a cluster of five diffraction contributions;

4. the waves that enter the antenna system via Quuini: the wave is diffracted at

"f;m-n., = (Qmain1 - §)9 + 2op?, and excites a cluster of five diffraction contributions;

5. the waves that enter the antenna system via Qain2: the wave is diffracted at
-:m_“'z = (Qmain2 - 1)7 + Zob, and excites a cluster of five diffraction contributions.
The reader is referred to the previous section for the denomination of the individual field
contributions that arrive at the feed.

The summation of the field contributions at the feed is similar to that used in the
unshielded case. We obtain the total field E}, ;; according to equation (5.61), the power
sum Ef  according to equation (5.65) and the polarisation independent sum EF” according
to equation (5.22). Since the definitions of these quantities is identical to those used in the
unshielded case, they will not be repeated here.

We conclude with a remark. By inserting the obstacle into the propagation path, some
important parameters in the analysis change. It is obvious that the incident field strength
at the Cassegrain antenna is influenced by the diffraction process at the obstacle edge.
Apart from a change in amplitude, the diffraction at the edge of the obstacle causes a
phase shift due to the longer propagation path. The change in angle of arrival of the wave
incident upon the antenna system is more important, however. In the forward region of
the antenna (0 < ¥ < w/2) this may result in a considerable raise in feed gain Gy for the
interfering diffracted signal, thereby partly compensating the diffraction loss caused by the
obstacle.

5.4.4 Conclusions

In this section we have discussed the ray-tracing which is necessary to calculate the off-axis
receiving properties of a Cassegrain reflector antenna. We have presented a list of diffraction
contributions within the antenna system. Using this list, higher-order diffractions are

identified in the diffraction analysis of the Cassegrain antenna system. [t is remarked that
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near the forward and rear directions the diffraction analysis of the receiving pattern of the

double-reflector antenna breaks down due to the presence of (axial) caustics.

5.5 Off-axis radiation pattern calculation of a
Cassegrain antenna system with an application

to site shielding

This section? treats the theoretical aspects of the calculations involved in the determination
of the site-shielding performance of a Cassegrain reflector system shielded by a perfectly

conducting half-plane.

5.5.1 Introduction

Earth-station antennas of the Cassegrain type have been, and still are, frequently used
in satellite communications because of their advantageous antenna-noise properties. The
placement of these antennas is not performed arbitrarily, and a terrestrial communication
system and a satellite-communication system working at the same frequency will be at least
separated by the coordination distance. The coordination contour around the earth-station
antenna divides the space into a region in which coordination is necessary, and in a region
in which it is not. For a large time percentage the permissible level of the terrestrial signal
at the ground-station site will be below some mutually-agreed threshold. Due to anomalous
propagation conditions such as ducting, it is possible that the signal level induced by the
terrestrial communication system exceeds this threshold. Often this results in a very strong
interfering signal, and the coordination will result in agreements concerning the power
radiated by the terrestrial station, and the permissible level of interference at the receiver
site as function of the percentage of time. Obviously, this coordination distance is strongly
dependent on the propagation mechanism which is most likely to occur in the coordination
area. A solution to this interference problem is the use of interference-reduction techniques,
of which site shielding can be very effective.

Because of the orientation at which the earth-station terminal is mostly being used,

interfering signals will couple into the satellite-communication system via the sidelobes

2 Note: the major part of this section was already published: G.A.J. van Dooren and H.J.F.G. Govaerts:
Off-axis radiation-pattern calculation of a Cassegrain antenna system with an application to site shield-
ing, Proceedings of the 8th International Conference on Antennas and Propagation (ICAP), pp. 631-634,
Institute of Electrical Engineers (IEE), 1993.
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of the antenna radiation pattern. For this reason, knowledge about the off-axis radiation
(receiving] pattern of this kind of antenna system is desired, and, more importantly, insight
into the influence of the placement of an obstacle on the radiation pattern of the double-
reflector system is sought. Few results on the off-axis receiving properties of the Cassegrain
reflector antenna were reported in the literature.

This section focuses on the off-axis receiving properties of a Cassegrain reflector antenna.
First, the receiving pattern of a double-reflector system is calculated. Subsequently, it
is assumed that a hypothetical half-plane is used for shielding the antenna. For analysis
purposes, a model is proposed that considers the combined problem of obstacle and antenna
diffraction for the determination of the influence of the obstacle on the receiving pattern
of the antenna. Note that this combined approach is indeed necessary, because in many
cases the obstacle will be located in the near-field of the (large) Cassegrain earth station.
In this first analysis strut scattering will be neglected. The section is concluded with an
application of the model to an antenna with a prescribed geometry shielded by a half-plane.

The effectiveness of the shielding will be analysed as function of the antenna azimuth.

5.5.2 Geometry

The Cassegrain antenna system consists of a hyperboloidal sub-reflector with diameter Dy,
a paraboloidal main-reflector with diameter D,, and a feed. In Figure 5.23 a cross-section
of the antenna system is shown. The interrelations between various parameters indicated
in this figure can be determined from straightforward geometry [76], and were given in
Section 5.4. Points on the sub- and main-reflector rim will be denoted by S and M. The
focal distance of the paraboloidal main-reflector is denoted by f,, while the focal distance

of the hyperboloidal sub-reflector is denoted by 2f,.

5.5.3 Radiation-pattern calculation

In this section the E- and H-plane receiving patterns are calculated, which correspond to
the radiation patterns of the antenna by reciprocity. Geometrical optics (GO) and the
uniform theory of diffraction (UTD) are used to describe the interaction of the incident
wave with the antenna reflectors and feed.

From GO and UTD it is well-known that reflected waves within the antenna system are
of order k° with respect to the incident wave of order k%, where k = 27 /X is the free-space
wavenumber and )\ is the wavelength. Single-diffracted waves are of order k~/2 out of the
transition regions. From this it can be derived that reflection in the antenna system does not

attenuate the wave amplitude, while diffraction at the reflector rim will lower it by a factor



5.5 Off-axis radiation pattern calculation of a Cassegrain antenna system. ., 183

Figure 5.23: Cross-section through a Cassegrain antenna system; only the upper half is
shown.

k~Y/2. For the complexity of the model describing the wave-interaction phenomena within
the antenna system it is therefore of importance to know to what order of k contributions
should be included. From numerical analyses it was found that it is sufficient to include
contributions up to order k™7, resulting in a total number of rays £ = 21. In Table 5.1
a list of wave contributions in a descending order of £ is given. In this table the source
position is indicated by SC, while the diffraction and reflection mechanisms are abbreviated
by subscripts D and R, respectively. The feed position is denoted by F. Note that the
wave contribution corresponding to (double) reflection (1* in Table 5.1) only reaches the
feed if the wave is incident from boresight, which is a caustic direction. Also the backward
direction (azimuth angle p, = 7 and elevation angle ¢, = 0) is a caustic direction, and
both cases are excluded from subsequent analyses because of the primary interest in the off-
axis radiation patterns. For satellite communications @, > 0, and therefore the complete
radiation patterns from ¢, = 0 to y, = = in the horizontal plane can be calculated. It
was found that, for this particular geometry, it is allowed to neglect the wave contribution
corresponding to (single) reflection at the paraboloidal main-reflector (1** in Table 5.1),
and for this reason it is not included in the analyses. Depending upon the specific geometry
it should be investigated, however, whether this exclusion is appropriate or not.

The ray trajectories of the contributions listed in Table 5.1 are shown in Figure 5.24.
Note that the rays numbered 2 to 11 all appear twice: there are also ten rays labelled 2’ to
11’ which enter the antenna system at points S’ and M’ diametrically opposite to S and
M within this geometry (Sec. 5.4). By following each ray from its entering point through
the antenna system fo the feed position F', GO and UTD enable us to compose the total
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Table 5.1: Ray contributions in a Cassegrain antenna system.

@meer | Order | type ray path # rays |
1 k° | direct ray SC—F 1|

g reflected ray SC—oMr—Sr—F 0
kg SC—Mp—F 0 |

2 k=1/% | diffracted ray SC—Sp—F 2

3 SC—Mp—F 2

4 diffracted reflected ray | SC—Mp—Sr—F 2

5 SC—Sp—Mp—Spg—F 2

6 k' | double-diffracted ray | SC—Mp—Sp—F 2

7 SC—Sp—Mp—F 2

8 SC—Sp—Sp—F 2

9 SC—Mp—Mp—F 2

10 double-diffracted and | SC—Mp—Sp—Mr—Sp—F 2

11 | | reflected ray SC—Sp—Sp—Mr—Sr—F 2
| ' total 21 |

field at F": »
EY(F) x Y, aE(F), (5.67)

=1
where E, is the wave contribution reaching the feed via trajectory [, and ¢ is a shadow
indicator accounting for blockage of the ray path by either the sub- or main-reflector. These
blockage effects were included according to a method as described in [75] and they were
discussed in Section 5.4. Gain and polarisation of the feed are characterised by the voltage
gain function G;(¥) and the unit polarisation vector €,ovporr( W, ®), where the spherical
(r, ¥, ®) coordinate system has its origin at F'. The signal at the feed is given by (eq. (5.61))

21

1':’,5(}?) = Z EIGI(‘I”)EI(F) ' époIV,po!H(lIJh (I);) (568)

=1
The coordinate W, is given by op for rays arriving from a diffraction point on the sub-
reflector, and by yp for rays arriving from a diffraction point on the main-reflector.

A frequently-employed feed is the corrugated horn, of which the gain function Gj is
often described by a power of a cosine in the forward angular region, and by a constant
in the backward region. This pattern was introduced in equation (5.4). Furthermore, it is
assumed that the polarisation properties of the feed can be modelled as that of a Huygens
source.

A literature survey revealed that the single reference dealing with the determination

of the off-axis radiation properties of a Cassegrain system with a well-defined geometry
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Figure 5.24: Ray trajectories in a double-reflector system.

is [70]. The E- and H-plane patterns of an antenna with the same geometry as in [70]
were calculated in receive mode. The geometry considered is: D, = 20X, f,/D, = 0.4,
Dy /D, = 0.133, and f, = 2.44)\. For this geometry ap = 17.5°, 1o = 64.0°, and xo = 7/2.
The feed pattern is chosen in such a way that there is a -15 dB edge illumination for
the sub-reflector, a forward feed gain of 21.5 dBi, and a relative rear radiation of -50 dB
(Fig. 5.3).

In the Figures 5.25 and 5.26 some of the major individual wave contributions in the
E-plane pattern calculation that arrive at F' are given as function of the azimuth angle.
From these figures, the blockage by sub- and main-reflector can clearly be seen. The E- and
H-plane patterns of this antenpa can be found in Figure 5.27. If the results reported in [70]
are compared with ours for the same antenna geometry, it is found that good agreement
exists for the E- and H-plane patterns except in the regions for an azimuth ¢, of 70° to
90°. It is believed that this is caused by the incorrect combined ray tracing as performed
in [70], while a correct separate tracing of individual rays is performed here.
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RECEIVED POWER [dB]
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Figure 5.25: Individual contributions as function of azimuth angle ¢,; shown are the contri-

butions of rays 1 (——— ), rays 2 (— — — — — ), and rays 3 (+ —- —+ — - ).
Data D, = 20\, f,/D, = 0.4, Dy/D, = 0.133, f, = 2.44), a = 0.00316,
=373, . =0

RECEIVED POWER [dB]

80 100
AZIMUTH [degrees)

Figure 5.26: Individual contributions as function of azimuth angle @,; shown are the contri-
butions of rays 4 (——— ), rays  (— — — — — )yandrays 6 (+ —« — - — - )
Data: D, = 20\, f,/D, = 0.4, Dy/D, = 0.133, fn = 2.44), a = 0.00316,
m=2373,p. =0
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RECEIVED POWER [dB]
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Figure 5.27: Receiving pattern of a Cassegrain reflector antenna as function of the azimuth

angle @,; shown are the I-plane (————), and the H-plane (— — — — — ).
Da.‘:a D, = 20\, f,/D, = 04, Dy/D, = 0.133, fp = 2.44), a = 0.00316,
=373, ¢.=0

5.5.4 Shielded radiation-pattern calculation

The geometry for interference reduction can be found in Figure 5.18, which is nearly iden-
tical to the geometry studied in Section 5.1 (Fig. 5.1). The obstacle in the case studied in
this section is infinitely wide, and, obviously, the single-reflector antenna is replaced by a
Cassegrain antenna.

The incident wave, which propagates into the x-direction, first encounters the half-plane
obstacle, and then is incident upon the antenna system which is in the (optical) shadow
region for the interfering wave. The half-plane obstacle is defined by 2 = 0, 0 < z < zg.
The antenna is positioned in such a way that the wanted signal comes from a direction
specified by ¢, and .. Two things are immediately clear. Firstly, the obstacle-diffracted
field does not have a plane but a cylindrical wavefront. This causes that the rays arriving
at the antenna system are not parallel anymore. Secondly, the direction of incidence at the
antenna, and therefore also the positions of the diffraction points within the system, have
changed by the placement of the obstacle.

It is very well possible that the obstacle is in the near-field of the Cassegrain antenna.

For this reason the diffraction processes at the obstacle edge and antenna system cannot be
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treated independently. This combined treatment of obstacle and antenna will be referred
to as the ‘near-field approach’ (Sec. 5.6). Fortunately, UTD can also be used to treat
diffraction at the obstacle, and in this way the obstacle can be seen as just an additional
edge where diffraction may take place.

To find some kind of average of the signal response at the feed, the so-called power sum
is employed (eq. 5.21). For the present case, this power sum is compactly expressed as

(eq. (5.65))

M 2
Ej y(F) = \‘E lwaf‘I'r)E'r(F) ' épciV,pofH("ph¢f)‘ , (5.69)
=1

where M < £ = 21. Equation (5.69) resembles the calculation of the Euclidean length
of a vector in an M-dimensional space, where the M coordinates are independent. Note
that the contributions which enter the antenna system at the same point do not have an
independent phase relation, and therefore need to be added on a complex basis. This results
in five independent terms to be used in equation (5.69), i.e. M =5 (Sec. 5.4).

In Figure 5.28 the receiving patterns of a Cassegrain antenna in a shielded and an
unshielded geometry can be found. The geometrical parameters of the antenna system are
identical to those as used in Figures 5.25 to 5.27, but the elevation is set to @, = 7 /9.
The difference in height between the obstacle edge z,, and the aperture centre M, of the
antenna at (zpr,0,2p) is 2,5 — 2y = 100A. Furthermore, the distance z,; between obstacle
and antenna is zp; = 1000\. Results for both a vertically- and horizontally-polarised feed
can be found as function of ¢,.

The ratio of the received field in the absence and the presence of the obstacle is a
measure for the effectiveness of the shielding, and is called the site-shielding factor (SSF').
The SSF deduced from Figure 5.28 is shown in Figure 5.29 for both vertical and horizontal
polarisation. It is found from this figure that the polarisation, in this specific case, does
not strongly influence the SSF as function of the azimuth angle ¢,.

A more extensive treatment of the SSF of a Cassegrain system can be found in Sec-
tion 5.6, where also a comparison is made with two other methods to calculate the SSF,
viz. the ‘far-field method’ and the CCIR-recommended method. The latter methods treat
the obstacle and antenna diffraction independently even for small zp;. In Section 5.6 also
a comparison between double- and single-reflector antenna shielding is made. The depen-
dence on other antenna parameters has been examined: the dependence on the elevation
angle is described in [74], and the influence of the distance between the antenna and the

obstacle is discussed in [45].
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Figure 5.28: Receiving pattern of a Cassegrain reflector antenna as function of the az-
imuth angle @, based on the power sum; shown are the result for horizontal
(——— ), and vertical polarisation (- — — - — - ).

Qata D, = 20, f,/D, = 0.4, Dy/D, = 0.133, f, = 2.44), a = 0.00316,
= 37.3, . =0, xp = 1000}, zpr = 100A, z = 200

&

SSF_I [dB]

) 20 40 6 80 100 120 140 160 180
AZIMUTH [degrees]

Figure 5.29: SSF of a Cassegrain reflector antenna as function of the azimuth angle ¢,
based on the power sum; shown are the result for horizontal (———),

and vertical polarisation (- —+ —+ — ).
Data: D, = 20), f,/D, = 0.4, D,/D, = 0.133, f, = 2.44), a = 0.00316,
=37.3, @e = 0, zpr = 1000, zps = 100, z, = 200X



190 Ch. 5: Site shielding of symmetrical parabolic reflector antennas

5.5.5 Conclusions

The off-axis receiving pattern of a Cassegrain reflector antenna with a prescribed geometry
as function of antenna azimuth was calculated in the absence as well as in the presence of
a half-plane obstacle. The model uses GO and UTD and includes 21 field contributions to
calculate the total field at the feed. These contributions are individually followed through
the antenna system and are spatially weighted by the feed pattern assumed. The ray
analysis revealed that some of the individual contributions can be neglected to simplify
the analysis (e.g. rays 3,7,8,9). The model proposed analyses the combined problem of
obstacle and antenna diffraction since in many cases the obstacle is in the near field of the
earth-station antenna. Results of the additional attenuation caused by the presence of the

obstacle on the propagation path of an interference source are given.

5.6 Shielding of single- and double-reflector earth-

station antennas: a near- and far-field approach

This section® describes the off-axis radiation-pattern calculation of a Cassegrain antenna
system with prescribed geometrical parameters, in the absence and presence of a (hypo-
thetical) half-plane, located either in the near- or far-field of the antenna. The attenuation
of the incident field caused by the obstacle as function of antenna orientation and position
is calculated and presented. The results for the half-plane shielding of the double-reflector
system are compared with those obtained for a single-reflector antenna system shielded by
the same obstacle. Three different, but related, approaches for the calculation of the addi-
tional propagation loss for the wave reaching the Cassegrain antenna system are presented
and compared. It is found that the proposed near-field approach gives the best results.

5.6.1 Introduction

Frequency sharing in present-day radio-communication systems may lead to mutual in-
terference between satellite and terrestrial links. Also transhorizon propagation of elec-
tromagnetic (EM) waves during anomalous propagation conditions such as ducting and
elevated-layer reflection may induce signal levels which exceed mutually agreed thresholds.

Several interference-reduction techniques are available to raise the carrier-to-interference

3 Note: the major part of this section was already published: G.A.J. van Dooren and H.].F.G. Govaerts:
Shielding of single- and dual-reflector earth-station antennas: a near- and far-field approach, IEE Proc.
Pt. H, vol. 140, pp. 309-314, 1993.
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ratio (CIR) for a certain satellite link in the case of interference problems [77, 3]. Besides
coding and decoding of the wanted signal, also the principle of interferometric cancellation
can be used to suppress the level of the interfering signal. Another method for reducing the
interference level at a receiver location is site shielding. This technique tries to introduce
an additional propagation loss for the interfering signal, without affecting the level of the
desired signal. The additional propagation loss may be, for instance, due to diffraction of
the interfering EM wave at some (artificial) object on the propagation path. A figure of
merit for the shielding effectiveness is the so-called site-shielding factor (SSF) which was
defined in equation (3.2)

The isolated-obstacle problem was treated in Chapter 3 for various type of obstacles.
This analysis amounts to the calculation of the field distribution behind an obstacle, and
obstacles like the half-plane, the finite-width screen, and the rectangular block were anal-
ysed using the UTD. For simplicity the obstacles were assumed to be perfectly conducting,
and large in terms of the wavelength A\. The SSFs provided by some scaled obstacles have
been experimentally verified as described in Sections 4.3, 4.4, and 4.5, and good agreement
between theory and experiments was obtained.

The isolated-obstacle problem can be treated by assuming an antenna with an isotropic
radiation pattern at some observation point in the vicinity of the obstacle. In case a non-
isotropic radiation pattern is desired, a spatial weight function for the individual wave
contributions can be introduced. Note that if the obstacle is in the near field of the
antenna, the propagation mechanisms at the obstacle and the antenna cannot be treated
independently. Rayleigh’s far-field criterion can be used for determining whether a separate
treatment of obstacle and antenna is theoretically allowed or not.

In the unshielded case, the far-field receiving properties are calculated, taking into con-
sideration the orientation of the antenna in terms of azimuth (¢, ) and elevation (g, ) angles.

In this section the emphasis is placed on the receiving properties of a Cassegrain antenna
in a shielded and in an unshielded geometry. The shielded geometry corresponds to a
Cassegrain antenna shielded by a half-plane of height z,,. In a Cartesian coordinate system,
the half-plane is described by = = 0, 0 < z < z,. The aperture centre M, of the reflector
antenna is at (zar,0,zm). The geometry used is shown in Figure 5.18. Note that, in the
shielded configuration, UTD is used to describe the interaction of the incident wave with the
obstacle, as well as the interaction of the (diffracted) wave with the reflector-antenna rims.
For this reason, the presence of the obstacle is actually the introduction of an additional
edge on the propagation path of the interfering wave.

In the following the calculation of the receiving pattern of a Cassegrain reflector system

will be briefly discussed. Subsequently, the obstacle is placed, and the (near-field) receiving
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pattern of the shielded configuration is determined. Then the receiving properties of a
single- and double-reflector antenna shielded by a half-plane are compared. Results of the
shielding of a double-reflector system based on a near- and a far-field analysis are given.
Conclusions concerning the model, results presented, and the importance of the near-field

analysis are drawn.

5.6.2 Radiation-pattern calculation

Despite the fact that the Cassegrain antenna system has been widely used in satellite
communications, few results of determining the off-axis radiation pattern of an antenna
with a well-defined geometry have been reported in the literature [70, 18]. Furthermore,
few details concerning the methods used can be found, or omissions are present. In [70], for
instance, a combined-ray approach is used, i.e. the rays are not separately traced through
the antenna system, while in [18] only main-beam patterns are given.

The following approach has been used in determining which ray contributions should
be included in the analysis. As a start, a number of most important ray contributions are
selected on the basis of physical insight and asymptotic behaviour of the GO and UTD
contributions, These ray contributions are separately traced through the antenna system
and each ray is spatially weighted by the receiving pattern of the feed. The individual
complex field contributions are then added to give a measure for the received power at
the feed position. The received signal at the feed is found according to equation (5.68).
Co- and cross-polarised signals can be separated by choosing either horizontal or vertical
polarisation. A total of 21 ray contributions is found to be sufficient to describe the receiving
properties of the double-reflector system as discussed in Section 5.4.

The feed gain function Gy (see eq. (5.68)) used is the approximation of the radiation
pattern of a corrugated horn. In the forward angular region the voltage gain is modelled
by a power of a cosine, while in the backward angular region it is given by a constant
(eq. (5.4)). In the analyses the feed has the polarisation properties of a Huygens source.

'According to UTD, the incident interfering waves can reach the feed only via special ray
paths. These paths are determined by the locations of the diffraction points, which can
be found using Keller’s law of edge diffraction. All propagation paths to and within the
antenna system were given in Section 5.4.

Assumptions in the analysis are that the influence of the sub-reflector support structure
may be neglected, and that no reflection occurs at the earth’s surface. Also it was assumed
that the interfering wave arriving at the antenna site is due to a very distant source.

Therefore it has a plane wavefront, and for simplicity a unit amplitude is assumed. The
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polarisation vector is either § or Z, and the propagation direction is assumed to be # as
shown in Figure 5.18.

Sub- and main-reflector blockage effects have been included according to a method
described in [75]. Throughout the section the following geometrical parameters for the
Cassegrain system will be used: main-reflector diameter I, = 100, sub-reflector to main-
reflector diameter ratio Dy,/D, = 0.15, sub-reflector eccentricity e = 1.67, focal distance
to main-reflector diameter ratio f,/D, = 0.4, main-reflector edge illumination relative to
boresight is -20 dB, and relative rear-radiation level of the feed -50 dB. The aperture centre
M, is located at (zp,0,2p), with zp = 50,

In Figure 5.30 the E-plane pattern based on equation (5.68) is given. Note that for
¢, = 0 the directions ¢, = 0 and ¢, = 7 are caustic directions. Around these directions
the UTD cannot be applied, and other methods should be addressed to correctly evaluate
the field. It was found that the sidelobes of the calculated pattern lie below the CCIR
standard reference sidelobe pattern [T8].
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40}

S0k

60F
a0—
00

50 100 150

AZIMUTH [degrees]

Figure 5.30: E-plane pattern of a Cassegrain reflector antenna as function of the azimuth
angle @,.
Data: D, = 100}, f,/D, = 0.4, Dy/D, = 0.15, e = 1.67, a = 0.00316,
m =432, p. =10
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5.6.3 Shielded radiation-pattern calculation

If the perfectly-conducting half-plane is present, the analysis of the Cassegrain antenna
system remains nearly unchanged. The main difference is that, in the shielded case, the
interfering wave is subject to diffraction at the obstacle edge. Therefore the angle of arrival
as seen from the antenna has changed. In contrast with the unshielded case, the wave
incident upon the antenna system does not have a plane, but a cylindrical wavefront.

In the analysis of the shielded configuration it is assumed that the complete antenna is
in the shadow region behind the half-plane obstacle. Furthermore, the elevation angle ¢, of
the antenna system is such that the wanted signal from the satellite is not obstructed, i.e.
the ‘aperture cylinder’ is well directed above the obstacle edge. For this reason the elevation
angle is chosen to be ¢, = m/9. The distance between antenna and obstacle zs is chosen
to be zps = 1000, while the obstacle height z,, = 300\, The incident interfering field has a
§ polarisation. The receiving patterns for the shielded and unshielded configuration based
on equation (5.68) can be found in Figure 5.31. Note that the received field in Figure 5.31
can also be calculated at ¢, = 0 and ¢, = 7, because for ¢, = 7/9 these directions are
no longer caustic directions. Also shown in Figure 5.31 are the results from the so-called
‘power’ sum EY ;; introduced in equation (5.65). This power sum represents some kind of
average of the result as given by the phasor sum as introduced in equation (5.61).

Ray contributions which do not have an independent phase behaviour are still added
on a phasor basis. This means that waves entering the antenna system via the same
diffraction point are still added according to equation (5.68). The independent results are
added according to equation (5.69), and it is found that five terms remain in the summation
(Sec. 5.4). From Figure 5.31 it can be seen that the power-sum result behaves much more
smoothly.

The dashed curve in Figure 5.32 gives the SSF of the shielded Cassegrain system for
zp = 1000A. Tt was obtained by subtracting the shielded from the unshielded result in
Figure 5.31. The dips in the pattern in this particular curve are caused by the spillover
lobes present in the receiving pattern. The SSF as function of azimuth ¢, at different
distances z to the screen is shown in Figure 5.32. It is seen from this figure that the SSF
becomes lower with increasing distance and that the complete curve becomes more smooth.
This lowering of the curves can be explained by the fact that for large distances zps the
loss caused by diffraction at the obstacle edge decreases, i.e. the incident wave bends more
easily around the screen. That the curves become more smooth with increasing distance
is readily explained. For small distances zs the obstacle-diffracted ray contributions have
a large variation in spatial weighting as function of ¢,. If zps is increased, the individual
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Figure 5.32: SSF of a Cassegrain reflector antenna as function of the azimuth angle ¢, and
xp; shown are the results for zp = 750\ (upper ——— ), zpr = 10004
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rays propagate (nearly) parallel and the variation in spatial weighting is decreased. From
the analyses it was found that not much difference exists for horizontally (§) or vertically
(%) polarised incident waves. For this reason only results for horizontally-polarised incident
waves are given. The fact that the dip in the curve for zps = 7501 is lower than for the other
curves is due to the fact that at zps = 750\ there is a strong single-diffraction contribution
from a point on the sub-reflector. This particular contribution is obstructed for larger zs.

5.6.4 Comparison of single- and double-reflector antenna shield-
ing

The analysis of the shielding of a double-reflector antenna raises the question whether the
antenna type is of importance in the site-shielding calculations. The calculation of the SSF
of a single-reflector antenna shielded by a half-plane was treated in Section 5.5, which is
based on work as reported in [3]. Some important results presented in [3] were reproduced
[45, 74], and compared to the double-reflector shielding results. The parameters as used
in the double-reflector simulations are transformed to the corresponding parameters for
a single-reflector antenna using the principle of the equivalent parabola (Sec. 5.4). An
identical (main-)reflector diameter, edge illumination, focal distance to reflector-diameter
ratio and relative rear-radiation level is used.

Despite the fact that the received levels for the single- and double-reflector antenna
show a substantial difference, the deduced SSF curves shown in Figure 5.33 are very similar,
except in the feed spillover regions. In Figure 5.33 these regions are given by 20° < ¢, < 30°
and 100° < ¢, < 110°. Outside these spillover regions, the SSF results for a single- and
double-reflector antenna are nearly identical. This leads to the conclusion that, except for
the spillover regions, the antenna type is not of primary importance for the calculation of
the SSF if the antennas have an identical diameter and edge illumination. This conclusion
was also suspected in [3], but was not proven explicitly. The major differences between
the results in Figure 5.33 are caused by specific blockage effects of the ray that reaches the
feed directly. By the introduction of the obstacle the azimuth angle at which this blockage
effect takes place, changes. Hence, the differences between the results for the unshielded
and the shielded geometry change.

5.6.5 Near- and far-field antenna shielding

In the foregoing it was mentioned that, if the obstacle is in the near field of the Cassegrain
antenna, the diffraction mechanisms at the obstacle and reflector edges cannot be treated

independently. In the following, results based on three different methods are presented for
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Figure 5.33: Comparison of SSF results as function of azimuth angle y,; shown are the
result for a Cassegrain antenna (—————), and the result for the single
reflector antenna (— — — — — )

Data: D = 100A, f/D = 0.4, edge illumination of -20 dB, xp = 1000A,
M = 50)!, Zobh = 300X

an antenna orientation ¢, = 0 and ¢, = 7/9. The first method was discussed in an earlier
section and is referred to as the ‘near-field approach’. The receiving pattern of the antenna
is calculated in combination with the obstacle diffraction.

The second method is referred to as the ‘far-field approach’. It assumes that the antenna
can be treated as a point receiver at the antenna centre, having a receiving pattern equal to
the far-field receiving pattern of the Cassegrain antenna system. In the unshielded case, the
received field has a level that is determined by the sidelobe attenuation at an angle ¢,. In
the shielded case, the interfering wave is diffracted by the obstacle edge, and consequently
the angle of arrival at the antenna system has changed. This means that the SSF is found

according to

SSF = Ly — AG = Ly, + G(we) — Glp. — 6p) [dB], (5.70)

where Li. > 0 is the knife-edge diffraction loss caused by the obstacle, which can be
calculated using equation (3.65). The factors G(y.) and G(p. — ) are the antenna
sidelobe attenuation factors for the angles of arrival in absence and presence of the obstacle,
respectively, not to be confused with the feed gain function G;. The parameter d¢ is found
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from

by = arctan (Ewﬂ) ; (5.71)
Iu

The near- and far-field for a reflector antenna with diameter D are separated by the Rayleigh
distance R = 2D?%/). Theoretically, this far-field approximation can be used for z3 > R.

The third method, which is referred to as the ‘CCIR approach’ [2], is also based on
equation (5.70) and assumes the CCIR standard reference sidelobe pattern as given in [78]
for the function G. This reference sidelobe pattern is given by

32 —25logp [dBi], for 1° < p < 48°,

5.72
—10 [dBi], for 48° < ¢ < 180°, (5:72)

Gly) = {
and is only valid for 100A < D, < 150\. The application of this method is subject to some
stringent conditions that have been discussed in [3] and will not be repeated here. The
main restrictions are a limited value of the diffraction angle at the obstacle edge (thereby
limiting 23 to some maximum value), and a minimum value of z [3].

As a comparison, the SSF based on these three methods was calculated. In Figure 5.34
the three deduced SSF results are shown. Here, the obstacle height z,, = 200\, It is
seen from Figure 5.34 that even for distances xps relatively small compared to R the near-
and far-field method give quite similar results. Furthermore, the CCIR approach is quite
limited in its use, mainly due to the assumptions employed in the knife-edge diffraction
term L. of equation (5.70). The large spikes in this figure are located at distances where
in theory nulls appear in the E-plane receiving pattern of the Cassegrain antenna.

The smallest value of zpr used in the calculations is determined by the fact that the
aperture cylinder may not be blocked by the obstacle. For this reason also a configuration
where the incident (interfering) wave enters the antenna system from the backward angular
region was analysed. This corresponds to v, = 7. Furthermore, the elevation angle was
kept constant at ¢. = /9. In this way, the aperture cylinder is never blocked, even when
the terminal is placed very close to the obstacle. In Figure 5.35 the SSFs based on the near-
field and the far-field approach are given in case s ranges from a minimum value of 25\ to
a maximum value of 1000\, corresponding to normalised distances of respectively 0.001R
and 0.05R. For this particular antenna orientation, the CCIR-recommended procedure
cannot be used.

From Figure 5.35 it can be seen that there may exist a considerable difference between
the results from the near- and far-field approach. Moreover, the difference is not constant
as function of zps. The ripple on both curves is caused by two dominant interfering ray
contributions as the antenna moves away from the obstacle. From the figure it is also seen

that placing the antenna very close to the obstacle is no guarantee for obtaining a very large
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Figure 5.34:

Figure 5.35:
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SSF of a Cassegrain reflector antenna as function of zp; shown are the results
for the near-field approach (—————), the far-field approach (— — - — — ),
and the CCIR approach (+ — - —- —- p}

Data: D, = 100}, f,/D, = 04, Dy/D, = 0.15, e = 1.67, a = 0.00316,
m= 43.2, @o =0, e =7/[9, zps = 50, 2,5 = 2007
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SSF of a Cassegrain reflector antenna as function of zp in the very near field;
shown are the results for the near-field approach (————), and the far-
field approach (— — — — — ).

Data: D, = 100}, f,/D, = 0.4, D,/D, = 0.15, ¢ = 1.67, a = 0.00316,
m =432, p, =7, . = 7/9, zp = 50}, z, = 200X
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SSF. The dip in the near-field curve at zj; = 0.005R is due to the fact that for zpy > 0.005R
the ray from the obstacle edge to the sub-reflector is blocked by the main-reflector, while
for zpr < 0.005R it is not. The fact that the dip in the far-field result is found at a larger
distance zps is due to the assumption rays that arrive in a parallel way.

From Figures 5.34 and 5.35 it therefore appears that the near-field method as presented
in this section is accurate, and that, depending on the relative orientation of the antenna
with respect to the obstacle, large differences between the near- and far-field approach can

be found. The implication is that the CCIR method is quite unsatisfactory.

5.6.6 Conclusions

The off-axis radiation pattern of a Cassegrain antenna system in the presence as well as in
the absence of a half-plane obstacle was calculated. The site-shielding factors obtained are
well above 20 dB, even for fairly large distances between antenna and obstacle and small
differences in height of the obstacle edge and antenna aperture centre M,

For single- and double-reflector antennas with identical diameter and edge illumination,
it was shown that the antenna type is not of primary importance in the determination
of the SSF, except in the spillover regions. Furthermore, it was shown that the near-field
approach provides an accurate result, and, depending on the orientation of the antenna with
respect to the obstacle, substantial differences may be found as compared to results given
by the far-field method. It was also found that the current CCIR method is very restricted
in its use and gives less accurate results than the simple far-field approach. For this reason
the use of the far-field approach is recommended in case the antenna and obstacle have a
separation larger than 0.25R. The near-field method, as discussed in this section, should
be used in all other cases, especially in situations where the antenna is very close to the
obstacle. From the analysis performed in Section 5.3 we know, however, that in many
practical cases the far-field approach is the only method tractable for implementation if
more than one obstacle edge needs to be considered.

Applications of the shielding model as presented in this section are the evaluation of the
shielding of earth stations in (transhorizon) interference problems. The model can also be
of primary importance in the determination of the optimal placement of VSAT terminals

in urban areas.
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Chapter 6

EM field-strength prediction by ray
methods

6.1 Introduction

In the last decade, the market for personal telecommunications is growing rapidly. There-
fore, paging channels, mobile, broadcast and portable services have more and more the
interest of the planners of modern telecommunications systems. Especially Land Mobile
Satellite (LMS) systems have a large and continuously increasing interest of system de-
signers and radio-wave propagation engineers. It is obvious that, for planning purposes,
it is necessary to investigate whether a certain system will meet the performance criteria
required before the system is actually installed. Therefore, a prediction tool from which
information regarding the performance of the communications channel can be deduced, is
required. Nowadays, most of the LMS field prediction models are based on regression fits to
numerical measurement results [79, 80, 81] and fail for some particular urban environments.
Furthermore, the theoretical models available are often based on crude approximations and
assumplions. So, a more accurate predictive procedure should use a detailed description
of the urban environment in order to analyse the channel characteristics for a number of
well-defined mobile receiver sites.

In Section 6.2 a deterministic model for field-strength prediction in an urban environ-
ment is described, which facilitates the calculation of communication channel parameters
such as fading, Doppler shift, and time-delay spread. Different types of multipath wave-
propagation phenomena, such as reflection, diffraction, and higher-order combinations of
reflection and/or diffraction, are considered. The model is based on the Uniform The-
ory of Diffraction (UTD) and includes the effects of the non-perfect conductivity of the
obstacles and their surface roughness. Moreover, it permits the antenna characteristics
of both the transmitter and receiver to be taken into account. Also, the problem of an
object in the near-field of the antennas is addressed. Objects with complex shapes are
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modelled by a number of standardised objects with suitable dimensions and material prop-
erties (Sec. 3.2.4). Particular problems present in conventional prediction methods, such
as strong shadowing and reflection, are solved by the new model. In this way, the model
extends the region of validity of existing models, and improves the insight into the wave-
propagation processes. The major part of this research has been financed by the European
Space Agency (ESA).

A simplified model for field strength prediction is proposed in Section 6.3. This model
makes use of an advanced ray-tracing scheme, and therefore it is very efficient from a com-
putational point of view. It is believed that, for the derivation of statistical information
from the deterministic model, this approach is more useful than the complete deterministic
approach because of its efficiency and simplicity. Since in practical situations the commu-
nication channel is considered fo be reliable only when the relative field strength is above
-15 dB relative to the free-space level, the sophisticated prediction model introduced in
Section 6.2 can be simplified to include only wave contributions to certain order. This
efficient ray-tracing scheme, illustrated by an example, is dealt with in Section 6.3.

The chapter ends with a discussion on the usefulness of the deterministic approach
outlined here when applied to other types of telecommunication systems like micro-cellular

of terrestrial communication systems (Sec.6.4).

6.2 FiPre: a prediction tool for the planning of mo-

bile and fixed satellite communication services

In this section! a ray model for Field Strength Prediction (FiPre) in an urban environment
is presented. The model is based on UTD, extended to include effects of non-perfect con-
ductivity and surface roughness of the objects (Sec. 2.6). Through the use of standardised
object shapes the user is able to build up the frequency-scaled model of the urban area to
be analysed. FiPre is a prediction and planning tool which can be used by system engi-
neers in the design of a mobile or fixed communication service in built-up areas; it delivers
accurate information on signal amplitude and phase, time delay and delay-spread profiles,
delay-Doppler spectra and so forth. As an example, the results of an analysis carried out

with FiPre on a scaled model of the Eindhoven University of Technology (EUT) campus

! Note: the major part of this section was already published: G.A.J. van Dooren and M. Sforza: FiPre:
a Prediction Tool for the Planning of Mobile and Fixed Satellite Communication Services , 1st IEEE
Symposium on Communications and Vehicular Technology in the Benelux, pp. (6.1-1)-(6.1-8), Delft, The
Netherlands, 1993.
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are presented.

6.2.1 Introduction

In the last decade, the market demand for conventional mobile and fixed communica-
tion services and for new concepts of personal communication networks through hand-held
terminals has dramatically increased. Such growing request has spurred the interest of
designers and planners and the development of new systems. In this respect, urban and
suburban areas are likely to cover a significant niche of such market, hence a thorough
understanding of the EM propagation mechanisms and phenomena in these environments
is mandatory. To date the analysis of the link impairments and the estimation of their
impact on the system performance, especially for the LMS services, has been carried out
on the basis of empirical, statistical models. The applicability of these prediction models
is generally very limited and often fails to address properly the satellite channel with its
inherent characteristics. A deterministic prediction tool not related to a specific urban
scenario and based upon canonical and well-known EM laws is therefore strongly needed.

The model, developed at the EUT Telecommunications Division mostly with funding
from ESA, is basically a ray model using the well-established UTD approach extended to
take into consideration effects due to non perfect conductivity and surface roughness of the
objects (Sec. 2.6). The transmit and receive antenna characteristics can also be taken into
account by selecting one of the numerous pre-defined radiation patterns available in FiPre.
The same approach has led to the paralle] development of a similar package, also largely
funded by ESA [82].

The user can design his own urban layout with the help of simple standardised block-
shaped objects and combinations of them (Sec. 3.2.4). As the position of the observation
point can be arbitrarily placed in the urban scaled model, trajectories of vehicles can be
simulated at the aim of evaluating the received signal amplitude and phase and the main
characteristics of a wide band LMS communication channel: time delay and delay spread,
Doppler spectra and delay-Doppler spectrogram. Data are also available for additional
narrow-band statistical analyses (not included in the present version of FiPre). Similarly,
with a subset of these data FiPre can be also effectively used to solve typical site shielding
problems for VSAT networks and fixed broadcasting services (Ch. 5).

In this section the wave-propagation model and the software tool developed are de-
scribed. Also the processing needed to extract relevant data from the ray-tracer output is
discussed. The model will be used to analyse the case of a mobile driving across the EUT
campus, and the operating frequencies will be 1.5 and 2.3 GHz. Data will be presented for
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the case of strong specular reflection and shadowing effects, the latter usually not modelled
in statistical and empirical wave-propagation models. Future improvements for the model
are presented, and conclusions are drawn.

6.2.2 Description of prediction model

The wave-propagation model uses Geometrical Optics (GO) complemented with the UTD
to account for the bending of EM waves around (sharp) edges. In these theories, the EM
wave is assumed to travel along lines in space, which are called rays. In this high-frequency
description of EM wave propagation several classes of waves are distinguished, correspond-
ing to the physical propagation mechanisms the waves encounter while propagating from
some source S to an observation point Obs. The following classes of EM waves are defined:

1. The direct wave of order £°, where k is the free space wavenumber;

2. The reflected wave of order k°, where the reflection may either take place at the

ground or at an obstacle in the urban environment;

3. The edge-diffracted wave of order k~'/2, where the diffraction takes place at a sharp
edge of the obstacle;

4. The double-diffracted wave of order k=!, and both diffractions take place at the same

obstacle;
5. The corner-diffracted wave of order k71
6. Waves that encounter combinations of the mechanisms just described,;

7. Waves that are subject to EM scattering at objects in the vicinity of the observation
point. This type of mechanism was included for the modelling of objects that scatter
EM energy; it is mainly intended for analysis purposes, and the scatterer is assumed
to be a sphere with prescribed equivalent radius.

Some of the wave contributions are shown in Figure 6.1. For analysis purposes also a
reference ray was introduced, which is not subject to obstruction. It is identical to the
direct wave only in line-of-sight (LOS) conditions. The frequency range for which the
model was primarily developed is 1 to 60 GHz. Within this range numerous results have
been reported in the literature dealing with the application of the UTD with regard to
scattering problems, and data concerning the permittivity of building material is available
[49]. Note that for the double-diffraction contribution both diffraction points lie on the
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From satellite

scatterer

Figure 6.1: An obstacle and various wave contributions included in FiPre.

same obstacle, because the aim is to obtain continuous fields at any arbitrary point in
space. It was found that multiple-diffracted contributions from different obstacles need not
be incorporated [49, 45].

In general one can say that reflection does not lower the order of the contributions,
whereas diffraction lowers it by a factor k='/2. Qbviously, only contributions to a certain
order of k need to be included in the analysis. In FiPre this order is k7', corresponding to
double and corner diffraction.

In GO, an EM wave is completely described by its polarisation, the amplitude and
phase at some reference point, the divergence factor accounting for attenuation as the
wave is propagating, and the direction of propagation k (Ch. 2). Obviously, all of the
aforementioned wave parameters change as the wave interacts with the objects in the
environment. The ray-tracer routine of FiPre keeps track of these changes in the wave
parameters. As it is assumed that the medium in the urban environment is isotropic and
homogeneous, the rays are straight lines in space. This enables the ray-tracer to quickly
find reflection and diffraction points using schemes and procedures originally developed for
computer graphics [83]. These routines were outlined in Section 3.2.5. In this way also
the complex problem of ray obstruction by polygonal obstacles can exactly be solved, and
these procedures are very time efficient from a computational point of view.

Because GO and UTD are deterministic methods, S and Obs are well-defined points in
space. The wave launched at S interacts with the environment before it reaches Obs and
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results in multipath propagation. At the point Obs the total electric field £O% is given by

E%% « S By, (6.1)
1

where E| is a wave arriving at Obs through one of the propagation phenomena mentioned.
At Obs, each component E is weighted in amplitude and polarisation to yield co- and

cross-polarised signals at the antenna terminals
E% =% G(0)E) - pora(9) = Y Ui, (6.2)
[ 1

where é,,,; is the polarisation vector corresponding to contribution [ used to separate the
co- or cross-polarised signal. The function G is introduced for spatial weighting of the waves
and the angle ¥ is the direction cosine between the boresight direction of the antenna and
the direction of arrival fc;. If Obs is assigned a vectorial velocity, !;; is also used to calculate
the Doppler signal with magnitude |Uj|. Because the waves do not travel along the same
propagation path, differences in path length are automatically introduced. Each wave will
therefore have its own path length s;, that, related to the path length of the reference ray
Srefy 18 easily converted to time delays using the speed of light c.

To model the objects in the urban lay-out a standardised obstacle has been used, referred
to as the block-shaped obstacle (Sec. 3.2.4). This obstacle is depicted in Figure 6.2 and is
specified numerically by its eight corner points, its permittivity and its surface roughness.
Note that the edges of the obstacle are straight, and its faces are plane; this considerably
simplifies the ray-tracing procedure (Sec. 3.2.5). No further restrictions apply to the obsta-
cle as to the position of its corner points. It is permitted to make logical combinations of
the objects, and in this way fairly complex geometries can be assembled. During the study
it was found that for this application no circular cylindrical objects are needed in the model
[49]. This is caused by the fact that for these types of objects the reflected energy is more
important than the diffracted energy as argued in Section 4.6. The reflected waves from the
circular-cylindrical structures are replaced by reflected and diffracted contributions from
a rectangular cylinder resulting is a slightly modified multipath behaviour. It was found
that only in the (small) shadow region behind the object errors are introduced due to this
approach [49].

The objects are defined in an Cartesian (z,y,z) coordinate system, of which the zy-
plane is assumed to be the ground plane onto which the objects are placed. The number
of objects to be analysed is mainly restricted by the CPU time, the number of observation
points, and the types of contributions included.

Before the ray-tracer can actually be invoked some input data has to be defined:
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5.

6.

Figure 6.2: The block-shaped obstacle in its various geometries.

The source position;

The trajectory of the observation point Obs and the number of sample points. In
general, this trajectory is a line in space, but also a list with Cartesian coordinates

for Obs can be given;
The frequency;

The source polarisation; included are linear (H/V) and circular (LHC/RHC) polari-
salion;

The types of contributions to be included in the ray-tracer analysis;

Optional: a list of scattering points with their equivalent radius;

The ray-tracer algorithm produces a large data file where for each sample point the type
of ray (direct, reflected, diffracted, ...), E;, k, and s; are specified. Using this data file the

data postprocessing can be carried out.

6.2.3 Data postprocessing

The types of contributions included in the ray tracer can be individually selected to be taken

into account in the data postprocessing. The spatial antenna weight functions GG obviously

depend on the angle ¥ that the direction of propagation makes with the boresight direction.
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The latter is also defined by the user. In the postprocessing routines the following weight

functions are implemented:

1. The isotropic pattern;

2. The CCIR reference pattern for small reflector antennas (eq. (5.72));

3. A Bessel pattern derived from a uniformly illuminated circular aperture;
4. A power of a cosine pattern with pedestal (eq. (5.4));

5. The hemi-spherical antenna [49];

6. The toroidal pattern [49];

7. A tabulated antenna pattern defined or measured by the user.

In this section data are presented using the hemi-spherical antenna because the pattern
of this antenna type closely resembles the radiation patterns frequently used in mobile
communications. The amplitude weight function of this type of antenna is modelled as
G(z9)={ /2(2n + 1) cos™(9) , for 0 < 9 < /2, (63)
0 yform/2 <4 <,
where 9 is defined as
9 = arccos(—k; - £), (6.4)

and Z is the boresight direction of the antenna. This pattern is derived from the cosine
pattern of equation (5.4) for @ = 0. The function G(J) for some values of n is shown
in Figure 6.3 and in this section n = 5 was used. Since most of the antenna weight
functions are defined analytically within the numerical model, it is very easy to include

other functions G if necessary.

6.2.4 Field-strength analysis

By using equation (6.2), the received field at the feed position is readily calculated. An
advantage of FiPre is that the same ray-tracer output file can be used more than once, for
example, to analyse the impact of excluding some wave contributions in the postprocessing,
or to use different antenna weight functions G. Using this postprocessor, blockage effects
can be clearly visualised because individual results are available. Note that in the field-
~ strength calculation no attention is paid to the speed of the vehicle and the relative arrival
time of the individual waves. Co- and cross-polarised signals are available for all polarisation
states defined, and for all types of waves. Currently, only a limited number of them are

written to a file in the form of a matrix, but this is straightforward to extend.
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Figure 6.3: Gain function G(¥) forn = 1 (——), n = 3 (——— — — ) n =25

6.2.5 Time-delay analysis

In addition to the direction of propagation 1}1, in the time delay analysis also attention is
paid to the excess path length As; = s;—s..s, which yields an excess time delay Al; = As;/e.
At an observation point Obs the time delay response h(t) is given by

h(t) = Upg(t — Ato) + Y Uig(t — Aty), (6.5)
1

where the subscript 0 indicates the LOS wave and the function g(t) is the channel impulse
response. For g(t) = é(t) discrete pulses in the time domain are found. For the commu-
nications channel having some bandwidth B at carrier frequency w, the function g(t) is
found to be the Fourier transform of the frequency response H(w) of the communications
channel. From this it is clear that if the reflection and diffraction properties do not change
over the bandwidth B, then for the pulse shape function g() simply a sinc-function can
be used. The requirement that the reflection and diffraction properties do not change over
the bandwidth B is usually fulfilled because the relative bandwidth B/w < 1. If this is not
the case, the time response should be calculated by performing several frequency analyses
to find the frequency response H(w). This can elegantly be performed by changing only
the individual path lengths in terms of ), resulting in changing phases as function of fre-
quency. The change in the amplitudes of diffraction and reflection coefficients as function

of frequency is neglected. After calculation of H(w) the time response h(2) is subsequently
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found by applying a Fourier transformation.

The average excess time delay & and the time delay spread Ac¢ can be calculated by
using the first and second central moment of A(¢). Within the numerical model, these
parameters are separately calculated for LOS and optical shadow (OS) regions.

6.2.6 Delay-Doppler analysis

In the delay-Doppler analysis attention is paid to the time delay as well as to the direction
of arrival and the vectorial speed ¥ of the mobile. The Doppler shift Aw, is defined by

vk

c

(6.6)

Aw = —w

The amplitude of the spectral line with Doppler shift Aw; obviously is |U;]. The Doppler

spectrum D(w) is simply the summation of all spectral lines arriving at Obs

D(w) = Upb(w — Awg) + Y Uib(w — Awy). (6.7)
]

I necessary, also the relative movement of the satellite can be introduced in the Doppler-
spectrum calculation.

The delay-Doppler spectrogram is calculated by a two-dimensional mapping of the am-
plitude terms U with respect to the excess time-delay At; and the Doppler shift Aw;. Using
this spectrogram, the time response and Doppler spectrum can be found by projections of

the delay-Doppler spectrum along the time and frequency axes, respectively.

6.2.7 Analysis of testcase

As an illustration of the potential and capability of the FiPre model a realistic testcase
is analysed. A ray-tracing analysis for two trajectories on the EUT campus has been
performed. The trajectories will treat two specific cases frequently encountered in mobile
communications, namely LOS propagation with a strong specular reflection, and heavy
shadowing. The analysis is carried out at L- and S-band (1.5 and 2.3 GHz) and the signal
is assumed to be transmitted from a geostationary satellite at 19W seen from the EUT
campus at an elevation of 27°.

The EUT campus as seen from the direction of arrival of the satellite signal is shown
in Figure 6.4, while a schematic top-view of the campus is shown in Figure 6.5. In the
latter also the two trajectories are depicted. For the trajectory from point 1 to 2 fifteen
standardised objects have been included in the ray-tracer analysis, while for the trajectory
from 3 to 4 twenty-two objects have been selected. Both trajectories have a length of 200m,
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Figure 6.4: The campus of Eindhoven University of Technology as seen from the satellite.

Figure 6.5: Schematic top-view of the EUT campus and trajectories.
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and at both frequencies three sample points per wavelength have been used, resulting in
3000 sample points for the analysis at 1.5 GHz, and 4600 for the one at 2.3 GHz. It is
assumed that all the buildings are made of brick with a relative humidity of 5%. This
results in a complex relative permittivity ¢, of 5.3 — 1.25: at 1.5 GHz, and ¢, = 5.3 — 4.1¢
at 2.3 GHz [49].

6.2.8 CPU effort

Obviously, considerable time is needed to perform the analysis. The calculations have been
performed on an 486 PC running at a clock speed of 66 MHz. In the following table the
CPU time needed can be found for both frequencies and trajectories. For simplicity only
the direct, reflection and single-diffraction contributions were included.

Table 6.1: CPU time (in hours:minutes) needed for ray-tracing analysis.

_ [1—-2[3—-4]
| 1.5 GHz (3000) || 2:35 | 4:27
| 2.3 GHz (4600) || 3:56 | 6:50

The field strength along trajectory 1 — 2 for both frequencies can be found in Figure 6.6.
The reflected contribution from building HG for £ < 143m can be clearly seen, as well as
the shadowing effect at = 190m from building SH. The fact that the direct incident and
reflected field are in-phase results in a very strong signal for z < 143m. The amplitudes of
the reflected fields in Figure 6.6 differ due to the value of &, at both frequencies.

In Figure 6.7 the received signal along trajectory 3 — 4 for both frequencies is given. In
this case strong shadowing from building HG occurs between £ = —210m and z = —120m.
It is found that for the higher frequency the signal level in the deep shadow is lower, while
the slope of the received signal near the shadow boundaries, viz. z = —220 and z = —120m,
is higher. This is expected from the theory [5]. For the results presented in Figures 6.6
and 6.7, 7, Ac and the maximum time delay om,. have been calculated and these values
are reported in Table 6.2. Because 0,,4, is a function of the urban environment, it is found
that for a fixed geometry the values found are not dependent on the frequency, while & and
Ao are also dependent on |Uj| and At,.

Obviously, the most interesting case is the trajectory 3 — 4, where strong shadowing is
present. For this trajectory the PDF and CDF of the relative received field were determined
and these are reported in Figure 6.8 and 6.9, respectively. The large peaks at a power level
of -15 dB are caused by diffraction, while the peaks around 0 dB are caused by reflection
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Figure 6.8: Probability density function of relative received power along trajectory 3 — 4
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Figure 6.9: Cumulative density function of relative received power along trajectory 3 — 4
at 1.5 GHz.
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Table 6.2: Excess delay @, delay spread Ao and maximum excess delay omas in LOS and
OS regions, in nanoseconds.

a LOS region || OS region
o FA_E T ﬂ_o‘ Tmax
1.5 GHz, 1 —2 || 177 | 20 9 24 585
1.5 GHz,3 — 4 || 113 8 19| 17 683
23 GHz, 1 =2 || 177 19 7 21 585
| 23 GHz,3 — 4 || 113 8 19| 17 683

and the direct contribution. From this figure it is seen that for 20% of the time the signal
level exhibits an attenuation of 15 dB or more, and that for 30% of the time it is higher
than the LOS level.

The Doppler spectrum for a mobile travelling at a speed of 50 km/h along trajectory
3 — 4 at 1.5 GHz is given in Figure 6.10. For this case the maximum Doppler shift is

SPECTRAL POWER DENSITY [dB)

60 40 20 0
DOPPLER SHIFT [Hz)

Figure 6.10: Doppler spectrum along trajectory 3 — 4 at 1.5 GHz for a mobile at a speed
of 50 km/h.

+55Hz. Because the mobile is moving towards the source, the maximum of the Doppler
spectrum occurs at a positive Doppler shift. The delay-Doppler spectrogram is shown in
Figure 6.11. The time response and the Doppler spectrum can be found using the delay-
Doppler spectrogram by projections of the data onto both side planes.
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Figure 6.11: Delay-Doppler spectrogram along trajectory 3 — 4 at 1.5 GHz.

6.2.9 Future improvements

The FiPre prediction model is still under development and future improvements will include
obstacle transmittivity, improved ray-racing procedures and a moving source for simulation
of non-geostationary satellites. Also scattering from vegetation is intended to be included.
Currently, the statistical methods need to be invoked using external procedures. A more
elegant way is to do this inside the FiPre postprocessor. Also other types of contributions
(multiple-reflected and diffracted) will be implemented.

6.2.10 Conclusions

In this section the major features of a prediction tool originally developed for the simulation
of the most significant parameters of an LMS communication channel have been presented
and discussed. This simulation package is particularly suited for the study of the narrow
and wide band channel characteristics of any LMS system serving built-up areas. Significant
results of some of the available functions of the postprocessor have been given, showing the
potential of such LMS prediction tool. Due to its inherent capabilities and the large use
of well-established UTD routines, the simulation tool is also very effective for the planning
of fixed communication systems in urban environments such as broadcasting services and
site shielding for VSAT networks (Ch. 5).
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6.3 An efficient model for field-strength prediction

In practice, system engineers consider the satellite-communication channel to be reliable
only when the field strength relative to the free-space level is above some threshold. Practi-
cal values of this threshold are -15 and -16 dB. This level can easily be reached, for example
in regions where heavy shadowing occurs, as shown in Figure 6.7. This indicates that below
this threshold the channel cannot be used, and hence there is no need for calculating the
field strength in a very accurate way.

If the prediction model is used to derive statistical information like level crossing rates
and fading statistics, a more advanced ray tracing scheme can prove to be very helpful.
Based on the FiPre model described in the previous section such a scheme is fairly easy to
derive [55]. Instead of finding all wave contributions at every observation point, a selective
search is made, where attention is paid only to the highest-order contribution present for
that observation point. This is schematically visualised in Figure 6.12. The ray-tracing

Direct and reflected
contribution kﬂ

Diffracted, reflected
and diffracted
contribution k

-172 Increasing

complexity

Corner-, double-
diffracted, reflected and
corner and double diffr.. Jc*!
| 1
Higher-order
contributions J k 30

Increasing
signal level

Figure 6.12: Schematic flow-diagram for modified ray-tracing scheme.

procedure is started by determining whether the direct and reflection contributions exist.
If so, the ray-tracing analysis is finished and the signal level at the observation point is
calculated based on the field contributions found. If not, the search for higher-order field
contributions continues, e.g. edge-diffracted, and combinations of reflection and diffraction.
If these contributions exists, the procedure is halted and the signal level is calculated. If
not, the search continues. This simplified approach proves to be very time efficient, as will
be demonstrated in the following.

The ‘highest-order’ calculation scheme is applied to the same configuration as used in
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Figure 3.12 of Section 3.2.4. The SSF on the observation line defined is shown in figure 6.13.
The left side of this figure shows the SSF when taking into consideration all the wave
contributions that are present, as in Figure 3.12. Since the SSF curve is symmetric with
respect to the line y, = 0, the result on the right side gives the result obtained using the
highest-order contribution scheme. For y, > 116m only the direct wave of order k° is used.
For 43m < y, < 116m a single diffraction contribution of order k~'/2 is the highest, and
behind the screen only double-diffraction contributions of order k=1 are present. Obviously
this approach does not result in continuous fields when traversing shadow boundaries. The
major differences between the left and right part of Figure 6.13 appear around the shadow
boundaries. From a calculation point of view, however, the ‘highest-order’ approach has the
advantage that it asks for very little CPU time as compared to the conventional approach.
Using this reduction scheme, a very efficient ray tracing procedure for simulations can be

developed, obviously at the expense of accuracy.

SSF_I [dB]

) “100 -50 0 50 100 150
y_plm]

Figure 6.13: SSF behind the rectangular block as function of y,: the result including all
wave contributions is shown on the left side of the figure, while the result of the
‘highest-order” approach is shown on the right side. The shadow boundaries
are indicated and the order of contributions are given as kP.

Data: x, = 250m, z, = 1.5m, d x h x z,4 = 20m x 86m x 68m, A = 0.3m
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6.4 Discussion

It should be noted that in the previous section attention has been paid to an LMS sys-
tem only. This has been done on purpose, because it is believed that the accurate UTD
field-strength prediction model is needed only for a limited number of situations. This is
explained using Figure 6.14.

The LMS application studied here is shown in Figure 6.14a. In this geometry only a
limited number of objects surrounding the mobile is of importance in the determination of
the field strength at the mobile receiver location. This can be understood by the fact that
the receiver only ‘sees’ a limited number of buildings, because the others are obstructed by
the visible ones. To first order, only the visible objects need to be taken into account in the
field strength analysis, as shown schematically by the dashed semi-circle in Figure 6.14a.

An identical argumentation holds for the case of micro-cellular systems (Fig. 6.14b). In
this application the transmitter is usually placed at a fairly high position, and the coverage
area per transmitter is relatively small. In this pseudo-LMS geometry, there is also a visible
region associated with the receiver. It is expected that the model proposed here can also
be applied to micro-cellular systems as long as the transmitter is placed fairly high, i.e.
the angle of arrival is quite large. If the antenna is placed low, for example to reduce the
size of the coverage cell, modifications have to be introduced to the ray-tracing algorithm,
possible in the form of higher-order diffraction contributions.

The geometry encountered in the terrestrial application, shown in Figure 6.14c, is rather
different. Here the distance befween the transmitter and the mobile receiver is usually
quite large, and the angle of arrival with the groundplane at the receiver consequently is
very small. Hence a visible region around the receiver as well as around the transmitter
is identified. Also the area in between transmitter and receiver automatically becomes
important, because it influences the EM field arriving at the receiver.

So for applications where the angle of arrival with respect to the ground plane is quite
large, as in the LMS and the micro-cellular applications, the GO/UTD model can be
used because the interaction of the wave arriving at the receiver with the environment is
restricted to the ‘visible’ region just identified. For the terrestrial application sketched in
Figure 6.14c it is concluded, however, that the use of the deterministic model is too intensive
from a computational point of view. More important, it is not needed because, for large
transmitter-receiver separation, the variability of the field is quite low due to the settling
of the field. The average amplitude is nearly constant, and its standard deviation is quite
small because the influences of the side edges and faces of the buildings can be neglected

due to obstruction. In this case, a statistical analysis can prove to be more advantageous
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than the deterministic one proposed here. Up to know, the point where the results from
the deterministic and statistical models meet is unknown. A statistical approach using
deterministic wave-propagation models could consist of varying the properties of the field
incident upon the region close to the receiver. In this case, the field strength at the receiver
is calculated taking into account only this region, as performed in the LMS geometry. The
incident field, however, would have a statistical part in its wave parameters, e.g. the angle
of arrival or its amplitude. Actually this is some kind of spectral approach, and it is known
from the literature that transhorizon-propagating fields due to ducting have a very narrow
spectrum of the angle of arrival around zero, which is the direction of propagation parallel
to the earth’s surface. The average and the variance of the field strength at the receiver
can be calculated by assigning to each spectral line, i.e. angle of arrival, an amplitude
and phase according to some statistical distribution. In this case the problem of finding
the ray paths in a three-dimensional geometry is transferred to the problem of finding the
appropriate statistical distributions of the angular spectrum. Also this alternative would
be very time consuming from a computational point of view.

In the deterministic model the CPU effort can be made smaller by taking cross sections
through the urban environment and effectively taking into account a two-dimensional ge-
ometry instead of the original three-dimensional one. Effects of scatter and diffraction out
of the great circle plane are accounted for by effective scatterers, as proposed in [63, 64].
Using this approach, however, few accurate results have been obtained yet, and hence the
usefulness of this approach should be doubted. It seems as if too few details concerning
the actual geometry are taken into account. This conclusion is supported by the results
reported in [84, 85], where an upper bound for the path length for the applicability of their
GTD model is found as function of the difference in the transmitter and receiver height.
The applicability of the GTD model is extended as the difference in transmitter-receiver
height is increased. This confirms the usefulness of the ‘visibility’ regions close to the

receiver as performed in this dissertation.
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Figure 6.14: Regions close to the transmitter and mobile receiver in various communications
systems: a Land Mobile Satellite system (a), a micro cellular system (b), and
a terrestrial system (c).
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Chapter 7

Summary and conclusions

Currently available statistical field-strength prediction models for urban environments are
in most cases based on measurement results and are therefore suitable for one generalised
geometry only. The effects of strong shadowing by buildings and strong specular reflec-
tions are usually not adequately modelled. To overcome this deficiency, a deterministic
field-strength prediction model can be used which accepis a detailed description of the
urban environment. In this thesis such a model is applied to two practical problems fre-
quently encountered in telecommunications engineering, viz. the determination of the signal
strength at the terminals of a reflector antenna placed behind an isolated obstacle, and the
prediction of the field strength from a satellite signal in a mobile that travels through an
urban environment. Geometrical Optics (GO) complemented with the Uniform Theory of
Diffraction (UTD) are used to compose a reliable and accurate wave propagation model.

In Chapter 2 the high-frequency representation of electromagnetic (EM) waves was dis-
cussed. Several propagation mechanisms such as line-of-sight propagation, reflection, edge
diffraction, and higher-order diffractions were reviewed and theoretically analysed. The
(heuristic) extension of UTD to account for non-perfect conductivity and surface roughness
of the obstacle was also examined. Furthermore, an approximate theory for the inclusion
of edge-irregularity effects was presented. Also, the UTD for reflection and diffraction by
a convex body was reviewed, and a formal treatment of EM wave propagation in terms of
wave parameters, e.g. principal directions and associated principal radii of curvature and
direction of propagation, was presented.

The theory for EM wave propagation discussed in Chapter 2 was used in Chapter 3 to
formulate a model for the calculation of the field strength in the surroundings of an obstacle
with a predetermined shape. The method of site shielding was introduced, and a new
consistent definition of the site shielding factor (SSF) correctly incorporating the effect of
the obstacle placement on the unwanted as well as the wanted signal, was given. Theoretical
results for the SST of the half-plane, the finite-width screen, the metallic cylinder and the
block-shaped obstacle were presented. The use of the latter type of obstacle proved to be
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very efficient because it can easily be specified numerically and may therefore take many
different shapes, because it has plane faces that simplify the ray-tracing procedures, and
because it can be used to ‘build up’ nearly any urban environment.

An efficient ray-tracing scheme to be used in conjunction with the block-shaped obstacle
was presented. Also an engineering approach for site shielding calculations incorporating
the finite-width screen was derived from the GO/UTD model in order to extend the cur-
rently available SSF prediction models provided by the CCIR. Results on the average and
minimum SSF were presented. The CCIR models cover only very simple geometries, and
therefore have a limited range of applicability. In the framework of the collaboration within
the COST 235 project, comparisons between results from three different field-strength pre-
diction models (GO/UTD, Fresnel surface integral and parabolic equation method) were
performed for the half-plane obstacle, the finite-width screen and the rectangular block.
In all cases considered good agreement between results was obtained, and it was found
that, for isolated obstacles, all three methods can be used to predict or analyse the SSF.
Each of these methods was found to have its own specific advantages and disadvantages.
We believe that GO/UTD is the most versatile model and that it gives the best insight.
The parabolic equation method, on the other hand, is very adequate to analyse complex
geometries, obviously at the expense of CPU time.

In Chapter 4 practical verifications of the models discussed in Chapter 3 were presented.
The measurements were performed using scaled obstacles at a frequency of 50 GHz using
a vector network analyser. A novel calibration scheme was necessary in order to carry out
the measurements in an ordinary room, and data processing techniques were needed to
suppress undesired reflections from nearby objects and walls. The calibration procedure
as well as some measurement results were presented in Section 4.2. Comparisons between
theoretical and measured results for diffraction by a finite-width screen (Sec. 4.3), the
metallic block-shaped obstacle (Sec. 4.4), a dielectric block-shaped obstacle (Sec. 4.5),
and single and multiple cylinders (Sec. 4.6) were presented. Not only results as function
of probe position, but also time-domain measurements showed excellent agreement with
theoretically predicted results. The theory presented in Chapter 2 concerning double,
slope and corner diffraction by a pair of joined dielectric wedges was verified and proved
to be sufficiently accurate for the applications studied here. It was found that the theory
presented in Chapter 2 can very well be used for field-strength prediction behind obstacles.

The postulate of GO and UTD that waves propagate independently in space was con-
firmed by time-domain measurements, and the polarisation dependence of the diffracted
fields was verified in the frequency domain as well as in the time domain. It was found
that the polarisation dependence of the field strength behind a dielectric obstacle is small,
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as was predicted by the extended theory.

In addition, the lower limit of applicability of the UTD for convex bodies was theoret-
ically and experimentally assessed. Also for the measurements incorporating cylindrical
objects the correspondence between theory and experiment was very good.

Chapter 5 focused on the so-called near-field problem for reflector antennas, which cor-
responds to a combined treatment of obstacle-edge and antenna-rim diffraction. In most
popular ray-based field-strength prediction models the antenna spatial filtering is accounted
for by the introduction of antenna weight functions. In many cases, however, the antenna
is placed very close to the obstacle (within the Rayleigh distance) and consequently this
combined analysis is not permitted. In this thesis we have concentrated on single- and
double-reflector antennas shielded by a (hypothetical) half-plane. For both antenna types
the off-axis receiving properties were discussed, and the SSF as function of antenna-obstacle
separation and antenna orientation were presented. It was found that outside the spillover
regions the antenna type is not of primary importance in the evaluation of the SSF, pro-
vided that the antennas have identical diameter and edge illumination. For half-plane
shielding of the antenna it was found that the far-field method, i.e. a separate treatment of
obstacle and antenna diffraction, also gives reasonable results, even if the obstacle-antenna
separation d is smaller than the Rayleigh distance B. A lower limit for the applicability
of the far-field method was found to be d = R/4, although this value in a small measure
depends on the antenna geometry in terms of edge illumination and orientation. The model
provided by the CCIR for the antenna shielding problem proved to be very restricted in its
use.

From the discussion concerning the introduction of antenna weight functions it was
concluded that for finite-width screen shielding of a parabolic reflector antenna the near-
field method needs to be used up to a very large separation between obstacle and antenna,
viz. d > 6R. This indicates that, for obstacles of finite extent, the Rayleigh distance
is an unreliable parameter for deciding on what method to use. A broadband analysis
revealed that if an averaging of the received signal over a frequency band is allowed, as is
performed in a radio receiver, the results predicted by the far-field method considerably
deviate from those predicted by the near-field model. Implications of using the far-field
approach instead of the near-field approach for other antenna configurations were identified.
Results predicted by a field-strength prediction model based on far-field antenna weighting
should be used with caution. In many practical cases, however, the far-field method is the
only one amenable for implementation in a numerical wave-propagation model.

In Chapter 6 the GO/UTD model was used to predict the field strength in an urban
environment schematically represented as a collection of appropriately-dimensioned block-
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shaped obstacles. The prediction tool developed was used to derive communication param-
eters such as field strength, time-delay profile, Doppler spectrum and secondary statistics
of these parameters for a mobile travelling through the urban scenery. As a test case,
the field strength along two trajectories at the EUT campus was determined for signals
at a frequency of 1.5 and 2.3 GHz, which are the frequencies to be used for future mobile
communication systems. Parameters such as the probability density function and the cu-
mulative distribution of the field strength were presented. Together with digital databases
of urban areas, the model proposed is expected to be a powerful tool for analysis and pre-
diction purposes; its validity was already demonstrated in Chapter 4. It should, however,
not be considered as a replacement of current statistical field-strength prediction models,
but rather as a complement. In many situations insufficient information on the environ-
ment to be analysed is available for a deterministic model to be used, in which case one
should resort to the use of statistical models. It is expected that in the near future, when
most of the urban-area information has been digitised, the model will reveal itself as a
calculation tool capable of predicting the field strength in a very accurate way. The model
can possibly be extended to also include statistical effects such as atmospheric attenuation,
scattering from passing vehicles, trees and foliage, so that statistical information of the
communications channel can be extracted from the deterministic model proposed in this
dissertation.

Note that attention has been paid to Land Mobile Satellite (LMS) applications only, be-
cause it is believed that for terrestrial applications, i.e. when the transmitter and receiver
are both placed close to the earth’s surface, the current model has only a limited applica-
bility. Reasons for this are the large amount of time needed to perform the higher-order
diffraction calculations, and the fact that the average amplitude in a terrestrial communica-
tion system can be predicted by statistical methods in a fairly accurate way. Nevertheless,
the deterministic model can be used to analyse ‘problem areas’ where the statistical meth-

ods fail, e.g. regions with reflection and strong shadowing,.

In conclusion, it is believed that a deterministic wave-propagation model as developed, de-
scribed and verified in this dissertation can effectively be used for field-strength prediction,
with applications such as site shielding and other obstacle-diffraction problems. Although
other methods exist to describe the interaction process of EM wave and obstacle, a ray-
based method offers a considerable insight and proves to be more than sufficiently accurate
for the applications studied in this thesis. The models developed here are expected to be the

basis for a complement to and an extension of currently available models for field-strength
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prediction, that in many cases have a statistical character. Communication engineers may
benefit from the results predicted by the deterministic models in the planning stages of

new telecommunications services and in the analysis of operational systems.
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Korte samenvatting

Dit proefschrift behandelt de ontwikkeling van een deterministisch model voor de voor-
spelling van de elektromagnetische (EM) veldsterkte in stedelijke gebieden. Het model
gebruikt de geometrische optica (GO) aangevuld met verschillende bijdragen die berekend
zijn op basis van de uniforme theorie van diffractie (UTD) om de interactie van de EM golf
met obstakels in een stedelijke omgeving te beschrijven. Twee toepassingen van dit model
worden besproken in deze dissertatie.

De eerste is de bepaling van de doeltreffendheid van het plaatsen van een obstakel op
het propagatiepad van een stoorsignaal. Resultaten van deze opzettelijke signaalblokkering
worden gepresenteerd voor verschillende types obstakels en posities van de ontvangan-
tenne. Ook een geometrie waarbij de antenne heel dicht bij het obstakel is geplaatst wordt
bestudeerd. In dit geval is een afzonderlijke beschouwing van diffractie aan de antenne
en het obstakel niet meer geoorloofd en dient een gecombineerde analyse te worden uitge-
voerd. Dit is gedaan voor twee soorten parabolische reflectorantennes, en resultaten voor
het afschermende effect van een halfvlak worden gepresenteerd en vergeleken. Ook de in-
troductie van antenne-weegfuncties in modellen voor veldsterktevoorspelling gebaseerd op
een stralenbeschouwing van het EM veld wordt behandeld.

De tweede toepassing van het besproken model is de bepaling van de EM veldsterkte
van een door een satelliet uitgezonden radiosignaal in een bebouwde omgeving. Door
zijn deterministisch karakter is het ontwikkelde model in staat effecten zoals reflectie en
schaduwvorming te analyseren. Deze effecten worden niet meegenomen in gebruikelijke,
statistische modellen voor de voorspelling van de veldsterkte. Omdat het GO/UTD model
gebruik maakt van een gedetailleerde beschrijving van de stedelijke omgeving is het toepas-
baar op een willekeurige omgeving. Dit staat in tegenstelling tot de conventionele statis-
tische modellen die normaal gesproken slechts voor een beperkt aantal gegeneraliseerde
geometrieén te gebruiken zijn. De kracht van het model wordt gedemonstreerd aan de
hand van de theoretische bepaling van de veldsterkte langs twee trajecten door de cam-
pus van de TU Eindhoven. Niet alleen de veldsterkte, maar ook het Dopplerspectrum, de
impulsresponsie en het impuls-Dopplerspectrogram worden bepaald. Het deterministische
model kan een waardevolle aanvulling zijn van reeds bestaande statistische modellen voor
veldsterktevoorspelling, vooral als een digitale beschrijving van de gebouwen in steden en

dorpen voorhanden is.
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Toelichting

In dit proefschrift zijn resultaten beschreven die ten dele behaald zijn door bijdragen van
anderen. Deze bijdragen worden hieronder nader omschreven.

o Comparison of three field-strength prediction models (par. 3.3).

Deze paragraaf is het resultaat van een nauwe samenwerking tussen dr. Mireille Levy
van Rutherford Appleton Laboratory (UK), dr. Chris Haslett van de University of
Glamorgan (UK) en de auteur van dit proefschrift in het kader van het Europese
project COST 235. Dr. C. Haslett was verantwoordelijk voor de berekeningen met de
Fresnel-integralen en dr. M. Levy heeft de berekeningen met de parabolische vergeli-
jking uitgevoerd.

o Large-bandwidth diffraction measurements at 54 GHz using both time-domain filter-
ing and frequency smoothing (par. 4.2).

Ir. M.G.J.J. Klaassen ontwikkelde en realiseerde in het kader van zijn afstudeerwerk
in de vakgroep Telecommunicatie van de Technische Universiteit Eindhoven de meet-
opstelling voor het verrichten van de diffractie- en site shielding metingen. De ont-
wikkeling van de calibratie procedure en de meetresultaten in par. 4.2 en 4.3 zijn aan
dit afstudeerwerk ontleend. De auteur van dit proefschrift en dr.ir. M.H.A.J. Herben
hebben ir. Klaassen bij zijn afstudeerwerk begeleid.

e Comparison between measurements and UTD simulations of EM-wave scattering by
circular cylinders (par. 4.6).

Ir. H.J.F.G. Govaerts analyseerde het probleem van diffractie aan een metalen cilinder
in het kader van zijn afstudeerwerk in de vakgroep Telecommunicatie. De auteur
van dit proefschrift en dr.ir. M.H.A.J. Herben en hebben ir. Govaerts tijdens het
afstudeerwerk begeleid, waarbij opgemerkt dient te worden dat de auteur van dit
proefschrift de veldsterktemetingen in de cilindergeometrie uitgevoerd heeft.

Verder zijn in de dissertatie resultaten verwerkt die verkregen zijn uit het werk van een
aantal stagiairs die hun werk uitgevoerd hebben onder begeleiding van de auteur van dit
proefschrift.
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door

Gerardus Adrianus Johannes van Dooren
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Tuovinen gaat in zijn beschouwing over de gaussische bundel geheel voorbij aan het
feit dat het fasefront alleen sferisch verondersteld mag worden nabij de as van de
bundel. Dit verklaart waarom grote verschillen gevonden worden tussen de fase van
de gaussische bundel en die van een resultaat verkregen via apertuurintegratie.

— J. Tuovinen, ‘Accuracy of a Gaussian Beam', IEEE Transactions on Antennas and
Propagation, vol. AP-40, no. 4, pp. 391-398, 1992.

Voor het ontbinden van een willekeurig apertuurveld in gaussische modi zijn behalve
radiale ook hoekafhankelijke (azimuthale) modi nodig.
— G.A.J. van Dooren en C.G.M. van't Klooster, ‘Analysis of a Reflector Antenna with

Quasi-optical Front-end using Gaussian Beams’, Proceedings of Journees Interna-
tionales de Nice sur les Antennes (JINA), pp. 201-205, 1990.

In de definitie van de slechtste maand is het begrip jaar voor verschillende uitleg
vatbaar. Door gebruik te maken van een lopend gemiddelde met de duur van een jaar
wordt een betrouwbaardere dempingsstatistiek voor de slechtste maand verkregen.

— G.A.J. van Dooren, ‘Electromagnetic Diffraction Models for the Shielding of Single-
and Dual-Reflector Antennas by Obstacles with Simple Shapes’, IVO-rapport, T.U.
Eindhoven, 1991.

Het examen morsecode-opnemen en -seinen ter verkrijging van de zendmachtiging
A en B voor radioamateurs moet eerder gezien worden als een proeve van mentale
bekwaamheid dan als een proeve van theoretische of fysieke bekwaamheid.

AIO-promovendi en verpleegkundigen beoefenen hun werk uitsluitend uit liefde voor
hun vak.
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Voor het bepalen van de afschermende werking van een obstakel bij niet-uniforme
belichting kan de UTD niet algemeen gebruikt worden. Een spectrale aanpak is dan
een betere oplossing.

Het drie-stralen-model ter bepaling van de stralingseigenschappen van een symme-
trische paraboolantenne zou op basis van fysische gronden uitgebreid moeten worden
met een oneindig aantal andere bijdragen.

Het in rekening brengen van de invloed van een obstakel op zowel het gewenste als
het ongewenste signaal in de berekening van de site shielding factor (SSF), zoals
voorgesteld door Vyncke en Vander Vorst, leidt tot een schijnbaar frequentieathan-
kelijke SSF.

- C. Vyncke en A. Vander Vorst, ‘Effect of Obstacles on Interference between Slant

Paths and Terrestrial Links, as a Function of Frequency’, Proceedings of the Interna-
tional Conference on Antennas and Propagation (ICAP), pp. 1003-1006, 1993.

- Dit proefschrift, par. 3.2,

Ondanks het feit dat de Cassegrain-reflectorantenne al geruime tijd gebruikt wordt
in de satellietcommunicatie is er slechts weinig bekend over de berekening van de ver
van de antenne-as gelegen zijlussen.

- Dit proefschrift, par. 5.3.

De keuze van een geschikte basisvorm ter modellering van obstakels in een deter-
ministisch model voor veldsterktevoorspelling is bepalend voor de praktische bruik-
baarheid.

— Dit proefschrift, par. 6.2.






