142 research outputs found

    Freeway shockwave control using ramp metering and variable speed limits

    Get PDF

    Coordination and Analysis of Connected and Autonomous Vehicles in Freeway On-Ramp Merging Areas

    Get PDF
    Freeway on-ramps are typical bottlenecks in the freeway network, where the merging maneuvers of ramp vehicles impose frequent disturbances on the traffic flow and cause negative impacts on traffic safety and efficiency. The emerging Connected and Autonomous Vehicles (CAVs) hold the potential for regulating the behaviors of each individual vehicle and are expected to substantially improve the traffic operation at freeway on-ramps. The aim of this research is to explore the possibilities of optimally facilitating freeway on-ramp merging operation through the coordination of CAVs, and to discuss the impacts of CAVs on the traffic performance at on-ramp merging.In view of the existing research efforts and gaps in the field of CAV on-ramp merging operation, a novel CAV merging coordination strategy is proposed by creating large gaps on the main road and directing the ramp vehicles into the created gaps in the form of platoon. The combination of gap creation and platoon merging jointly facilitates the mainline and ramp traffic and targets at the optimal performance at the traffic flow level. The coordination consists of three components: (1) mainline vehicles proactively decelerate to create large merging gaps; (2) ramp vehicles form platoons before entering the main road; (3) the gaps created on the main road and the platoons formed on the ramp are coordinated with each other in terms of size, speed, and arrival time. The coordination is analytically formulated as an optimization problem, incorporating the macroscopic and microscopic traffic flow models. The model uses traffic state parameters as inputs and determines the optimal coordination plan adaptive to real-time traffic conditions.The impacts of CAV coordination strategies on traffic efficiency are investigated through illustrative case studies conducted on microscopic traffic simulation platforms. The results show substantial improvements in merging efficiency, throughput, and traffic flow stability. In addition, the safety benefits of CAVs in the absence of specially designed cooperation strategies are investigated to reveal the CAV’s ability to eliminate critical human factors in the ramp merging process

    Variable Speed Limit Strategies to Reduce the Impacts of Traffic Flow Breakdown at Recurrent Freeway Bottlenecks

    Get PDF
    Variable Speed Limit (VSL) strategies identify and disseminate dynamic speed limits that are determined to be appropriate based on prevailing traffic conditions, road surface conditions, and weather conditions. This dissertation develops and evaluates a shockwave-based VSL system that uses a heuristic switching logic-based controller with specified thresholds of prevailing traffic flow conditions. The system aims to improve operations and mobility at critical bottlenecks. Before traffic breakdown occurrence, the proposed VSL’s goal is to prevent or postpone breakdown by decreasing the inflow and achieving uniform distribution in speed and flow. After breakdown occurrence, the VSL system aims to dampen traffic congestion by reducing the inflow traffic to the congested area and increasing the bottleneck capacity by deactivating the VSL at the head of the congested area. The shockwave-based VSL system pushes the VSL location upstream as the congested area propagates upstream. In addition to testing the system using infrastructure detector-based data, this dissertation investigates the use of Connected Vehicle trajectory data as input to the shockwave-based VSL system performance. Since the field Connected Vehicle data are not available, as part of this research, Vehicle-to-Infrastructure communication is modeled in the microscopic simulation to obtain individual vehicle trajectories. In this system, wavelet transform is used to analyze aggregated individual vehicles’ speed data to determine the locations of congestion. The currently recommended calibration procedures of simulation models are generally based on the capacity, volume and system-performance values and do not specifically examine traffic breakdown characteristics. However, since the proposed VSL strategies are countermeasures to the impacts of breakdown conditions, considering breakdown characteristics in the calibration procedure is important to have a reliable assessment. Several enhancements were proposed in this study to account for the breakdown characteristics at bottleneck locations in the calibration process. In this dissertation, performance of shockwave-based VSL is compared to VSL systems with different fixed VSL message sign locations utilizing the calibrated microscopic model. The results show that shockwave-based VSL outperforms fixed-location VSL systems, and it can considerably decrease the maximum back of queue and duration of breakdown while increasing the average speed during breakdown

    Deep Reinforcement Learning Approach for Lagrangian Control: Improving Freeway Bottleneck Throughput Via Variable Speed Limit

    Get PDF
    Connected vehicles (CVs) will enable new applications to improve traffic flow. The focus of this dissertation is to investigate how reinforcement learning (RL) control for the variable speed limit (VSL) through CVs can be generalized to improve traffic flow at different freeway bottlenecks. Three different bottlenecks are investigated: A sag curve, where the gradient changes from negative to positive values causes a reduction in the roadway capacity and congestion; a lane reduction, where three lanes merge to two lanes and cause congestion, and finally, an on-ramp, where increase in demand on a multilane freeway causes capacity drop. An RL algorithm is developed and implemented in a simulation environment for controlling a VSL in the upstream to manipulate the inflow of vehicles to the bottleneck on a freeway to minimize delays and increase the throughput. CVs are assumed to receive VSL messages through Infrastructure-to-Vehicle (I2V) communications technologies. Asynchronous Advantage Actor-Critic (A3C) algorithms are developed for each bottleneck to determine optimal VSL policies. Through these RL control algorithms, the speed of CVs are manipulated in the upstream of the bottleneck to avoid or minimize congestion. Various market penetration rates for CVs are considered in the simulations. It is demonstrated that the RL algorithm is able to adapt to stochastic arrivals of CVs and achieve significant improvements even at low market penetration rates of CVs, and the RL algorithm is able to find solution for all three bottlenecks. The results also show that the RL-based solutions outperform feedback-control-based solutions

    Real-time freeway network traffic surveillance: large-scale field testing results in Southern Italy

    Get PDF
    This paper reports on some large-scale field-testing results of a real-time freeway network traffic surveillance tool that has recently been developed to enable a number of real-time traffic surveillance tasks. This paper first introduces the related network traffic flow model and the approaches employed to traffic state estimation, traffic state prediction, and incident alarm. The field testing of the tool for these surveillance tasks in the A3 freeway of 100 km between Naples and Salerno in southern Italy is then reported in some detail. The results obtained are quite satisfactory and promising for further future implementations of the tool

    강화학습을 활용한 고속도로 가변제한속도 및 램프미터링 전략 개발

    Get PDF
    학위논문(석사) -- 서울대학교대학원 : 공과대학 건설환경공학부, 2022.2. 김동규.Recently, to resolve societal problems caused by traffic congestion, traffic control strategies have been developed to operate freeways efficiently. The representative strategies to effectively manage freeway flow are variable speed limit (VSL) control and the coordinated ramp metering (RM) strategy. This paper aims to develop a dynamic VSL and RM control algorithm to obtain efficient traffic flow on freeways using deep reinforcement learning (DRL). The traffic control strategies applying the deep deterministic policy gradient (DDPG) algorithm are tested through traffic simulation in the freeway section with multiple VSL and RM controls. The results show that implementing the strategy alleviates the congestion in the on-ramp section and shifts to the overall sections. For most cases, the VSL or RM strategy improves the overall flow rates by reducing the density and improving the average speed of the vehicles. However, VSL or RM control may not be appropriate, particularly at the high level of traffic flow. It is required to introduce the selective application of the integrated control strategies according to the level of traffic flow. It is found that the integrated strategy can be used when including the relationship between each state detector in multiple VSL sections and lanes by applying the adjacency matrix in the neural network layer. The result of this study implies the effectiveness of DRL-based VSL and the RM strategy and the importance of the spatial correlation between the state detectors.최근에는 교통혼잡으로 인한 사회적 문제를 해결하기 위해 고속도로를 효율적으로 운영하기 위한 교통통제 전략이 다양하게 개발되고 있다. 고속도로 교통류를 효과적으로 관리하기 위한 대표적인 전략으로는 차로별 제한속도를 다르게 적용하는 가변 속도 제한(VSL) 제어와 진입 램프에서 신호를 통해 차량을 통제하는 램프 미터링(RM) 전략 등이 있다. 본 연구의 목표는 심층 강화 학습(deep reinforcement learning)을 활용하여 고속도로의 효율적인 교통 흐름을 얻기 위해 동적 VSL 및 RM 제어 알고리즘을 개발하는 것이다. 고속도로의 여러 VSL과 RM 구간에서 시뮬레이션을 통해 심층 강화학습 알고리즘 중 하나인 deep deterministic policy gradient (DDPG) 알고리즘을 적용한 교통류 제어 전략을 검증한다. 실험 결과, 강화학습 기반 VSL 또는 RM 전략을 적용하는 것이 램프 진입로 구간의 혼잡을 완화하고 나아가 전체 구간의 혼잡을 줄이는 것으로 나타났다. 대부분의 경우 VSL이나 RM 전략은 본선과 진입로 구간의 밀도를 줄이고 차량의 평균 통행 속도를 증가시켜 전체 교통 흐름을 향상시킨다. VSL 또는 RM 전략들은 높은 수준의 교통류에서 적절하지 않을 수 있어 교통류 수준에 따른 전략의 선택적 도입이 필요하다. 또한 검지기간 지리적 거리와 관련한 인접 행렬을 포함하는 graph neural network layer이 여러 지점 검지기의 공간적 상관 관계를 감지하는 데 이용될 수 있다. 본 연구의 결과는 강화학습 기반 VSL과 RM 전략 도입의 필요성과 지점 검지기 간의 공간적 상관관계의 중요성을 반영하는 전략 도입의 효과를 시사한다.Chapter 1. Introduction 1 Chapter 2. Literature Review 4 Chapter 3. Methods 8 3.1. Study Area and the Collection of Data 8 3.2. Simulation Framework 11 3.3. Trip Generation and Route Choice 13 3.4. Deep Deterministic Policy Gradient (DDPG) Algorithm 14 3.5. Graph Convolution Network (GCN) Layer 17 3.6. RL Formulation 18 Chapter 4. Results 20 4.1. VSL and RM 20 4.2. Efficiency according to the flow rate 28 4.3. Effectiveness of the GCN Layer 33 Chapter 5. Conclusion 34 Bibliography 37 Abstract in Korean 44석

    A Dynamic Competition Control Strategy for Freeway Merging Region Balancing Individual Behaviour and Traffic Efficiency

    Get PDF
    An integrated control strategy is considered in this paper with the aim of solving congestion in freeway merging regions during peak hours. Merging regions discussed in this paper include the mainline and on-ramp. Traditional research mainly focuses on the efficiency of traffic, ignoring the experience of on-ramp drivers and passengers. Accordingly, a dynamic competition control strategy is proposed to balance individual behaviour and traffic efficiency. First, the concept of the congestion index is introduced, which is expressed by the queue length and the speed parameter of the merging region. The congestion index is used to balance the priorities of the vehicles from the mainline and on-ramp into the merging region in order to avoid poor individual behaviour of on-ramp drivers due to the long-time waiting. Additionally, a nonlinear optimal control approach integrating variable speed limits control and ramp metering is proposed to minimize the total time spent and the maximum traffic flow. The integrated control approach proposed in this paper is tested by simulation which is calibrated using field data. The results indicate that the integrated control approach can effectively shorten the total delay and enhance the traffic service level.</p

    Modeling present and future freeway management strategies : variable speed limits, lane-changing and platooning of connected autonomous vehicles

    Get PDF
    Freeway traffic management is necessary to improve capacity and reduce congestion, especially in metropolitan freeways where the rush period lasts several hours per day. Traffic congestion implies delays and an increase in air pollutant emissions, both with harmful effects to society. Active management strategies imply regulating traffic demand and improving freeway capacity. While both aspects are necessary, the present thesis only addresses the supply side. Part of the research in traffic flow theory is grounded on empirical data. Today, in order to extend our knowledge on traffic dynamics, detailed and high-quality data is needed. To that end, the thesis presents a pioneering data collection campaign, which was developed in a freeway accessing Barcelona. In a Variable Speed Limits (VSL) environment, different speed limits where posted, in order to observe their real and detailed effects on traffic. All the installed surveillance instruments were set to capture data in the highest possible level of detail, including video recordings, from where to count lane-changing maneuvers. With this objective, a semi-automatic method to reliably count lane changes form video recordings was developed and is presented in the thesis. Data analysis proved that the speed limit fulfillment was only relevant in sections with enforcement devices. In these sections, it is confirmed that, the lower the speed limit, the higher the occupancy to achieve a given flow. In contrast, the usually assumed mainline metering effect of low speed limits was not relevant. This might be different in case of stretch enforcement. These findings mean that, on the one hand, VSL strategies aiming to restrict the mainline flow on a freeway by using low speed limits will need to be applied carefully, avoiding conditions as the ones presented here. On the other hand, VSL strategies trying to get the most from the increased vehicle storage capacity of freeways under low speed limits might be rather promising. Results also show that low speed limits increase the speed differences across lanes for moderate demands. This, in turn, also increases the lane changing rates. In contrast, lower speed limits widen the range of flows under uniform lane flow distributions, so that, even for moderate to low demands, the under-utilization of any lane can be avoided. Further analysis of lane-changing activity allowed unveiling that high lane-changing rates prevent achieving the highest flows. This inverse relationship is modeled in the thesis using a stochastic model based on Bayesian inference. This model could be used as a control tool, in order to determine which level of lane-changing activity can be allowed to achieve a desired capacity with some level of reliability. Previous results identify drivers' fulfillment of traffic regulations as a weak point in order to maximize the benefits of current management strategies, like VSL or lane-changing control. This is likely to change in the near future with the irruption of Autonomous Vehicles (AV) in freeways. V2X communications will allow directly actuating on individual vehicles with high accuracy. This will open the door to new management strategies based on simultaneous communication to groups of AVs and extremely short reaction times, like platooning, which stands out as a strategy with a huge potential to improve freeway traffic. Strings of AVs traveling at extremely short gaps (i.e. platoons) allow achieving higher capacities and lower energy consumption rates. In this context, the thesis presents a parsimonious macroscopic model for AVs platooning in mixed traffic (i.e. platoons of AVs travelling together with human driven vehicles). The model allows determining the average platoon length and reproducing the overall traffic dynamics leading to higher capacities. Results prove that with a 50% penetration rate of AVs in the lane, capacity could reach 3400 veh/h/lane under a cooperative platooning strategy.Per tal de millorar la capacitat i reduir la congestió a les autopistes cal gestionar el trànsit de manera activa. Les estratègies de gestió activa del trànsit són d’especial importància en autopistes metropolitanes. La congestió provoca retards i un increment del consum de combustible que va lligat a unes majors emissions de gasos contaminants, tots amb efectes perniciosos per la societat. La gestió activa del transit requereix regular la demanda i millorar la capacitat de la via. Encara que tots dos aspectes son necessaris, la present tesis només analitza la gestió de l’oferta. Part de la recerca en l’anàlisi i la teoria del trànsit es basa en dades empíriques. Per satisfer el requeriment de dades detallades i d’alta qualitat, aquesta tesis presenta una campanya pionera de recol·lecció de dades. Les dades es van recollir a l’autopista B-23 d’accés a Barcelona. Tots els instruments de mesura es van configurar per tal de registrar les dades amb el major nivell de detall possible, incloent les càmeres de videovigilància, d’on es varen extreure els comptatges de canvi de carril. Amb aquest objectiu, es va desenvolupar una metodologia semiautomàtica per comptar canvis de carril a partir de gravacions de trànsit, que es presenta en el cos de la tesi. L’anàlisi de les dades obtingudes ha demostrat que el compliment dels límits de velocitat només resulta rellevant en aquelles seccions que compten amb un radar. És en aquestes seccions on s’ha confirmat que com menor és el límit de velocitat, major es l’ocupació per a un flux donat. Per contra, la hipòtesi habitual de que uns límits de velocitat baixos produeixen una restricció del flux no es va observar de forma rellevant. Aquest comportament podria esser diferent en el cas d’implantar un radar de tram. Els resultats obtinguts també mostren com les diferències de velocitats entre carrils s’incrementen per a límits de velocitat baixos i en condicions de demanda moderada. Això, alhora, incrementa el nombre de canvis de carril. Per contra, els límits de velocitat baixos contribueixen a una distribució de flux més uniforme entre carrils, de forma que es pot evitar la infrautilització de carrils. L’anàlisi més detallat de l’activitat de canvi de carril demostra que una taxa elevada de canvis de carril impedeix assolir fluxos grans de circulació. En la tesi, aquesta relació inversa entre la taxa de canvis de carril i el flux màxim de trànsit a l’autopista s’ha modelat de forma estocàstica utilitzant un model basat en la inferència Bayesiana. Aquest model es pot utilitzar com una eina de control, per tal de determinar quina taxa de canvi de carril es pot permetre si es vol assolir una capacitat determinada amb una determinada probabilitat de compliment. En vista dels resultats previs, la falta de compliment de les normes de trànsit per part dels conductors s’identifica com un punt dèbil a l’hora de maximitzar els beneficis de les actuals estratègies de gestió del transit. Això probablement canviarà en el futur pròxim amb la irrupció dels Vehicles Autònoms (VA) a les autopistes. Els sistemes de comunicació V2X permetran actuar individualment sobre cada vehicle amb una gran precisió. Això obrirà la porta a noves estratègies de gestió, basades en la comunicació simultània entre diferents grups de VA i en temps de reacció extremadament curts, com per exemple és el “platooning”, que destaca pel seu gran potencial per millorar el trànsit en autopista. Els “platons” son cadenes de VA viatjant amb uns espaiaments extremadament curts que permeten assolir capacitats mes elevades i un menor consum energètic. En aquest context, la tesi presenta un model macroscòpic parsimoniós per a “platons” de VA en condicions de transit mixt, és a dir, compartint la infraestructura amb vehicles tradicionals. El model permet determinar la longitud mitjana del “platons” i reproduir el trànsit global dinàmiques que condueixen a majors capacitats. Els resultats demostren que amb un 50% la velocitat de penetració dels AV al carril, la capacitat podria arribar als 3.400 vehicles / h / carril sota una estratègia cooperativa de “platooning
    corecore