825 research outputs found

    Freeform User Interfaces for Graphical Computing

    Get PDF
    報告番号: 甲15222 ; 学位授与年月日: 2000-03-29 ; 学位の種別: 課程博士 ; 学位の種類: 博士(工学) ; 学位記番号: 博工第4717号 ; 研究科・専攻: 工学系研究科情報工学専

    Automated freeform assembly of threaded fasteners

    Get PDF
    Over the past two decades, a major part of the manufacturing and assembly market has been driven by its customer requirements. Increasing customer demand for personalised products create the demand for smaller batch sizes, shorter production times, lower costs, and the flexibility to produce families of products - or different parts - with the same sets of equipment. Consequently, manufacturing companies have deployed various automation systems and production strategies to improve their resource efficiency and move towards right-first-time production. However, many of these automated systems, which are involved with robot-based, repeatable assembly automation, require component- specific fixtures for accurate positioning and extensive robot programming, to achieve flexibility in their production. Threaded fastening operations are widely used in assembly. In high-volume production, the fastening processes are commonly automated using jigs, fixtures, and semi-automated tools. This form of automation delivers reliable assembly results at the expense of flexibility and requires component variability to be adequately controlled. On the other hand, in low- volume, high- value manufacturing, fastening processes are typically carried out manually by skilled workers. This research is aimed at addressing the aforementioned issues by developing a freeform automated threaded fastener assembly system that uses 3D visual guidance. The proof-of-concept system developed focuses on picking up fasteners from clutter, identifying a hole feature in an imprecisely positioned target component and carry out torque-controlled fastening. This approach has achieved flexibility and adaptability without the use of dedicated fixtures and robot programming. This research also investigates and evaluates different 3D imaging technology to identify the suitable technology required for fastener assembly in a non-structured industrial environment. The proposed solution utilises the commercially available technologies to enhance the precision and speed of identification of components for assembly processes, thereby improving and validating the possibility of reliably implementing this solution for industrial applications. As a part of this research, a number of novel algorithms are developed to robustly identify assembly components located in a random environment by enhancing the existing methods and technologies within the domain of the fastening processes. A bolt identification algorithm was developed to identify bolts located in a random clutter by enhancing the existing surface-based matching algorithm. A novel hole feature identification algorithm was developed to detect threaded holes and identify its size and location in 3D. The developed bolt and feature identification algorithms are robust and has sub-millimetre accuracy required to perform successful fastener assembly in industrial conditions. In addition, the processing time required for these identification algorithms - to identify and localise bolts and hole features - is less than a second, thereby increasing the speed of fastener assembly

    Development of Feature Recognition Algorithm for Automated Identification of Duplicate Geometries in CAD Models

    Get PDF
    This research presents a feature recognition algorithm for the automated identification of duplicate geometries in the CAD assembly. The duplicate geometry is one of the seven indicators of the lazy parts mass reduction method. The lazy parts method is a light weight engineering method that is used for analyzing parts with the mass reduction potential. The duplicate geometry is defined as any geometries lying equal to or within the threshold distance with the user-defined orientation between them and have the percentage similarity that is equal to or greater than the threshold value. The feature recognition system developed in this research for the identification of duplicate geometries is also extended to retrieve the weighted bipartite graph of part connections for the assembly time estimation. The weighted bipartite graph is used as input for the part connectivity based assembly time estimation method. The SolidWorks API software development kit is used in this research to develop a feature recognition system in SolidWorks CAD software package using C++ programming language. The feature recognition system built in the SolidWorks CAD software uses a combination of topology and geometric data for the evaluation of duplicate geometry. The measurement of distances between the sampling points strategy is used for the duplicate geometry feature recognition. The feature recognition algorithm has three phases of evaluation: first, is the evaluation for threshold distance condition of parts in the CAD assembly. Second, the part pairs that have satisfied the threshold distance condition are evaluated for the orientation condition. The threshold distance and orientation are the necessary but not the sufficient conditions for duplicate geometries. In the third phase, the geometries that have satisfied orientation condition are evaluated for the percentage similarity condition. The geometries that satisfy the percentage similarity condition are highlighted in order to help designers review the results of the duplicate geometry analysis. The test cases are used to validate the algorithm against the requirements list. The test cases are designed to check the performance of the algorithm for the evaluation of the threshold distance, orientation, and percentage similarity condition. The results indicate that the duplicate geometry algorithm is able to successfully conduct all the three phases of evaluation. The algorithm is independent of the geometric type and is able to analyze planar, cylindrical, conical, spherical, freeform, and toroidal shapes. The number of sampling points generated on the faces of parts for the orientation and percentage similarity evaluation has the significant effect on the analysis time. The worst case complexity of the algorithm is the big O (nC2x m12 x m22x p4), where n = the number of parts in the assembly m1 = the number of faces in the parts that meet the threshold distance condition m2 = the number of faces that meet the orientation condition p = the number of sampling points on the face The duplicate geometry feature recognition approach is used to demonstrate the applicability in the extraction of assembly relations for the part connectivity based assembly time estimation method. The algorithm is also able to extract part connectivity information for the patterns. Further research is required to automate the identification of other laziness indicators in order to make the lazy parts method a completely automated tool. With regards to the complete automation of part connectivity based assembly time estimation method, the duplicate geometry feature recognition system needs integration with the algorithm for the computation of bipartite graph of part connections for the prediction of assembly time

    Process planning for the subtractive rapid manufacturing of heterogeneous materials: Applications for automated bone implant manufacturing

    Get PDF
    This research presents a subtractive rapid manufacturing process for heterogeneous materials, in particular for custom shaped bone implants. Natural bone implants are widely used in the treatment of severe fractures or in tumor removal. In order for the human body to accept the bone implant material and heal properly, it is essential that the bone implant should be both mechanically and biologically compatible. Currently, the challenge of having correctly shaped natural bone implants created from an appropriate material is met through hand-shaping done by a surgeon. CNC-RP is a rapid machining method and software that can realize a fully automated Subtractive Rapid Prototyping (RP) process, using a 3-axis milling machine with a 4th axis indexer for multiple setup orientations. It is capable of creating accurate bone implants from different clinically relevant material including natural bone. However, there are major challenges that need to be overcome in order to implement automated shape machining of natural bones. They are summarized as follows: (1) Unlike homogeneous source materials for which a part can be machined from any arbitrary location within the original stock, for the case of donor bones, the site and orientation of implant harvest need to consider the nature of the heterogeneous internal bony architecture. (2) For the engineered materials, the source machining stock is in the convenient form of geometrically regular shapes such as cylinders or rectangular blocks and the entities of sacrificial supports can connect the part to the remaining stock material. However, irregularly-shaped bones and the heterogeneity of bone make the design of a fixture system for machining much more complicated. In this dissertation, two major areas of research are presented to overcome these challenges and enable automated process planning for a new rapid manufacturing technique for natural bone implants. Firstly, a new method for representing heterogeneous materials using nested STL shells is proposed. The nested shells model is called the Matryoshka mode, based in particular on the density distribution of human bone. The Matryoshka model is generated via an iterative process of thresholding the Hounsfield Unit (HU) data from a computed tomography (CT) scan, thereby delineating regions of progressively increasing bone density. Then a harvesting algorithm is developed to determine a suitable location to generate the bone implant from within the donor bone is presented. In this harvesting algorithm, a density score and similarity score are calculated to evaluate the overall effectiveness of that harvest site. In the second research area, an automated fixturing system is proposed for securing the bone implant during the machining process. The proposed method uses a variant of sacrificial supports (stainless surgical screws) to drill into appropriate locations and orientations through the free-form shaped donor bone, terminating at proper locations inside the solid part model of the implant. This automated fixturing system has been applied to machine several bone implants from surrogate bones to 3D printed Matryoshka models. Finally, the algorithms that are developed for setup planning are implemented in a CAD/CAM software add-on called CNC-RPbio . The results of this research could lead to a clinically relevant rapid machining process for custom shaped bone implants, which could create unique implants at the touch of a button. The implication of such high accuracy implants is that patients could benefit from more accurate reconstructions of trauma sites, with better fixation stability; leading to potentially shorter surgeries, less revisions, shorter recovery times and less likelihood of post-traumatic osteoarthritis, to name a few

    Consistent Density Scanning and Information Extraction From Point Clouds of Building Interiors

    Get PDF
    Over the last decade, 3D range scanning systems have improved considerably enabling the designers to capture large and complex domains such as building interiors. The captured point cloud is processed to extract specific Building Information Models, where the main research challenge is to simultaneously handle huge and cohesive point clouds representing multiple objects, occluded features and vast geometric diversity. These domain characteristics increase the data complexities and thus make it difficult to extract accurate information models from the captured point clouds. The research work presented in this thesis improves the information extraction pipeline with the development of novel algorithms for consistent density scanning and information extraction automation for building interiors. A restricted density-based, scan planning methodology computes the number of scans to cover large linear domains while ensuring desired data density and reducing rigorous post-processing of data sets. The research work further develops effective algorithms to transform the captured data into information models in terms of domain features (layouts), meaningful data clusters (segmented data) and specific shape attributes (occluded boundaries) having better practical utility. Initially, a direct point-based simplification and layout extraction algorithm is presented that can handle the cohesive point clouds by adaptive simplification and an accurate layout extraction approach without generating an intermediate model. Further, three information extraction algorithms are presented that transforms point clouds into meaningful clusters. The novelty of these algorithms lies in the fact that they work directly on point clouds by exploiting their inherent characteristic. First a rapid data clustering algorithm is presented to quickly identify objects in the scanned scene using a robust hue, saturation and value (H S V) color model for better scene understanding. A hierarchical clustering algorithm is developed to handle the vast geometric diversity ranging from planar walls to complex freeform objects. The shape adaptive parameters help to segment planar as well as complex interiors whereas combining color and geometry based segmentation criterion improves clustering reliability and identifies unique clusters from geometrically similar regions. Finally, a progressive scan line based, side-ratio constraint algorithm is presented to identify occluded boundary data points by investigating their spatial discontinuity
    corecore